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Numerical-relativity surrogate models for both black-hole merger waveforms and remnants have
emerged as important tools in gravitational-wave astronomy. While producing very accurate
predictions, their applicability is limited to the region of the parameter space where numerical-
relativity simulations are available and computationally feasible. Notably, this excludes extreme
mass ratios. We present a machine-learning approach to extend the validity of existing and future
numerical-relativity surrogate models toward the test-particle limit, targeting in particular the
mass and spin of post-merger black-hole remnants. Our model is trained on both numerical-
relativity simulations at comparable masses and analytical predictions at extreme mass ratios. We
extend the gaussian-process-regression model NRSur7dq4Remnant, validate its performance via cross
validation, and test its accuracy against additional numerical-relativity runs. Our fit, which we dub
NRSur7dq4EmriRemnant, reaches an accuracy that is comparable to or higher than that of existing
remnant models while providing robust predictions for arbitrary mass ratios.

I. INTRODUCTION

Accurate modeling of merging black-hole (BH) binaries
is crucial to both understanding the two-body problem in
General Relativity (GR) and characterizing gravitational-
wave (GW) observations. Numerical relativity (NR) simu-
lations [1] are, at present, the most accurate approach to
capture the dynamics of merging BHs as well as the emit-
ted gravitational signal. Despite the great computational
cost of NR, several groups are compiling extensive cata-
logs of simulations with ever-increasing parameter-space
coverage [2–4].

NR simulations are a crucial ingredient to calibrate ap-
proximate and fast-to-evaluate emulators for data analysis
and astrophysical modeling (for reviews see Refs. [5–9]).
Among these, surrogate models are assuming a prominent
role. Compared to other approaches, surrogates interpo-
late the underlying NR simulations in a purely data-driven
fashion without ansatzes based on post-Newtonian (PN)
and BH-perturbation theory. NR surrogates for both
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waveforms [10–14] and post-merger remnants [11, 12, 15–
19] are now widely available and routinely used in GW
astronomy.

While generically more accurate than other approxi-
mants, the main limitation of surrogate models is their
applicability regime, which is largely restricted to the
region of the parameter space used for training. Notably,
the cost of NR simulations increases for BH binaries with
unequal masses, ultimately becoming prohibitive as one
approaches the extreme mass-ratio inspiral (EMRI) limit.
At present, NR surrogate models for both waveforms and
remnants extrapolate rather poorly in this regime.

NRSur7dq4Remnant [11] is the state-of-the-art surro-
gate model for the mass, spin, and recoil velocity (or
kick) of the post-merger remnant. The training set is
composed of 1528 NR simulations from the Simulating
eXtreme Spacetimes (SXS) catalog [3] which are interpo-
lated with Gaussian Process Regression (GPR) [20]. The
model covers the 7-dimensional parameter space spanned
by quasicircular binaries: the mass ratio q = m1/m2 (here
defined to be ≥ 1 for consistency with previous work), and
the dimensionless spins of the two BHs χ1,2 (where labels
1 and 2 refer to the heavier and lighter BH, respectively),
thus including spin precession. The model predicts rem-
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nant mass mf/M (where M = m1+m2 is the total mass),
spin vector χf , and recoil vector vf . The training dataset
is restricted to binaries with q ≤ 4 and χ1,2 ≤ 0.8. While
numerical extrapolation to the high-spin limit and up to
mass ratios q = 6 return reasonable results [11], a naive
extension of the model toward the EMRI limit fails dra-
matically. For q ≫ 4, NRSur7dq4Remnant often returns
predictions that are wildly unphysical, such as remnant
masses that are greater than the total mass of the binary
and/or spins that exceed the Kerr limit.

In this paper, we develop a procedure to consistently
extend NR surrogate models for the remnant mass and
remnant spin vector to the extreme mass-ratio region. We
make use of analytical limits for the energy and angular
momentum carried away by GWs to generate suitable
training data in addition to the NR simulations used in
NRSur7dq4Remnant. We identify the optimal set of tun-
ing parameters using cross-validation and compare our
predictions against an additional test set of NR simula-
tions. Our fits, which we dub NRSur7dq4EmriRemnant,
are as accurate as the existing ones in the nominal NR
training region while extending their validity to extreme
mass ratios with similar residuals.

