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Numerical-relativity surrogate models for both black-hole merger waveforms and remnants have emerged
as important tools in gravitational-wave astronomy. While producing very accurate predictions, their
applicability is limited to the region of the parameter space where numerical-relativity simulations are
available and computationally feasible. Notably, this excludes extreme mass ratios. We present a machine-
learning approach to extend the validity of existing and future numerical-relativity surrogate models toward
the test-particle limit, targeting in particular the mass and spin of postmerger black-hole remnants. Our
model is trained on both numerical-relativity simulations at comparable masses and analytical predictions at
extreme mass ratios. We extend the gaussian-process-regression model NRSur7dq4Remnant, validate its
performance via cross validation, and test its accuracy against additional numerical-relativity runs. Our fit,
which we dub NRSur7dq4EmriRemnant, reaches an accuracy that is comparable to or higher than that of
existing remnant models while providing robust predictions for arbitrary mass ratios.

DOI: 10.1103/PhysRevD.108.084015

I. INTRODUCTION

Accurate modeling of merging black-hole (BH) binaries
is crucial to both understanding the two-body problem in
General Relativity (GR) and characterizing gravitational-
wave (GW) observations. Numerical relativity (NR)

simulations [1] are, at present, the most accurate approach
to capture the dynamics of merging BHs as well as the
emitted gravitational signal. Despite the great computa-
tional cost of NR, several groups are compiling extensive
catalogs of simulations with ever-increasing parameter-
space coverage [2–4].
NR simulations are a crucial ingredient to calibrate

approximate and fast-to-evaluate emulators for data analysis
and astrophysical modeling (for reviews see Refs. [5–9]).
Among these, surrogate models are assuming a prominent
role. Compared to other approaches, surrogates interpolate
the underlying NR simulations in a purely data-driven
fashion without ansatzes based on post-Newtonian (PN)
and BH-perturbation theory. NR surrogates for both
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waveforms [10–14] and postmerger remnants [11,12,15–19]
are now widely available and routinely used in GW
astronomy.
While generically more accurate than other approxim-

ants, the main limitation of surrogate models is their
applicability regime, which is largely restricted to the region
of the parameter space used for training. Notably, the cost of
NR simulations increases for BH binaries with unequal
masses, ultimately becoming prohibitive as one approaches
the extreme mass-ratio inspiral (EMRI) limit. At present,
NR surrogate models for both waveforms and remnants
extrapolate rather poorly in this regime.
NRSur7dq4Remnant [11] is the state-of-the-art surro-

gate model for the mass, spin, and recoil velocity (or kick)
of the postmerger remnant. The training set is composed
of 1528 NR simulations from the Simulating eXtreme
Spacetimes (SXS) catalog [3] which are interpolated with
Gaussian Process Regression (GPR) [20]. The model
covers the 7-dimensional parameter space spanned by
quasicircular binaries: the mass ratio q ¼ m1=m2 (here
defined to be ≥ 1 for consistency with previous work), and
the dimensionless spins of the two BHs χ 1;2 (where labels 1
and 2 refer to the heavier and lighter BH, respectively),
thus including spin precession. The model predicts rem-
nant mass mf=M (where M ¼ m1 þm2 is the total mass),
spin vector χ f, and recoil vector vf. The training dataset is
restricted to binaries with q ≤ 4 and χ1;2 ≤ 0.8. While
numerical extrapolation to the high-spin limit and up to
mass ratios q ¼ 6 return reasonable results [11], a naive
extension of the model toward the EMRI limit fails
dramatically. For q ≫ 4, NRSur7dq4Remnant often returns
predictions that are wildly unphysical, such as remnant
masses that are greater than the total mass of the binary
and/or spins that exceed the Kerr limit.
In this paper, we develop a procedure to consistently

extend NR surrogate models for the remnant mass and
remnant spin vector to the extreme mass-ratio region. We
make use of analytical limits for the energy and angular
momentum carried away by GWs to generate suitable
training data in addition to the NR simulations used in
NRSur7dq4Remnant. We identify the optimal set of tuning
parameters using cross-validation and compare our predic-
tions against an additional test set of NR simulations. Our
fits, which we dub NRSur7dq4EmriRemnant, are as accu-
rate as the existing ones in the nominal NR training region
while extending their validity to extreme mass ratios with
similar residuals.
This paper is organized as follows. In Sec. II we write

down the EMRI limit for mf and χ f . In Sec. III we presents
training and validation of our augmented model. In Sec. IV
we test our results against additional NR simulations. In
Sec. V we investigate the computational costs of our
extended models. In Sec. VI draw our conclusions. We
use geometric unit where c ¼ G ¼ 1.

