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Cell-free biosynthesis combined with deep
learning accelerates de novo-development of
antimicrobial peptides
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Bioactive peptides are key molecules in health and medicine. Deep learning
holds a big promise for the discovery and design of bioactive peptides. Yet,
suitable experimental approaches are required to validate candidates in high
throughput and at low cost. Here, we established a cell-free protein synthesis
(CFPS) pipeline for the rapid and inexpensive production of antimicrobial
peptides (AMPs) directly from DNA templates. To validate our platform, we
used deep learning to design thousands of AMPs de novo. Using computational
methods, we prioritized 500 candidates that we produced and screened with
our CFPS pipeline. We identified 30 functional AMPs, which we characterized
further through molecular dynamics simulations, antimicrobial activity and
toxicity. Notably, six de novo-AMPs feature broad-spectrum activity against
multidrug-resistant pathogens and do not develop bacterial resistance. Our
work demonstrates the potential of CFPS for high throughput and low-cost
production and testing of bioactive peptides within less than 24 h.

According to the world health organization, antimicrobial resistance
(AMR) is among the top 10 global health threats1. In 2019 alone,
multidrug-resistant bacteria including pathogenic Escherichia coli,
ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus,
Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeru-
ginosa, Enterobacter spp.), Streptococcus pneumoniae, and Myco-
bacterium tuberculosis caused 1.27 million deaths2. This number is
predicted to reach 10 million annually by 20502. Despite this looming
threat, the development of new antimicrobials is lagging behind.While
>4000 immuno-oncology compounds were in clinical trials in 2021,
only 40 antimicrobials (of which none is active against multi-drug
resistant Gram-negative bacteria) were subjected to clinical studies3,
highlighting the urgent need to increase the development of novel
antimicrobial compounds.

One promising class of antimicrobial compounds are anti-
microbial peptides (AMPs)4–8. A big class of AMPs contains linear
peptides of 12–50 canonical amino acids (AA), which have evolved as
part of nature’s antimicrobial arsenal of bacteria as well as the innate
immune system of multicellular organisms4,6,8. Compared to classical
antibiotics, AMPs show decreased resistance development mainly
because (i) most AMPs act directly at the cell membrane, (ii) show a
relatively high killing rate, and (iii), resistance against AMPs is
conferred by rather non-specific mechanisms, which reduces the
chances of mutational and/or horizontal gene transfer events4.
Overall, this makes AMPs interesting candidates for next-generation
antimicrobials.

About 5000AMPs have been characterized to date,most ofwhich
are of natural origin. However, these 5000 AMPs span only a tiny
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fraction of the possible solution space that nature could have explored
(~2030 for a 30 AA AMP). Additionally, AMP mining from genomes and
metagenomes is hampered by limited natural (and not discovered yet)
AMPs as well as by available computational and experimental AMP
mining tools. Hence, our ability to discover new AMPs from this terra
incognita is limited. As randomly generated peptides are less likely to
show antimicrobial properties9, a way of unlimited development of
AMPs is the use of deep learning models, which are increasingly
employed for de novo protein and peptide design10–14. In this
approach, knownas generative deep learning,models learn the natural
protein sequence landscape in training sets with unlabeled data to
propose new-to-nature protein sequences15. These models are distinct
from predictive models that use labeled data to predict specific
properties (labels) of proteins from their sequence16. Generative and
predictive deep learning have been recently used for the discovery of
novel AMP sequences, which have been subsequently created and
validated through chemical synthesis of the individual candidates6,17–20.
While this proof-of-principle showcased the potential of deep learning
in AMP discovery, a broader application of this approach has been
limited due to the lack of convenient methods for the production and
screening of more AMP candidates in medium to high-throughput.

One possibility to increase the throughput in AMP production is
to switch from chemical synthesis to DNA-based bioproduction
methods. However, heterologous expression of AMPs in microorgan-
isms, such as E. coli, features several disadvantages: (i) it is time- and
labor-intensive, (ii) it requires the cloning, production and purification
of AMPs from cell cultures, and most importantly, (iii) many (potent)
AMP candidates might not be available, as they potentially kill the
producer strain upon induction. Cell-free protein synthesis (CFPS)
offers a promising solution to these challenges. CFPS systems are
in vitro transcription translation (TX-TL) systems that directly useDNA
templates for protein biosynthesis21–23, which allow the production of
peptides outside of living cells. Thus these systems can help overcome
potential cellular toxicity effects, and open up the way for the rapid,
small-scale production of several hundreds of peptides from linear
DNA in parallel.

Here, we combined deep learning and CFPS for de novo-design,
rapid production and screening of AMPs at small scale within 24 h, and
<10$ per individual AMP production assay (excluding cost for the DNA
fragment). Having explored ~500,000 theoretical sequences, we
screened 500 AMP candidates to identify 30 functional AMPs, which
are completely unrelated to any natural sequences. Notably, six of
these AMPs exhibited high antimicrobial activity against multidrug-
resistant pathogens, showed no emergence of resistance and only
minimal toxicity on human cells.

Results
De novo AMP design using deep learning
For de novo-design of AMPs, we adapted two versions of deep gen-
erative variational autoencoders (VAE) from previous studies20,24 dif-
ferent in their loss function (Methods). Generative VAE are
unsupervised learning models, which take as input only AMP sequen-
ces and comprise an encoder, a latent space, and a decoder. During
model training, the encoder compresses the input sequences into a
low-dimensional space (latent space), while the decoder aims at
reconstructing sequences from this latent space (Fig. 1a). We first
pretrained the VAE using ~1.5 million peptide sequences from UniProt
as a generic dataset. Second, performed transfer learning on the pre-
trained VAE using a dataset of ~5000 known AMPs to set up the latent
space to be used for de novo AMP generation (Methods, Supplemen-
tary Table 1).

To reduce thenumber ofAMPs for experimental testing,we set up
a method to select potential candidates according to their predicted
bioactivity, i.e., theirMinimum Inhibitory Concentration (MIC). To that
end, adapted from previous works or built in-house (Methods), we
established predictive deep learning models that we trained with the
sequence and respective experimental MIC values of ~5000 known
AMPs (sequence-MIC relationship, Fig. 1b). As regressors, we used
convolutional neural networks (CNN) and recurrent neural networks
(RNN) (Methods, Supplementary Tables 1-3).