This paper is organized as follows. In Sec. II we write
down the EMRI limit for mf and χf . In Sec. III we
presents training and validation of our augmented model.
In Sec. IV we test our results against additional NR simu-
lations. In Sec. V we investigate the computational costs
of our extended models. In Sec. VI draw our conclusions.
We use geometric unit where c = G = 1.

II. THE EXTREME-MASS-RATIO LIMIT

Our procedure relies on analytical expressions for the
mass and spin of the post-merger BH as a function of the
binary parameters that are valid in the EMRI limit.

A. Remnant mass

The remnant mass is equal to the difference between
the binary total mass and the energy radiated in GWs.
We assume that the secondary BH inspirals adiabatically
till the innermost stable circular orbit (ISCO) and neglect
energy dissipation from the subsequent plunge onward.
This is appropriate because, even though the energy loss
rate might be large, the transition from ISCO to merger
happens in a short time [21].

In this approximation, the final mass is given by (e.g.
Ref. [22])

mf

M
= 1− 1

q

[
1− EISCO(χ1 cos θ1)

]
+O

(
1

q2

)
, (1)

where θ1 = arccos χ̂1 · L̂ISCO is the angle between the
spin of the primary and the orbital angular momentum

at the ISCO. The separation and energy at the ISCO in
units of m1 and m2, respectively, are [23]

EISCO(χ) =

√
1− 2

3 rISCO(χ)
, (2)

rISCO(χ) = 3 + Z2 − sgn(χ)
√

(3− Z1)(3 + Z1 + 2Z2) ,
(3)

Z1 = 1 + (1− χ2)1/3
[
(1− χ)1/3 + (1 + χ)1/3

]
, (4)

Z2 =
√
3χ2 + 2Z2

1 . (5)

The additional terms of O(1/q2) in Eq. (1) account for
the modification of the ISCO due to the non-zero mass
of the secondary BH [24, 25] as well as deviations from
the adiabatic inspiral near plunge [26].

The expression above is equivalent1 to that of Barausse
et al. [22] to first order in 1/q. Those authors then aug-
ment the EMRI ansatz with coefficients that are calibrated
on the NR simulations available at the time. They also
include information on the spin of the secondary by in-
serting a suitable weighted combinations of the two spins
into the expression for the ISCO energy. In the interest
of avoiding uncontrolled systematics from a different NR
dataset, here we implement the simple expression from
Eq. (1).

B. Remnant spin

We model the spin of the remnant as the sum of the two
BH spins and orbital angular momentum at the ISCO:

m2
fχf = m2

1χ1 +m2
2χ2 +m1m2LISCO , (6)

thus neglecting once more the contribution to the GW
flux from the plunge onward. Taylor expanding Eq. (6)
to first order in 1/q yields

χf = χ1 +
1

q

[
LISCO(χ1 cos θ1)

− 2χ1EISCO(χ1 cos θ1)
]
+O

(
1

q2

)
, (7)

where [23]

LISCO(χ) =
2

3
√
3

[
1 + 2

√
3rISCO(χ)− 2

]
. (8)

is the orbital angular momentum at the ISCO in units of
m1m2.

This expression agrees with that presented by Hofmann
et al. [27] (see also Ref. [28]) as long as terms of O(1/q2)
are neglected. Much like the mass case described above,
we opt for a cleaner ansatz that only contains information
on the test-particle limit without further assumption on
the role of the secondary spin and/or calibrated coeffi-
cients.

1 Note that Refs. [22, 27] adopt a convention where q ≤ 1 while
here we use q ≥ 1 for compatibility with Ref. [11].
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III. MODEL TRAINING

Our machine-learning model is trained on a joint dataset
made of NR simulations covering the comparable-mass
regime and analytical predictions in the EMRI limit. We
wish to provide a representation of the mapping between
the 7-dimensional space (q,χ1,χ2) and the 4-dimensional
space (mf ,χf).

A. Constructing the training dataset

The NR training set is made of the same 1528 SXS
simulations used in Ref. [11]; see therein for details and
further references.

