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Abstract
The discovery of prions has challenged dogmas and has revolutionized our under-
standing of protein-misfolding diseases. The concept of self-propagation via protein 
conformational changes, originally discovered for the prion protein (PrP), also applies 
to other proteins that exhibit similar behavior, such as alpha-synuclein (aSyn), a cen-
tral player in Parkinson's disease and in other synucleinopathies. aSyn pathology ap-
pears to spread from one cell to another during disease progression, and involves the 
misfolding and aggregation of aSyn. How the transfer of aSyn between cells occurs is 
still being studied, but one important hypothesis involves receptor-mediated trans-
port. Interestingly, recent studies indicate that the cellular prion protein (PrPC) may 
play a crucial role in this process. PrPC has been shown to act as a receptor/sensor for 
protein aggregates in different neurodegenerative disorders, including Alzheimer's 
disease and amyotrophic lateral sclerosis. Here, we provide a comprehensive over-
view of the current state of knowledge regarding the interaction between aSyn and 
PrPC and discuss its role in synucleinopathies. We examine the properties of PrP and 
aSyn, including their structure, function, and aggregation. Additionally, we discuss 
the current understanding of PrPC's role as a receptor/sensor for aSyn aggregates 
and identify remaining unanswered questions in this area of research. Ultimately, 
we posit that exploring the interaction between aSyn and PrPC may offer potential 
treatment options for synucleinopathies.
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1  |  INTRODUC TION

1.1  |  Prions and the expansion of the prion concept

The term “prion” refers to a protein responsible for causing various 
neurodegenerative diseases known as transmissible spongiform en-
cephalopathies (TSEs), such as Creutzfeldt-Jakob in humans and mad 
cow disease in bovine cattle. Stanley Prusiner first coined the term in 
1982, and the discovery of prions challenged the prevailing scientific 
understanding of infectious diseases, which had previously held that 
viruses, bacteria, or fungi were the only agents to cause infections 
(Prusiner, 1982).

Named after scrapie, the TSE affecting sheep, the infectious form 
of the prion protein (PrPSc) was hypothesized to be derived from a 
normal cellular protein called PrPC. In 1986, researchers discovered 
the gene encoding the PrPC protein. The gene was named PRNP and 
was found to be highly conserved across species (Basler et al., 1986). 
Over the years, it was also discovered that PrPC was involved in 
various cellular processes, including cell adhesion, signal transduc-
tion, and neuroprotection (Legname,  2017; Wulf et al.,  2017), but 
the functions of PrPC are still not fully understood. Different mouse 
strains in which the PrP gene is ablated were generated to try to 
reveal its functions, but the phenotypes observed are still contro-
versial (Marín-Moreno et al., 2020; Steele et al., 2007).

The capacity of PrPSc to act as an infectious agent depends on 
the presence of PrPC, which gets converted into the PrPSc form 
(Prusiner et al., 1990). This self-propagating ability is connected to a 
change in protein conformation that leads to the formation of aggre-
gates that act as a template that induces the conversion of normal 
cellular proteins into the misfolded conformation. This concept was 
later extended to several other proteins related to non-infectious 
diseases, such as other neurodegenerative diseases and cancer 
(Eraña et al., 2017; Scialò et al., 2019; Silva et al., 2013). For this, the 
terms “prionoid” or “prion-like” have been introduced and are now 
used for proteins that present a replicative cycle based on confor-
mational remodeling. Since these other diseases seem to lack the 
infectious nature of TSEs, it is important to consider the use of terms 
that distinguish them to avoid confusion in the general public.

Identifying the prion-like behavior of proteins other than PrP 
suggests that the mechanisms of protein misfolding and aggregation 
that underlie prion diseases may be more widespread than previ-
ously thought. This also suggests that understanding the molecular 
underpinnings of protein aggregation and conversion may lead to 
the development of therapeutic strategies that may be more gen-
erally applicable (or adaptable) for slowing or halting the progres-
sion of various devastating disorders for which we still lack effective 
therapies.

1.2  |  PrP structure, function, and aggregation

PrPC is a glycoprotein found on the surface of cells in various or-
gans and tissues, including the central nervous system (CNS) and 
peripheral nervous system (Bendheim et al., 1992). PrPC is anchored 
to the cell membrane through glycosylphosphatidylinositol, primar-
ily in lipid rafts. After it reaches the extracellular membrane, PrPC 
can travel back to the cell interior for either recycling or degrada-
tion, through clathrin-dependent and caveolin pathways (Peters 
et al., 2003; Shyng et al., 1994).

