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Abstract

Populations of cortical neurons respond to common input within a millisecond. Morphologi-

cal features and active ion channel properties were suggested to contribute to this astonish-

ing processing speed. Here we report an exhaustive study of ultrafast population coding for

varying axon initial segment (AIS) location, soma size, and axonal current properties. In par-

ticular, we studied their impact on two experimentally observed features 1) precise action

potential timing, manifested in a wide-bandwidth dynamic gain, and 2) high-frequency boost

under slowly fluctuating correlated input. While the density of axonal channels and their dis-

tance from the soma had a very small impact on bandwidth, it could be moderately improved

by increasing soma size. When the voltage sensitivity of axonal currents was increased we

observed ultrafast coding and high-frequency boost. We conclude that these computation-

ally relevant features are strongly dependent on axonal ion channels’ voltage sensitivity, but

not their number or exact location. We point out that ion channel properties, unlike dendrite

size, can undergo rapid physiological modification, suggesting that the temporal accuracy of

neuronal population encoding could be dynamically regulated. Our results are in line with

recent experimental findings in AIS pathologies and establish a framework to study struc-

ture-function relations in AIS molecular design.

Author summary

In large nervous systems, a signal often diverges to hundreds or thousands of neurons.

This population’s spike rate can track changes in this common input for frequencies up to

several hundred Hertz. This ultrafast population response is experimentally well estab-

lished and critically impacts cortical information processing. Its underlying biophysical

determinants, however, are not understood. Experiments suggest that the ion channels at

the axon initial segment strongly contribute to the ultrafast response, but recent
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theoretical studies emphasize the importance of neuron morphology and the resulting

resistive coupling between axon and somato-dendritic compartments. We provide an

exhaustive analysis of the population response of a simplified multi-compartment model.

We vary the axo-somatic interaction and also active axonal properties and compare mod-

els at equivalent working points, avoiding bias. This approach provides a guideline for

future experimental and theoretical studies. In this framework, the population response is

closely associated with the AP generation speed at the AP initiation site, which is mostly

determined by axonal ion channel voltage sensitivity. The resistive axo-somatic coupling

has an additional modulatory influence. These insights are expected to hold for encoding

mechanisms of more sophisticated models, suggesting that physiological changes to axo-

nal ion channels could modulate the population response rapidly.

Introduction

Humans, monkeys, and other mammals can perform complicated cognitive tasks that engage

deep cortical hierarchies with processing times as brief as a few hundred milliseconds [1, 2].

To achieve its overall speed, such fast information processing presumably depends on an ultra-

fast response dynamics of local cortical populations. Over the past years, numerous experi-

mental studies tested different populations of cortical neurons for their capability to perform

ultrafast population coding [3–15]. These studies used time domain and frequency domain

analyses to assess the dynamics of the population’s mean firing rate in response to a shared

input superimposed on a continuously fluctuating background, mimicking ongoing synaptic

input. Using a time domain approach, it was shown for instance that populations of layer 2/3

pyramidal neurons in visual cortex nearly instantaneously respond to a small step in the aver-

age input [7]. In the frequency domain, the capability to generate an ultrafast response can be

characterized by the population’s dynamic gain function. Dynamic gain was introduced theo-

retically by Bruce Knight in 1972 [16] and measures the dynamic population rate response to

sinusoidal input signals embedded in a background of i.i.d. statistically stationary noise. The

frequency-domain correspondence of a sub-millisecond, ultrafast response is a dynamic gain

function that starts to decay only for input frequencies above several hundred Hz. In cortical

pyramidal cells, dynamic gain was first measured for populations of layer 5 pyramidal neurons,

which indeed display a near-constant response up to a few hundred Hz [4], see also [3] for an

earlier indication of high bandwidth. As experimentally assessed, the dynamic gain function

and the ultrafast response are not fixed and invariant properties of a neural population but

substantially depend on the nature of background activity. Confirming a seminal theoretical

prediction [17], when the correlation time of the background input is increased, the dynamic

gain in the high-frequency regime is substantially boosted [7], a phenomenon previously

dubbed the Brunel effect [7].

At first sight, the generation of ultrafast responses by an asynchronous population of neu-

rons and its dependence on background fluctuations appear easy to understand. In the absence

of external input, the cells fire asynchronously, because their background inputs are not corre-

lated. This asynchrony guarantees that at any moment some fraction of the population is close

to threshold and thus is in principle capable of an immediate, near instantaneous response.

