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Abstract Although compartmental dynamical systems are used in many different
areas of science, model selection based on the maximum entropy principle (MaxEnt)
is challenging because of the lack of methods for quantifying the entropy for this type
of systems. Here, we take advantage of the interpretation of compartmental systems
as continuous-time Markov chains to obtain entropy measures that quantify model
information content. In particular, we quantify the uncertainty of a single particle’s
path as it travels through the system as described by path entropy and entropy rates.
Path entropy measures the uncertainty of the entire path of a traveling particle from
its entry into the system until its exit, whereas entropy rates measure the average
uncertainty of the instantaneous future of a particle while it is in the system. We
derive explicit formulas for these two types of entropy for compartmental systems in
equilibrium based on Shannon information entropy and show how they can be used
to solve equifinality problems in the process of model selection by means of MaxEnt.
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1 Introduction

For many modeling applications, it is of interest to quantify the complexity of the
system of differential equations used to represent natural phenomena (Burnham and
Anderson 2002 Höge et al. 2018). In principle, we are interested in selecting models
that are parsimonious; i.e. with the least degree of complexity for explaining cer-
tain patterns in nature (Golan and Harte 2022). The concept of entropy has been
commonly used to characterize complexity or information content. Classical entropy
measures for dynamical systems characterize the rate of increase in dynamical com-
plexity as the system evolves over time (Jost 2005). These metrics have been used
extensively to characterize chaotic behavior in complex nonlinear systems (Fan et al.
2021), but as we will see later, they give trivial results for a large range of models
used in geosciences and biology.

In a large variety of scientific fields models are based on the principle of mass
conservation. In many cases such models are nonnegative dynamical systems that
can be described by first-order systems of ordinary differential equations (ODEs)
with strong structural constraints. Such systems are called compartmental systems
Anderson 1983 Walter and Contreras 1999 Haddad et al. 2010.

Compartmental systems can be evaluated using diagnostic metrics that predict
system-level behavior and allow comparisons of systems of very different structures.
Age and transit time of material content in compartmental systems are two diagnostic
metrics that have been widely studied for systems in and out of equilibrium (Eriks-
son 1971 Bolin and Rodhe 1973 Rasmussen et al. 2016 Sierra et al. 2017 Metzler and
Sierra 2018 Metzler et al. 2018). They help compare behavior and quality of differ-
ent models. Nevertheless, structurally very different models might show very similar
ages and transit times and might represent equally well a given measurement. If we
are in the position to choose among such models, which is the one to select? This
equifinality problem can be resolved by the maximum entropy principle (MaxEnt)
(Jaynes 1957a;b), a generic procedure to draw unbiased inferences from measure-
ment or stochastic data (Pressé et al. 2013 Golan and Harte 2022).

In order to apply MaxEnt to compartmental systems, some appropriate notion of
entropy is required to measure the system’s uncertainty or information content. Two
classical examples in dynamical systems theory are the topological entropy and the
Kolmogorov-Sinai/metric entropy. However, open compartmental systems are dissi-
pative and by Pesin’s theorem (Pesin 1977) both metric and topological entropy van-

https://github.com/goujou/entropy_and_complexity_in_eq
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ish and cannot serve as a measure of uncertainty. Alternatively, we can interpret com-
partmental systems as weighted directed graphs. Dehmer and Mowshowitz (2011)
provide a comprehensive overview of the history of graph entropy measures. Unfor-
tunately, most of such entropy measures are based on the number of vertices, vertex
degree, edges, or degree sequence (Trucco 1956 Morzy et al. 2017). Thus, they con-
centrate only on the structural information of the graph. There are also graph theoret-
ical measures that take edges and weights into account by using probability schemes.
Their drawback is that the underlying meaning of uncertainty becomes difficult to
interpret because the assigned probabilities seem somewhat arbitrary (Bonchev and
Buck 2005).

To bridge this gap we interpret deterministic compartmental systems from a prob-
abilistic viewpoint. Based on the Shannon information entropy (Shannon and Weaver
1949) of the continuous-time Markov chain that describes the random path of a single
particle through the compartmental system (Metzler and Sierra 2018), we introduce
three entropy measures. While the path entropy describes the uncertainty of a sin-
gle particle’s path through the system, the entropy rate per unit time and the entropy
rate per jump describe average uncertainties over the course of a particle’s journey.
The focus on a single particle makes our entropies microscopic system properties and
consequently distinguishes our approach from the theory of maximum caliber (Max-
Cal, Jaynes 1985 Roach 2020), where path entropy is interpreted as a macroscopic
system property of bulk material. Furthermore, our information theoretical approach
differs from the thermodynamic approach to entropy, which has been developed by
other authors studying energy transfers and reversibility in thermodynamic systems
(Aoki 1988 Haddad et al. 2010 Haddad 2013; 2019).

The manuscript is organized as follows. First we provide the fundamentals from
information theory and dynamical systems theory that are necessary to introduce the
path entropy as the uncertainty of a single particle traveling through the system. Then,
we mathematically derive the path entropy and introduce the entropy rates per unit
time and per jump, before we introduce MaxEnt and structural model identification.
Afterwards we present the introduced theory by means of simple generic examples
from the field of carbon-cycle modeling exploring the effect of different parameteri-
zations on the three entropy metrics, before we apply MaxEnt to a model identifica-
tion problem. Then we discuss the results and draw final conclusions.

2 Mathematical background: information entropy and compartmental systems
as Markov chains

First, we introduce some basic notations and well-known properties of Shannon in-
formation entropy of random variables and stochastic processes. Then, we present
compartmental systems as a means to model material-cycle systems that obey the
law of mass balance. We then consider such systems from a single-particle point of
view and define the path of a single particle through the system along with its visited
compartments, sojourn times, occupation times, and transit time.
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2.1 Short summary of Shannon information entropy

We introduce a few basic concepts of information entropy. Within the framework
of this manuscript, discrete entropies are usually associated to a particle’s jump into
another compartment and differential entropies to a particle’s sojourn time within a
specific compartment. Entropy rates are defined as average uncertainties of the parti-
cle’s path while it is in the system. See Sects. 2 and 8 of Cover and Thomas (2006)
for a more detailed introduction to Shannon’s information entropy and differential
entropy. Entropy rates for discrete- and continuous-time stochastic processes are in-
troduced in Cover and Thomas (Sect. 4 2006) and Bad Dumitrescu (1988).

Let Y be a real-valued discrete (continuous) random variable and call p its prob-
ability mass function (probability density function). Then

H(Y ) :=−E [log p(Y )] (1)

is called the “Shannon information entropy” (“differential entropy”) of Y . Most of the
time we just say “entropy” and the precise meaning can be derived from the context.
The entropy’s unit depends on the logarithmic base. For base 2 the unit is “bits” and
for the natural logarithm with base e the unit is “nats”. Throughout this manuscript
we use the latter if not stated otherwise.

The entropy H(Y ) of a random variable Y has two intertwined interpretations. On
the one hand, it is a measure of uncertainty, that is, a measure of how difficult it is to
predict the outcome of a realization of Y . On the other hand, H(Y ) is also a measure
of the information content of Y , that is, a measure of how much information we gain
once we learn about the outcome of a realization of Y . It is important to note that, even
though their definitions and information theoretical interpretations are quite similar,
the Shannon- and the differential entropy have one main difference. The Shannon
entropy is always nonnegative, whereas the differential entropy can have negative
values. While the Shannon entropy is an absolute measure of information and makes
sense in its own right, the differential entropy is not an absolute information mea-
sure, is not scale-invariant, and makes sense only in comparison with the differential
entropy of another random variable.

Panel (a) of Fig. 1 depicts the Shannon entropy with logarithmic base 2 of a
Bernoulli random variable Y with P(Y = 1) = 1−P(Y = 0) = p ∈ [0,1] representing
a coin toss with probability of heads equal to p. The closer p is to 1/2 the more
difficult it is to predict the outcome, and for an unbiased coin with p = 1/2 we have
no information about the outcome whatsoever, and the Shannon entropy

H(Y ) =−p log p− (1− p) log(1− p) (2)

is maximized. Panel (b) of Fig. 1 shows the differential entropy of an exponentially
distributed random variable Y ∼ Exp(λ ) with rate parameter λ > 0, probability den-
sity function f (y) = λ e−λ y for y ≥ 0, and E [Y ] = λ−1. We can imagine it to repre-
sent the duration of stay of a particle in a well-mixed compartment in an equilibrium
compartmental system, where λ is the total outflow rate from the compartment. The
higher the outflow rate is, the more likely an early exit of the particle is, and the easier
it is to predict its moment of exit. Hence, the differential entropy

H(Y ) = 1− logλ (3)
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decreases with increasing λ .