II. THE EXTREME-MASS-RATIO LIMIT

Our procedure relies on analytical expressions for
the mass and spin of the postmerger BH as a function of
the binary parameters that are valid in the EMRI limit.

A. Remnant mass

The remnant mass is equal to the difference between the
binary total mass and the energy radiated in GWs. We
assume that the secondary BH inspirals adiabatically till the
innermost stable circular orbit (ISCO) and neglect energy
dissipation from the subsequent plunge onward. This is
appropriate because, even though the energy loss rate might
be large, the transition from ISCO to merger happens in a
short time [21].
In this approximation, the final mass is given by (e.g.,

Ref. [22])

mf

M
¼ 1 −

1

q
½1 − EISCOðχ1 cos θ1Þ� þO

�
1

q2

�
; ð1Þ

where θ1 ¼ arccos χ̂ 1 · L̂ISCO is the angle between the spin
of the primary and the orbital angular momentum at the
ISCO. The separation and energy at the ISCO in units ofm1

and m2, respectively, are [23]

EISCOðχÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

2

3rISCOðχÞ

s
; ð2Þ

rISCOðχÞ¼ 3þZ2− sgnðχÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3−Z1Þð3þZ1þ2Z2Þ

p
; ð3Þ

Z1 ¼ 1þ ð1 − χ2Þ1=3½ð1 − χÞ1=3 þ ð1þ χÞ1=3�; ð4Þ

Z2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3χ2 þ 2Z2

1

q
: ð5Þ

The additional terms of Oð1=q2Þ in Eq. (1) account for the
modification of the ISCO due to the nonzero mass of
the secondary BH [24,25] as well as deviations from the
adiabatic inspiral near plunge [26].
The expression above is equivalent1 to that of Barausse

et al. [22] to first order in 1=q. Those authors then augment
the EMRI ansatz with coefficients that are calibrated on the
NR simulations available at the time. They also include
information on the spin of the secondary by inserting a
suitable weighted combinations of the two spins into the
expression for the ISCO energy. In the interest of avoiding
uncontrolled systematics from a different NR dataset, here
we implement the simple expression from Eq. (1).

1Note that Refs. [22,27] adopt a convention where q ≤ 1while
here we use q ≥ 1 for compatibility with Ref. [11].
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B. Remnant spin

We model the spin of the remnant as the sum of the two
BH spins and orbital angular momentum at the ISCO:

m2
f χ f ¼ m2

1χ 1 þm2
2χ 2 þm1m2LISCO; ð6Þ

thus neglecting once more the contribution to the GW flux
from the plunge onward. Taylor expanding Eq. (6) to first
order in 1=q yields

χ f ¼ χ 1 þ
1

q
½LISCOðχ1 cos θ1Þ

− 2χ 1EISCOðχ1 cos θ1Þ� þO

�
1

q2

�
; ð7Þ

where [23]

LISCOðχÞ ¼
2

3
ffiffiffi
3

p
h
1þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3rISCOðχÞ − 2

p i
: ð8Þ

is the orbital angular momentum at the ISCO in units
of m1m2.
This expression agrees with that presented by Hofmann

et al. [27] (see also Ref. [28]) as long as terms of Oð1=q2Þ
are neglected. Much like the mass case described above, we
opt for a cleaner ansatz that only contains information on
the test-particle limit without further assumption on the role
of the secondary spin and/or calibrated coefficients.