Intriguingly, however, several experimental studies demonstrated that a population’s propen-

sity to generate an ultrafast response sensitively depends on subtle aspects of the cells’ biophys-

ical and molecular design. In particular the molecular architecture of the spike initiation zone

in the axon initial segment (AIS) seems to be specifically tailored to support an ultrafast
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response. Lazarov et al. recently demonstrated that mutation of AIS-specific cytoskeletal pro-

teins specifically impairs population response speed even if the ability of the cells to generate

spikes per se is essentially unaffected [14]. Consistent with this observation, the bandwidth of

pyramidal neurons is substantially reduced after recovery from pathological conditions, such

as transient hypoxia that affect AIS molecular architecture [18]. Both of these findings are in

line with prior studies suggesting that immature AIS organization [13] or pharmacological

blockade of sodium channels at the AIS [9] disrupt dynamic gain bandwidth and ultrafast pop-

ulation response. While the cellular and biophysical features sufficient to equip a cortical pop-

ulation with an ultrafast response are not completely understood, the weight of experimental

evidence strongly suggests that this population-level property is sensitive to slight alterations

in single neuron biophysics. It is interesting to note that phylogenetic studies place the

response-speed-related refinements of AIS architecture at the invention of forebrain popula-

tion coding in the first large chordate brains [14, 19, 20]. A series of intriguing studies [10, 21–

23] have even implicated inter-individual differences in the capability of human cortical neu-

rons to support ultrafast population encoding as a determinant of heritable inter-individual

difference in cognitive performance.

The feasibility of ultrafast population coding, its dependence on the structure of back-

ground input correlations, and its sensitivity to single neuron biophysical and molecular

design have been correctly predicted by theoretical work preceding this recent wave of experi-

mental studies. Theoretical studies, in single-compartment models, showed that ultrafast pop-

ulation encoding is closely associated with active AP initiation dynamics [9, 24–29]. Neuron

models that model AP generation by threshold-crossing, tacitly assuming an infinitely fast AP

initiation, were first shown to exhibit a dynamic gain function with high bandwidth and the

Brunel effect [17]. In subsequent studies [24–26], the voltage dependent sodium currents

underlying AP initiation were incorporated. High bandwidth encoding could only be recov-

ered when the voltage sensitivity of sodium currents was very high [24]. Based on these obser-

vations, the properties of the ion channels, which control the rapidness of AP initiation, were

hypothesized as key parameters determining the bandwidth of the dynamic gain function [27,

30].

The experimental studies summarized above suggest such a dependence in two ways.

Firstly, the onset rapidness of the somatic AP waveform and the dynamic gain bandwidth mea-

sured in individual cells were found to be positively correlated [13, 14]. Secondly, when the

sodium channels at the AIS were blocked by TTX [9] or when the number of ion channels at

the AIS was reduced by genetic manipulation [14], the bandwidth of the dynamic gain func-

tion and the AP onset rapidness are both reduced. A distinct but related mechanism has been

suggested to operate in multi-compartment models that describe the spatio-temporal dynam-

ics of AP generation along the somato-axonal axis. APs are generated in the AIS, spatially sepa-

rated from the soma, and lateral currents between these compartments are important for the

detailed dynamics of AP initiation. Brette and coworkers [31, 32], formulated an idealized

multi-compartment model to study the impact of AP initiation site on somatic AP waveform.

Increasing the distance between AP initiation site and soma, they predicted a discontinuous

increase of the lateral current to emerge during AP generation. Even with a low intrinsic volt-

age sensitivity of the sodium currents underlying AP initiation, they suggested the conditions

for an ultrafast population response might be fulfilled. A third hypothesis focuses on the

impact of single neuron dendritic trees on population encoding [11, 33, 34]. Eyal et al. [33]

first showed that multi-compartment models of the entire dendrite-soma-axon axis can realize

high bandwidth encoding with a cutoff frequency above 100Hz, in particular in the presence

of a large dendritic compartment. Intriguing support for this specific mechanism was found in

a modeling and experimental study of Purkinje cells that exhibit an exceptionally large
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dendritic tree and show a very high bandwidth population response [11]. All of these biophysi-

cal mechanisms, only a subset, or additional mechanisms yet unknown may underlie the pres-

ence or absence of ultrafast response dynamics in different neuronal populations. Irrespective

of which of these alternatives ultimately apply, the increasing specificity with which recent

experimental studies are probing the biophysical basis of ultrafast population coding calls for a

systematic and controlled methodology to examine neuronal design variants at equivalent

operating points and analyze the resulting impact on dynamic gain functions.