Fig. 1 Shannon entropy of a Bernoulli distribution (a), differential entropy of an exponential distribution
(b), and entropy rate of a Poisson process (c). Vertical gray lines indicate the parameter values leading to
the highest entropy

The “joint entropy” of two random variables Y1 and Y2 can be described as

H(Y1,Y2) =H(Y1)+H(Y2 |Y1), (4)

where the “conditional entropy” H(Y2 |Y1) describes the uncertainty of Y2 under the
condition that Y1 is known. The uncertainty of a stochastic process Z can be measured
by its “entropy rate” θ(Z), which describes the time density of the average informa-
tion in the process. For instance, let Z ∼ Poi(λ ) be a Poisson process with intensity
rate λ > 0 describing the moments of occurrence of certain events. The interarrival
times of Z or the times between events are Exp(λ )-distributed, such that in the long
run on average the time span between events has length λ−1. The entropy of the in-
terarrival times is given by H(Exp(λ )) = 1− logλ , and averaging it over the mean
interarrival time gives the entropy rate of the Poisson process Z (Gaspard and Wang
1993, Sect. 3.3), that is,

θ(Z) = θ(Poi(λ )) = λ (1− logλ ). (5)

This entropy rate increases with λ ∈ [0, 1], reaches its maximum at 1, and then it
decreases (Fig. 1, panel c). This behavior is independent of the unit of λ , because
it is based on the differential entropy of the exponential distribution and hence not
scale-invariant. Consequently, it is not an absolute measure of information content,
but only useful in comparison to the entropy rates of other stochastic processes.

2.2 Compartmental systems in equilibrium

Mass-balanced flow of material into a system, within the system and out of the system
that consists of several compartments can be modeled by so-called compartmental
systems (Anderson 1983 Jacquez and Simon 1993). Compartments are always well-
mixed and usually also called “pools” or “boxes”. An autonomous compartmental
systems can be described by the d-dimensional linear ODE system

d
d t

x(t) = Bx(t)+u, t > 0, (6)
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with some nonnegative initial condition x(0) = x0 ∈Rd
+. The nonnegative vector x(t)

describes the amount of material in the different compartments at time t, the nonnega-
tive vector u= (ui)i=1,2,...,d ∈Rd

+ is the vector of external inputs to the compartments,
and the compartmental matrix B ∈ Rd×d describes the flux rates between the com-
partments and out of the system. The nonnegative off-diagonal value Bi j is the flux
rate from compartment j to compartment i, the absolute value of the negative diag-
onal value B j j is the total rate of fluxes out of compartment j, and the nonnegative
value z j =−∑

d
i=1 Bi j is the rate of the flux from compartment j out of the system. By

requiring B to be invertible we ensure that the system is “open”, that is, all material
that enters the system will eventually also leave it. Throughout this manuscript, we
consider the open compartmental system (6) to have reached its unique steady-state
or equilibrium compartment vector x∗ = −B−1 u. This implies ∥r∥ = ∥u∥, where
r = (ri)i=1,2,...,d given by r j = z j x∗j is the external outflux vector from the system,
and ∥ · ∥ denotes the sum of absolute values of a vector (l1-norm). An open compart-
mental system in equilibrium given by Eq. (6) is fully characterized by u and B, and
we denote it by M := M(u,B).

2.3 The one-particle perspective

While Eq. (6) describes the movement of bulk material through the system, compart-
mental systems in equilibrium can also be described probabilistically by considering
the random path of a single particle through the system (Metzler and Sierra 2018).
If Xt ∈ S := {1,2, . . . ,d} denotes the compartment in which the single particle is at
time t, and Xt = d + 1 if the particle has already left the system, then X := (Xt)t≥0

is an absorbing continuous-time Markov chain (Norris 1997) on S̃ := S∪{d+1}. Its
initial distribution is given by β̃ = (β1,β2, . . . ,βd ,0)T , where β := u/∥u∥, and hence
β j = P(X0 = j) is the probability of the single particle to enter the system through
compartment j. The superscript T denotes the transpose of the respective vector or
matrix. The transition-rate matrix of X is given by

Q =

(
B 0
zT 0

)
, (7)

and thus

P(Xt = i) = (et Q
β̃ )i =

d

∑
j=1

(et Q)i j β j, i ∈ S̃, (8)

is the probability of the particle to be in compartment i at time t if i ∈ S or that the
particle has left the system if i = d + 1. Here, et Q denotes the matrix exponential.
Furthermore,

P(Xt = i |Xs = j) = (e(t−s)Q)i j, s ≤ t, i, j ∈ S̃, (9)

is the probability that X is in state i at time t given it was in state j at time s. Since
the Markov chain X and the compartmental system in equilibrium given by Eq. (6)
are equivalent, we can write

M = M(u,B) = M(X). (10)
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2.4 The path of a single particle

A particle’s path through the system from the moment of entering until the moment
of exit can be described as a sequence of (compartment, sojourn-time)-pairs

P(X) := ((Y1 = X0,T1),(Y2,T2), . . . ,(YN −1,TN −1),YN = d +1), (11)

where X is the absorbing Markov chain associated to the particle’s journey. The se-
quence Y1,Y2, . . . ,YN −1 ∈ S represents the successively visited compartments with
the associated sojourn times T1,T2, . . . ,TN −1, the random variable

N := inf{n ∈ N : Yn = d +1} (12)

denotes the first hitting time of the absorbing state d + 1 by the “embedded jump
chain” Y := (Yn)n=1,2,...,N of X (Norris 1997). With λ j :=−Q j j the one-step transi-
tion probabilities of Y are given by, for i, j ∈ S̃,

Pi j := P(Yn+1 = i |Yn = j) =

{
0, i = j or λ j = 0,
Qi j/λ j, else.

(13)

Let P|S = (Pi j)i, j∈S be the restriction of P to S. We can also write P|S = BD−1 + I,
where D := diag(λ1,λ2, . . . ,λd) is the diagonal matrix with the diagonal entries of B,
and I denotes the identity matrix of appropriate dimension. Then M := (I−P|S)−1 is
the “fundamental matrix” of Y . The entry Mi j denotes the expected numbers of visits
to compartment i given that the particle entered the system through compartment j.
Consequently, the expected number of visits to compartment i ∈ S is given by

E [Ni] =
d

∑
j=1

Mi j β j = (Mβ )i =
[
(I−P|S)−1

β
]

i = (DB−1
β )i =

λi x∗i
∥u∥

(14)

and the total expected number of jumps is given by

E [N ] =
d

∑
i=1

(Mβ )i +1 =
d

∑
i=1

E [Ni]+1, (15)

where we take into account also the last jump out of the system.
The last jump, N , leads the particle out of the system such that at the moment

of this last jump X takes on the value d +1. This last jump happens at the absorption
time of the Markov chain X , which is defined as

T := inf{t > 0 : Xt = d +1}. (16)

The absorption time is phase-type distributed (Neuts 1981), T ∼ PH(β ,B), with
probability density function

fT (t) = zT et B
β , t ≥ 0. (17)



8 Holger Metzler, Carlos A. Sierra

It can be shown (Metzler and Sierra 2018, Sect. 3.2) that the mean or expected value
of T equals the turnover time (Sierra et al. 2017) of system (6) in equilibrium and is
given by total stocks over total fluxes, that is,

E [T ] =
∥x∗∥
∥u∥

. (18)

Furthermore, by construction ∑
N −1
k=1 Tk =T . If we denote by 1{A} the indicator func-

tion of the logical expression A, given by

1{A} =

{
1, A is true,
0, else,

(19)

then O j := ∑
N −1
k=1 1{Yk= j} Tk is the total time that the particle spends in compartment

j. This time is called “occupation time” of j and its mean is given by (Metzler and
Sierra 2018, Sect. 3.3)

E [O j] =
x∗j
∥u∥

, (20)

which induces E [T ] = ∑
d
j=1E [O j].

3 Entropy measures, MaxEnt, and structural model identification

Based on these basic structures of the path of a single particle traveling through the
system, we compute three different types of entropy, for which we provide below a
summary of the desirable relations among them:

(1) As a particle travels through a system of interconnected compartments, it jumps
a certain number of times to the next compartment until it finally jumps out of the
system. Between two jumps, the particle resides in some compartment. The “path
entropy” measures the entire uncertainty about the particles travel through the
system, including both the sequence of visited compartments and the respective
times spent there.

(2) The entire travel of the particle takes a certain time. In each unit time interval be-
fore the particle leaves the system, uncertainties exist whether the particle jumps,
where it jumps, and even how often it jumps. The mean of these uncertainties
over the mean length of the travel interval is measured by the “entropy rate per
unit time”.

(3) Each jump comes with uncertainties about which compartment will be next and
how long will the particle stay there. The “entropy rate per jump” measures the
average of these uncertainties with respect to the mean number of jumps until the
particle’s exit from the system.

Once these entropy metrics are established, we introduce MaxEnt and show how
to apply it to the problem of structural model identification.
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3.1 Path entropy, entropy rate per unit time, and entropy rate per jump

The path P = P(X) given by Eq. (11) can be interpreted in three different ways.
Each of these ways leads to a different interpretation of the path’s entropy. First, we
can look at P as the result of bookkeeping of the absorbing continuous-time Markov
chain X , where for all times t we note down the pair (Xt , t) of the current compartment
and the current time. Second, we can consider the path as a discrete-time process. In
each time step n, we choose randomly a new compartment Yn+1 and an associated
sojourn time Tn+1 of the particle in this compartment. Third, we can look at P as a
single random variable with values in the space of all possible paths. Based on the
latter interpretation we now derive the path entropy.