For the EMRI datapoints, we consider nEMRI binaries
with mass ratios distributed between qmin and qmax. We
distribute spin magnitudes χ1,2 uniformly in [0, 1], polar
angles (measured from the orbital angular momentum)
θ1,2 uniformly in [0, π], and azimuthal angles (measured
in the orbital plane) ϕ1,2 uniformly in [0, 2π]. We sample
θ1,2 uniformly (and not uniformly in cosine) in order to
increase accuracy for aligned spins; this is a configuration
that is astrophysically relevant and is also overrepresented
in the test set, cf. Sec IV. We sample the mass ratio from
a log-uniform distribution, which is the same input passed
to the GPR algorithm [11]. Note that the EMRI training
set includes values of the spin of the secondary, even
though this is ignored at O(1/q), cf. Secs. II

All input quantities in NRSur7dq4Remnant are speci-
fied at a time t = −100M before merger [11] in a frame
where the z-axis is along the orbital angular momen-
tum, the x-axis is along the line of separation from the
less to the more massive BH, and the y-axis completes
the right-handed triad. We refer to this frame as the
“wave frame” at t = −100M and note it is defined us-
ing the waveform at future null infinity [11]. The choice
of t = −100M is well suited for modeling the merger
remnant for comparable-mass binaries, as this time falls
within 2− 4 GW cycles before the peak GW amplitude
for comparable-mass binaries [29]. We use this same ref-
erence frame for the NR binaries of the training set for
the new model NRSur7dq4EmriRemnant.

For the additional EMRI inputs, we instead use the
wave frame at the ISCO. Defining t = −100M before peak-
strain amplitude is challenging for EMRIs as it would
require a detailed spin-evolution procedure which is valid
in this regime. On the other hand, the ISCO naturally
indicates a point near merger where conservation laws can
be applied (Sec. II), which implies the resulting datapoints
can be (at least approximately) put together with the
NR dataset at t = −100M . In practice this means that
when evaluating the EMRI limits of mf and χf we are
neglecting the evolution of the angular momenta between
t = −100M and the ISCO for our EMRI data, which is a
reasonable assumption [30].

The quantities returned by our model would then also
be defined in the wave frame at t = −100M in the NR

regime and in the wave frame at ISCO in the EMRI
regime, with a transition between the two frames in the
intermediate regimes. This is reasonable for this work as
the remnant mass and spin are relatively insensitive to
small changes in the spins near merger. A more careful
approach may be necessary to model the remnant kick,
which instead highly depends on the spin directions before
merger [15].

B. Fit optimization

Training is performed using GPR [20]. We use the same
kernel choices and parameter settings of Refs. [11, 16],
which appear to work well also in this case.

When estimating the final mass, we enforce the physical
constraint mf/M ≤ 1 by appropriately transforming the
input data. In particular, we fit for arctanh(mf/M), thus
mapping the interval [0, 1) to [0,∞). When evaluating
the trained model, we then reverse the operation (tanh:
[0,∞) → [0, 1)), which ensures that the remnant mass is
properly limited. Furthermore, we empirically find that
this choice enhances the overall performance of the model
because it simplifies the fitting process: the function tanh
resembles the expected behavior of mf/M as a function
of q, so the training data become closer to linear in that
dimension.

As for the remnant spin, we use the GPR strategy
of Ref. [11] which requires the cartesian components of
χf and fits them separately. In the following, we report
results in terms of magnitude χf , polar angle θf measured
from the pre-merger binary orbital angular momentum
and azimuthal angle ϕf measured in the pre-merger orbital
plane. For simplicity, we focus on the first two of these
quantities because they are more relevant for astrophysical
applications.

For extremely large mass ratios q ≫ qmax, the GPR
error on χf becomes comparable to the residual, which
implies we are better off assuming the EMRI limit at the
evaluation stage instead of asking GPR to learn it from
the training simulations. We use a squared sinusoidal
transition function to smoothly connect fit outcomes and
the exact EMRI limit. For mass ratios qmax < q < 2qmax

we correct each cartesian component χf,i for i = {x, y, z}
using the affine transformation

χf,i(q)− χfit
f,i(qmax)

χEMRI
f,i (2qmax)− χfit

f,i(qmax)
= sin2

(
π
q − qmax

2qmax

)
, (9)

where superscripts “fit” and “EMRI” indicate GPR and
analytical predictions, respectively. Note we only correct
along the q direction of the fit. This output corrections is
not necessary for the remnant mass because the zero-th
order EMRI limit mf/M → 1 is already imposed by the
tanh transformation described above.
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C. Cross validation and parameter tuning