PrPC is composed of two structural domains: a flexible N-
terminal domain and a globular C-terminal domain (Figure 1a; Donne 
et al.,  1997; Riek et al.,  1997). The N-terminal domain spans from 
amino acids 23 to 124 and consists of several distinct regions. These 
include two positively charged clusters known as CC1 and CC2, an 
octarepeat region (most mammalian PrP proteins contain five or 
six repeats of a peptide with 8 or 9 amino acid residues with the 
sequence P(Q/H)GGG(G/−)WGQ), and a hydrophobic domain (Fig-
ure 1a; Donne et al., 1997; Riek et al., 1997). The C-terminal domain 
consists of three α-helices and two antiparallel β-sheets, spanning 
from amino acids 125 to 230. It also has a disulfide bridge connect-
ing cysteine 179 and cysteine 214. In addition, oligosaccharides can 
attach to asparagine 181 and asparagine 197 residues, resulting in 
mono-glycosylation or di-glycosylation (Haraguchi et al., 1989).

Interestingly, PrP mutations linked to familial forms of prion 
diseases are mostly located in the C-terminal domain, where they 
increase the propensity of the protein to aggregate (Eghiaian 
et al., 2004; Wopfner et al., 1999).

As stated earlier, the physiological functions of PrPC are still 
elusive, but it seems to play a role in regulating sleep, as evidenced 
by studies in PrP−/− ZrchI mice which display disrupted circadian 
rhythms and more fragmented sleep (Tobler et al.,  1996). Con-
sistently, the interaction of PrPC with monoaminergic receptors 
was considered essential for modulating melatonin synthesis and 
depressive-like behavior (Roguski & Gill, 2017). Another study, using 
a transgenic mouse model expressing the mouse homolog of the PrP 
variant linked to familial Creutzfeldt-Jakob disease (CJD; D178N/
V129), reported anomalies in sleep and in electroencephalogram 
recordings, together with functional impairments in memory and 
motor abilities (Dossena et al.,  2008). Sleep deprivation is associ-
ated with decreased levels of both PrPC and mGluR1, and with an in-
crease in the levels of Aβ peptides, suggesting that lack of sleep may 
have a detrimental impact on neuronal plasticity (da Luz et al., 2020). 
These data suggest that PrPC interacts with various receptors and 
molecules that modulate sleep, mood, memory, and neuronal plas-
ticity and that alterations in PrPC expression or function may lead to 
sleep disturbances and cognitive impairments.
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    |  3VIEIRA et al.

Additional research has demonstrated that PrPC plays a signifi-
cant role in supporting neuronal growth during developmental stages 
and in adult neurogenesis (Brown et al., 1997; Dupiereux et al., 2008; 
Kim et al., 2004; Nuvolone et al., 2013; Rangel et al., 2009; Steele 
et al., 2006; Weise et al., 2004). In fact, the neuroprotective func-
tion of PrPC was connected to its interaction with copper ions and 
N-methyl-D-aspartate receptors (NMDAR), regulating NMDAR 

nitrosylation and activity by reducing the influx of calcium ions into 
neurons (Gasperini et al., 2015; Stys et al., 2012). Strikingly, calcium 
ion dysregulation is a critical factor in various neurodegenerative 
processes, so the regulation of this process by PrPC can be seen as 
neuroprotective (Zündorf & Reiser, 2011).

The binding of PrPC to neural cell adhesion molecule (NCAM) 
promotes cell adhesion, particularly in neurons, contributing to the 

F I G U R E  1  Amino acid sequence, domains, and structure of cellular prion protein (PrPC) and alpha-synuclein (aSyn). (a) The mature 
PrPC at the cell surface has a sequence of 209 amino acids (UNIPROT code P04156 depicted) divided into N- and C-terminal domains. 
The unstructured N-terminal domain has charged and hydrophobic amino acid clusters and an octapeptide repeat region (underlined) that 
interacts with different molecules. The globular C-terminal domain comprises three α-helices and a small antiparallel β-sheet. (b) aSyn 
(UNIPROT code P37840 depicted) is an intrinsically disordered protein composed of 140 amino acids, and its structure is divided into three 
domains: the N-terminal, non-amyloid component (NAC), and C-terminal domain. The N-terminal region is positively charged and gains an 
α-helix coiled structure after interaction with lipid membranes. This α-helix coiled structure extends to the NAC domain. The NAC domain 
is highly hydrophobic and involved in fiber formation, and the C-terminal is negatively charged and shows a random coil structure. Created 
with BioRender.com.
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4  |    VIEIRA et al.

establishment and maintenance of neuronal networks (Santuccione 
et al., 2005; Schmitt-Ulms et al., 2001; Slapšak et al., 2016). NCAM 
is a transmembrane glycoprotein involved in cell adhesion and signal 
transduction in the nervous system, playing a crucial role in neural 
development, synaptic plasticity, and neuronal migration (Ditlevsen 
et al., 2008). The interaction with PrPC enhances NCAM-mediated 
signaling pathways, including activating intracellular kinases such as 
Fyn, which are important regulators of synaptic plasticity (Santucci-
one et al., 2005).