Here, we introduce such a methodology and use it to provide a dynamic gain analysis of the

idealized multi-compartment model established by Brette [31]. In particular, we examine the

impact on population response dynamics of various passive and active biophysical parameters

representing AIS structure. To precisely compare the dynamic gain functions of different

model variants at equivalent operating points, the mean and standard deviation of the inputs

were chosen to maintain fixed average firing rate and coefficient of variation (CV) of the inter-

spike interval (ISI) distributions. Stimulus filtering between the soma and the AP initiation site

and the contribution of lateral currents to AP initiation are two fundamental differences

between Brette’s model and simpler single compartment models. We find that electrotonic

separation between AIS and soma and stimulus filtering does not, per se, result in the emer-

gence of an ultrafast population response. Increasing the voltage sensitivity of sodium current

induces high bandwidth and a sensitivity of dynamic gain to the input correlation (Brunel

effect), demonstrating that this simple model is in principle capable of ultrafast encoding. In

contrast, increasing the sodium conductance had no substantial impact on the dynamic gain

function. Our results show that, in this idealized model, the somatic AP waveform has little

relation to the emergence of an ultrafast population response. In contrast, the key determi-

nants of ultrafast population coding are the voltage dependence of axonal sodium currents and

the AP waveform at the AP initiation site around the time of AP onset.

Results

Voltage decoupling between soma and axon under voltage clamp and

current clamp

We investigated the multi-compartment model introduced in [31] (Fig 1A) implemented in

NEURON (see Methods). Our implementation reproduced the central feature reported by

Brette [31]: when the somatic voltage is clamped and changed so slowly that all currents attain

their steady-state values, then we can observe a bifurcation in the voltage difference between

soma and axon (dashed line in Fig 1C). The mechanism behind this bifurcation is explained

Fig 1B. If the somatic voltage is fixed, the model is in steady state, if the sodium current equals

the lateral current. This corresponds to the intersection points between the sodium current

and the lateral current as a function of axonal voltage. The total resistance between the soma

and the position of the sodium channels increases with xNa and shapes the slope of the lateral

current function. For xNa = 20μm, increasing the clamped somatic voltage from −60mV to

−50mV smoothly changes the intersection point of the two functions. However, when the

position of sodium channels from the soma exceeds a critical distance, about 27μm (Fig 1B

middle panel), the number of intersection points increases to three. Thus, under the artificial

condition of a fixed somatic voltage, a sufficiently large distance between initiation site and

soma leads to a bifurcation of the axonal equilibrium voltage under a slow, quasi-stationary

increase of the somatic voltage. This results in an abrupt change of the lateral current entering

the soma once the somatic voltage crosses a threshold value. This effect is a candidate mecha-

nism to generate sharp APs at the soma and was hypothesized to induce ultrafast population

encoding in cortical neurons [31].
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In Fig 1C, we plot the axonal voltage as a function of somatic voltage for xNa = 40μm. With

the somatic voltage clamped to different values, we recorded the corresponding stationary axo-

nal voltages. As expected, there is a discontinuity around the somatic voltage of −55mV, the

somatic voltage at which two intersections between lateral and sodium current meet. This cor-

responds to the annihilation of a stable and an unstable fix point. However, it is important to

note that the abrupt change of the voltage difference in Fig 1B must not be confused with a

very rapid change of the axonal voltage or a high voltage sensitivity of the change of the axonal

voltage. Only the artificial construct d dVaxon
dt

� �
=dVsoma is very large. The axonal phaseplot’s slope

d dVaxon
dt

� �
=dVaxon is not necessarily drastically changed at this bifurcation point.

Apart from simulations with a voltage clamped soma, we also studied the current clamp

condition, in which we injected a slowly increasing input current in the middle of the soma,

and recorded the two voltage traces at the soma and at the AP initiation site. In this case, the

lateral current from axon to soma not only slows axonal depolarization, but accelerates the

depolarization of the soma. As shown in Fig 1C (continuous line), the decoupling of somatic

and axonal voltages was substantially smoother in this dynamic case. Even if the parameter xNa

is sufficiently large for the bifurcation under the voltage clamp case, we only observed a grad-

ual deviation of the two voltages. The deviation speed is limited by the activation speed of the

sodium current. The maximum amplitude of the sodium current remaines unaffected, so for

larger voltages, the decoupling distances of the two voltages are maintained.