We are interested in the uncertainty/information content of the path P(X) of
a single particle. Along the lines of Albert (1962), we construct a space ℘ that
contains all possible paths that can be taken by a particle that runs through the
system until it leaves. Let ℘n := (S ×R+)

n × {d + 1} denote the space of paths
that visit n compartments/states before ending up in the environmental compart-
ment/absorbing state d + 1. By ℘ :=

⋃
∞
n=1℘n denote the space of all eventually

absorbed paths. Note that, since B is invertible, a path through the system is finite
with probability 1. Let l denote the Lebesgue measure on R+ and c the counting
measure on S. Furthermore, let σn be the σ -finite product measure on ℘n. It is de-
fined by σn := (c⊗ l)n⊗c. Almost all sample functions of (Xt)t≥0 can be represented
as a point p ∈℘ (Doob 1953, Chapter VI). Consequently, we can represent X by a
finite-length path P(X)= ((Y1,T1),(Y2,T2), . . . ,(Yn,Tn),Yn+1) for some n∈N, where
Yn+1 = d +1.

For each set W ⊆℘ for which W ∩℘n is σn-measurable for each n ∈N, we define
σ∗(W ) := ∑

∞
n=1 σn(W ∩℘n). This measure is defined on the σ -field F ∗ which is the

smallest σ -field containing all sets W ⊆℘ whose projection on Rn
+ is a Borel set for

each n ∈ N. Let σ be a measure on all sample functions, defined for all subsets W
whose intersection with ℘ is in F ∗. We define it by σ(W ) := σ∗(W ∩℘).

Let p= ((x1, t1),(x2, t2,), . . . ,(xn, tn),d+1)∈℘ for some n∈N. For i ̸= j, denote
by Ni j(p) the total number of path p’s one-step transitions from j to i and by R j(p)
the total amount of time spent in j.

Theorem 1 The probability density function of P = P(X) with respect to σ is
given by

fP(p) = βx1

(
d

∏
j=1

d+1

∏
i=1,i ̸= j

(Qi j)
Ni j(p)

)
d

∏
j=1

e−λ j R j(p),

p = ((x1, t1),(x2, t2), . . . ,(xn, tn),d +1) ∈℘.

(21)
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Proof Let x1,x2, . . . ,xn ∈ S, xn+1 = d +1, and t1, t2, . . . , tn ∈ R+. Since

P((Y1 = x1,T1 ≤ t1), . . . , (Yn = xn,Tn ≤ tn), Yn+1 = d +1)
= P(Yn+1 = d +1 |Yn = xn)

·
n

∏
k=2

P(Yk = xk,Tk ≤ tk |Yk−1 = xk−1)P(Y1 = xk,T1 ≤ t1)

= Pd+1,xn

[
n

∏
k=2

Pxkxk−1

(
1− e−λxk tk

)]
βx1

(
1− e−λx1 t1

)
=
∫
Tn

βx1

n

∏
k=1

Qxk+1xk e−λxk τk dτ1dτ2 · · ·dτn

(22)

with Tn = {(τ1,τ2, . . . ,τn) ∈Rn
+ : 0 ≤ τ1 ≤ t1,0 ≤ τ2 ≤ t2, . . . ,0 ≤ τn ≤ tn}, the prob-

ability density function of P = P(x) with respect to σ is given by

fP(p) = βx1

n

∏
k=1

Qxk+1xk e−λxk tk ,

p = ((x1, t1),(x2, t2), . . . ,(xn, tn),d +1) ∈℘.

(23)

The term Qxk+1xk = Qi j enters exactly Ni j(p) times. Furthermore,

n

∏
k=1

e−λxk tk =
n

∏
k=1

d

∏
j=1

1{xk= j} e−λ j tk =
d

∏
j=1

e
−λ j

n
∑

k=1
1{xk= j} tk

=
d

∏
j=1

e−λ j R j(p).

(24)

We make the according substitutions and the proof is finished.

The entropy of the absorbing continuous-time Markov chain X is equal to its
entropy on the random but finite time horizon [0, T ], which in turn equals the entropy
of a single particle’s path P through the system.

Theorem 2 The entropy of the absorbing continuous-time Markov chain X is given
by

H(X) =H(P)

=−
d

∑
i=1

βi logβi

+
d

∑
j=1

x∗j
∥u∥

[
d

∑
i=1,i ̸= j

Bi j (1− logBi j)+ z j (1− logz j)

]
.

(25)

Proof Let X have the finite path representation

P = P(X) = ((Y1,T1),(Y2,T2), . . . ,(Yn,Tn),d +1) (26)
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for some n ∈ N, and denote by fP its probability density function. Then, by Theo-
rem 1,

− log fP(P) =− logβY1 −
d

∑
j=1

d+1

∑
i=1,i ̸= j

Ni j(P) logQi j +
d

∑
j=1

λ j R j(P). (27)

We compute the expectation and get

H(X) =H(P) =−E [log fP(P)]

=−E [logβY1 ]−
d

∑
j=1

d+1

∑
i=1,i̸= j

E [Ni j(P)] logQi j +
d

∑
j=1

λ j E [R j(P)]

=H(Y1)+
d

∑
j=1

λ j E [R j(P)]−
d

∑
j=1

d+1

∑
i=1,i ̸= j

E [Ni j(P)] logQi j.

(28)

Obviously, E [R j(P)] = E [O j] = x∗j/∥u∥ is the mean occupation time of compart-
ment j ∈ S by X . Furthermore, for i ∈ S̃ and j ∈ S such that i ̸= j, by Eqs. (14)
and (13),

E [Ni j(P)] = E [N j(P)] Pi j =


x∗j
∥u∥ Bi j, i ≤ d,
x∗j
∥u∥ z j, i = d +1.

(29)

Together with λ j = ∑
d
i=1,i̸= j Bi j + z j, we obtain

H(X) =H(Y1)+
d

∑
j=1

x∗j
∥u∥

[(
d

∑
i=1,i̸= j

Bi j + z j

)

−
d

∑
i=1,i ̸= j

Bi j logBi j − z j logz j

]

=−
d

∑
i=1

βi logβi +
d

∑
j=1

x∗j
∥u∥

[
d

∑
i=1,i ̸= j

Bi j (1− logBi j)

+ z j (1− logz j)

]
.

(30)

By some simple substitutions and rearrangements, we obtain two representations
of H(X) =H(P) that are easy to interpret. For simplicity of notation, we define

H(β ) :=−
d

∑
i=1

βi logβi. (31)

Proposition 1 The entropy of the absorbing continuous-time Markov chain X is also
given by

H(X) =H(β )+
d

∑
j=1

E [O j]

(
d

∑
i=1, i ̸= j

θ(Poi(Bi j))+θ(Poi(z j))

)
(32)
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and
H(X) =H(β )

+
d

∑
j=1

E [N j]
(
H(Exp(λ j))+H(P1, j,P2, j, . . . ,Pd, j,Pd+1, j)

)
,

(33)

which can be rewritten as

H(X) =H(β )+
d

∑
j=1

E [N j]H(P1, j,P2, j, . . . ,Pd, j,Pd+1, j) (34)

+
d

∑
j=1

E [N j]H(Exp(λ j)). (35)

Proof By virtue of Eq. (32), we replace x∗j/∥u∥ by E [O j] in Eq. (25) and take into
account that the entropy rate of a Poisson process with intensity rate λ equals λ (1−
logλ ) to prove Eq. (32). To prove Eq. (33) we use Eq. (14) to replace x∗j/∥u∥ in
Eq. (25) by E [N j]/λ j and obtain

H(X) =−
d

∑
i=1

βi logβi +
d

∑
j=1

E [N j] (1− logλ j)

+
d

∑
j=1

E [N j]

(
−

d

∑
i=1,i̸= j

Bi j

λ j
log

Bi j

λ j
−

z j

λ j
log

z j

λ j

)
.

(36)

Here, (1− logλ j) is the entropy of an exponential random variable with rate param-
eter λ j. Using definition (13) of Pi j we replace Bi j/λ j by Pi j for i ∈ S and z j/λ j by
Pd+1, j and finish the proof.

By identifying a compartmental system M = M(u,B) with its associated absorb-
ing continuous-time Markov chain X and the according path P = P(X) of a single
traveling particle, we transfer the concept of the path entropy H(P) from the proba-
bilistic to the deterministic realm.