III. MODEL TRAINING

Our machine-learning model is trained on a joint dataset
made of NR simulations covering the comparable-mass
regime and analytical predictions in the EMRI limit. We
wish to provide a representation of the mapping between
the 7-dimensional space ðq; χ 1; χ 2Þ and the 4-dimensional
space ðmf ; χ fÞ.

A. Constructing the training dataset

The NR training set is made of the same 1528 SXS
simulations used in Ref. [11]; see therein for details and
further references.
For the EMRI datapoints, we consider nEMRI binaries with

mass ratios distributed between qmin and qmax. We distribute
spin magnitudes χ1;2 uniformly in [0, 1], polar angles
(measured from the orbital angular momentum) θ1;2 uni-
formly in ½0; π�, and azimuthal angles (measured in the
orbital plane) ϕ1;2 uniformly in ½0; 2π�. We sample θ1;2
uniformly (and not uniformly in cosine) in order to increase
accuracy for aligned spins; this is a configuration that is
astrophysically relevant and is also overrepresented in the
test set, cf. Sec IV. We sample the mass ratio from a log-
uniform distribution, which is the same input passed to the
GPR algorithm [11]. Note that the EMRI training set

includes values of the spin of the secondary, even though
this is ignored at Oð1=qÞ, cf. Sec. II.
All input quantities in NRSur7dq4Remnant are specified

at a time t ¼ −100M before merger [11] in a frame where
the z-axis is along the orbital angular momentum, the x-axis
is along the line of separation from the less to the more
massive BH, and the y-axis completes the right-handed
triad. We refer to this frame as the “wave frame” at
t ¼ −100M and note it is defined using the waveform at
future null infinity [11]. The choice of t ¼ −100M is well
suited for modeling the merger remnant for comparable-
mass binaries, as this time falls within 2–4 GW cycles
before the peak GW amplitude for comparable-mass
binaries [29]. We use this same reference frame for the
NR binaries of the training set for the new model
NRSur7dq4EmriRemnant.
For the additional EMRI inputs, we instead use the wave

frame at the ISCO. Defining t ¼ −100M before peak-strain
amplitude is challenging for EMRIs as it would require a
detailed spin-evolution procedure which is valid in this
regime. On the other hand, the ISCO naturally indicates a
point near merger where conservation laws can be applied
(Sec. II), which implies the resulting datapoints can be (at
least approximately) put together with the NR dataset at
t ¼ −100M. In practice this means that when evaluating
the EMRI limits of mf and χ f we are neglecting the
evolution of the angular momenta between t ¼ −100M
and the ISCO for our EMRI data, which is a reasonable
assumption [30].
The quantities returned by our model would then also

be defined in the wave frame at t ¼ −100M in the NR
regime and in the wave frame at ISCO in the EMRI
regime, with a transition between the two frames in the
intermediate regimes. This is reasonable for this work as
the remnant mass and spin are relatively insensitive to
small changes in the spins near merger. A more careful
approach may be necessary to model the remnant kick,
which instead highly depends on the spin directions
before merger [15].

B. Fit optimization

Training is performed using GPR [20]. We use the same
kernel choices and parameter settings of Refs. [11,16],
which appear to work well also in this case.
When estimating the final mass, we enforce the physical

constraint mf=M ≤ 1 by appropriately transforming the
input data. In particular, we fit for arctanhðmf=MÞ, thus
mapping the interval [0, 1) to ½0;∞Þ. When evaluating
the trained model, we then reverse the operation
½tanh ∶ ½0;∞Þ → ½0; 1Þ�, which ensures that the remnant
mass is properly limited. Furthermore, we empirically
find that this choice enhances the overall performance of
the model because it simplifies the fitting process: the
function tanh resembles the expected behavior ofmf=M as
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a function of q, so the training data become closer to linear
in that dimension.
As for the remnant spin, we use the GPR strategy of