To identify interesting AMP candidates, we first generated new
AMPs by sampling points from the latent space and subsequently
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Fig. 1 | The workflow for de novo-development of AMPs via deep learning and
cell-free biosynthesis. a Generative variational autoencoders (VAE) for de novo-
design of AMPs after being trained on known AMP sequences. b Predictive con-
volutional or recurrent neural networks as regressors for the MIC prediction after
being trained on known AMPs and their MIC. c Trained generative and predictive

models are used for sampling from the latent space (de novo-design of AMPs) and
prioritization of AMPs (predicting theirMIC), respectively. d Experimental pipeline
for rapid cell-free biosynthesis of the designed AMPs from synthetic DNA frag-
ments and direct testing of produced AMPs in the cell-freemix to bacterial cultures
followed by overnight continuous growth assay. Created with BioRender.com.
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feeding them into the decoder, which yielded peptide sequences that
share the same properties but are novel compared to the training
dataset. These de novo AMPs were then prioritized by the regressors
according to their predicted MICs. In five rounds, using different ver-
sions of models, we generated ~500,000 new peptides by sampling
from the latent space.Wefiltered these peptides by length andviability
to ~50,000 candidates and prioritized 500 AMP candidates for wet lab
bioactivity test (Fig. 1c and Supplementary Table 4).

Cell-free biosynthesis enables rapid screening for func-
tional AMPs
To establish CFPS-based screening of AMPs, we designed an experi-
mental pipeline for the high-throughput synthesis and testing of AMPs
in 384-well format (Fig. 1d). The system is based on linear DNA tem-
plates, which comprise a T7 promoter and a ribosome binding site
(RBS), to initiate transcription (TX) and translation (TL), followed by
the AMP coding region, and a T7 terminator. After adding the DNA
template (10 nM) directly into 10 µL of a cell-free TX-TL system, AMPs
were produced within 4 h (Methods). To test the antimicrobial activity
of the in vitro-produced peptides, 4 µL of the cell-free mix was added
into a final volume of 20 µL cultures of E. coli (Gram-negative) and
Bacillus subtilis (Gram-positive). Following OD600 measurement for
20 h allowed identification of those peptides that show antimicrobial
activity by suppressing growth.Overall, the entireprocess ofCFPSwith
subsequent bioactivity tests takes ~24 h, as the system works with
linear DNA and does not require any extensive cloning or peptide
purification steps.

First, we validated the screening pipeline with two known AMPs,
BP10025 and Cecropin B26, and then screened 500AMP candidates (see
above) in five subsequent design-predict-build-test cycles to identify
30 functional de novo AMPs (Fig. 2, Supplementary Table 5). During
these five rounds, the success of functional AMP discovery increased
from 0% to 12.7% from the first to the fifth round, respectively (Sup-
plementary Table 4). Because translation initiation rates (TIRs)
strongly affect protein yield27 we testedwhether our screen had biased
against candidates with low TIR. We calculated the TIR for all
sequences tested28, but could not find a significant difference between
the 500 candidates tested and the 30 functional AMPs identified
(Supplementary Note 1, Supplementary Fig. 3). Functional AMPs were
re-validated in biological triplicates with 10 µL of cell-freemix added to
the final volume of 20 µL cultures (Fig. 2b, Supplementary Fig. 1) and
production of AMPs was analyzed through SDS-PAGE (Supplemen-
tary Fig. 2).

Functional AMPs are unique but share properties with natural
counterparts
We next analyzed our de novo-designed AMPs in more detail.
AlphaFold29 predicted that 27 out of the 30 sequences form a helical
structure (Fig. 2b), which is a common feature of many AMPs4,5.
Interestingly, AMPs #1-19, generated by VAE 1, showedmore structural
diversity compared to AMPs #20-30, generated by VAE 2, which is in
line with the fact that the two VAEs create two different latent spaces
(Fig. 2c), thus generating AMPs with distinct structural, physico-
chemical, and sequence features in a robust manner (Supplementary
Fig. 4). One of the main characteristics of AMPs is an amphiphilic
character that results from alternating cationic and hydrophobic
amino acids in the AMP core4,5. In contrast to natural AMPs, which
mainly feature aliphatic amino acids, the hydrophobic core of our de
novo AMPs was mostly aromatic (Supplementary Fig. 5a). Phenylala-
ninewas particularly overrepresented at the cost of leucine, which was
underrepresented (Supplementary Fig. 5b, Supplementary Table 6).
While there are significant physicochemical differences between
training AMPs and generated peptides as well as between the gener-
ated and prioritized peptides, the 500 tested and 30 functional AMPs
did not show such differences probably because of either the small

sample size or thedifferences that separate functional candidates from
the rest cannot be shown by simple physicochemical indices. Addi-
tionally, BLAST searching showed that our de novo AMPs were unique
in their sequence. No significant similarity was observed against the
UniProt database, encompassing ~240 million entries, nor an AMP
sequence from the training dataset. (see Supplementary Tables 7-9,
and Supplementary Note 2 for detailed BLAST sequence similarity
analyses). Altogether, these results demonstrated that our de novo
AMPs shared the physico-chemical building principles with their nat-
ural counterparts, but were distinct from them in their amino acid
sequences.

De novo AMPs prefer bacterial over human membranes
Structural and sequence analysis suggested that our de novo AMPs act
as amphipathic helices that insert intomembranes.We usedmolecular
dynamics (MD) simulations to study the interaction of our AMPs with
models of a negatively charged inner membrane of bacteria (IM) and
the human plasma membrane (PM) (Fig. 3a, Supplementary Note 3).
According to our simulations, all AMPs bind much stronger to the IM
interface than to the PM (Fig. 3b) primarily due to the interaction of
such cationic AMPs with negatively charged bacterial membranes.
Binding of the AMPs at the IM progressed rapidly, taking at most
200ns to fully insert into the membrane interface (Supplementary
Fig. 6a). Once bound, AMPs stayed tightly bound to the IM for the
remainder of the simulations. In some cases, we observed a reor-
ientation of the AMP after a few hundred nanoseconds from a shal-
lowly bound state to a binding mode that resided deeper in the
membrane (e.g., AMP #29). Several AMPs also partially bind the PM.
However, inmost cases, this binding is transient with frequent un- and
rebinding and without penetrating deeper into the PM, as seen for the
IM (Supplementary Fig. 6b). Furthermore, all AMPs show a higher
number of (mainly electrostatic) interactions with the IM thanwith the
PM (Supplementary Fig. 6c). While the predicted (mostly helical)
structure of most of the AMPs is largely preserved in our simulations,
the stronger membrane binding to the IM goes hand in hand with
increased stability of the secondary structures when compared with
the often fully solvated AMPs in the PM systems (Supplementary
Fig. 6d). The MD simulations suggested that all our AMPs generally
target bacterial membranes over the human plasma membrane,
naturally however, the degree of preference is dependent on the
individual AMP.