Definition 1 The “path entropy of the compartmental system” M in equilibrium given
by Eq. (6) with associated absorbing continuous-time Markov chain X and path
P = P(X), is defined by the path entropy

H(P) =H(P(X)) =H(X). (37)

Consider a one-dimensional compartmental system Mλ in equilibrium with rate
λ > 0 and positive external input given by

d
d t

x(t) =−λ x(t)+u, t > 0, (38)

and denote its associated path by Pλ . The entropy of the initial distribution vanishes,
and we obtain

H(Pλ ) =
x∗

u
λ (1− log λ ) =

1
λ

λ (1− log λ ) = 1− log λ , (39)
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which equals the differential entropy 1− logλ of the exponentially distributed mean
transit time Tλ ∼ Exp(λ ), reflecting that the only uncertainty of the particle’s path
in a one-pool system is the time of the particle’s exit. The exponential distribution
with rate parameter λ is the distribution of the interarrival time of a Poisson process
wit intensity rate λ . Hence, we can interpret H(Pλ ) = λ−1 λ (1− logλ ) as the in-
stantaneous Poisson entropy rate λ (1− logλ ) multiplied with the expected duration
E [Tλ ] = λ−1 of the particle’s stay in the system.

Migrating to a d-dimensional system, we can interpret H(P) as the entropy of
a continuous-time process in the light of Eq. (32) and as the entropy of a discrete-
time process in the light of Eq. (33). In both interpretations, the first term H(β ) =
H(X0) =H(Y1) represents the uncertainty of the first pool through which the particle
enters the system. In the continuous-time interpretation, the uncertainty of the sub-
sequent travel is the weighted average of the superposition of d Poisson processes
describing the instantaneous uncertainty of possible jumps of the particle inside the
system, θ(Poi(Bi j)), and out of the system, θ(Poi(z j)), where the weights are the
expected occupation times of the different compartments j ∈ S. In the discrete-time
interpretation, the subsequent travel’s uncertainty is the average of uncertainties as-
sociated to each pool, weighted by the number of visits to the respective pools.
The uncertainty associated to each pool comprises the uncertainty of the length of
the stay in the pool, H(Exp(λ j)), and the uncertainty of where to jump afterwards,
H({Pi j : i ∈ S̃, j ∈ S, i ̸= j}). Hence, in the light of Eq. (33), we can separate the path
entropy into a discrete part associated to jump uncertainty given by Eq. (34) and a
continuous part associated to sojourn time uncertainty given by Eq. (35).

The two interpretations of the path entropy H(P) (as a continuous-time or discrete-
time process) motivate two different entropy rates as described earlier. The “entropy
rate per unit time” is given by

θ(P) =
H(P)

E [T ]
(40)

and the “entropy rate per jump” by

θJ(P) =
H(P)

E [N ]
. (41)

While the path entropy measures the uncertainty of the entire path, entropy rates mea-
sure the average uncertainty of the instantaneous future of a particle while it is in the
system: for the entropy rate per unit time the uncertainty entailed by the infinitesimal
future, and for the entropy rate per jump the uncertainty entailed by the next jump. We
can see that by considering the the stationary process Z = (Zn)n≥1 = (Ỹn, T̃n)n≥1 on
the space (S̃×R+) defined by the transition probabilities P̃i j(t) = P(Ỹn+1 = i, T̃n+1 ≤
t |Ỹn = j) given by

P̃i j(t) =


0, i = j,
Bi j λ

−1
j (1− e−λi t), i, j ≤ d, i ̸= j,

z j λ
−1
j , i = d +1, j ≤ d,

βi (1− e−λi t), i ≤ d, j = d +1,

(42)



14 Holger Metzler, Carlos A. Sierra

and initial (stationary) distribution

π j(t) =
1

E [N ]
·

{
E [N j] (1− e−λ j t), j ≤ d,
1, j = d +1.

(43)

This process describes the infinite journey, that is the sequence of visited compart-
ments with the associated sojourn times, of a single particle through the system with
immediate jumps back into the system when leaving it.

Proposition 2 The entropy rate per jump, θJ(P), equals the entropy rate of the sta-
tionary process Z.

Proof Step 1. We show that Z = (Ỹ , T̃ ) is stationary. To that end, we define π j :=
limt→∞ π j(t), and we prove P(Ỹ2 = i, T̃2 ≤ t) = πi(t) = P(Ỹ1 = i, T̃1 ≤ t). Stationarity
follows then by induction. Let i = d +1. Then,

P(Ỹ2 = i, T̃2 ≤ t) =
d

∑
j=1

P(Ỹ2 = i, T̃2 ≤ t |Ỹ1 = j)P(Ỹ1 = j)

=
d

∑
j=1

P̃d+1, j(t)π j

=
d

∑
j=1

z j

λ j

E [N j]

E [N ]
.

(44)

By Eq. (14), r j = z j x∗j , and ∥r∥= ∥u∥, we get

P(Ỹ2 = i, T̃2 ≤ t) =
1

E [N ]

d

∑
j=1

z j

λ j

λ j x∗j
∥u∥

=
1

E [N ]

zT x∗

∥u∥
= πd+1(t). (45)

Now let i ≤ d. Then

P(Ỹ2 = i, T̃2 ≤ t) =
d

∑
j=1, j ̸=i

Bi j

λ j
(1− e−λi t)

E [N j]

E [N ]
+βi (1− e−λi t)

1
E [N ]

=
1

E [N ]

[
d

∑
i=1,i̸= j

Bi j x∗j
∥u∥

+βi

]
(1− e−λi t)

=
1

E [N ]

[
(Bx∗)i

∥u∥
− Bii x∗i

∥u∥
+βi

]
(1− e−λi t)

=
1

E [N ]

[
− ui

∥u∥
+

λi x∗i
∥u∥

+βi

]
(1− eλi t)

=
1

E [N ]
E [Ni] (1− e−λi t)

= πi(t).

(46)
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Step 2. Since Z is stationary, by Cover and Thomas (2006, Theorem 4.2.1), its
entropy rate given by

θ(Z) = lim
n→∞

H(Zn+1 |Zn) =H(Z2 |Z1), (47)

which computes to

θ(Z) =H((Ỹ2, T̃2) |(Ỹ1, T̃1)) =H((Ỹ2, T̃2) |Ỹ1) =H(T̃2 |Ỹ2,Ỹ1)+H(Ỹ2 |Ỹ1)

=H(T̃2 |Ỹ2)+H(Ỹ2 |Ỹ1).
(48)

By stationarity, H(T̃2 |Ỹ2) =H(T̃1 |Ỹ1). Consequently,

θ(Z) =H(T̃1 |Ỹ1)+H(Ỹ2 |Ỹ1)

=
d+1

∑
j=1

π j

[
H(T̃1 |Ỹ1 = j)+H(Ỹ2 |Ỹ1 = j)

]
,

=
1

E [N ]

(
d

∑
j=1

E [N j]
[
H(T̃1 |Ỹ1 = j)+H(Ỹ2 |Ỹ1 = j)

]
+H(Ỹ2 |Ỹ1 = d +1)

)
,

(49)
which together with Eq. (33) finishes the proof.

If we divide the entropy rate per jump by the average time between two jumps, we
obtain the entropy rate per unit time. The average time between two jumps is given
by

d

∑
j=1

π j λ
−1
j =

1
E [N ]

d

∑
j=1

x∗j
∥u∥

=
E [T ]

E [N ]
. (50)

Hence,

θ(P) =
E [N ]

E [T ]
θ(Z) (51)

is the average uncertainty per unit time of the stationary process Z.

3.2 The maximum entropy principle (MaxEnt)

MaxEnt arose in statistical mechanics as a variational principle to predict the equi-
librium states of thermal systems and later was applied to matters of information and
as a general procedure to draw inferences based on self-consistency requirements
(Pressé et al. 2013). Its relationship to information theory and stochastics was es-
tablished by Jaynes (1957a;b). The general idea is to identify the most uninformed
probability distribution to represent some given data in the sense that the maximum
entropy distribution, constrained to given data, uses the information provided by the
data only and nothing else. This approach ensures that no additional subjective in-
formation creeps into the distribution. The goal of this section is to transfer MaxEnt
to compartmental systems in order to identify the compartmental system that repre-
sents our state of knowledge best in different situations, and at the same time get a
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better understanding of the introduced entropy measures. In the next two examples
we identify compartmental models with maximum entropy under some restrictions.
Both examples show that maximizing entropy means also maximizing symmetry, as
much as the given constraints allow.

Example 1 Consider the set M1 of equilibrium compartmental systems (6) with a
predefined nonzero input vector u, a predefined mean transit time E [T ], and an
unknown steady-state vector x∗ comprising nonzero components. We are interested
in the most unbiased compartmental system that reflects our state of information,
where maximum unbiasedness is achieved by identifying M∗

1 ∈M1 with path P∗
1 :=

P(M∗
1) such that the path entropy H(P∗

1 ), or equivalently, the entropy rate per unit
time θ(P∗

1 ) is maximized. We can show (see Proposition A.1) that the compartmen-
tal system M∗

1 = M(u,B) with

B =


−λ 1 · · · 1
1 −λ 1 · · · 1
...

. . .
...

1 · · · 1 −λ

 , (52)

where λ = d−1+1/E [T ], is the maximum entropy model in M1. In the special case
d = 1 for a one-dimensional compartmental system, we obtain B =−1/E [T ]. Since
in this case T ∼ Exp(−B), we see that the exponential distribution is the maximum
entropy distribution in the class of all nonnegative continuous probability distribu-
tions with fixed expected value. This special case is very well known (Cover and
Thomas 2006, Example 12.2.5).