Ref. [11] which requires the cartesian components of χ f
and fits them separately. In the following, we report results
in terms of magnitude χf , polar angle θf measured from
the pre-merger binary orbital angular momentum and
azimuthal angle ϕf measured in the premerger orbital
plane. For simplicity, we focus on the first two of these
quantities because they are more relevant for astrophysical
applications.
For extremely large mass ratios q ≫ qmax, the GPR error

on χf becomes comparable to the residual, which implies
we are better off assuming the EMRI limit at the evaluation
stage instead of asking GPR to learn it from the training
simulations. We use a squared sinusoidal transition func-
tion to smoothly connect fit outcomes and the exact EMRI
limit. For mass ratios qmax < q < 2qmax we correct each
cartesian component χf;i for i ¼ fx; y; zg using the affine
transformation

χf;iðqÞ − χfitf;iðqmaxÞ
χEMRI
f;i ð2qmaxÞ − χfitf;iðqmaxÞ

¼ sin2
�
π
q − qmax

2qmax

�
; ð9Þ

where superscripts “fit” and “EMRI” indicate GPR and
analytical predictions, respectively. Note we only correct
along the q direction of the fit. This output corrections is
not necessary for the remnant mass because the zeroth
order EMRI limit mf=M → 1 is already imposed by the
tanh transformation described above.

C. Cross validation and parameter tuning

When adding EMRI training points, we set the lower end
of the mass-ratio interval to qmin ¼ 100. We verified
numerically that at this value of the mass ratio the discrep-
ancy between our first-order relations from Sec. II and the
analytic formulas from Refs. [22,27] is of the same order of
the 95th percentile residuals in the NRSur7dq4Remnant
model [11], see their Fig. 7. We optimize the number
of EMRI binaries nEMRI and the upper edge of the mass
ratio regime qmax with a grid search. For each of the 13
parameter-space locations shown in the left panels of Fig. 1,
we perform a 20-fold cross validation [31] and record
the 90th percentile of the absolute differences ΔP90

between the true and fitted values of mf=M, χf , and θf .
For this hyperparameters search, the variations on the final
mass are of Oð10−5Þ while those on the final spin are
of Oð10−4Þ.
An optimal choice of the hyperparameters requires a

balance between accuracy and computational costs. Con-
sidering the grid search results, the test performance
(Sec. IV), and the computational cost (Sec. V), we set
qmax ¼ 103 and nEMRI ¼ 250, 1250 for the mf and χ f fit,
respectively. The corresponding models show high accuracy

in both validation and test with a limited increase of
computational evaluation time compared to NRSur7dq4-
Remnant. Although some of the alternative fits from Fig. 1
returns marginally better results (see, e.g., the qmax ¼ 102.5

case for mf ), we believe setting the same mass-ratio interval
for both fits (mass and spin) ensures a smoother procedure
in light of future retraining with more NR simulations,
when available. It is also worth stressing that the difference
between these two models ΔP90 ∼Oð10−5Þ is an order of
magnitude smaller than the test errors, see Sec. IV.
The right panel of Fig. 1 shows the distributions of the

validation residuals for these optimal fits. Considering the
full validation estimates, our extended fits NRSur7dq4Emri-
Remnant have performances that are comparable to those of
NRSur7dq4Remnant from Ref. [11] (see their Fig. 7) while
extending its validity to the extreme-mass ratio regime.
This is made evident by separating the two subsets of
EMRI and NR training data: the NR data are fitted as
accurately as NRSur7dq4Remnant and validation errors for
the EMRI datapoints are smaller by several orders of
magnitude.

IV. MODEL PERFORMANCE

The cross-validation procedure presented above is an
internal consistency check, where the model is tested in the
same mass-ratio region used for training. More ambitiously,
we also test our models against an independent NR dataset.
Our test set is made of 1228 NR simulations from the SXS
group. These were recently performed for building a new
waveform approximant [32] and will be released publicly
together with that model. Our test dataset contains numer-
ous systems with 4 < q < 100 that allows us to test the
behavior of the extended fits in between the NR and EMRI
training regions. We compare the performance of our
extended model NRSur7dq4EmriRemnant against those
from NRSur7dq4Remnant as published in Ref. [11] as
well as the analytic formulas from Refs. [22,27] (hereafter
“HBMR”) with nM ¼ 3 and nJ ¼ 4. In the following, we do
not show HBMR predictions for θf because that quantity is
not readily accessible from their fits as a function of q; χ 1,
and χ 2. NR surrogates have been extensively tested against
other fits used in GW astronomy [33–35] with similar
results, cf. Ref. [16].