The interaction between PrP and its various partners is not only 
crucial for its many physiological functions but also it plays a role 
in the development of prion diseases. In prion diseases, PrP is con-
verted from the normal cellular form (PrPC) into the misfolded, aggre-
gated form PrPSc, which can then propagate and spread throughout 
the body. This conversion is thought to occur through a templating 
mechanism, in which PrPSc acts as a template that induces the mis-
folding of PrPC (Bueler et al., 1993).

Alongside with the templating mechanism, the pathogenicity 
of PrP is influenced by its interaction with other partners, such as 
nucleic acids, lipids, and polysaccharides, all of which can enhance 
its propagation and spread (Alves Conceição et al.,  2022; Silva 
et al., 2022; Supattapone, 2014).

Thus, the ability of PrP to interact with multiple partners consti-
tutes a “double-edged sword.” While these interactions are import-
ant for its normal physiological functions, they can also contribute 
to its pathogenic role in prion diseases. A greater understanding of 
these interactions is necessary to enable the development of thera-
peutic strategies for treating these devastating diseases.

1.3  |  PrPC: A troublesome receptor at the 
cell surface

Recent studies have revealed that PrPC may act as a receptor/sen-
sor for different protein aggregates, modulating different neuro-
pathologies both in terms of neuronal toxicity and transmission of 
pathogenic aggregates to adjacent regions (Resenberger et al., 2011; 
Scialò & Legname, 2020). This discovery has important implications 
for understanding the development of neurodegenerative disorders 
and provides novel possibilities for treatment.

The interaction between PrPC and amyloid-β (Aβ) peptides, 
which are central to the pathology of Alzheimer's disease (AD), is an 
example of how PrPC may act as a troublesome receptor. Although 
PrPC is not the only receptor for Aβ at the cell surface (Benilova 
et al., 2012; De Strooper & Karran, 2016), the interaction between 
PrPC and Aβ enhances the toxicity of Aβ, exacerbating neuronal 
damage and promoting the formation of amyloid plaques. This inter-
action appears oligomeric-specific and occurs via the CC region of 
PrPC (amino acids 23–27 and 94–110; Freir et al., 2011). The mech-
anism of toxicity seems to involve Fyn kinase, a member of the Src 
family of kinases (SFKs), that has been associated with diverse func-
tions in the CNS including myelination and synaptic transmission. 
Dysfunction of Fyn kinase is associated with neurodegenerative 

diseases (Guglietti et al., 2021). Fyn kinase phosphorylates NMDAR, 
increasing calcium influx, and initiating long-term potentiation (LTP; 
Trepanier et al.,  2012). However, sustained NMDAR phosphoryla-
tion leads to excitotoxicity (Um et al., 2012). The Aβ oligomer-PrPC 
interaction leads to phosphorylation of the Fyn kinase via the me-
tabotropic glutamate receptor 5 (mGluR5) and subsequent phos-
phorylation of the NMDAR2B, leading to synaptic dysfunction in 
the hippocampus, LTP deficits, and destabilization of the dendritic 
spines. This phosphorylation cascade has also been associated with 
increased hyperphosphorylated Tau levels, affecting the progression 
of AD (Salazar & Strittmatter, 2017; Um et al., 2012).

Recent research revealed that AD brains contain different types 
and levels of PrPC isoforms (reviewed in Zhang et al., 2019). This pro-
file changes with the progression and severity of the disease, provid-
ing a potential tool for diagnosing and evaluating AD. Additionally, 
PrPC has been detected in amyloid plaques in AD (Schwarze-Eicker 
et al., 2005; Takahashi et al., 2011).

The function of PrPC in AD is still unclear, but reduced PrPC 
expression in the hippocampus is linked to aging and an increased 
risk of AD, suggesting a protective role in pathology (Whitehouse 
et al., 2010). Some studies focused on measuring PrPC levels in dif-
ferent AD Braak stages and found that the levels increase in the 
initial stages of the pathology but decrease in later stages, leading 
to neuronal death (Vergara et al., 2015). Differences in glycosylated 
forms of PrPC have also been reported (Saijo et al., 2011). Neverthe-
less, other studies found no significant differences in PrPC expres-
sion between healthy individuals and those with AD (Abu Rumeileh 
et al., 2017; Dohler et al., 2014).