Example 2 Let us consider the subclass M2 ⊆ M1 of compartmental models from
the previous example with the additional restriction of a predefined positive steady-
state vector x∗. Then the compartmental system M∗

2 = M(u,B) with path P∗
2 and

Bi j =


√

x∗i
x∗j
, i ̸= j,

−
d
∑

k=1,k ̸= j

√
x∗k
x∗j
− 1√

x∗j
, i = j,

(53)

is the maximum entropy model in M2 (see Proposition A.2).

3.3 Structural model identification assisted by MaxEnt

Suppose we observe a natural system and conduct measurements from which we try
to construct a linear autonomous compartmental model in equilibrium that represents
the observed natural system as well as possible. The first question that arises is the
one for the number of compartments the model should ideally have. MaxEnt cannot
be helpful here because by adding more and more compartments we can theoretically
increase the entropy of the model indefinitely. Consequently, the problem of finding
the right dimension of system (6) has to be solved by other means. One way to do this
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is to analyze an impulse response function of the system and its Laplace transform,
that is the transfer function of the system, and identify the most dominating frequen-
cies. The impulse response or the transfer function might be possible to obtain by
tracer experiments (Anderson 1983 Walter 1986).

Once the desired number of compartments is identified, we can focus on the
structure and values of external input and output fluxes as well as internal fluxes.
In Anderson (1983, Chapter 16) the “structural identification problem” of linear au-
tonomous systems is described as follows. Suppose we are interested in determining
a d-dimensional system of form (6). We are interested in sending an impulse into the
system at time t = 0 and analyzing its further behavior. To that end, we rewrite the
system to

d
d t

x(t) = Bx(t)+Au, t ≥ 0,

x(0) = 0 ∈ Rd ,

y(t) = Cx(t), t ≥ 0.

(54)

Note that the roles of A and B are interchanged here with respect to Anderson (1983).
In a typical tracer experiment, we choose an input vector u and the “input distribution
matrix” A, which defines how the input vector enters the system. Then we decide
which compartments we can observe to determine the “output connection matrix” C.
The experiment is now to inject an impulse into the system and to record the output
function y(t) = Cx(t). Bellman and Åström (1970) pointed out that the input-output
relation is given by

y(t) = Cx(t) = C
t∫

0

e(t−τ)B Au(τ)dτ

=
[
Cet B A

]
∗u(t),

where ∗ is the convolution operator. The model parameters enter the input-output
relation only in the matrix-valued “impulse response function”

Ψ(t) := Cet B A, t ≥ 0, (55)

or in the “transfer function”

Ψ̂(s) := C(s I−B)−1 A, s ≥ 0, (56)

which is the Laplace transform matrix of Ψ. Consequently, all identifiable parameters
of A, B, and C must be identified through Ψ or Ψ̂. Difficulties arise because the entries
of the matrices Ψ and Ψ̂ are usually nonlinear expressions of the elements of A, B,
and C. We call system (54) “identifiable” if this nonlinear system of equations has
a unique solution (A,B,C) for given Ψ or Ψ̂. Otherwise the system is called “non-
identifiable”. Usually, the matrices A and C are already know from the experiment’s
setup. What remains is to identify the compartmental matrix B, and this can be done
by MaxEnt.
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4 Application to particular systems

First, we apply the presented theory to some equilibrium compartmental models with
very simple structure in order to get some grasp on the new entropy concepts. Then
we compute entropy quantities for two carbon-cycle models in dependence on envi-
ronmental and biochemical parameters. At last we apply MaxEnt to solve an equi-
finality problem in model selection as an example for how to tackle this problem
arising from, for instance, tracer experiments.

4.1 Simple examples

From Table 1 we can see that, depending on the connections between compartments,
smaller systems can have greater path entropy and entropy rates than bigger systems,
even though systems with more compartments can theoretically reach higher entropy.
Furthermore, we see from the depicted examples that the system with the highest path
entropy does neither have the highest entropy rate per unit time nor per jump. Adding
connections to a system, one would expect higher path entropy, but the path entropy
might actually decrease because the new connections potentially provide a faster way
out the system.
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Table 1 Overview of different entropy measures of simple models with different structures. The columns from left to right represent a schematic representation of the model
structure, its mathematical representation, entropy rate per jump θJ , mean number of jumps E[N ], entropy rate per unit time θ , mean transit time E[T ], and path entropy
H(P). Underlined numbers are the highest values per column

Structure d
dt x(t) θJ E[N ] θ E[T ] H(P)

x1 −λx+1 0.5 (1− logλ ) 2.00 λ (1− logλ ) 1/λ 1− log

x1 x2

(
−1 0
1 −1

)
x+
(

1
0

)
0.67 3.00 1.00 2.00 2.00

x1 x2

(
−1 0
0 −1

)
x+
(

1
1

)
0.85 2.00 1.69 1.00 1.69

x1 x2

(
−1 1/2
1 −1

)
x+
(

1
0

)
1.08 5.00 1.35 4.00 5.39

x1 x2

(
−1 1/2
1/2 −1

)
x+
(

1
1

)
1.36 3.00 2.04 2.00 4.08

x1 x2 x3

−1 0 0
1 −1 0
0 1 −1

x+

1
0
0

 0.75 4.00 1.00 3.00 3.00

x1 x2 x3

−1 0 0
0 −1 0
0 0 −1

x+

1
1
1

 1.05 2.00 2.10 1.00 2.10
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4.2 A linear autonomous global carbon-cycle model

We consider the global carbon-cycle model introduced by Emanuel et al. (1981)
(Fig. 2). The model comprises five compartments: non-woody tree parts x1 = 37PgC,

25

77

18

36

14

31

45

12

11

3

15

6

Non-woody
 tree parts

  Ground
vegetation

  Woody
tree parts

Detritus/Decomposers

Active soil carbon

37 69

452 81

1121

Atmosphere

Fig. 2 Schematic of the linear autonomous global carbon cycle model in steady state introduced by
Emanuel et al. (1981)

woody tree parts x2 = 452PgC, ground vegetation x3 = 69PgC, detritus/decomposers
x4 = 81PgC, and active soil carbon x5 = 1,121PgC. We introduce an environmental
rate modifier ξ which controls the speed of the system. This parameter could poten-
tially increase and speed up the system with increasing global surface temperature
(Sierra et al. 2023). For a given ξ the equilibrium model Mξ = M(u, Bξ ) is given by

u = (77; 0; 36; 0; 0)T PgCyr−1 (57)

and

Bξ = ξ


−77/37 0 0 0 0
31/37 −31/452 0 0 0

0 0 −36/69 0 0
21/37 15/452 12/69 −48/81 0

0 2/452 6/69 3/81 −11/1,121

 yr−1, (58)

where the numbers are chosen as in Thompson and Randerson (1999). The input
vector is expressed in units of petagrams of carbon per year (PgCyr−1) and the frac-
tional transfer coefficients in units of per year (yr−1). Because Bξ is a lower triangular
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matrix, the model contains no feedbacks. For every value of ξ the system has a dif-
ferent steady state (Fig. 3, panel (a)). The higher the value of ξ , the faster the system,
which makes the mean transit time (panel (b)) decrease, and because of shorter paths
also the path entropy (panel (d)) decreases. Since ξ has no impact on the structure
of the model, the mean number of jumps (panel (c)) remains unaffected. This can
also be seen from the solid line marked by squares in panel (d). It represents the part
of the path entropy related to jump-associated uncertainties (Eq. (34)). The solid line
marked by circles represents the part of the path entropy related to sojourn-associated
uncertainties (Eq. (35)), which as a weighted average of one-pool entropies decreases
similarly as the entropy of an exponential distribution with increasing rate parameter
λ (Fig. 1, panel (b)). The two parts together constitute the path entropy as represented
by the unmarked solid line.

The entropy rate per unit time (panel (e)) increases until ξ ≈ 6 and decreases
afterwards, because with increasing system speed the decreasing uncertainty asso-
ciated to sojourn times increasingly dominates the uncertainty associated to jumps.
While the uncertainty associated to jumps averaged over the path length increases
because the total jump uncertainty is constant (see solid line marked with squares
in panel (d)) and the mean path length decreases (panel (b)), the sojourn-associated
uncertainty decreases with increasing system speed for ξ > 6 similar to the entropy
rate of a Poisson process with intensity rate λ > 1 (see Fig. 1, panel (c)). The entropy
rate per jump (panel (f)) decreases with increasing ξ , because the path entropy of the
system decreases.

Dashed lines in panels (d)–(f) show the respective entropy values for a one-pool
system Mλ = M((77+ 36)PgCyr−1,−λ ) with the same mean transit time, that is
λ−1 = E

[
Tξ

]
. The solid and dashed lines intersect at ξ ≈ 4.31 in panels (d) and (e).

Before this break-even point the path of this multiple-pool model is harder to predict
than the path (that is the exit time of the particle) of a one-pool model with the same
mean transit time. After this point of break even, the path of the model with five
compartments is easier to predict than only the transit time in a one-pool model. The
reason is that as the system becomes faster, the differential entropy of the sojourn
times in slow pools decreases so fast that at some point the sojourn times in slow
pools visited by few particles becomes rather unimportant. The one-pool model’s
path becomes relatively harder to predict because it puts too much weight on a small
amount of slowly cycling particles.