When adding EMRI training points, we set the lower
end of the mass-ratio interval to qmin = 100. We verified
numerically that at this value of the mass ratio the discrep-
ancy between our first-order relations from Sec. II and the
analytic formulas from Refs. [22, 27] is of the same order
of the 95th percentile residuals in the NRSur7dq4Remnant
model [11], see their Fig. 7. We optimize the number of
EMRI binaries nEMRI and the upper edge of the mass
ratio regime qmax with a grid search. For each of the
13 parameter-space locations shown in the left panels
of Fig. 1, we perform a 20-fold cross validation [31] and
record the 90th percentile of the absolute differences ∆P90

between the true and fitted values of mf/M , χf , and θf .
For this hyperparameters search, the variations on the
final mass are of O(10−5) while those on the final spin
are of O(10−4).

An optimal choice of the hyperparameters requires a
balance between accuracy and computational costs. Con-
sidering the grid search results, the test performance
(Sec. IV), and the computational cost (Sec. V), we set
qmax = 103 and nEMRI = 250, 1250 for the mf and χf

fit, respectively. The corresponding models show high
accuracy in both validation and test with a limited in-
crease of computational evaluation time compared to
NRSur7dq4Remnant. Although some of the alternative
fits from Fig. 1 returns marginally better results (see e.g.
the qmax = 102.5 case for mf), we believe setting the same
mass-ratio interval for both fits (mass and spin) ensures
a smoother procedure in light of future retraining with
more NR simulations, when available. It is also worth
stressing that the difference between these two models
∆P90 ∼ O(10−5) is an order of magnitude smaller than
the test errors, see Sec. IV.

The right panel of Fig. 1 shows the distributions of
the validation residuals for these optimal fits. Consider-
ing the full validation estimates, our extended fits NR-
Sur7dq4EmriRemnant have performances that are compa-
rable to those of NRSur7dq4Remnant from Ref. [11] (see
their Fig. 7) while extending its validity to the extreme-
mass ratio regime. This is made evident by separating
the two subsets of EMRI and NR training data: the NR
data are fitted as accurately as NRSur7dq4Remnant and
validation errors for the EMRI datapoints are smaller by
several orders of magnitude.

IV. MODEL PERFORMANCE

The cross-validation procedure presented above is an
internal consistency check, where the model is tested in
the same mass-ratio region used for training. More ambi-
tiously, we also test our models against an independent
NR dataset. Our test set is made of 1228 NR simulations
from the SXS group. These were recently performed for
building a new waveform approximant [32] and will be re-
leased publicly together with that model. Our test dataset

contains numerous systems with 4 < q < 100 that allows
us to test the behavior of the extended fits in between the
NR and EMRI training regions. We compare the perfor-
mance of our extended model NRSur7dq4EmriRemnant
against those from NRSur7dq4Remnant as published in
Ref. [11] as well as the analytic formulas from Refs. [22, 27]
(hereafter “HBMR”) with nM = 3 and nJ = 4. In the
following, we do not show HBMR predictions for θf be-
cause that quantity is not readily accessible from their
fits as a function of q,χ1, and χ2. NR surrogates have
been extensively tested against other fits used in GW
astronomy [33–35] with similar results, cf. Ref. [16].

A. Test example

An example is shown in Fig. 2, where we illustrate
remnant predictions for a series of BH binaries with
χ1 = [0.50,−0.49,−0.31] and χ2 = [−0.37, 0.37, 0.42]
as a function of the mass ratio. For these spin values, the
test set contains a simulation with q = 7.90.

In the NR training region where q ≤ 4, our new model
NRSur7dq4EmriRemnant is essentially equivalent to the
previous version of NRSur7dq4Remnant. The differences
between the two are of are comparable to or smaller than
the NR residuals (cf. the values reported in Fig. 2 against
those in Fig. 7 from Ref. [11]). At higher mass ratios,
the new fit converges to the imposed EMRI limit with
similar residuals. In contrast, the previous surrogate
model departs significantly from the expected limit, in
some cases even returning widely unphysical predictions
mf > M . The new fit NRSur7dq4EmriRemnant provides
accurate predictions in the intermediate mass ratio region
4 < q < 100 even if we do not have training datapoints.
The remnant properties extracted from the q = 7.90 test
case are within the uncertainties returned by the GPR
algorithm; we report residuals |∆mf | ≃ 6.9 × 10−6M ,
|∆χf | ≃ 1.1× 10−3, and |∆θf | ≃ 8.9× 10−3. The extrapo-
lation at q > 1000 is also well behaved; for the case of the
final spin, the truncation of the residual curve at q > 2000
is a consequence of the regularization procedure described
in Sec. III.