PrPC was shown to also interact with Tau aggregates and pro-
mote their internalization, thereby facilitating the propagation of 
tau pathology (Corbett et al., 2020; De Cecco et al., 2020). Likewise, 
PrPC was shown to interact with TDP-43, a protein that affects neu-
rons in amyotrophic lateral sclerosis and in frontotemporal lobar 
degeneration, increasing the uptake of TDP-43 fibrils and modulat-
ing toxicity (Scialò et al., 2021). PrPC has also been implicated in the 
pathogenesis of Parkinson's disease (PD) as it was shown to interact 
with alpha-synuclein (aSyn), a major component of Lewy body inclu-
sions in the brains of PD patients, leading to increased cellular toxic-
ity and the spread of pathological aggregates (Ferreira et al., 2017).

The interaction between PrPC and various protein aggregates 
or with aggregation-prone proteins adds a layer of complexity to 
prion disease pathogenesis and may influence the amplification and 
spread of prion pathology.

1.4  |  a-Synuclein structure, function, and 
aggregation

aSyn is an intracellular 140 amino acid protein abundantly expressed 
in neurons (Murphy et al., 2000). In its soluble state, aSyn is an in-
trinsically disordered protein, but it can acquire structured segments 
when bound to membranes (Eliezer et al., 2001; Park et al., 2002). 
This structural flexibility may explain its multiple interacting 
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partners and the variety of functions it has been associated with 
(Brás et al., 2020).

aSyn can be divided in three distinct domains according to its 
primary sequence: (i) the N-terminal domain (1–60) contains a multi-
repeated imperfect consensus hexameric sequence (KTKEGV) that 
make it amphipathic and positively charged, adopting alpha-helical 
conformation when interacting with membranes (Burré et al., 2010; 
Davidson et al., 1998; Jo et al., 2000); (ii) the Non-Amyloid Compo-
nent Domain (61–95) is a central hydrophobic region, essential for 
aSyn aggregation, and contains additional KTKEGV repeats; (iii) the 
C-terminal domain (96–140) contains a stretch of negatively charged 
residues enabling the protein to interact with various small molecules 
and proteins such as vesicle-associated membrane protein 2 and Syn-
aptobrevin-2, two regulators of synaptic exocytosis and endocytosis, 
respectively (Figure 1b; Burré et al., 2010; Sun et al., 2019).

Experiments using aSyn knock-out (KO)/knock-down, or over-
expression have been conducted to gain insight into its physi-
ological function. Most notably, aSyn plays a regulatory role in 
neurotransmitter release, synaptic function, and plasticity (Abelio-
vich et al., 2000; Brás et al., 2020; Burré, 2015; Burré et al., 2010; 
Domingues et al., 2022; Marques & Outeiro, 2012). However, aSyn 
can also be detected in the nucleus, where it is assumed to be in-
volved in transcriptional regulation and regulation of histone acetyl-
ation (Goers et al., 2003; Kontopoulos et al., 2006; Koss et al., 2022; 
Pinho et al., 2019). In the presence of lipid vesicles, aSyn is found 
in a folded, membrane-bound state (Liu et al., 2021), where the N-
terminal region connects with the central region, maintaining the 
C-terminal unstructured (Jao et al., 2008; Runfola et al., 2020).

aSyn-KO mice do not display major phenotypes or abnormalities 
but, upon closer examination, alterations in synaptic vesicle modifi-
cations, decreased striatal dopamine and neurotransmission acceler-
ation, and inhibition of the soluble N-ethylmaleimide-sensitive factor 
attachment protein receptors (SNARE) complex assembly have been 
observed (Burré et al., 2010; Butler et al., 2017). In addition, neurons 
depleted of aSyn have impaired synaptic vesicle mobilization (Cabin 
et al.,  2002), and reduced synaptic vesicle pool reserves (Murphy 
et al., 2000).

On the other hand, overexpression of aSyn in mice and in 
primary neurons decreases vesicle release and recycling after 
endocytosis, leading to mislocalization of SNARE proteins and se-
questration of aSyn aggregates on SNARE proteins, such as synap-
tobrevin-2 causing a blockade on vesicle docking (Choi et al., 2013; 
Garcia-Reitböck et al., 2010; Nemani et al., 2010). An excess of aSyn 
also reduces dopamine reuptake, via dopamine active transporter, 
and dopamine production via tyrosine hydroxylase, causing impair-
ment in neurotransmitter transport (Hansen et al.,  2013; Masliah 
et al., 2000). In animal models, overexpression of aSyn results in re-
distribution of synaptic vesicles to locations further from the active 
zone and, in hippocampal neurons, it can induce the loss of synaptic 
proteins and enlarged vacant vesicles, leading to abnormalities in 
vesicle priming, fusion, and docking (Janezic et al., 2013).

aSyn aggregation into insoluble structures known as Lewy bod-
ies and Lewy neurites is a pathognomonic pathological hallmark 

of PD. While the role of aSyn aggregates is still controversial, the 
prevailing theory is that some types of aSyn-containing aggregates 
might be neurotoxic, contributing to neuronal dysfunction and, 
eventually, death.