Fig 1. Model properties. A Sketch of the model morphology: soma and axon are modeled as cylinders. The sodium conductance is positioned

at xNa and the stimulus current is injected at the middle of the soma. For simulation and model details see Methods. B Bifurcation of axonal

voltage, replicating Fig 2 of [31]. Sodium current (red) and lateral currents (black, with somatic voltage fixed at −60mV, −55mV, −50mV

respectively) are plotted as a function of axonal voltage at different xNa. The intersection points between the black curve and the red curve

indicate stationary axonal voltage given the somatic voltage. For large xNa = 40μm, the first intersection point changes discontinuously for

increasing somatic voltage. C Axonal voltage plotted against somatic voltage for two conditions with xNa = 40μm. Only when the somatic

voltage is artificially fixed to a slowly increasing potential (dashed), a sudden jump in the axonal voltage occurs (dotted), when the voltage

control of the axonal voltage is lost around −55mV. In a dynamic situation, here a current clamp with injection of a constant current driving

firing at 5 Hz, this jump disappears (solid line), the transition is more gradual.

https://doi.org/10.1371/journal.pcbi.1009775.g001
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Spatial decoupling is not sufficient for ultrafast population encoding

Next, we characterized the sharpness of the somatic action potential as we varied the sodium

channel position xNa from 0μm to 80μm (Fig 2A). We found that the somatic voltage rose

more rapidly, the further away from the soma the sodium channels were positioned. The AP

initiation dynamics at xNa = 27μm did not exhibit a bifurcation.

We then calculated the dynamic gain for various values of the position parameter xNa as

depicted in Fig 2B. It is important to note that the model parameters do not fully determine

the dynamic gain function. Instead, the working point, at which the model is studied, influ-

ences the dynamic gain function. In order to provide an unbiased comparison of different

models, we always selected the current’s average and standard deviation to achieve a firing rate

of 5 Hz and a CV of ISI of 0.85, unless noted otherwise. In every case, spikes from 400,000 sec-

onds of simulation were used to calculate a dynamic gain function. The correlation time of the

fluctuating background current was set to 5ms. Moving the sodium channels away from the

soma somewhat enhanced the high-frequency response, in particular for xNa = 0 to xNa =

20μm. The distance for which a bifurcation in the voltage-clamp condition was observed does

not stand out in any way. Moreover, all obtained dynamic gain curves exhibited a cutoff fre-

quency of about 10Hz and the dynamic gain curves converged in a form similar to a canonical

conductance-based neuron model with a decay exponent of -1 [24]. Increasing xNa from 40μm

to 80μm had limited effect on the dynamic gain curve, despite doubling the electrotonic sepa-

ration between AP initiation site and soma.

Compared to a single compartment model, there are two main differences in fluctuation-

driven AP initiation for the current multi-compartment model. Firstly, in a single compart-

ment model, the injected stimulus waveform directly enters the dynamic equation of AP gen-

eration. In the multi-compartment model, the spatial separation between injection site and

initiation site creates a filter. The cable properties attenuate the stimulus as it is transmitted to

the AP initiation site. This may decrease the dynamic gain in the high-frequency range relative

to a single compartment model. Secondly, the current components underlying AP generation

Fig 2. Phase plot and linear response functions. A Phase plots for the APs seen at the soma, somatic voltage rate of change vs. somatic voltage for different

sodium channel positions xNa (legend in B). The local minima of all curves are aligned at (0mV, 0mV/ms). B Dynamic gain functions for different xNa,

normalized. 95% confidence intervals are plotted as shaded areas, mostly hidden by the line width. All curves are above statistical significance threshold (see

Methods). The input current correlation time was set to τ = 5ms.

https://doi.org/10.1371/journal.pcbi.1009775.g002
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are modified. In a single compartment model the entire local sodium current is effective for

AP initiation. In the multi-compartment model, the sodium current, entering at the AP initia-

tion site, not only charges the local membrane capacitance, but also feeds lateral currents that

first depolarize neighboring parts of the axon and subsequently the somatic membrane. This

lateral current from the AP initiation site depends not only on the distance to the soma, but

also on the axial resistivity of the axon. Thus the axial resistivity is an additional parameter that

impacts on the voltage dynamics at the AP initiation site of a multi-compartment model.

The lateral current away from the AP initiation site slows down the dynamics of AP genera-

tion. Moving the AP initiation site away from the soma (Fig 2A), we found that the shape of

the APs at the soma is changed, but the AP initiation dynamics in the axon is modified much

more mildly. Fig 3A and 3B show the impact of lateral current and transfer impedance on axo-

nal voltage dynamics and population encoding. In Fig 3A, the phase plot for APs at the AP ini-

tiation site shows that shifting the AP initiation site away from the soma increases the

resistance between, thus reduces the lateral current towards the soma during the AP upstroke.