De novo AMPs show favorable MIC to toxicity ratios
Because the concentration of peptides in CFPS is not defined, we
needed to have pure peptides for cellular assays. To obtain pure
compounds, we chemically synthesized the functional AMPs and
characterized their bioactivity, in particular the minimum inhibitory
concentration (MIC)30, as well as hemolysis (HC50) and cytotoxicity
(CC50), both expressed as 50% toxic concentration. Of the 30 candi-
dates, 22 peptides were successfully produced by chemical synthesis.
Twenty AMPs showed a MIC of ≤6 µM on B. subtilis, and fifteen AMPs
showed a MIC of ≤25 µM on E. coli (Fig. 4a, Supplementary Tables 10,
11). HC50 andCC50were significantly higher inmost cases, with fifteen
AMPs showingHC50 > 100 µM(thirteen > 250 µM) against fresh human
red blood cells, and thirteen AMPs showing CC50> 100 µM (six > 250
µM) against HCT116 human colon cells (Fig. 4a, Supplementary
Table 10, 11). This indicates that the bioactivity versus toxicity rela-
tionship was very favorable for several of our de novo AMPs. We
decided to continue with sixteen AMPs that showed a favorable
bioactivity to toxicity ratio and excluded six AMPs becauseof highMIC
and/or low HC50/CC50 values (AMP #1, #7, #10, #18, #23, and #26).

De novo AMPs show broad-band activities in vitro
In the following,we tested the sixteen remaining de novoAMPs against
clinically relevant strains, and in particularmultidrug-resistant ESKAPE
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pathogens (i.e. Enterococcus faecium, Staphylococcus aureus, Klebsiella
pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and
Enterobacter spp.; Fig. 4b). Our AMPs were most potent against E.
faecium and A. baumannii, resulting in fifteen AMPs with MIC≤ 25 µM
(thirteen ≤6.3 µM), and thirteen AMPs with MIC≤ 25 µM (ten ≤ 6.3 µM),
respectively (Fig. 4b). For the rest of the ESKAPE pathogens, K. pneu-
moniae, P. aeruginosa, S. aureus, and Enterobacter spp., ten, nine, eight,

and three AMPs showed MIC ≤ 25 µM, respectively (Fig. 4b). While
some AMPs showed distinct activity profiles against individual strains,
six AMPs classified as broad-spectrum antimicrobials that showed
favorable therapeutic window i.e., antimicrobial activity at relevantly
low hemolysis and cytotoxicity (AMP #3, #5, #13, #15, #16, and #27).
Notably, these AMPs were also active against the notorious biothreat
agents Yersinia pestis and Bacillus anthracis (Fig. 4b).
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No resistance was developed against de novo AMPs in vitro
Next,we tested theemergenceof resistance against the sixbroad-band
AMPs identified in this study (AMP #3, #5, #13, #15, #16, and #27). To
that end, we performed E. coli serial passaging experiments with the
peptides. As control, we added imipenem, a broad-spectrum antibiotic
that is generally considered a last resort against multidrug-resistant
pathogens31. During 21 days of serial passage, we did not observe a
significant increase in MIC of our AMPs, while the imipenem MIC
gradually increased up to 8-fold and exceeded the susceptibility
breakpoint of clinically relevant resistance defined by EUCAST (Fig. 5a,
Supplementary Fig. 7). The fact that we did not observe resistance is in
line with the fact that our AMPs do not act on a specific cellular target,
but rather globally (i.e., at the membrane, Fig. 3c), which makes them
less likely to cause resistance development. This mode of action was
further confirmed by propidium iodide staining and microscopy
(Fig. 5c, d), which clearly indicated membrane disruption upon AMP
treatment.

Finally, we also investigated the effect of AMP treatment on the
release of outer membrane vesicles (OMVs) in E. coli. OMVs are natu-
rally released by Gram-negative bacteria and can be a reaction against
surface attacking agents neutralizing the effect ofmembrane targeting
antibiotics32–34. Notably, none of the six broad-band AMPs did sig-
nificantly increase the release of OMV compared to untreated E. coli,
unlike polymyxin B, an antibiotic acting on the outer membrane of
Gram-negative bacteria (Fig. 5b). Altogether, these experiments sug-
gested that our six broad-band AMPs are able to escape resistance
development and self-defense reactions of bacteria.

Discussion
In this work, we describe the design and validation of 30 de novo
AMPs, of which six show broad-band activity in vitro. Recent work has
impressively demonstrated the power of deep learning methods in
discovering and/or developing novel AMPs6,20. However, these efforts
still suffer fromthe limitednumber of peptides that canbe synthesized
and tested, and the relatively long time it takes from design to vali-
dation. Here we used CFPS to dramatically advance the design-build-
test cycle in AMP development.

Although in this study we employed CFPS pipeline to linear pep-
tides with natural amino acids, a unique advantage of CFPS that can be
leveraged in the future is the possibility to synthesize peptides con-
taining cycles and noncanonical amino acids. Similar to chemical
synthesis which has limitations such as our experiencewith 8 out of 30
AMPs that did not result in successful chemical synthesis, CFPS can
face difficulties in expressing peptides with difficult-to-synthesize
motifs. Additionally, peptide expressibility and structuring, as well as
possible interactions with the PURE components can lead to false
negative results. Fortunately, the throughput of CFPS compensates for
such cases by screening a high number of candidates. Note that the
longer the peptide sequences (higher antimicrobial specificity), the
more difficult chemical synthesis and less difficult CFPS work. Addi-
tionally, our CFPS pipeline can be applied to big proteins.

Compared to recent approaches, our success rate in finding
functional AMPs is in the same range, 6% for all candidates tested
(12.6% for our best generator-regressor combination, Supplementary
Table 4) versus 10% reported byDas et al.20. However, the total number

of functional AMPs discovered is an order of magnitude higher
(30 AMPs versus 2) and at massively increased rate (24 h versus
28 days) and reasonably low cost (<10$ for production of one
AMP for screening on two strains in parallel, excluding the ever-
decreasing cost of DNA synthesis or alternatively using PCR primers).
Although, state-of-the-art deep learning models can improve the hit
rate in future works, high throughput approaches such as ours enable
achieving higher hit numbers. Additionally, in-house preparation
of CFPS systems could reduce the cost of peptide production
down to ~1$35,36.