B. Test summary

We now present some summary results using all the
NR simulations from the test set. For convenience, these
are separated into three disjoint sets:

(i) “NR regime” 1 ≤ q ≤ 4 (563 simulations). These are
simulations covering the same parameter space of
NRSur7dq4Remnant which were not used to train
either that model or ours.

(ii) “Near intermediate regime” 4 < q ≤ 8 (623 simula-
tions). At these moderate mass ratio, the parameter
space is reasonably well covered by simulations in
the test set [32].



5

2.5 3.0 3.5 4.0

log10(qmax)

100

250

500

750

1000

1250

1500
n

E
M

R
I

mf/M

2.5

3.0

3.5

4.0

4.5

5.0

∆
P

90
/1

05

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

|mf −mfit
f |/M

0.00

0.02

0.04

0.06

0.08

0.10

2.5 3.0 3.5 4.0

log10(qmax)

100

250

500

750

1000

1250

1500

n
E

M
R

I

χf

−15

−10

−5

∆
P

90
/1

05

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

|χf − χfit
f |

0.00

0.02

0.04

0.06

0.08

NRSur7dq4Remnant

NRSur7dq4EmriRemnant

NR subset

EMRI subset

2.5 3.0 3.5 4.0

log10(qmax)

100

250

500

750

1000

1250

1500

n
E

M
R

I

θf

−20

−10

0

∆
P

90
/1

05

10−9 10−8 10−7 10−6 10−5 10−4 10−3 10−2

|θf − θfit
f |

0.00

0.02

0.04

0.06

0.08

0.10

FIG. 1. Outcome of a 20-fold cross validation on the combined NR and EMRI training dataset. Top, middle, and bottom
panels show results for the final mass mf/M , the final spin magnitude χf , and the polar angle θf . The left panels show the
90th percentile ∆P90 of the validation residuals varying over the number of added EMRI systems nEMRI and the upper bound
of the EMRI training region qmax while keeping the lower bound fixed to qmin = 102. The mass (spin) fit with nEMRI = 250
(nEMRI = 1250) and qmax = 1000 are marked with crosses and selected as optimal, see Sec. III. The right panels show the
full distribution of the validation residuals for these cases. The validation results computed on the full training dataset are
shown in orange; these are then broken down by selecting only the NR (green) and EMRI (red) samples. Residuals from the
NRSur7dq4Remnant model as published in Ref. [11] are shown in blue. Left- (down-) pointing triangles indicate the 90th

percentile (median) of the corresponding distributions.

(iii) “Far intermediate regime” 8 < q ≤ 30 (42 simula-
tions). These NR runs are computationally very
expensive, resulting in limited number of simula-
tions and a sparse coverage of the parameter space.

In particular, many test simulations in this regime
have aligned, non-precessing spins, preventing us
from fully testing the precession sector.