A. Test example

An example is shown in Fig. 2, where we illustrate
remnant predictions for a series of BH binaries with χ 1 ¼
½0.50;−0.49;−0.31� and χ 2 ¼ ½−0.37; 0.37; 0.42� as a
function of the mass ratio. For these spin values, the test
set contains a simulation with q ¼ 7.90.
In the NR training region where q ≤ 4, our new model

NRSur7dq4EmriRemnant is essentially equivalent to the
previous version of NRSur7dq4Remnant. The differences
between the two are of are comparable to or smaller than
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the NR residuals (cf. the values reported in Fig. 2 against
those in Fig. 7 from Ref. [11]). At higher mass ratios, the
new fit converges to the imposed EMRI limit with similar
residuals. In contrast, the previous surrogate model departs

significantly from the expected limit, in some cases even
returning widely unphysical predictions mf > M. The new
fit NRSur7dq4EmriRemnant provides accurate predictions
in the intermediate mass ratio region 4 < q < 100 even if

FIG. 1. Outcome of a 20-fold cross validation on the combined NR and EMRI training dataset. Top, middle, and bottom panels show
results for the final mass mf=M, the final spin magnitude χf , and the polar angle θf . The left panels show the 90th percentile ΔP90 of the
validation residuals varying over the number of added EMRI systems nEMRI and the upper bound of the EMRI training region qmax while
keeping the lower bound fixed to qmin ¼ 102. The mass (spin) fit with nEMRI ¼ 250 (nEMRI ¼ 1250) and qmax ¼ 1000 are marked with
crosses and selected as optimal, see Sec. III. The right panels show the full distribution of the validation residuals for these cases. The
validation results computed on the full training dataset are shown in orange; these are then broken down by selecting only the NR (green)
and EMRI (red) samples. Residuals from the NRSur7dq4Remnant model as published in Ref. [11] are shown in blue. Left- (down-)
pointing triangles indicate the 90th percentile (median) of the corresponding distributions.
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FIG. 2. Predictions for the remnant mass mf=M (top panel), spin magnitude χf (middle panel) and spin polar angle θf (bottom panel).
Systems shown in this figure have χ 1 ¼ ½0.50;−0.49;−0.31�, χ 2 ¼ ½−0.37; 0.37; 0.42� and different values of q. Orange, blue, and red
curves refer to our extended fits NRSur7dq4EmriRemnant, the previously published NRSur7dq4Remnant model [11], and the HBMR
analytic expressions [22,27], respectively. For the GPR models, solid curves indicate the returned means and shaded areas indicate 1-σ
intervals. Black dotted curves show the EMRI limit from Sec. II. Our model is trained on binaries with mass ratios in the green (NR) and
yellow (EMRI) shaded regions. Purple crosses mark the remnant properties extracted from a external test simulation that was not used
for either training or internal validation. The bottom subpanels of each panel show residual between our model and NRSur7dq4Remnant
at low mass ratios and between our model and the EMRI limit at large mass ratios.
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we do not have training datapoints. The remnant properties
extracted from the q ¼ 7.90 test case are within the
uncertainties returned by the GPR algorithm; we report
residuals jΔmf j ≃ 6.9 × 10−6M, jΔχf j ≃ 1.1 × 10−3, and

jΔθf j ≃ 8.9 × 10−3. The extrapolation at q > 1000 is also
well behaved; for the case of the final spin, the truncation of
the residual curve at q > 2000 is a consequence of the
regularization procedure described in Sec. III.