While being unique anddiverse, our denovoAMPs share common
propertieswith knownAMPs. They arepredicted to bemostlyα-helical
peptides rich in cationic and hydrophobic amino acids and preferably
act on negatively-charged IMs, showing that our pipeline was able to
design new-to-nature sequences that follow the general building
principles of AMPs. The resulting AMPs have several features that
(after in vivo validation) could contribute to their successful transla-
tion into therapeutic applications, including broad-spectrumactivity, a
low propensity for bacterial resistance development, potential for
topical or systemic use, and synergistic potential with existing
therapies.

Although our primary focus was on AMPs with broad-spectrum
activity, we note that our pipeline, combined with various machine
learning techniques, is also well-suited for the development and
iterative optimization of AMPs with more specific characteristics.
These features may include selectivity and specificity, stability, in vivo
bioavailability, immunomodulatory properties, synergy with existing
drugs, and resistance. By refining these features, our pipeline has the
potential to advance the design of AMPs for a variety of clinical
applications.

Overall, our work provides a proof-of-principle, how CFPS can be
used to leverage the full potential of machine learning approaches in
the future. Especially in the light of ever-decreasing DNA synthesis
costs, our combined approach of deep learning and CFPS provides a
time-, cost-, and labor-effective approach for peptide production and
screening. Thus, our work holds the potential to explore the design-
function space of AMPs at increased rate and depth. This will hopefully
lead to the increased discovery and development of peptide-based
drug candidates in the future.

Methods
Pretraining and training datasets
Pretraining data. To gather a large corpus of protein sequences
representing a general protein grammar, we downloaded all protein
sequences shorter than49 amino acids fromUniProt37 (as of July 2021).
After removing duplicate sequences and entries with unknown amino
acid characters, 3,104,952 unique sequences remained of which a
random subset of half of them was used for pretraining.

AMP data. For experimentally validated AMP sequences, we used
the Giant Repository of AMP Activities (GRAMPA)38 which has com-
bined sequence and activity data from several public AMP databases;
APD39, DADP40, DBAASP41, DRAMP42, and YADAMP43. This database
consists of 6,760 unique sequences and 51,345 total MIC measure-
ments, spanning several bacterial and nonbacterial target species. We
filtered the MIC measurements to the ten most abundant bacterial

Fig. 2 | Cell-free production of de novo-generated and prioritized AMPs and
activity screening against B. subtilis and E. coli. a We used different generative
and regressormodels (Supplementary Table4) to design andprioritizeAMPs infive
rounds, produced and screened a total number of 500 AMPs from synthetic DNA
fragments and found 30 functional candidates. b Charge and AlphaFold-predicted
structureof the functionalAMPswith associated slowed/stoppedgrowth curves for
B. subtilis and E. coli. All (including control) AMPswereproducedusingCFPS andno
peptide purificationwas carried out prior to the activity test. Growth curves (OD600

0–0.45 over time 4–20h for all) are the average of n = 3 independent experiments.

Growth curveswith error bars as standard deviation are provided inSupplementary
Fig. 1. c 2D-projections of the 50-dimensional latent space were obtained by prin-
cipal component analysis (PCA) for the two variational autoencoders (VAEs, with-
out andwith the KL-term annealing, VAE_v1 and VAE_v2, respectively, seeMethods)
that were used for de novo-design of AMPs. Blue color intensity represents the
frequency of training AMPs in the latent space. Functional AMPs (red), BP100 and
Cecropin B (black) annotated back into the latent space. Source data for b are
provided as a Source Data file. Created with BioRender.com.
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species (E. coli, P. aeruginosa, Salmonella typhimurium, K. pneumoniae,
A. baumannii, S. aureus, B. subtilis, S. epidermidis, Micrococcus luteus
and E. faecalis) and omitted all peptides containing any chemical
modification other than C-terminal amidation, for feasible in-
laboratory expression. After removing duplicate sequences and
entries >48 amino acids, 5319 unique AMP sequences were left.

Non-AMP data. We searched the UniProtKB37,44 for proteins
labeled as “NOT antimicrobial, antibiotic, antiviral or antifungal”
(downloaded as of July 2021), removed entries containing ambiguous
amino acids, and kept only unique sequences shorter than 49 amino
acids. This resulted in a dataset containing 10,612 unique non-AMP
sequences.
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Generator variational autoencoder (VAE)
We used VAEs because they have previously been used for de novo
AMP design17,18,20,45. The generative VAE consists of an encoder, a latent
vector, and a decoder. The encoder feeds the input data (one-hot
encoded amino acid letter of peptides) into a latent vector that is an
information bottleneck, and the decoder aims to reconstruct the input
data from the latent vector. Training the VAE and minimizing the dif-
ference between the input data and the reconstructed data acts two-
fold; the encoder learns to map the training dataset into a lower-
dimensional space and the decoder learns to generate samples similar
to the training data from any vector in the latent space. Thus, each
peptide in the training dataset lands on a point in the multi-
dimensional latent space. Picking vectors from the empty regions in
this space and feeding them into the decoder yield peptide sequences
that share the samegrammarbut are novel and not seen in the training
dataset. After pretraining and training (transfer learning), we gener-
ated new AMPs by sampling from the latent space using different
strategies in particular by exploring the neighborhood of a control
functional AMP, gradient descent, or random sampling (Supplemen-
tary Tables 1, 4).

Generator VAE models. We adapted the neural network archi-
tecture of the CNN-RNN hybrid VAE model from Hawkins-Hooker
et al.24. The encoder consists of 5 consecutive one-dimensional con-
volution layers fed into a dense layer of size 50, which is the latent

vector. The decoder ismade from 4 deconvolution layers that samples
the latent vector and a GRU layer of 512 cells outputs a sequence in the
same dimension as the input. The model loss is the weighted sum of a
reconstruction loss and the Kullback-Leibner (KL) loss. The total loss
function can be dynamically changed in the training process for KL-
termannealing46; as standardpracticewhenworkingwithdiscrete data
such as language. Our two final models were trained without and with
the KL-term annealing (VAE_v1 and VAE_v2, respectively). The models
were compiled using the Adam optimizer.

Pretraining and training. Our training dataset of ~5000 AMP
sequences is not sufficient for learning whatmakes a protein sequence
distinct froma randomstringof aminoacid characters andwhatmakes
a protein sequence an AMP. In such cases, pretraining with a much
bigger generic dataset is needed to enhance the model performance.
We pretrained the generator models with ~1.5 million protein
sequences from UniProtKB for 600 epochs. We then trained the
models on the AMP data for 400 epochs. Model training metrics are
provided in Supplementary Table 1.