Note that the largest mass ratio in the test set q = 30 is



6

100 101 102 103
0.94

0.96

0.98

1.00

1.02

m
f/
M

HBMR fit

EMRI limit

EMRI training region

NR training region

NRSur7dq4Remnant

NRSur7dq4EmriRemnant

Test simulation

100 101 102 103

q

10−7

10−5

10−3

10−1

|∆
m

f|/
M |NRSur7dq4Remnant - NRSur7dq4EmriRemnant|

|EMRI limit - NRSur7dq4EmriRemnant|

7 8 9

0.990

0.995

100 101 102 103

0.4

0.6

0.8

1.0

χ
f

100 101 102 103

q

10−5

10−4

10−3

10−2

|∆
χ

f|

7 8 9

0.525

0.550

100 101 102 103
0

1

2

3

4

θ f

100 101 102 103

q

10−6
10−5
10−4
10−3
10−2

|∆
θ f
|

7 8 9

1.3

1.4

1.5

FIG. 2. Predictions for the remnant mass mf/M (top panel), spin magnitude χf (middle panel) and spin polar angle θf
(bottom panel). Systems shown in this figure have χ1 = [0.50,−0.49,−0.31], χ2 = [−0.37, 0.37, 0.42] and different values of q.
Orange, blue, and red curves refer to our extended fits NRSur7dq4EmriRemnant, the previously published NRSur7dq4Remnant
model [11], and the HBMR analytic expressions [22, 27], respectively. For the GPR models, solid curves indicate the returned
means and shaded areas indicate 1-σ intervals. Black dotted curves show the EMRI limit from Sec. II. Our model is trained on
binaries with mass ratios in the green (NR) and yellow (EMRI) shaded regions. Purple crosses mark the remnant properties
extracted from a external test simulation that was not used for either training or internal validation. The bottom subpanels of
each panel show residual between our model and NRSur7dq4Remnant at low mass ratios and between our model and the EMRI
limit at large mass ratios.

still relatively far from the lowest mass ratio qmin = 100
covered by our EMRI training data.

Figure 3 shows test residuals for mf/M , χf , and θf in
each of the tree subsets. The test simulations are com-

pared against the new model NRSur7dq4EmriRemnant,
the previous NRSur7dq4Remnant model from Ref. [11],
and the HBMR analytic fits [22, 27]. The qualitative
conclusion is that our fit has the best performances in all
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FIG. 3. Test residuals for the extended surrogate (orange) against the previous version of NRSur7dq4Remnant [11] (blue), and
the HBMR analytic fits [22, 27]. Top, middle, and bottom panels show results for remnant mass mf/M , spin magnitude χf ,
and polar angle θf , respectively. Test simulations are divided into three mass ratio bins: NR (q < 4, left), near intermediate
(4 ≤ q < 8, middle), and far intermediate (8 ≤ q < 30, right). The left- and down-pointing triangles on top show the 90th

percentiles and the median for each of the histograms; the former are also reported in Table I.

three mass ratio regimes. In particular, it is comparable
to the previous NRSur7dq4Remnant model and superior
to HBMR when in the NR regime (1 ≤ q ≤ 4). In the
near intermediate regime (4 < q ≤ 8), our results is mildly
more accurate than both previous fits. As expected, the

previous NRSur7dq4Remnant model behaves poorly in
the far intermediate regime (8 < q ≤ 30) while including
EMRI information as in this paper returns performance
that are similar to, if not better than, those of the analyti-
cal HBMR expressions. Quantitative results are presented
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All 1 ≤ q ≤ 4 4 < q ≤ 8 8 < q ≤ 30

100% 45.8% 50.7% 3.4%

mf/M NRSur7dq4EmriRemnant 6.0× 10−4 2.9× 10−4 6.9× 10−4 9.5× 10−4

NRSur7dq4Remnant 1.4× 10−3 2.7× 10−4 1.5× 10−3 2.3× 10−2

HBMR fit 2.8× 10−3 3.4× 10−3 1.9× 10−3 1.6× 10−3

χf NRSur7dq4EmriRemnant 3.4× 10−3 1.3× 10−3 4.5× 10−3 5.4× 10−3

NRSur7dq4Remnant 9.3× 10−3 1.3× 10−3 1.1× 10−2 5.3× 10−1

HBMR fit 1.7× 10−2 1.8× 10−2 1.7× 10−2 1.8× 10−2

θf NRSur7dq4EmriRemnant 7.3× 10−3 2.0× 10−3 9.8× 10−3 1.2× 10−2

NRSur7dq4Remnant 1.9× 10−2 2.0× 10−3 2.1× 10−2 2.8× 100

TABLE I. 90th percentiles on the test residuals for remnant mass mf/M , spin magnitude χf , and spin polar angle θf computed for
the NRSur7dq4EmriRemnant model presented here, the NRSur7dq4Remnant model from Ref. [11], and the HBMR fits [22, 27].
The column labeled “All” indicates percentiles computed over the entire test set while for the last three columns we consider
subsets of the test simulations in three mass-ratio bins. The second row indicates the fraction of test simulations in each of
these bins.

in Table I, where we report the 90th percentile of our test
residuals for each of the three mass ratio bins and well
considering the entire test set.