FIG. 3. Test residuals for the extended surrogate (orange) against the previous version of NRSur7dq4Remnant [11] (blue), and the
HBMR analytic fits [22,27]. Top, middle, and bottom panels show results for remnant mass mf=M, spin magnitude χf , and polar angle
θf , respectively. Test simulations are divided into three mass ratio bins: NR (q < 4, left), near intermediate (4 ≤ q < 8, middle), and far
intermediate (8 ≤ q < 30, right). The left- and down-pointing triangles on top show the 90th percentiles and the median for each of the
histograms; the former are also reported in Table I.
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B. Test summary

We now present some summary results using all the NR
simulations from the test set. For convenience, these are
separated into three disjoint sets:

(i) “NR regime” 1 ≤ q ≤ 4 (563 simulations). These
are simulations covering the same parameter space
of NRSur7dq4Remnant which were not used to train
either that model or ours.

(ii) “Near intermediate regime” 4 < q ≤ 8 (623 simu-
lations). At these moderate mass ratio, the parameter
space is reasonably well covered by simulations in
the test set [32].

(iii) “Far intermediate regime” 8 < q ≤ 30 (42 simula-
tions). These NR runs are computationally very
expensive, resulting in limited number of simula-
tions and a sparse coverage of the parameter space.
In particular, many test simulations in this regime
have aligned, nonprecessing spins, preventing us
from fully testing the precession sector.

Note that the largest mass ratio in the test set q ¼ 30 is still
relatively far from the lowest mass ratio qmin ¼ 100
covered by our EMRI training data.
Figure 3 shows test residuals for mf=M, χf , and θf in

each of the tree subsets. The test simulations are compared
against the new model NRSur7dq4EmriRemnant, the
previous NRSur7dq4Remnant model from Ref. [11],
and the HBMR analytic fits [22,27]. The qualitative
conclusion is that our fit has the best performances in
all three mass ratio regimes. In particular, it is comparable
to the previous NRSur7dq4Remnant model and superior to
HBMR when in the NR regime (1 ≤ q ≤ 4). In the near
intermediate regime (4 < q ≤ 8), our results is mildly
more accurate than both previous fits. As expected, the
previous NRSur7dq4Remnant model behaves poorly in
the far intermediate regime (8 < q ≤ 30) while including
EMRI information as in this paper returns performance

that are similar to, if not better than, those of the analytical
HBMR expressions. Quantitative results are presented in
Table I, where we report the 90th percentile of our test
residuals for each of the three mass ratio bins and well
considering the entire test set.

V. COMPUTATIONAL COST

The computational cost of fitting a GPR model scales as
Oðn3Þ, where n is the size of the training dataset. On the
other hand, evaluating the fit is an Oðn2Þ problem [20].
Compared to NRSur7dq4Remnant from Ref. [11], the new
model NRSur7dq4EmriRemnant requires nEMRI additional
binaries and thus take longer to evaluate. We test the
performance of the new model by generating 104 binaries
from a broad distribution and evaluating the time needed to
compute mf and χ f . The execution times reported below
refer to a single thread on an Intel Xeon Gold 5220R
processor.
The previous NRSur7dq4Remnant model requires

∼2.5 × 10−3 s to evaluate mf and ∼7.4 × 10−3 s to evaluate
χ f . The latter is about three times more expensive than the
former because the spin is a vector quantity with three
cartesian components while the mass is a single scalar.
Compared to this baseline, our newmodel NRSur7dq4Emri-
Remnant increases the computational time by∼1.2 times for
mf and ∼2.6 for χ f. As expected, this corresponds to a
complexity that is roughly quadratic in the size of the
training set n ¼ nNR þ nEMRI when considering that nNR ¼
1528 and nEMRI ¼ 250 (1250). The evaluation time is
independent of the mass ratio and spins, with the exception
of the spin fit at q > 2qmax ¼ 2000 where we simply return
the EMRI analytical expression.
Overall, this additional computational cost is an accept-

able price to pay given the extended parameter space
covered by the augmented model presented in this paper.

TABLE I. 90th percentiles on the test residuals for remnant massmf=M, spin magnitude χf , and spin polar angle θf
computed for the NRSur7dq4EmriRemnant model presented here, the NRSur7dq4Remnant model from Ref. [11],
and the HBMR fits [22,27]. The column labeled “All” indicates percentiles computed over the entire test set while
for the last three columns we consider subsets of the test simulations in three mass-ratio bins. The second row
indicates the fraction of test simulations in each of these bins.