Synucleinopathies are a group of neurodegenerative diseases 
characterized by the progressive accumulation of aSyn-containing 
protein aggregates in different cells of the nervous tissue, such 
as neuronal and glial cells. Synucleinopathies include PD, multiple 
system atrophy, and dementia with Lewy bodies (Brás et al., 2020). 
Recent studies using cryo-electron microscopy suggest that the 
arrangement of aSyn in fibrillar material extracted from brain tis-
sue from individuals who had a synucleinopathy may be different 
(Guerrero-Ferreira et al., 2018, 2019; Li, Ge, et al., 2018; Li, Zhao, 
et al. 2018), but additional studies on this topic are still necessary.

During the early stages of fibrillization, aSyn undergoes par-
tial folding into a pre-molten globule-like conformation (Uver-
sky et al.,  2001). The precise molecular factors involved in this 
conformational change are still unclear, but likely include protein 
concentration imbalances, mutations, posttranslational modifica-
tions (PTMs), and environmental factors such as changes in pH, 
salt concentration, inflammation, or the presence of chemical fac-
tors such as polyamines (Antony et al., 2003; Fujiwara et al., 2019; 
Guzzo et al., 2021; Manzanza et al., 2021; Sandal et al., 2008; Wu 
et al.,  2009). The oligomerization process likely begins with the 
formation of dimers, followed by the formation of soluble and 
non-fibrillar oligomeric species with different morphologies, such 
as annular, chain-like, or spherical structures. Upon reaching a 
critical concentration, some of these oligomers may convert into 
protofilaments, protofibrils, and other high-molecular-weight spe-
cies that can be amorphous or amyloid-like aggregates (Figure 2; 
Hijaz & Volpicelli-Daley, 2020).

Under certain conditions, spherical oligomers may convert into 
ring-like structures, which can permeabilize membranes in in vitro 
studies, by forming pore-like structures that affect membrane po-
tential and ion distribution (Kim et al., 2009; Lashuel et al., 2002). 
However, such pore-forming structures have never been observed in 
biological systems (cells or brain tissue). Current evidence suggests 
that aSyn oligomers and protofibrils, rather than larger insoluble ag-
gregates, may be the most cytotoxic species (Cascella et al., 2021; 
Outeiro et al., 2008; Tanaka et al., 2004; Winner et al., 2011). Con-
sistently, several studies aimed at stabilizing aSyn oligomers report 
increased cytotoxicity (Fusco et al., 2017; Ingelsson, 2016), but this 
is also a matter of intense debate in the field.

1.5  |  Synucleinopathies as prion-like diseases

The analogy between prion diseases and synucleinopathies is mainly 
because of the apparent spreading of protein pathology from cell to 
cell, region to region, and even organ to organ (Holmqvist et al., 2014). 
Braak et al. (2003) hypothesized that the topography of synucleinopa-
thies is related to the severity of the clinical symptoms, and that dis-
ease progression could be separated into distinct stages. In PD, the 
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first stage is characterized by olfactory deficits, constipation, and 
sleep disturbances, which reflect the involvement of the olfactory 
bulb, enteric system, and caudal brainstem, respectively. In the subse-
quent stages, motor symptoms may correspond to a time when aSyn 
pathology has reached the substantia nigra. At the final stages, the 
pathology reaches the neocortex, resulting in psychiatric symptoms 
and cognitive decline (Braak et al., 2003; Fullard et al., 2017).

The exact mechanisms underlying the transfer of aSyn aggre-
gates are still being actively investigated. These aggregates can 
then be released and taken up by neighboring cells through var-
ious processes that include, but are not necessarily limited to, di-
rect diffusion of aSyn through the cellular membrane, endoplasmic 
reticulum-Golgi-dependent exocytosis, aSyn secretion in extracellu-
lar vesicles, tunneling nanotubes, or receptor-mediated endocytosis 
(Figure 3; Danzer et al., 2012; Emmanouilidou et al., 2010).

Once internalized by recipient cells, aSyn aggregates may induce the 
misfolding and aggregation of intracellular aSyn, thus perpetuating the 
cycle of aggregate formation (Masuda-Suzukake et al., 2013; Paumier 
et al., 2015). Experiments using aSyn KO mice showed that endogenous 
aSyn is essential for the spreading of pathology, a process that does not 
require aSyn toxicity (Dening et al., 2022). Consequently, transmitting 
aSyn aggregates between cells may contribute to the progression of 
neurodegeneration observed in PD and related disorders.