V. COMPUTATIONAL COST

The computational cost of fitting a GPR model scales as
O(n3), where n is the size of the training dataset. On the
other hand, evaluating the fit is an O(n2) problem [20].
Compared to NRSur7dq4Remnant from Ref. [11], the
new model NRSur7dq4EmriRemnant requires nEMRI ad-
ditional binaries and thus take longer to evaluate. We
test the performance of the new model by generating 104

binaries from a broad distribution and evaluating the
time needed to compute mf and χf . The execution times
reported below refer to a single thread on an Intel Xeon
Gold 5220R processor.

The previous NRSur7dq4Remnant model requires
∼ 2.5 × 10−3 s to evaluate mf and ∼ 7.4 × 10−3 s to
evaluate χf . The latter is about three times more expen-
sive than the former because the spin is a vector quantity
with three cartesian components while the mass is a single
scalar. Compared to this baseline, our new model NR-
Sur7dq4EmriRemnant increases the computational time
by ∼ 1.2 times for mf and ∼ 2.6 for χf . As expected, this
corresponds to a complexity that is roughly quadratic in
the size of the training set n = nNR + nEMRI when con-
sidering that nNR = 1528 and nEMRI = 250 (1250). The
evaluation time is independent of the mass ratio and spins,
with the exception of the spin fit at q > 2qmax = 2000
where we simply return the EMRI analytical expression.

Overall, this additional computational cost is an ac-
ceptable price to pay given the extended parameter space
covered by the augmented model presented in this paper.
As the number of available NR simulations increases and
better surrogate models are built, the O(n2) complexity

of GPR evaluations will become critical and alternative
regression algorithm will need to be explored.

VI. CONCLUSIONS

We have presented a strategy to augment existing and
future NR surrogate models for the mass and spin of
the post-merger BH remnant, extending their regime of
validity to the test-particle limit. Our approach consists
of adding training data points for binaries with extreme-
mass ratios using analytic expressions valid at O(1/q).

We applied this procedure to the GPR fit NR-
Sur7dq4Remnant [11] which models precessing binary
BHs. We tested our augmentation both internally via a
cross-validation approach (which was also used to select
some model parameters) and externally against a new set
of NR simulations. We report excellent performances:

(i) at comparable masses, our new model behaves like
the previous NRSur7dq4Remnant from Ref. [11]
which, in turn, was shown to be as accurate as the
NR simulations used to train it;

(ii) at extreme mass ratios, our new model reproduces
the test-particle analytic limit with similar residuals;

(iii) in between the two regimes, our new model re-
turns regular and accurate values when compared
against test NR runs, outperforming both NR-
Sur7dq4Remnant and the HBMR fits.

In summary, we are releasing a single data-driven model
able to predict post-merger masses and spins across the en-
tire mass-ratio range, from equal mass binaries to EMRIs.
The one drawback is a moderately higher computational
cost; which we quantified and found to be acceptable
given the extended reliability of the model.



9

Another limitation of our NR+EMRI approach com-
pared to NR-only surrogates is the time dependence of
the spin evolution. NRSur7dq4Remnant allows users to
specify the time to merger (or orbital frequency) where
spins are specified; it then evolves the spins using the
surrogate dynamics to t = −100M where the GPR fits
can be consistently evaluated [11, 16]. In the absence of a
spin-evolution interpolant that captures both comparable
masses and extreme mass ratios, the model presented here
can only provide remnant predictions given pre-merger
quantities specified at the reference time t = −100M
before merger (which we approximate with the ISCO in
the EMRI case, cf. Sec. III). Inputting values (from e.g.
GW posterior distributions) that respect this assumption
is left to the user.

Future work will tackle the modeling of the remnant
kick velocity, which was captured in previous NR-only
surrogates [11, 15, 16]. This is a more challenging task
because BH kicks depend on the orbital phase at plunge.
Building waveform surrogate models spanning the entire
mass ratio range is a considerably more complicated prob-
lem and current attempts are restricted to non-spinning
sources [36, 37].

The model presented in this paper, which we dub NR-
Sur7dq4EmriRemnant, is made publicly available through
the Python module surfinBH [38]. More broadly, the

augmentation procedure is being integrated in the SXS
surrogate codebase and we expect it be valuable for build-
ing future BH-remnant models [32].
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