Note that there is no point in comparing jump-associated uncertainties (square-
marked lines) with one-pool entropies (dashed lines), because the former are discrete
entropies and the latter differential entropies. Comparison of a differential entropy
with another quantity becomes only reasonable if a second differential entropy is
involved as is true for the path entropy or the entropy rates θ and θJ (unmarked solid
lines). Hence, square- and circle-marked lines assist in understanding the composition
of the entropies of the multi-pool system, and only the composition of the two can
then be compared to the one-pool entropy rate.
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Fig. 3 (a) Equilibrium carbon stocks and (b)–(f) entropy related quantities of the global carbon cycle
model introduced by Emanuel et al. (1981) in dependence on the environmental rate coefficient ξ

4.3 A nonlinear autonomous soil organic matter decomposition model

Consider the nonlinear two-compartment model Mε = M(u, Bε) described by Wang
et al. (2014) which is used to represent the dynamics of microbes and carbon sub-
strates in soils (Fig. 4). Its ODE system is given by

d
d t

(
Cs
Cb

)
(t) =

(
−λ (x(t)) µb
ελ (x(t)) −µb

) (
Cs
Cb

)
+

(
FNPP

0

)
, (59)

where x(t) = (Cs,Cb)
T (t). We denote by Cs and Cb substrate organic carbon and soil

microbial biomass carbon (gCm−2), respectively, by ε the carbon use efficiency or
fraction of assimilated carbon that is converted into microbial biomass (unit-less), by
µb the turnover rate of microbial biomass per year (yr−1), by FNPP the carbon influx
into the soil (gCm−2 yr−1), and by Vs and Ks the maximum rate of soil carbon assim-
ilation per unit microbial biomass per year (yr−1) and the half-saturation constant for
soil carbon assimilation by microbial biomass (gCm−2), respectively.

We consider the model in equilibrium, that is x(t) = x∗ = (C∗
s ,C∗

b)
T with

C∗
s =

Ks
Vsε

µb
−1

and C∗
b =

FNPP

µb
(
−1+ 1

ε

) . (60)



Entropy in compartmental models 23

Fig. 4 Scheme of the nonlinear autonomous carbon cycle model introduced by Wang et al. (2014) with
two compartments: substrate organic carbon (Cs) and microbial biomass (Cb)

The equilibrium stocks depend on the carbon use efficiency ε and so does the com-
partmental matrix B = Bε , because

λ (x) =
CbVs

Cs +Ks
. (61)

From Wang et al. (2014) we take the parameter values µb = 4.38yr−1, FNPP = 345.00gCm−2 yr−1,
and Ks = 53,954.83gCm−2. Since the description of Vs is missing in the original
publication, we let it be equal to 59.13yr−1 to approximately meet the given steady-
state contents C∗

s = 12,650.00gCm−2 and C∗
b = 50.36gCm−2 for the original value

ε = 0.39. Otherwise we leave the carbon use efficiency ε as a free parameter.
In contrast to the system from the first example, this system exhibits a feedback.

This feedback results from dead soil microbial biomass being considered as new soil
organic matter. The feedback can also be recognized by noting that B is not triangular.
For every value of ε the system has a different steady state (Fig. 5, panel (a)). The
higher the value of ε , the lower the equilibrium substrate organic carbon and the
higher the microbial biomass carbon. Caused by the model’s nonlinearity expressed
in Eq. (61), the system speed increases and the mean transit time goes down (panel
(b)) with increasing ε . At the same time, higher carbon use efficiency increases the
probability of each carbon atom to be reused more often, hence the mean number of
jumps increases (panel (c)), making the entropy rate per jump decrease (panel (f)).
Even though the average paths become shorter, with increasing carbon use efficiency
the path entropy increases as well for most values of ε . This has two reasons. First,
the mean uncertainty of where to jump from Cs increases, this uncertainty decreases
then for ε > 0.5 (solid line marked by squares in panel (f)). Second, the rate −B11 of
leaving the substrate pool is increasing and smaller than 1. The corresponding Poisson
process reaches its maximum entropy rate at an intensity rate equal to 1 (Fig. 1, panel
(c)), which corresponds to ε ≈ 0.926. This is also reflected in the entropy rate per unit
time (panel (e)). The maximum does not exactly occur at ε = 0.926, because the times
that the particle stays in the different pools also depends on ε . For ε approaching 1,
both the path entropy and the entropy rate rapidly decline as the sojourn-associated
uncertainties (solid lines with circle markers) decline sharply because of a nonlinear
increase of the rate −B11 of soil organic carbon turnover.
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Considering a one-pool system Mλ = M(345.00gCm−2 yr−1,−1/E [Tε ]) with
the same mean transit time, we recognize only small sensitivity of the entropies on ε ,
because the contrary effects on path length and jump- and sojourn-associated uncer-
tainties mostly balance out (dashed lines in panels (d)–(f)).

Fig. 5 (a) Equilibrium carbon stocks and (b)–(f) entropy related quantities of the global carbon cycle
model introduced by Wang et al. (2014) in dependence on the microbial carbon use efficiency ε

4.4 Model identification via Maxent

The following example is inspired by Anderson (1983, Example 16 C). It shows how
MaxEnt can help make a decision about which model to use if not all parameters
can be uniquely determined from the transfer function Ψ̂. We are interested in de-
termining the entries of the compartmental matrix B belonging to the 2-dimensional
equilibrium compartmental system

d
d t

(
x1
x2

)
(t) =

(
B11 B12
B21 B22

) (
x1
x2

)
(t)+

(
1
0

)
gCyr−1, t > 0. (62)

We immediately notice that u = (1,0)T gCyr−1 and A = I. Further, we decide to
measure the contents of compartment 1 such that C= (1,0). We recall z j =−∑

d
i=1 Bi j
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and obtain z1 = −B11 −B21 and z2 = −B22 −B12. The real-valued transfer function
is then given by

Ψ̂(s) =
s+ γ1

s2 + γ2 s+ γ3
, (63)

where
γ1 = B12 + z2,

γ2 = B21 + z1 +B12 + z2,

γ3 = z1 B12 + z1 z2 +B21 z2.

(64)

We assume that Ψ̂ is known from measurements, that is, γ1, γ2, and γ3 are known
impulse response parameters. We have the four unknown parameters B11, B12, B21,
and B22, or equivalently, B12, B21, z1, and z2, but only three equations to determine
them. Consequently, the system is non-identifiable and there remains a class M of
models which all satisfy Eq. (64). Which model out of M are we going to select
now?

Here, MaxEnt comes into play. We intend to select the model that best represents
the information given by our measurement data. We have to find M∗ = M(u,B∗) such
that

M∗ = argmax
M∈M

θ(P(M)). (65)

Maximizing the entropy rate per unit time here leads to a feasible optimization prob-
lem, whereas maximization of the path entropy by slowing down the model and in-
definitely increasing its mean transit time and with it its path entropy would lead to
an unbounded optimization problem. The parameter space associated to M is given
by

{p = (B12,B21,z1,z2) ∈ R4
+ : p satisfies Eq. (64)}, (66)

and is not guaranteed to be convex in general. Consequently, by fundamental princi-
ples from mathematical optimization theory, existence and uniqueness of M∗ are not
guaranteed and we must apply optimization methods tailored to the specific case at
hand.

Let us turn to a numerical example in which we suppose to be given γ1 = 3yr−1,
γ2 = 5yr−1, and γ3 = 4yr−1. Since convexity of the parameter space is not guaranteed,
local optimality does not guarantee global optimality. Hence we run local optmiza-
tions from starting points on a grid with mesh side 0.2 over the subspace [0,5]4 of
the parameter space, and select our global maximum candidate as the local maximum
with the highest entropy rate per unit time. Even though we cannot rigorously prove
that our global maximum candidate Mmax = M(u,Bmax) as represented by the red dot
in Fig. 6 with

Bmax ≈
(
−2.723 1.821
1.098 −2.277

)
yr−1 (67)

and θmax ≈ 1.916 is a global maximum, we can clearly see that it is a good candidate.
Increasing distance of local maximum parameters (panel (a)) and mean transit time
(b) from the global maximum candidate lead to a decrease in entropy rate per unit
time. Furthermore, local optimizations with starting points on the grid lead only to
small improvements. A good choice of starting point on the grid is crucial to find a
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good global maximum candidate (c). Finally, the global maximum candidate for the
entropy rate per unit time does not maximize the path entropy (d).