Interestingly, experiments using proteinase K aimed at decreas-
ing the abundance of cell surface proteins have revealed a correla-
tion between reduced levels of aSyn internalization and protease 
treatment, suggesting cell surface proteins contribute to the spread-
ing of pathology (Lee et al., 2008).

One of these cell-surface proteins is lymphocyte-activation gene 
3 (LAG3), an immunoglobulin family member expressed in neurons, 
microglia, and immune cells (Anderson et al., 2016; Liu et al., 2018). 
LAG3 can bind to recombinantly produced mouse aSyn pre-formed 
fibrils (PFFs) via its D1 domain, colocalizing with multiple Rab proteins 
and endosomal GTPases implicated in the internalization of extracel-
lular aSyn (Mao et al., 2016; Figure 4a). However, the involvement of 
LAG3 in the spreading of aSyn pathology is controversial, as some 

studies presented conflicting findings regarding the levels of expres-
sion of LAG-3, which seem to be negligible in both mouse and human 
neurons (Emmenegger et al., 2021). Nevertheless, while it remains 
possible that an interaction between certain aSyn aggregated spe-
cies and LAG-3 may occur in disease settings, this does not appear to 
be the only relevant receptor to be considered.

The Na+/K+-ATPase (NKA) is a membrane protein that utilizes 
ATP to import two potassium ions and export three sodium ions. 
NKA is composed of three subunits, and the α3 subunit is linked 
to several neurodegenerative diseases (Geering,  2008; Ohnishi 
et al.,  2015; Petrushanko et al.,  2016; Ruegsegger et al.,  2016; 
Shrivastava et al., 2015), and plays a crucial role in diverse cellular 
processes, including neuronal activity (Clausen et al., 2017). The 
α3 subunit interacts with Aβ, superoxide dismutase 1, and aSyn, 
and is hypothesized to regulate the endocytosis of these proteins 
into neuronal cells (Ohnishi et al., 2015; Ruegsegger et al., 2016; 
Shrivastava et al., 2015). This interaction leads to the entrapment 
of α3-NKA within clusters of aSyn, resulting in a decline in the 
efficiency of sodium export following an action potential and dys-
regulation of the neuronal refractory period (Figure 4b). α3-NKA 
was identified, along with neurexin 1α and 2α, using proteomic 
analyses, highlighting its potential involvement in synapse func-
tion (Shrivastava et al., 2015).

1.6  |  Interactions between aSyn and PrP

PrP and aSyn have been found to interact and influence each other's 
behavior (De Cecco & Legname, 2018). In particular, PrPC has been 
shown to regulate the internalization of aSyn and to act as a media-
tor of neuronal damage caused by aSyn oligomers (Aulić et al., 2017; 
Corbett et al., 2020; Ferreira et al., 2017). Interestingly, PrPSc infec-
tion increases aSyn phosphorylation at serine 129, a PTM consid-
ered a marker of LB pathology (Chen et al., 2021).

Soluble aSyn aggregates were suggested to interact with PrP at 
the cell surface (Figure 5a), and this was connected to toxicity and to 

F I G U R E  2  Schematic representation of alpha-synuclein (aSyn) in Lewy body formation. Monomeric aSyn undergoes structural changes 
that increase the probability of forming dimers, oligomers, and other aggregated species. Once formed, these aggregated species can further 
form amyloid fibers that are the major component of Lewy bodies. Created with BioRender.com.
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impairment of synaptic plasticity (Corbett et al., 2020), but the role 
of PrPC in the pathology of PD, remains uncertain.

Based on existing literature, the interaction between PrP and 
aSyn is likely dependent on the type of aSyn species (monomeric, 
oligomeric, fibrillar, etc.).

Using solid-phase assays, fibrillar and monomeric aSyn showed 
no or weak affinity to full-length PrPC (PrP 23–231; Corbett 
et al., 2020). In contrast, soluble aSyn aggregates are bound with 
high affinity to PrP 23–231 (in the nanomolar range; Corbett 
et al., 2020). However, it is important to recognize that these dif-
ferences may also be as a result of the nature of the assay, since 
aggregated proteins tend to be “sticky,” exhibiting a greater pro-
pensity to adhere and display binding in assays performed on solid 
surfaces when compared to soluble species (Corbett et al., 2020). 
While a study using surface plasmon resonance reported no inter-
action between PrPC and aSyn oligomers (La Vitola et al.,  2019), 
another demonstrated the interaction between full-length PrP and 
aSyn oligomers and monomers, although with higher affinity for 
oligomers (Thom et al., 2021).