For larger xNa values, the AP initiation dynamics thus becomes more rapid. Fig 3B depicts the

filtering effect due to stimulus transmission from the soma to the AP initiation site. To obtain

these transfer impedance curves, we injected fluctuating currents obtained from Ornstein-

Uhlenbeck processes with a correlation time of 5 ms. Average current and standard deviation

were the same as we later used to calculate the dynamic gain. We used the axonal voltage at

xNa as the continuous response variable and calculated the transfer function from somatic

input current to axonal voltage at xNa. The dominant effect is the filtering from current to

somatic voltage. With increasing xNa, a small additional damping of high-frequency compo-

nents appeared. Below 100Hz, this additional damping effect was weak for xNa = 20μm, 40μm,

80μm. These results suggest that the dynamic gain values are enhanced for larger xNa because

the larger axonal resistance reduces the lateral current while the input experiences only minor

damping. Further increasing xNa, one expects that the AP initiation dynamics saturates while

the transfer impedance will eventually reduce the high-frequency gain. This should lead to an

impaired encoding ability for high frequencies. Fig 3C confirms this prediction. We calculated

the dynamic gain function for xNa = 200μm. The dynamic gain was reduced compared to that

for xNa = 80μm. Another expectation is that by reducing the lateral current, the dynamic gain

functions should become more sensitive to transfer impedance with larger xNa. To examine

this, we increased the axial resistivity Ra fivefold to 750Ocm. The dynamic gain functions in

Fig 3D show that with lateral current suppressed, increasing xNa reduces the high-frequency

dynamic gain monotonically opposite to the behaviour shown in Fig 2B.

Negligible impact of sodium peak conductance on dynamic gain

Experimental studies have shown that a high density of sodium channels in the AIS is required

for high bandwidth encoding [9, 14]. We thus investigated how changing sodium peak con-

ductance impacts on population encoding in the multi-compartment model. The sodium peak

conductance was increased 5 and 10 fold. Fig 4A and 4C shows the dynamic gain curves for

1Hz and 5 Hz firing rate. The CV was controlled to vary less than 0.1 for both rates. Increasing

the sodium peak conductance caused only minor changes to the dynamic gain curves. For the

1 Hz firing rate, the dynamic gain at high frequencies was slightly enhanced for higher sodium

peak conductance. Further increasing the sodium peak conductance to 10�gNa, the gain curve

remained almost identical to that at 5�gNa. For 5Hz firing rate, the encoding of high frequencies

was overall better than for the 1 Hz condition. However, increasing the sodium peak conduc-

tance led to a slight decrease of dynamic gain at high frequencies. The main effect of increasing

sodium peak conductance in the model was a substantial lowering of the current and voltage
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threshold of the model. However, static gain around threshold, i.e. the slope of the F-I curves,

was largely preserved. The inset in panel C shows the F-I curves for the three sodium peak con-

ductances used. Note that the F-I curves are shifted along the current axis. This essentially pre-

serves gain as measured by the curve’s slope at a fixed firing rate.

Fig 4B and 4D show the phase plots of AP initiation dynamics for constant stimuli that

reproduce 1Hz and 5Hz firing rate separately. In both conditions, increasing the sodium peak

conductance by a factor of 5 accelerated AP initiation. A further doubling had less impact in

the voltage range displayed here. Comparing the AP initiation dynamics with the dynamic

Fig 3. Impact of initiation site distance and transfer impedance on dynamic gain. A Phase plots for the AP waveforms at the initiation site. Moving the initiation

site away from the soma reduces the lateral current during AP generation, leading to a more rapid initiation dynamics. The local minima of all curves are aligned at

(0mV, 0mV/ms). The action potential waveforms are shown in S1 Fig. B Transfer impedance when the stimulus is transmitted from the soma to the AP initiation site.

C Increasing xNa to 200μm decreases the high-frequency gain of the neuron model. D Increasing Ra to 750Ocm reduces the impact of initiation site distance on

dynamic gain (compare to Fig 2B). The transfer impedance effect dominates the dynamic gain. A larger xNa reduces the high-frequency gain.

https://doi.org/10.1371/journal.pcbi.1009775.g003
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gain functions, at 1Hz firing rate, the dynamic gain enhancement parallels the AP upstroke

acceleration for increasing sodium peak conductance. For the 5Hz firing rate, the small

changes in dynamic gain at 100 Hz appear dissociated from the changes of AP dynamics.

We next combined the variation of initiation site location and sodium peak conductance.