All 1 ≤ q ≤ 4 4 < q ≤ 8 8 < q ≤ 30

100% 45.8% 50.7% 3.4%

mf=M NRSur7dq4EmriRemnant 6.0 × 10−4 2.9 × 10−4 6.9 × 10−4 9.5 × 10−4

NRSur7dq4Remnant 1.4 × 10−3 2.7 × 10−4 1.5 × 10−3 2.3 × 10−2

HBMR fit 2.8 × 10−3 3.4 × 10−3 1.9 × 10−3 1.6 × 10−3

χf NRSur7dq4EmriRemnant 3.4 × 10−3 1.3 × 10−3 4.5 × 10−3 5.4 × 10−3

NRSur7dq4Remnant 9.3 × 10−3 1.3 × 10−3 1.1 × 10−2 5.3 × 10−1

HBMR fit 1.7 × 10−2 1.8 × 10−2 1.7 × 10−2 1.8 × 10−2

θf NRSur7dq4EmriRemnant 7.3 × 10−3 2.0 × 10−3 9.8 × 10−3 1.2 × 10−2

NRSur7dq4Remnant 1.9 × 10−2 2.0 × 10−3 2.1 × 10−2 2.8 × 100
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As the number of available NR simulations increases and
better surrogate models are built, the Oðn2Þ complexity of
GPR evaluations will become critical and alternative
regression algorithm will need to be explored.

VI. CONCLUSIONS

We have presented a strategy to augment existing and
future NR surrogate models for the mass and spin of the
postmerger BH remnant, extending their regime of validity
to the test-particle limit. Our approach consists of adding
training data points for binaries with extreme-mass ratios
using analytic expressions valid at Oð1=qÞ.
We applied this procedure to the GPR fit NRSur7dq4-

Remnant [11] which models precessing binary BHs. We
tested our augmentation both internally via a cross-
validation approach (which was also used to select some
model parameters) and externally against a new set of NR
simulations. We report excellent performances:

(i) at comparable masses, our new model behaves like
the previous NRSur7dq4Remnant from Ref. [11]
which, in turn, was shown to be as accurate as the
NR simulations used to train it;

(ii) at extreme mass ratios, our new model reproduces
the test-particle analytic limit with similar resid-
uals; and

(iii) in between the two regimes, our new model returns
regular and accurate values when compared against
test NR runs, outperforming both NRSur7dq4Remn-
ant and the HBMR fits.

In summary, we are releasing a single data-driven model
able to predict postmerger masses and spins across the
entire mass-ratio range, from equal mass binaries to
EMRIs. The one drawback is a moderately higher computa-
tional cost; which we quantified and found to be acceptable
given the extended reliability of the model.
Another limitation of our NRþ EMRI approach com-

pared to NR-only surrogates is the time dependence of the
spin evolution. NRSur7dq4Remnant allows users to
specify the time to merger (or orbital frequency) where
spins are specified; it then evolves the spins using the
surrogate dynamics to t ¼ −100M where the GPR fits can
be consistently evaluated [11,16]. In the absence of a spin-
evolution interpolant that captures both comparable masses

and extreme mass ratios, the model presented here can only
provide remnant predictions given premerger quantities
specified at the reference time t ¼ −100M before merger
(which we approximate with the ISCO in the EMRI case,
cf. Sec. III). Inputting values (from e.g. GW posterior
distributions) that respect this assumption is left to the user.
Future work will tackle the modeling of the remnant

kick velocity, which was captured in previous NR-only
surrogates [11,15,16]. This is a more challenging task
because BH kicks depend on the orbital phase at plunge.
Building waveform surrogate models spanning the entire
mass ratio range is a considerably more complicated
problem and current attempts are restricted to nonspinning
sources [36,37].
The model presented in this paper, which we dub

NRSur7dq4EmriRemnant, is made publicly available
through the Python module surfinBH [38]. More broadly,
the augmentation procedure is being integrated in the SXS
surrogate codebase and we expect it be valuable for
building future BH-remnant models [32].
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