In these solid-phase assays, the interaction with soluble aSyn ag-
gregates occurred mainly through the N-terminus of PrP since the 
affinity was 8-times weaker with PrP 91–231, and no binding was de-
tected with PrP 119–231 (Corbett et al., 2020). These data suggest 
that the binding site of these aSyn species resides mainly between 
residues 23 and 90 of PrP. However, using a more physiological assay, 
we have previously reported that PrPC residues from 93 to 109 are 
involved in the interaction of aSyn oligomeric species with PrP in rat 
hippocampal brain slices, as we could block the effects of aSyn using 
the PrP antibody 6D11 (targeting the epitope region 93–109 of PrPC; 
Ferreira et al., 2017).

It was also shown that monomeric aSyn and PrP interact in vitro, 
leading to the formation of liquid droplets that are highly dynamic, 
thermo-responsive, and reversible through the interaction of the N-
terminal region of PrPC with the C-terminal region of aSyn. In addi-
tion, aSyn-PrP condensates appear more prone to transitioning to a 
solid fibrillar state (Agarwal et al., 2022).

The controversy in the findings described here suggests that dif-
ferences in the experimental systems need to be further dissected, 

F I G U R E  3  Possible mechanisms of alpha-synuclein (aSyn) spread between cells. aSyn transmission between two cells is hypothesized 
to occur through several mechanisms. (1) Receptor-mediated endocytosis may transport aSyn aggregates into the cell. Other possible 
mechanisms include (2) Golgi-mediated exocytosis and (3 and 4) extracellular vesicles, exosomes, and ectosomes that can fuse with the 
membrane of another cell. Aggregates can be internalized into neighboring cells (5) by passive diffusion and (6) move through tunneling 
nanotubes. Created with BioRender.com.
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by conducting systematic studies using different methods and dif-
ferent aSyn species.

1.7  |  The role of PrP on aSyn toxicity

As reported for Aβ oligomers, the connection between PrPC and 
NMDAR can be unbalanced by aSyn aggregates. The interaction of 

PrPC with oligomeric aSyn leads to Fyn kinase-mediated phosphoryl-
ation of mGluR5, activating the NMDAR2B and, ultimately, leading 
to an increase in intracellular calcium that causes synaptic dysfunc-
tion, including LTP impairment (Figure 5c; Ferreira et al., 2017). In 
addition, this interaction has been hypothesized to promote the for-
mation of cofilin/actin rods by rearranging the cytoskeleton and af-
fecting actin dynamics, blocking axonal transport (Brás et al., 2018; 
Silva et al., 2021).

F I G U R E  4  Lymphocyte-activation gene 3 (Lag3) and Na+/K+-ATPase (NKA) are involved in the internalization of alpha-synuclein (aSyn) 
preformed fibers (PFF). (a) Lag3 can directly interact with aSyn PFF, promoting their internalization across the cell membrane. Rab5 and Rab7 
participate in this process. The absence of Lag3, or the use of Lag3 antibodies, attenuates the propagation of aSyn PFF. (b) The presence of 
aSyn aggregates impairs NKA function by interacting with the extracellular segments of α3-NKA. Another possibility is that the interaction 
of aSyn PFF with AMPK may contribute to the translocation of AMPK to the cell membrane and promote interaction with NKA. Thus, NKA 
function may also be impaired by the formation of the NKA/AMPK/PFF complex. Created with BioRender.com.

F I G U R E  5  Cellular prion protein (PrPC)-mediated internalization of alpha-synuclein (aSyn). (a) (1) The interaction between PrPC and 
aggregated aSyn may contribute to toxicity and impairment of synaptic plasticity. (2) Heparan sulfate proteoglycans (HSPG) are involved with 
internalizing aSyn and PrPSc aggregates. One hypothesis is that the presence of PrPC in HSPG-rich regions is involved with the internalization 
of aSyn fibrils. (3) The internalization of PrP-aSyn aggregates must take place via clathrin-mediated endocytosis. (b) Although PrPC is not 
exclusive for spreading aSyn aggregates, its overexpression increases fibril spreading in mouse and cell models. (c) One mechanism for PrPC-
mediated cytotoxicity is the activation of NMDAR2B receptors. Interaction of PrPC with oligomeric aSyn promotes the formation of PrPC–
mGluR5–Fyn cluster, activating NMDAR2B and promoting changes in intracellular calcium homeostasis. Dysregulation of calcium levels in 
cells is critical for neurodegeneration and cell death. Created with BioRender.com.
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    |  9VIEIRA et al.