Fig. 6 Local maximizations of θ over a grid on a subspace of the parameter space. For better visibility
we chose randomly 1,000 grid points for the plot. Blue dots show local maxima found during the global
maximization procedure starting on the grid. The red dot is associated to the global maximum candidate
Mmax. (a) Entropy rate per unit time versus l1-distance of local maxima pi parameters from the global
maximum candidate parameters pmax. (b) Entropy rate per unit time versus mean transit time. (c) Paths of
entropy rate per unit time during the local maximizations on the grid. (d) Path entropy versus mean transit
time

5 Discussion

Based on the stochastic path that a single particle takes through a deterministic com-
partmental system, we introduced three types of entropy based on Shannon’s informa-
tion theory. The entropy of the particle’s entire path through the system is the central
concept, and the entropy rates per unit time and per jump are consistently derived
from it. Even though we call H(P) path entropy and identify models by maximizing
it, it is different from the concept of path entropy as treated in the context of maxi-
mum caliber (MaxCal) (Jaynes 1985 Roach 2020). We maximize here the Shannon
entropy of a single particle’s microscopic path through a compartmental system by
means of an absorbing continuous-time Markov chain whose transition probabilities
are already determined by the macroscopic equilibrium state of the system. As dis-
cussed by Pressé et al. (2013), MaxCal interprets the path entropy as a macroscopic
system property to be maximized in order to identify a time-dependent trajectory of
the entire dynamical system, not just one single particle.
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In the field of soil carbon cycle modeling, Ågren (2021) applied the maximum
entropy principle to identify the distribution of soil carbon qualities within the frame-
work of the continuous-quality theory. Given only the nonnegative mean quality, an
application of MaxEnt leads to an exponential quality distribution, because under
these circumstances the exponential distribution is the maximum entropy distribution.
The path entropy generalizes this approach to several interconnected compartments
and jumps between them, while each sojourn time in a compartment is exponentially
distributed.

From the simple examples in Sect. 4.1 we can see that models can be ordered
differently in terms of uncertainty, depending on whether the interest is in the un-
certainty of the entire path or in some average uncertainty rate. For applications of
MaxEnt without restrictions on the transit time, it is often useful to maximize an
entropy rate because by slowing the system down more and more, the path entropy
can potentially be increased indefinitely and there is no way to find a maximum path
entropy model.

By virtue of its very mathematical definition (Eq. (1)), entropy is maximized
when the system’s symmetry is maximized. This is indicated by the Bernoulli entropy
(Fig. 1, panel (a)) and supported by Example 1. Intuitively, this result is obvious. If
a system has high symmetry, a particle is equally likely to jump among different
pools. The Poisson process with intensity rate 1 is the one with maximum entropy
rate, which follows directly from properties of the function f (x) = x, logx. Further-
more, the resulting rates z j = 1/E [T ] of leaving the system are chosen such that the
mean transit time constraint is fulfilled. In Example 2, the symmetry is broken by the
additional restriction of a given steady-state vector. Consequently, H(P∗

2 )≤H(P∗
1 ).

When we compute entropy values for actual carbon-cycle models (Sects. 4.2
and 4.3), we note that environmental or eco-physiological factors might impact model
entropies. For example, higher global surface temperatures might induce a higher
global carbon cycle system speed (1 < ξ << 6). This higher system speed reduces
the uncertainty of the long-term future of entire paths of carbon atoms entering the
terrestrial biosphere from the atmosphere. At the same time, it increases the entropy
rate per unit time, that is, the uncertainty of the short-term future of carbon atoms
already in the terrestrial biosphere.

Furthermore, we see that for sufficiently fast systems, a multi-pool model has
lower entropy than a one-pool model with the same system speed. The one-pool sys-
tem might put too much weight on the uncertainties of a small amount of slow-cycling
particles, while the more detailed multi-pool model focuses more on the small uncer-
tainties of the major amount of fast-cycling particles. The path of a detailed model
that separates fast from slow paths is then even easier to predict than a one-pool model
path, even though the detailed model’s path looks more complicated. However, de-
tailed paths of slow-cycling systems are harder to predict than just the exit-time in a
one-pool equivalent.

The two carbon-cycle models (Sects. 4.2 and 4.3) are well understood in equilib-
rium, hence they can serve as a means to better understand properties of the newly
introduced entropy metrics. Once we understand entropy properties in dependence
on general system properties, we can extrapolate this understanding to far more com-
plex systems and make qualitative statements about their predictability without going
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into all model details. One major insight from those two examples is that, in gen-
eral, slow heterogeneous systems are much harder to predict than fast homogeneous
systems. Slowness increases the uncertainty of the duration of particle’s stay in the
system. Heterogeneity increases the uncertainty of a particle’s sequence of visited
compartments.

These simple insights allow us to understand modeling issues on grander scale,
like the huge difference in the diversity of modeling approaches for carbon uptake by
photosynthesis and the carbon cycle in soils. Both photosynthesis (Garcı́a-Rodrı́guez
et al. 2022) and soil carbon turnover (Manzoni and Porporato 2009) are modeled by
many different approaches. However, in ecosystem models photosynthesis is almost
exclusively represented based (Zaehle et al. 2014) on the Farquhar model (Farquhar
et al. 1980), while soil carbon dynamics are represented by a great variety of mod-
els with very different structures (Friedlingstein et al. 2006). The latter leads to large
variations in the prediction of future land carbon uptake (Friedlingstein et al. 2006;
2014). A comparison of carbon simulations from eleven model centers showed that
across models global soil carbon varied more than twice as much as global net pri-
mary productivity (Todd-Brown et al. 2013). Leaves have evolved to serve a specific
purpose: to take up carbon from the atmosphere. Soils, on the other hand, have not
been built to serve a specific purpose. They have evolved as a dumpster for material
of which every soil agent tries to take advantage. This increases the heterogeneity of
biogeochemical processes taking places in the soil. Furthermore, soil carbon turnover
happens on much larger time scales than photosynthesis. While the photosynthetic
apparatus operates on time scales in the order of split seconds to minutes, soil carbon
cycling rates are in the order of decades to millenia. Consequently, the higher uncer-
tainty of soil carbon cycling compared to photosynthetic carbon uptake is an inherent
property of the system. Simply by the soil’s heterogeneous and slow-cycling nature,
the system has high inherent uncertainty, which hints at a theoretical limit that cannot
be overcome by any model.

The example of model identification by MaxEnt in Sect. 4.4 shows a major dif-
ference to the more artificial previous maximum entropy examples. The given con-
straints do not tell us enough about the structure of the model class M to ensure that
an identified local maximum is also a global maximum. Owing to the nonlinear re-
strictions on the parameters in Eq. (64), the parameter space is probably not convex.
Hence, local maxima are not guaranteed to be also globally optimal. The small size
system size allows us to identify a reasonable global maximum candidate model by
brute force, starting local maximizations on a grid over a parameter sub-space. Prac-
tical examples might include higher-dimensional systems and thus not be feasible for
brute-force approaches. More sophisticated optimizations methods suitable for the
particular problem at hand should then be applied.

6 Conclusions

The information content of autonomous compartmental systems in equilibrium can
be assessed by the entropy of the path of particles traveling through the system of
interconnected compartments. When a particle moves through a compartmental sys-
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tem, it creates a path from the time of its entry until the time of its exit. This path
can be described in three ways: (1) as a random variable in the path space; (2) as a
continuous-time stochastic process representing the visited compartments; (3) as a
discrete sequence of pairs consisting of visited compartments and associated sojourn
times. Based on these three possible descriptions, we introduced for systems in equi-
librium (1) the entropy of the entire path, (2) the entropy rate per unit time, and (3)
the entropy rate per jump. These three different entropies allow us to quantify how
difficult it is to predict the path of particles entering a compartmental system, serving
as a measure of system uncertainty/predictability. With these measures it is thus pos-
sible to apply maximum entropy principles to compartmental systems in equilibrium
in order to address problems of equifinality in model selection.

Although the path entropy concept developed here only applies to systems in
equilibrium, it sets the foundation for future research on systems out of equilibrium.
This could be done by building on the concept of the entropy rate per unit time as an
instantaneous uncertainty and interpreting non-autonomous compartmental systems
as inhomogeneous Markov chains. This would allow an extension of MaxCal so far
applied only to the inhomogeneous embedded jump chain as done by Ge et al. (2012)
to incorporate also sojourn times in different compartments.

By introducing the concept of path entropy to compartmental systems, we made a
first crucial step toward a quantification of information content in models that can be
compared to other methods to obtain information content from observations. Using
entropy measures in both models and observations, we could potentially advance
toward better methods for model selection applying the maximum entropy principle.
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A Proves of the MaxEnt examples

Recall that the path entropy of a linear autonomous compartmental system M = M(u,B) is given by

H(P(M)) =H(X)

=−
d

∑
i=1

βi logβi +
d

∑
j=1

x∗j
∥u∥

[
d

∑
i=1,i̸= j

Bi j (1− logBi j)+ z j (1− logz j)

]
.

(A.1)

In order to obtain maximum entropy models under simple constraints, we now adapt ideas of Girardin
(2004).

Proposition A.1 Consider the set M1 of compartmental systems in equilibrium given by Eq. (6) with a
predefined nonzero input vector u, a predefined mean transit time E [T ], and an unknown steady-state
vector comprising nonzero components. The compartmental system M∗

1 = M(u,B∗) with

B∗ =


−λ 1 · · · 1
1 −λ 1 · · · 1
...

. . .
...