Regressor convolutional and recurrent neural networks
Regressor neural networks. We adapted a regressor model previously
reported38. First, a CNN regressor was built with two consecutive one-
dimensional convolutional layers, a max pooling layer, a flattening
layer, a dropout layer (0.5), and three dense layers. Second, we built a
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simple RNN regressor with an LSTM layer and two dense layers. The
models were compiled with mean squared error loss and the Adam
optimizer.

Gram-specific regressors. Due to structural differences in the cell
membrane, we assumed there are differences between Gram-positive
and Gram-negative bacteria in their response to AMPs. To capture
these differences, we trained Gram-specific regressor models. We
trained the Gram-negative model on 4619 unique AMP sequences and
corresponding MIC measurements on E. coli; and the Gram-positive

model on 4089 AMP sequences and corresponding MIC measure-
ments on B. subtilis. This approach improved the accuracy and effi-
ciency of the regressor models (Supplementary Tables 1, 2, 4).

Training. We trained these models on pairs of data containing
AMP sequences and their corresponding MIC measurements (in log
10). Based on a previous study38, the nonAMP sequences were labeled
to have a log MIC of 4. We interpreted the predicted MIC value as
follows; below3.5 asAMP, between3.5–3.9 as potential AMPandabove
3.9 as non-AMP. The regressormodelswere trained by the pooledAMP
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and non-AMP data for 200 epochs. Model training metrics are pro-
vided in Supplementary Table 1.

Sampling and prioritizing of AMPs
In each round of peptide synthesis, we selected thousands of random
points from the VAEs latent space and from each reconstructed a
peptide sequence. We omitted non-viable sequences and kept AMPs
with 36-48 amino acids. This left us with viable peptide sequences
(Supplementary Table 4). We then fed these sequences into the
regressors and prioritized them based on the MIC prediction. 50-150
AMPswere chosen (either randomly among those predicted as AMP or
from top-ranked sorted AMPs, Supplementary Tables 2, 5) for wet-lab
experiments in five rounds making a list of over 500 AMPs tested in
this work (Supplementary Table 2).

Molecular dynamics (MD) simulations
All MD simulations were performed using Gromacs 2020.347 and the
CHARMM36m forcefield48 using an integration time step of 2 fs (partly
1 fs in the membrane equilibration; see Supplementary Table 12).
Bonds including hydrogens were constrained using the LINCS
algorithm49. Electrostatic interactions were computed using the
Particle-Mesh Ewald (PME) algorithm50 with a real-space cut-off for
pairs further apart than 1.2 nm. Lennard-Jones interactions were
smoothly switched to zero between 1 and 1.2 nmusing the force-switch
algorithm.

The protein, themembrane and the solvent (water and ions) were
individually coupled to thermal baths set to 37 °C (310.15 K) using the
v-rescale algorithm51 with a time-constant of 1 ps. During the equili-
bration runs pressure coupling was handled by the Berendsen
barostat52, which was switched to the Parrinello-Rahman barostat53 for
all production runs. The barostat time-constant and compressibility
factor were consistently set to 5 ps and 4.5 × 10−5 bar−1, respectively.
Pressure coupling was applied semiisotropically (with the x and y
dimensions coupled together) for systems with membrane and iso-
tropically otherwise. The reference pressure was set to 1 bar. To
counteract an energetic penalty for peptide insertion into the mem-
brane due to finite size effects, we simulated each membrane system
with three different lateral membrane tensions (0, 9, 17.1 bar). There-
fore, the diagonal elements of the pressure tensor (PXX, PYY, PZZ) were
set to

PXX =PYY = P � ΔP
3

ð1Þ

PZZ =P +2
ΔP
3

ð2Þ

with P as the reference pressure (1 bar) and ΔP as the desired lateral
membrane tension. To ensure uncorrelated runs for the different
tensions, the starting velocities of the atoms were randomly initialized
according to theMaxwell-Boltzmann distribution. TheMD simulations
of the AMPs on membranes were performed for 1 µs each.

Visual analysis and renders used the VMD54, PyMOL55 and
ChimeraX56 software.

Membrane setup. Following earlier work and results from lipi-
domics experiments, we modeled membranes resembling the outer
leaflet of the human plasma membrane (PM)57,58 and the E. coli inner
membrane (IM)59. The detailed compositions are summarized in Sup-
plementary Tables 13, 14.

Using the CHARMM-GUImembrane builder60,61, we generated 12.5
×12.5 nm2 patches of thesemodelmembranes, energyminimized them
with a steepest descent algorithm until the largest force acting on any
atom was below 1000 kJmol−1 and subsequently equilibrated them
following the CHARMM-GUI equilibration scheme (summarized in
Supplementary Table 12).

AMP system setup. Structures of the selected 30 AMPs and of
Cecropin B were predicted using AlphaFold29 while the short BP100
wasmodeled as a coil with initial anglesφ = −60° andψ = 30°, using the
Molefacture Protein Builder plugin for VMD54. Since several of our
AMPs havemore than one cysteine (AMPs #2, #4, #6, #8, #10, #11, #12,
#14, #18, #19), we next performed 1–2 µs long MD simulations of them
surrounded by only water and ions (150mMNaCl plus counter ions for
overall neutralization) and with no disulfide bonds imposed. Based on
the frequency and distance with which two cysteines in the respective
structure interacted with each other in these simulations, we assigned
a disulfide bond for AMP #2 (Cys11, Cys47) and disulfide bonds con-
necting the predicted β-sheets of AMP #8 (Cys29, Cys35) and AMP #14
(Cys10, Cys32). Due to the particularly high abundance of cysteine in
AMP #2 and the potential structural bias from imposing one specific
disulfide bond, we additionally simulated it without any imposed
disulfide bonds.

These structures were then orientated so that their first principal
axis was orthogonal to the z-axis and placed in proximity, but not yet
bound to the equilibrated PM and IM. The box was subsequently sol-
vated with TIP3P water62 and NaCl ions were added to a concentration
of 150mM, ensuring overall neutrality by adding additional counter
ions to the systems. The systems were energy minimized in the same
way as the pure membrane systems and were then equilibrated for
5 ns. During minimization and equilibration, we applied position
restraints on the peptide heavy atom with a force constant of
1000 kJmol−1 nm−2.