As mentioned earlier, PrPC is a known partner of NKAs, thereby 
promoting ion uptake (Williams et al., 2021). Consistently, NKA in-
hibition by cardiac glycosides reduces both NKA and PrPC levels 

(Mehrabian et al.,  2022) suggesting the interdependence of these 
molecules. Since interfering with NKA activity can lead to calcium 
signaling dysregulation and, ultimately, to neuronal death (Kinoshita 
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et al.,  2022), it is possible that the interaction between aSyn and 
PrPC may disturb the interaction of NKAs with PrPC, thereby ex-
acerbating aSyn toxicity. Thus, we consider that modulating these 
interactions should be further investigated as a possible strategy for 
therapeutic intervention.

Nevertheless, contrasting results were also reported, question-
ing the importance of PrPC for aSyn toxicity. In this case, primary 
hippocampal neurons from PrP WT or from PrP KO mice (PrP−/− 
ZrchI) were shown to be equally susceptible to aSyn oligomers, as 
both mice had equal memory impairment and neuroinflammatory 
responses, suggesting that aSyn toxicity was independent of PrPC 
(La Vitola et al., 2019). However, it is not possible to rule out that 
the role of PrPC as a receptor/sensor for aSyn may vary depending 
on the type of aSyn species, the brain region, and other as-of-yet 
unidentified factors.

1.8  |  The role of PrP on the spreading of 
aSyn pathology

The precise mechanism(s) involved in the spreading of aSyn pathology 
is/are still elusive. aSyn can transfer between cells via passive and ac-
tive mechanisms. Endocytic pathways are responsible for the internali-
zation of most aSyn, especially aggregated aSyn (Neupane et al., 2023). 
The receptor-mediated internalization through PrPC is an active mech-
anism and is clathrin-mediated (Thom et al., 2021; Figure 5a).

PrPC interacts with heparan sulfate proteoglycans (HSPG), an-
other co-receptor for various protein aggregates at the cell surface, 
and HSPG facilitates PrPSc propagation (Vieira & Silva, 2016). Since 
HSPG is essential for mediating the internalization of aSyn fibrils via 
a lipid-raft-dependent route (Hudák et al.,  2019), the presence of 
PrPC in HSPG-rich regions may facilitate aSyn internalization (Fig-
ure 5a). However, the extent to which the interaction between these 
partners can mediate and modulate aSyn internalization still needs 
further investigation.

While deletion of PRNP in mice (PrP−/− ZrchI) does block the 
spreading of aSyn, overexpression of PrPC (Tga20) enhances the 
spreading of aSyn pathology in a model using stereotactic injections 
of aSyn PFFs (Urrea et al., 2018; Figure 5a, b).

In primary cortical neurons (from WT and PrP−/− ZrchI mice) 
and in SH-SY5Y cells (WT and overexpressing PrPC using the pCI-
neoPRNP vector), the PrPC was found to increase the uptake of 
aSyn monomers and oligomers without triggering cytotoxicity. 
Nevertheless, the same study showed that PrPC plays a role in 
the behavioral alterations and in the shorter lifespans observed 
in mice with aSyn pathology (Thy1-Syn, a transgenic line that dis-
plays a more rapidly progressive α-synucleinopathy phenotype; 
Thom et al., 2021). Ablation of PRNP in Thy1-Syn PrP0/0 mice (a 
cross between Thy1-Syn and PrP−/− ZrchI mice) ameliorates the 
behavioral deficits in Thy1-Syn mice (Thom et al.,  2021). These 
data reinforce the hypothesis that PrPC contributes to aSyn inter-
nalization and disease progression, possibly by acting as a receptor 
at the cell surface.

1.9  |  Outlook: Implications for neurodegeneration

The discovery of cellular prion protein as a receptor (or sensor) for 
protein aggregates has provided valuable insight into the mecha-
nisms underlying neurodegenerative diseases, including synucle-
inopathies. Nevertheless, the relationship between PrP and aSyn is 
likely complex and may not be equally relevant for different synu-
cleinopathies, since different aSyn fibrillar species seem to occur in 
different synucleinopathies, as mentioned earlier. Additionally, since 
different pools of aSyn species may be present at different stages of 
disease, the relevance of the interaction may also vary during dis-
ease progression. In earlier stages, when soluble oligomeric species 
may be dominant, the interaction may lead to neuronal dysfunction, 
whereas at later stages it may be more relevant for the spreading of 
pathology. All of this will need to be considered for the design of ef-
fective therapeutic strategies.

An additional issue is that PrP is probably not the only player 
involved in the uptake and spreading of aSyn. To solve this, we must 
develop more specific models where the contribution of different 
pathways can be isolated and then introduced in a stepwise manner 
in order to establish causality/synergistic effects.

Nevertheless, the possible contribution of the aSyn-PrP inter-
action to the onset and disease progression in synucleinopathies 
makes it an enticing therapeutic target, using a variety of possible 
approaches such as immunotherapy, anti-sense oligonucleotides, or 
small molecules.
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