1 · · · 1 −λ

 , (A.2)

where λ = d −1+1/E [T ], is the maximum entropy model in M1.

Proof We can express the constraint E [T ] = ∥x∗∥/∥u∥ by

C1 =
1

∥u∥

d

∑
j=1

x∗j −E [T ] = 0. (A.3)

From the steady-state formula x∗ =−B−1 u, we obtain another set of d constraints, which we can describe
by

1
∥u∥

(Bx∗)i =−βi, i = 1,2, . . . ,d. (A.4)

We rewrite the left hand side as

1
∥u∥

(Bx∗)i =
1

∥u∥

d

∑
j=1

Bi j x∗j =
1

∥u∥

(
d

∑
j=1, j ̸=i

Bi j x∗j +Bii x∗i

)

=
1

∥u∥

d

∑
j=1, j ̸=i

Bi j x∗j −
1

∥u∥
x∗i

(
d

∑
k=1,k ̸=i

Bki + zi

)
,

(A.5)

which leads to the constraints

C2,i =
1

∥u∥

d

∑
j=1, j ̸=i

Bi j x∗j −
1

∥u∥
x∗i

(
d

∑
k=1,k ̸=i

Bki + zi

)
+βi = 0, i ∈ S. (A.6)

The Lagrangian is now given by

L =H(X)+ γ0 C1 +
d

∑
i=1

γi C2,i (A.7)

and its partial derivatives with respect to Bi j (i ̸= j), z j , and x∗j by

∥u∥ ∂

∂Bi j
L =−x∗j logBi j + γi x∗j − γ j x∗j ,

∥u∥ ∂

∂ z j
L =−x∗j logz j − γ j x∗j ,

(A.8)
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and

∥u∥ ∂

∂x∗j
L =

d

∑
i=1,i ̸= j

Bi j (1− logBi j)+ z j (1− logz j)

+ γ0 +
d

∑
i=1,i ̸= j

γi Bi j − γ j

(
d

∑
k=1,k ̸= j

Bk j + z j

)
,

(A.9)

respectively. Setting ∂

∂Bi j
L = 0 gives Bi j = eγi−γ j , and setting ∂

∂ z j
L = 0 gives z j = e−γ j . We plug this into

∂

∂x∗j
L = 0 and get

0 =
d

∑
i=1,i ̸= j

eγi−γ j [1− (γi − γ j)]+ e−γ j [1− (−γ j)]

+ γ0 +
d

∑
i=1,i ̸= j

γi eγi−γ j − γ j

(
d

∑
k=1,k ̸= j

eγk−γ j + e−γ j

)
= ∑

i̸= j,i ̸= j
eγi−γ j + e−γ j + γ0.

(A.10)

Subtracting e−γ j from both sides and multiplying with eγ j leads to

γ0 eγ j +
d

∑
i=1,i̸= j

eγi =−1, j = 1,2, . . . ,d. (A.11)

This is equivalent to the linear system Yv =−1 with

Y =


γ0 1 · · · 1
1 γ0 1 · · · 1
...

. . .
...

1 · · · 1 γ0

 , v =


eγ1

eγ2

...
eγd

 , −1 =


−1
−1

...
−1

 . (A.12)

The case γ0 = 1 has no solution v since eγi > 0 >−1. For γ0 ̸= 1 the matrix Y has a nonzero determinant
which makes the system uniquely solvable. For symmetry reasons, γi = γ j =: γ for all i, j = 1,2, . . . ,d.
Consequently, for i ̸= j, we get Bi j = 1, and by summing Eq. (A.6) over i ∈ S,

0 = ∥u∥
d

∑
i=1

C2,i =
d

∑
i=1

d

∑
j=1, j ̸=i

Bi j x∗j −
d

∑
i=1

x∗i

(
d

∑
k=1,k ̸=i

Bki + zi

)
−∥u∥

=−
d

∑
i=1

x∗i zi −∥u∥,

(A.13)

which can also be expressed by zT x∗ = ∥u∥. We simply plug in zi = e−γ and get e−γ ∥x∗∥ = ∥u∥, which
means zi = 1/E [T ]. Consequently,

B∗ =


−λ 1 · · · 1
1 −λ 1 · · · 1
...

. . .
...

1 · · · 1 −λ

 (A.14)

for λ = d −1+1/E [T ]. Since uniqueness of this solution follows from its construction, we remain with
showing maximality. To this end, we split the entropy into to three parts, that is, H(X) = H1 +H2 +H3
with

H1 =−
d

∑
i=1

βi logβi,

H2 =
d

∑
j=1

x∗j
∥u∥

z j (1− logz j), and

H3 =
d

∑
j=1

x∗j
∥u∥

d

∑
i=1,i ̸= j

Bi j (1− logBi j).

(A.15)
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The term H1 is independent of Bi j and z j for all i, j ∈ S and i ̸= j, and can thus be ignored. We denote
by E the pool from which the particle exits from the system. Then we can use (Metzler and Sierra 2018,
Sect. 5.3)

P(E = j) =
z j x∗j
∥u∥

(A.16)

to rewrite the second term as

H2 =
d

∑
j=1

P(E = j)(1− logz j) =
d

∑
j=1

H(TE |E = j)P(E = j) =H(TE |E), (A.17)

where TE denotes the exponentially distributed sojourn time in E right before absorption. We see that H2
becomes maximal if the knowledge of E contains no information about TE . Hence, z j = zi for i, j ∈ S.
Since we need to ensure the systems’ constraint on E [T ], we get z j = 1/E [T ] for all j ∈ S.

In order to see that Bi j = 1 (i ̸= j) leads to maximal entropy, we first note that

H3 =
d

∑
j=1

x∗j
∥u∥

d

∑
i=1,i ̸= j

1 · (1− log1) = (d −1)
d

∑
j=1

E
[
O j
]
= (d −1)E [T ] (A.18)

by Eq. (32). We now disturb Bkl for fixed k, l ∈ S with k ̸= l by a sufficiently tiny ε , which may be
positive or negative. We define Bkl(ε) := Bkl + ε , and a change from λ j to λ j(ε) := λ j + ε > 0 ensures
z j(ε) = z j , implying that the system’s mean transit time remains unchanged, that is, E [T (ε)] = E [T ].
The ε-disturbed H3 is given by

H3(ε) =
d

∑
j=1

x∗j (ε)

∥u∥

d

∑
i=1,i ̸= j

1 · (1− log1)
(
1−1{i=k, j=l}

)
+

x∗l (ε)
∥u∥

(1+ ε) [1− log(1+ ε)]

=
d

∑
j=1

x∗j (ε)

∥u∥

d

∑
i=1,i ̸= j

(
1−1{i=k, j=l}

)
+

x∗l (ε)
∥u∥

(1−δ )

(A.19)

for some δ > 0 since the map x 7→ x(1− logx) has its global maximum at x = 1. Consequently,

H3(ε) =

[
d

∑
j=1

x∗j (ε)

∥u∥

d

∑
i=1,i ̸= j

1

]
−δ

x∗l (ε)
∥u∥

= (d −1)
d

∑
j=1

E
[
O j(ε)

]
−δ

x∗l (ε)
∥u∥

= (d −1)E [T (ε)]−δ
x∗l (ε)
∥u∥

= (d −1)E [T ]−δ
x∗l (ε)
∥u∥

< H3.

(A.20)

Hence, disturbing Bi j away from 1 reduces the entropy of the system, and the proof is complete.

Proposition A.2 Consider the set M2 of compartmental systems in equilibrium given by Eq. (6) with a
predefined nonzero input vector u and a predefined positive steady-state vector x∗. The compartmental
system M∗

2 = M(u,B∗) with B∗ = (Bi j)i, j∈S given by

Bi j =


√

x∗i
x∗j
, i ̸= j,

−
d
∑

k=1,k ̸= j

√
x∗k
x∗j
− 1√

x∗j
, i = j,

(A.21)

is the maximum entropy model in M2.

Proof The mean transit time E [T ] = ∥x∗∥/∥u∥ of the system is fixed. Hence, the Lagrangian L is the
same as in Eq. (A.7), and setting ∂L/∂Bi j = 0 leads to

− logBi j + γi − γ j = 0, i ̸= j. (A.22)
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An interchange of the indices and summing the two equations gives

logBi j + logB ji = 0. (A.23)

Hence, Bi j B ji = 1. A good guess gives B2
i j = x∗i /x∗j and γ j =

1
2 logx∗j . From ∂

∂ z j
L = 0 we get

− logz j − γ j = 0, j ∈ S, (A.24)

and in turn z j = (x∗j )
−1/2. Maximality and uniqueness of this solution follow from the strict concavity of

H(X) as a function of Bi j and z j for fixed x∗. We can see this strict concavity by

∂ 2

∂B2
i j
H(X) =

∂

∂Bi j

−x∗j
∥u∥

logBi j =−
x∗j

∥u∥Bi j
< 0 (A.25)

and
∂ 2

∂ z2
j
H(X) =

∂

∂ z j

−x∗j
∥u∥

logz j =−
x∗j

∥u∥zi
< 0. (A.26)
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