Cell-free production and activity test of AMPs
DNA fragments encoding AMPs were designed with T7 promoter
(GAATTTAATACGACTCACTATAGGGAGA), RBS (TCTAGAGATTAAAG
AGGAGAATACTAG) sequences upstream of the AMP coding region,
and a T7 terminator (TACTCGAACCCCTAGCCCGCTCTTATCGGGCG
GCTAGGGGTTTTTTGT) downstream. 500 DNA fragments were pur-
chased from Twist Bioscience. A final concentration of 10 nM of each
fragment was used for cell-free transcription and translation of AMPs
using PUREfrex®2.0 kits (GeneFrontier #PF201-0.25-5-EX, purchased
from Hölzel, Germany). In 384-well plates (BRAND, #781687), 30 µL
volumeof the cell-free reaction wasmade for each AMP and incubated
for 4 h at 37 °C. The cell-free mix was directly used for the activity test
on E. coli and B. subtilis or for the SDS-PAGEl of the functional AMPs.

E. coliMG1655 and B. subtilis PY79 were used as representatives of
Gram-negative andGram-positive bacteria. FromLB agarplates into LB
medium, three overnight cultures for each strain were made from
three different colonies and grown while shaking at 37 °C. The next
day, each was subcultured in LB (1:1000) and grown while shaking at
37 °C to OD ≈ 1. Cells were diluted in LB to 104 cfu mL−1, and 16 µL of
diluted cells were added to wells of a 384-well plate (Greiner Bio-One,
#781185) in which 4 µL of the cell-free reaction mix (with AMPs pro-
duced) had been added beforehand. Cultures were mixed and the
plate was sealed by a gas-permeable film (Carl Roth, #T093.1). OD600

wasmeasured every 10min in a plate reader (Tecan Infinite® 200 PRO)
shaking at 37 °C for 20 h. Growth curves were analyzed for AMPs
impairing bacterial growth. We analyzed plates both by visual inves-
tigation of themicroplates after 20 h aswell as by visual analysis of the
growth curves looking for stopped or slowed growth plotted OD600

over time compared to the controls.

SDS-PAGE of AMPs produced in the cell-free system
SDS-PAGE was used to detect produced functional AMPs in the cell-
free reaction23. In brief, cell-free reactions were boiled for 3min in 2x
Tricine buffer (Bio-Rad, #1610739), loaded in 16.5% Mini-PROTEAN
polyacrylamide Tris/Tricine gels (Bio-Rad, #4563065), and run for 5 h
at 200mA in the running buffer (10mMTris, 10mMTricine, and 0.01%
SDS). Gels were then fixed for 1 h in 12% trichloroacetic acid and 1 h in
40% EtOH, 10% acetic acid, followed by overnight staining in QC
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Colloidal Coomassie (Bio-Rad, #161-0803), 24 h of de-staining inwater,
and imaged using Intas GelStick Touch Imager.

Measurement of minimum inhibitory concentration (MIC) and
resistance test
Strains used forMICmeasurements are E. coliMG1655, B. subtilis PY79,
E. faecium (isolate from the gut of the cow), S. aureus DSM 11729, K.
pneumoniae DSM 30104, A. baumannii (isolate from the human
abdominal wall), P. aeruginosa DSM 1117, Enterobacter spp., Y. pestis
EV76, B. anthracis Sterne, and S. pneumoniae D39. A commonly used
standard protocol for determination of MIC for antimicrobials was
used to measure the MIC of the AMPs taking into account all sugges-
tions for cationic AMPs in the protocol30. Chemically synthesized
peptides were dissolved in BSA (0.2% w/v) acetic acid (0.01% v/v)
solution to have 10x of the highest concentration to be tested. In 96-
well PCR plates (Axygen, #PCR-96-SG-C) two-fold serial dilutions were
made from columns 1–10 in each row specified to each peptide and
BSA (0.2% w/v) acetic acid (0.01% v/v) solution was pipetted into col-
umns 11 and 12. Triplicates of 7.5 µL of each dilution were pipetted into
polypropylene 96-well plates (Corning, #3359). Triplicates of bacterial
overnight cultures in Mueller-Hinton broth 2 (MHB 2, Sigma-Aldrich,
#90922) were prepared from three different colonies the day before
and grown shaking at 37 °C, subcultured in the morning by diluting
1000x in MHB 2 grown shaking at 37 °C to OD ≈ 1. Bacterial cultures
were then diluted with MHB 2 to 105 cfu mL−1 and 67.5 µL of each
triplicate was added on top of peptides in columns 1–11 of 96-well
plates. MHB 2 was added to column 12. The plates were sealed by
adhesive films (VWR, #391-1262) and incubated at 37 °C for 20 h. MIC
values were reported as the highest concentration of each AMP in
whichno visiblegrowthwasobserved. For S. pneumoniaeTHYmedium
was used instead of MHB 2.

The same procedure was used for the resistance test except for
cultures that from the 2nd day on, each of the triplicate cells grown in
the highest AMP concentration (half MIC) was diluted 10,000x inMHB
2 and added to newly prepared peptides dilutions.

Measurement of cytotoxicity (CC50)
Cytotoxicity assay was performed on HCT116 human colon cells
(ATCC, #CCL-247™) using CellTiter 96® AQueous One Solution Cell
Proliferation Assay (Promega, #G3580) which is a colorimetricmethod
based on MTS (3-(4,5-dimethylthiazol-2-yl)−5-(3-carboxymethox-
yphenyl)−2-(4-sulfophenyl)−2H-tetrazolium) for determining cell via-
bility. The MTS tetrazolium compound (Owen’s reagent) is reduced
into a colored formazan product by NADPH or NADH produced by
dehydrogenase enzymes in metabolically active cells.

On the 1st day, when cells reached the density of 50-80% of the
covered surface, gently washed twice using 10mL of DPBS (Gibco,
#14190367). 1mL trypsin (Capricorn, #TRY-1B) was added, 5min
incubated at 37 °C and 9mLmediumwas added including DMEM high
glucose (Capricorn, #DMEM-HPA), 10% v/v fetal bovine serum (FBS,
Capricorn, #FBS-11A), and antibiotic mix for cell culture (Capricorn,
#PS-B). The culture was transferred into a 15mL falcon, and spun down
at 1000 rpm for 3min. The supernatant was sucked out and 10mL of
fresh media was added and transferred. Cells were diluted by the
medium to have 5000 cells in 36 µL. 36 µL of the cell culture was
pipetted into wells of a 384-well plate (Greiner, #781185). The last well
receivedonlymedia. Cellswere incubated at 37 °C, 5%CO2, for 24 h.On
the 2nd day, peptides were prepared in two-fold serial dilutions
starting from a final concentration of 250 µM. Columns 11 and 12
received onlywater. 4 µL of eachpeptide dilutionwas added towells of
the cell culture plate prepared on the 1st day and the plate was put at
37 °C, 5% CO2, for 24h. On the 3rd day, 8 µL of CellTiter 96® AQueous
One Solution and 10 µL SDS 10% were added to each well and after
90min incubation at 37 °C, absorbance at 490 nm was measured and
corrected by the value of wells with only medium. CC50 values, the

concentration of each AMP killing 50% of cells, were calculated using
Graphpad Prism 9.