The resulting cutoff frequencies of the dynamic gain are displayed in Fig 5 at fixed firing rates

of 5Hz and 1Hz. The exact working points were found by fixing the CVs of the ISI distribu-

tions to 0.9 ± 0.05 for Fig 5A and 5B, or by fixing the std of stimuli for Fig 5C and 5D. The 2D

surface plots show the parameter dependence of the cutoff frequencies and the decay of

Fig 4. AP initiation dynamics and dynamic gain comparisons for difference sodium peak conductances. A Dynamic gain functions of neuron models with

different sodium peak conductances for 1Hz firing. The CV is 0.9±0.05. B Phase plots of AP initiation dynamics of Brette’s models with different sodium peak

conductances. xNa is fixed to 40μm. Sodium peak conductance �gNa is increased 5 and 10 fold separately in comparison with the original model. To compare the AP

initiation speed, each neuron model is injected with a constant input that generates 1Hz firing rate. C Dynamic gain functions of neuron models with different

sodium peak conductances for 5Hz firing. The CV is 0.85±0.05. The inset in panel C shows the F-I curve for the three sodium peak conductance used. D Phase

plots of AP initiation dynamics at 5Hz firing.

https://doi.org/10.1371/journal.pcbi.1009775.g004
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dynamic gain values in the low frequency region. At 5Hz firing rate, both stimulus conditions

in A and C show that the cutoff frequency is higher with larger xNa and smaller sodium peak

conductance. At high sodium peak conductance, the cutoff frequency is less sensitive to the

AP initiation site. At 1Hz firing rate, we observed a similar trend of the cutoff frequency. Com-

pared to the high firing rate cases, at 1Hz firing rate, the 2D surface plots are flatter for both

stimulus conditions. Besides, the CV of the ISI distribution was less dependent on the mean at

1Hz firing rate. Although the dynamic gain values in the high-frequency region are enhanced

for higher sodium peak conductance at 1Hz firing rate, the cutoff frequencies are slightly

lower for high sodium peak conductance models. When fixing the std, we obtained a similar

dependence.

Weak high-frequency boost when axonal currents show moderate voltage

sensitivity

Next, we examined the impact of correlation time of background current fluctuations on the

dynamic gain curve (Fig 6). We increased it from τ = 5ms to 50ms and calculated the dynamic

gain functions for xNa = 20μm, 40μm, 80μm. Distinct from the behaviour of LIF-like models

[17, 24, 25, 35, 36] and cortical neurons [7], increasing the correlation time did not enhance

Fig 5. Cutoff frequencies of dynamic gain curves as a function of sodium peak conductance and AP initiation site. A and B For each pair of AP

initiation site and sodium peak conductance, the dynamic gain curve was calculated at 5Hz and 1Hz firing rates working points. CV values were fixed at

0.9 ± 0.05. C and D The dynamic gain curves were calculated at 5Hz and 1Hz firing rate with std of stimuli fixed at 0.07nA and 0.04nA. Cutoff

frequency was the frequency to which the dynamic gain decayed by a factor of
ffiffiffi
2
p

. Correlation time of background current was 5ms. xNa ranged from

0μm to 80μm. Sodium peak conductance ranged from 1�gNa to 20�gNa, represented on a logarithmic scale. Grey points represent calculated data,

continuous surfaces are obtained by Voronoi interpolation to allow for a continuous color representation.

https://doi.org/10.1371/journal.pcbi.1009775.g005
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the dynamic gain in the high-frequency range. We observed a weak resonance around 10Hz,

i.e. a slight enhancement of dynamic gain below the cutoff frequency. For higher frequencies,

the dynamic gain decayed steeper than that for τ = 5ms. This observation holds for all three

xNa values, and shows that overall the dynamic gain of the model is quite insensitive to input

current correlation time. Independent of the input correlation time, this model’s dynamic gain

had a much lower bandwidth than any of the experimentally characterized cortical neurons,

which exhibit cutoff frequencies in the range of hundreds of Hz [3–15, 37, 38]. The insensitiv-

ity of the dynamic gain to the current correlation time qualitatively deviates from experimental

observations [7]. In summary, our results show that shifting the position of the AP initiation

site away from the soma does increase the onset rapidness of APs observed at the soma, but

sharp somatic APs onset does not by itself induce an ultrafast population response.

Increasing axonal current’s voltage sensitivity establishes ultrafast

population encoding

The results above suggest that the AP voltage dynamics at the AP initiation site is more closely

related to the high-frequency encoding properties than the somatic AP waveform. We first

attempted to accelerate this dynamics by reducing the capacitive load in the axon. But even

when we assumed the axonal segment beyond the initiation site to be myelinated, the band-

width did not increase (S4 Fig). We thus turned to more direct methods and examined

whether increasing the voltage sensitivity of the sodium current at the initiation site could

enhance high-frequency gain and potentially equip the multi-compartment model with an

ultrafast population response.

To test this, we changed the parameter ka of the activation function of the sodium gating

variable from 6mV to 0.1mV making the sodium current activation curve nearly step-like.

With this modification, the voltage decoupling between soma and axon was nearly instanta-

neous for all xNa tested (Fig 7A). With high voltage sensitivity, the axonal voltage and somatic

voltage are nearly identical until V1/2 is reached. Above this threshold value, a large sodium

current is activated, causing an immediate substantial decoupling. Compared to the voltage

decoupling with a standard sodium activation function, there was a substantial change of the

decoupling trajectory for xNa = 20μm. However, for large xNa values, the decoupling

Fig 6. Impact of background current correlation time on dynamic gain. Dynamic gain functions for different input current correlation times. Model properties

as for Fig 2. xNa increases from = 20, 40 to 80μm (A, B, C). Line width indicates input correlation time (thin: τ = 5ms, wide: τ = 50ms).

https://doi.org/10.1371/journal.pcbi.1009775.g006

PLOS COMPUTATIONAL BIOLOGY Ultrafast coding and compartmentalization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009775 January 18, 2022 11 / 25

https://doi.org/10.1371/journal.pcbi.1009775.g006
https://doi.org/10.1371/journal.pcbi.1009775


trajectories are quite parallel with those for a less voltage sensitive sodium activation function.

In Fig 7B, we compare the dynamic gain functions of original model to the model with a more

voltage sensitive sodium activation function. We fixed xNa to 40μm and τ to 5ms. Fig 7B shows

that the dynamic gain decreases less for high frequencies and hence the bandwidth increases.

We also examined the impact of the positioning of the AP initiation site and the input cur-

rent correlation time on dynamic gain for the case of high voltage sensitivity (Fig 8). Fig 8A

shows that with ka = 0.1mV, the high-frequency dynamic gain is greatly enhanced for all three

xNa values. One additional observation is that increasing xNa decreases the dynamic gain in the

high-frequency regime. This behavior is opposite to the behavior for low voltage sensitivity

(Fig 2B). This phenomenon may be related to the impact of transfer impedance and lateral

Fig 7. Impact of voltage sensitivity of sodium current activation curve on voltage decoupling under current clamp and dynamic gain. A Plot of

axonal voltage at xNa vs. somatic voltage for different sodium channel positions. Solid lines are voltage traces for low voltage sensitivity ka = 6mV,

dashed lines denote the traces for high voltage sensitivity ka = 0.1mV. B Dynamic gain functions for the different voltage sensitivities for xNa = 40μm

and τ = 5ms. The dynamic gain curve for the intermediate value ka = 1mV and longer correlation times can be found in S3 Fig.

https://doi.org/10.1371/journal.pcbi.1009775.g007

Fig 8. Increased impact of current correlation time for high voltage sensitivity. Dynamic gain curves are plotted for A a short input current

correlation time τ = 5ms and B a long correlation time of τ = 50ms. Dashed lines as in Fig 7B. Shaded areas are 95% confidence intervals. Colors denote

different initiation site positions (see legend).

https://doi.org/10.1371/journal.pcbi.1009775.g008
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current proposed above. When the sodium activation function is highly voltage sensitive, the

lateral current has limited impact on the voltage dynamics at the initiation site. However, the

transfer impedance from soma to axon still impacts the dynamic gain function in the high-fre-

quency range. Fig 8B displays the dynamic gain functions for τ = 50ms. For higher voltage sen-

sitivity, increasing the input current correlation time increases high-frequency gain similar to

the behavior first described for the LIF neuron [17]. A more extensive overview of the com-

bined effects of correlation time, axonal channel position and voltage sensitivity is given in S2

Fig.

The activation dynamics of sodium current during AP initiation is determined by both the

voltage sensitivity of sodium activation curve ka and the sodium peak conductance �gNa. In Fig

9, we display the cutoff frequency as a function of these two parameters. We fixed xNa at 40μm

and correlation time of background current τ at 50ms. ka ranged from 0.1 to 6mV. �gNa was

increased from 1 fold to 20 fold. We fixed the firing rate and CV (Fig 9A and 9B), or firing rate

and std of stimulus (Fig 9C and 9D). For all four conditions, increasing the voltage sensitivity

of sodium activation curve increased the cutoff frequency in agreement with previous theoreti-

cal studies [17, 24, 28, 29]. The cutoff frequencies for 5Hz firing rate were in general larger

than those for 1Hz firing rate at given ka and �gNa. Overall, the cutoff frequencies were much

less sensitive to �gNa than to ka. Fig 5 shows that at ka = 6mV and τ = 5ms, the cutoff frequency

is slightly decreased when increasing the sodium peak conductance. For ka = 6mV and τ =