Measurement of hemolytic activity (HC50)
Humanbloodwaswashed three timeswith PBS and resuspended in 2 V
PBS. AMPs with an initial concentration of 250 µM were titrated in 96-
well polypropylene plates (V-bottom, Greiner Bio-One GmbH). 5 µL
AMP dilutions were overlaid with 45 µL of washed and concentrated
human erythrocytes, and the plates were sealed and incubated at 37 °C
for 1 h. 40 µL of supernatant were transferred after final centrifugation
at 1000 x g for 5min at room temperature to ELISA plates and
absorbance was measured at 405 nm. Triton X 100 treated ery-
throcytes served as positive control. HC50values, the concentration of
each AMP lysing 50% of RBCs, were calculated using GraphPad Prism.

Mode of action assay and microscopy using propidium
iodide (PI)
Plate reader assay. Three colonies were picked to culture E. coli
MG1655 cells in LB at 37 °C to the exponential phase. Cells were har-
vested by centrifugation at 4000 x g andwashed three times in 10mM
PBS (pH= 7.0), and adjusted to OD600 = 1 with 10mMPBS. 10μL of the
cells in PBS were mixed with 10μL of AMPs to a final concentration of
4×MIC and incubated at 37 °C for 1 h. 20μM final concentration of PI63

was added to each of the AMP-treated and untreated samples and
incubated at 37 °C for 30min in thedark. Fluorescencewas recorded at
an excitation of 535 nm and emission of 615 nm was measured using a
Tecan Infinite® 200 PRO plate reader.

Sample preparation for microscopy. E. coli was grown in LB at
37 °C to the exponential phase and diluted to 108 cfu mL−1 in fresh LB.
50 µL of diluted cells were pipetted in a 1.5mL tube and 50 µL of AMPs
was added at 4×MIC final concentration together with 20 µM PI. The
mixture was incubated at 37 °C for 1 h while shaking. 1 µL of samples
was loaded onto agarose pads (2% agarose in PBS) and imaged using a
Zeiss AxioPlan 2 upright widefield microscope equipped with a 100x
NeoFluor phase contrast objective and a FluoArc HBO lamp. Fluores-
cence of PI was recorded using TxRed HC Filter set (AHF, F36-504).

Image processing. The phase contrast and fluorescence images
were overlaid. The dynamic range of the fluorescence channel was set
to aminimumof 125 AU to remove backgroundfluorescence, while the
contrast of the phase contrast channel was manually adjusted for
better visualization. For comparison of the different phenotypes, 232
pixels x 232pixels regionsof interestwere cropped. Raw image files are
provided in this study.

Outer membrane vesicle (OMV) release of E. coli after AMP
treatment
Escherichia coli MG1655 was grown on MacConkey agar (Carl Roth,
Karlsruhe, Germany) plates overnight. For overnight culture, a single
colony was used for inoculation of 2mL LB media at 37 °C, 160 rpm
(MaxQ 6000, Thermo Fisher Scientific, Karlsruhe, Germany). Bacterial
culture was transferred to 10mL fresh LB media and incubated (1 h,
37 °C, 160 rpm). The required amount of bacteria was treated with ¼
MIC of the AMPs #3, #5, #10, #13, #15, #16, and #27, left untreated for
control or was treated with acetic acid and BSA as solvent control
(90min, 37 °C, 160 rpm). Samples were centrifuged (4,500 x g, 15min,
4 °C; Multifuge X3R, Thermo Fisher Scientific), the supernatant was
sterile filtered (0.22 µm) and afterwards concentrated by the factor of
20 using 100 kDa molecular weight cut-off filters (Merck KGaA,
Darmstadt, Germany). To determine the number of released vesicles,
samples were measured by nano-flow cytometry (nFCM) using a
NanoAnalyzer (NanoFCM Co., Ltd, Nottingham, UK)64.

Chemical peptide synthesis of AMPs
Materials. All commercially available reagents were purchased from
the following companies, and used without further purification:
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thioanisol (#T28002), 1,2-ethandithiol (EDT, #8.00795), N-Methyl-2-
pyrrolidone (NMP, #M79603) from Sigma Aldrich (USA); piperidine
(#T6146), 2mL polypropylene reactors with plunger and frit pore size
25 µm (#7926.1) from Carl Roth (Germany); 2,6-lutidine (#10731354),
palladium acetate (#441390010), phenylsilane, trifluoracetic acid
(TFA, #293812500) fromAcros (USA);microscale columns from Intavis
(#35.091) (Germany); Fmoc-Gly-OH (#FAA1050.0100), Fmoc-L-
Asn(Trt)-OH (#FAA1015.0100), Fmoc-L-Asp(tBu)-OH (#FAA1356.0100),
Fmoc-L-His(Trt)-OH (#FAA1090.0100), Fmoc-L-Ile-OH
(#FAA1110.0100), Fmoc-L-Met-OH (#FAA1150.0100), Fmoc-L-Phe-OH
(#FAA1175-0100), Fmoc-L-Pro-OH*H20 (#FAA1185.0100), Fmoc-L-
Thr(tBu)-OH (#FAA1210.0100), Fmoc-L-Tyr(tBu)-OH
(#FAA1230.0100), Fmoc-L-Val-OH (#FAA1245.0100), TentaGel S RAM
resin (#S-30023) from Iris Biotech (Germany); Fmoc-L-Ala-OH-OH
(#05001), Fmoc-L-Arg(Pbf)-OH (#CC05005), Fmoc-L-Cys(Trt)-OH
(#CC05009), Fmoc-L-Gln(Trt)-OH (#CC05012), Fmoc-L-Glu(OtBu)-OH
(#CC05013), Fmoc-L-Leu-OH (#CC05017), Fmoc-L-Lys(Boc)-OH
(#CC05018), Fmoc-L-Ser(tBu)-OH (#CC05023), Fmoc-L-Trp(Boc)-OH
(#CC05076), N,N′-diisopropylcarbodiimid (DIC, #CC01002), and
Oxyma (#CC01024) from Carbolution (Germany); acetic anhydride
(Ac2O) from Grüssing GmbH (Germany); peptide grade dimethylfor-
mamide (DMF, #1003976025) and HPLC grade acetonitrile (MeCN)
(#34851-2.5 L) from Merck (Germany); Ultrapure water of type 1 was
obtained with a MicroPure Water Purification System from TKA
(Germany).

Solid-phase peptide synthesis. All peptides were synthesized via
the Fmoc-solid phase strategy. The synthesis was carried out by an
automated peptide synthesizer using INTAVIS ResPep SLi instrument
for a 5 µmol scale. Higher amounts of peptides were achieved by run-
ning multiple 5 µmol syntheses in parallel. For all peptides, the Ten-
taGel S RAM (0.22mmol/g) resin was used.

Automated solid-phase peptide synthesis (INTAVIS ResPep SLi):
– The conditions, reagents, and corresponding volumes of this

synthesis protocol correspond to a 5 µmol scale synthesis. No
mixing was performed during incubation or reaction time. In the
coupling step, the temperature was set to 40 °C.

– Swelling: The appropriate amount of resin (23mg) was swelling in
200 µL DMF for 30min.

– Deprotection of temporal Fmoc protecting groups: Piperidine
(150μL, 20% in DMF) was added to the resin and incubated for
5min. This step was repeated, and the resin was filtered off, and
washed with DMF (1 × 300 µL, 3 × 225 µL).

– Coupling of amino acids: In a mixing vial the machine auto-
matically added 53 µL of the corresponding Fmoc-amino acid (4
eq, 0.5M), 15 µL Oxyma (4 eq, 2M), 13 µL DIC (4 eq, 2M) each in
DMF and 29 µL NMP. The resulting solution was activated by
waiting for 1min before addition to the resin. This suspension was
incubated for 15min. Next, the resin was filtered off, and the
coupling was repeated. No washing was performed after the
coupling.

– Capping: 150 µL of a lutidine/Ac2O/DMF 6:5:89 solution was added
to the resin and incubated for 8min. The resin was filtered off and
washed with DMF (3 × 225 µL).

– After the last coupling, the resin was washed with DMF (1 ×300 µL,
3 × 225 µL), ethanol (4 × 150 µL) and CH2Cl2 (5 × 150 µL). The resin
was finally dried under continuous air flow for 5min.

Final Cleavage, Purification, and Characterization:
– Cleavage and deprotection of the amino acid side chains: All

peptides have been cleaved from a dry resin previously washed
with 5x DMF and 10x CH2Cl2 following the last step of the
synthesis protocol. Depending on the total number of Cys, Met,
or Trp, one of the cleavage cocktails in Supplementary Table 15
was utilized. Cleavage cocktail A was used as the initial test

cleavage after complete synthesis65. In the cases where oxidation
was observed after cleavage, cocktail B was applied66,67. For 5
µmol of resin, 2mL of cleavage cocktail was prepared. The total
volume was increased by 1.5-fold for peptides containing more
than eight arginine residues. The dry resin was loaded into 2mL
reactors with a plunger and the frit was treated with the corre-
sponding mixture and shaken for 2.5 h and filtered off. The resin
was washed with 1mL of TFA and the filtrates were combined.
The TFA content of the filtrate was reduced via a gentle nitrogen
flow.Next, ice-cold diethyl ether (DEE) (1.00mLofDEE for 100μL
cocktail) was added to precipitate the final peptide. The
precipitated peptide was centrifuged (8000 rpm, 4 °C, 5min),
the supernatant was discarded and the pellet washed once more;
i.e. redissolved, and precipitated with cold DEE. Afterward, the
peptide pellet was dissolved in ultrapure water/MeCN (70:30)
with 0.1% of TFA (more MeCN was added when insoluble, not
exceeding 1:1) to be purified.

– Purification: The peptides were purified by reverse-phase (RP)-
HPLC using a preparative Agilent 1260 Infinity II Series HPLC-
system (Agilent Technologies) with column 1 (Supplementary
Table 16). An isocratic regime during the first five minutes for
column equilibration, followed by the respectively stated linear
gradient in 25min (gradient is specified at the respective
peptide). The detection was carried out bymeasuring absorption
at the wavelengths: 220 nm and 260 nm. Ultrapure water (A) and
MeCN (B) were employed as eluents with an addition of 0.1% of
TFA in both solvents.

– Characterization: The freeze-dried products were identified via
analytical HPLC-MS on an Agilent 1260 Infinity II Series HPLC-
system (Agilent Technologies) using column 2 (Supplementary
Table 16). Thedetectionwas carriedout bymeasuring absorption
at the wavelengths: 220 nm and 260 nm. Ultrapure water (A) with
an addition of 0.05% of TFA and MeCN (B) addition of 0.03% of
TFA were employed as eluents. HR-ESI-MS was performed for
identification on an LTQ-FT Ultra device (Thermo Fischer
Scientific). HPLC chromatogram of purified peptides are pro-
vided in Supplementary Figs. 8–34.

Data collection/analysis tools
Bacterial growth data, PI fluorescence, and absorbance values were
collected on Tecan Infinite 200 Pro plate reader with Magellan™
standard software. Outer membrane vesicles were collected using
NanoAnalyzer (NanoFCM Co., Ltd, Nottingham, UK) with NanoFCM
software (NF Profession V1.08). Images were collected using with a
Zeiss AxioPlan 2 upright widefield microscope with MetaMorph ver-
sion 6.2r6 software. Datawas analyzedusing Python 3 scripts,MSExcel
2021, GraphPad Prism v9 and FiJi version 1.54 f.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data that are necessary to interpret, verify and extend the research in
the article, have beenmade available to readers. The training data used
in this study along with the sequence of 500 tested AMPs, data
underlying Supplementary Figs. 4 and 5 generated in this study can be
found at https://github.com/amirpandi/Deep_AMP. Sequence of the
30 functional AMPs and source data underlying Fig. 4a generated in
this study areprovided in Supplementary Information (Supplementary
Tables 5 and 10, respectively). The source data underlying Fig. 2b,
Fig. 5a-d, Supplementary Fig. 1, Supplementary Fig. 2, and Supple-
mentary Fig. 7 generated in this study are provided as Source Data
files. Source data are provided with this paper.
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Code availability
All deep learningmodelswere built, trained, and tested using Keras 1.0
with TensorFlow2.0 backendusing Python 3.9 in theGoogle Colab pro
environment. The deep learning codes and models developed in this
study can be found at https://github.com/amirpandi/Deep_AMP. MD
simulation setups can be found at https://doi.org/10.5281/zenodo.
7327525.
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