Fig 9. Cutoff frequencies of dynamic gain curves as a function of sodium peak conductance and voltage sensitivity of sodium activation curve. A

and B For each pair of voltage sensitivity and sodium peak conductance, the dynamic gain curve was calculated at 5Hz and 1Hz firing rates working

points. CV values were fixed at 1.1 ± 0.05. C and D The dynamic gain curves were calculated at 5Hz and 1Hz firing rate with std of stimuli fixed at

0.04nA and 0.03nA. Correlation time of background current was 50ms. xNa fixed at 40μm. Sodium peak conductance ranged from 1�gNa to 20�gNa. ka
ranged from 0.1 to 6mV. Conductance and sensitivity are represented on a logarithmic scale. Grey points represent calculated data, continuous surfaces

are obtained by Voronoi interpolation to allow for a continuous color representation.

https://doi.org/10.1371/journal.pcbi.1009775.g009
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50ms, a higher sodium peak conductance also led to a slightly lower cutoff frequency. For

other values of ka, the cutoff frequency remained relatively insensitive to the sodium peak

conductance.

Excessive soma size improves high-frequency dynamic gain

So far, we have not found a condition for which resistive coupling substantially impacts the

cutoff frequency. We argued that the bifurcation observed for a voltage-clamped soma does

not manifest during dynamic AP initiation in the unclamped neuron (Fig 6 continuous vs.

dashed line). But there is a possibility to render the somatic voltage almost insensitive to lateral

currents, even though it is not actively voltage-clamped: the soma size has to be increased and

thereby, the somatic capacitance. We next study the impact of soma size on the dynamic gain.

In the following simulations, dS and lS ranged from a physiologically plausible size of 10μm

up to 2cm. xNa was 40μm, and the input current correlation time was 5ms. For the 2cm case,

the spatial grid of the soma was increased to 1000μm for the convenience of simulation. As

depicted in Fig 10A, the colored thick lines are the unnormalized dynamic gain curves for vari-

ous soma sizes. To generate the same firing rate in these models, similar amounts of current

reached the AP initiation site. However, to overcome the leak current in the soma and generate

somatic voltage fluctuations, the somatic input had to be scaled with the surface area of the

soma. As a result, the dynamic gain amplitudes were greatly attenuated for the larger soma

cases.

Although of “enormous” length in the most extreme case, the somatic compartment was

still electrotonically compact in these simulations. To test whether the transfer impedance was

in fact minimal, we kept the soma surface areas and reduced the soma length to 2μm and recal-

culated the corresponding dynamic gain curves. The black lines in Fig 10A demonstrates that

transfer impedance in the soma has negligible influence on the population dynamic gain.

In Fig 10B, we compared the normalized dynamic gain curves for different soma sizes.

Increasing the soma size enhanced the high-frequency dynamic gain. However, the dynamic

gain curves did not become flat as expected for a LIF-like model. As a function of soma size,

Fig 10. Effect of soma size on dynamic gain. A Unnormalized dynamic gain curves for various soma sizes. Diameters and lengths for all the soma are

shown in the legend panel in B. xNa was fixed to 40μm. The correlation time τ was fixed to 5ms. For each soma size, fixing surface area but reducing

soma length to 2μm, the dynamic gain curves were recalculated and represented as black lines, which overlapped with corresponding colored lines. B

Comparison of all the normalized dynamic gain curves. Increasing the soma size enhances the dynamic gain in the high-frequency regime for Brette’s

original model.

https://doi.org/10.1371/journal.pcbi.1009775.g010
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the normalized dynamic gain seemed to converge to a limiting curve, with little change beyond

soma sizes of 200μm. The deviation of the neuron model from the LIF model may be explained

by the position of the AP initiation site. When the sodium channels are positioned at the soma,

for a given sodium peak conductance, increasing the soma size decreases the ability of sodium

current to change the voltage derivative. In the large soma size limit, the sodium current

would not suffice to overcome the leak current for AP generation, so that the neuron model

will be closely approximated by a model with hard threshold driven only by the external input,

i.e. a LIF model. However, moving the AP initiation site away from the soma along the axon

reduces the upper limit of the lateral current shaping the AP initiation dynamics. As for our

case where xNa is set to 40μm, some upstroke dynamics was retained even when the soma was

extremely large. The population encoding ability in the large soma model limit seems bounded

by the sodium activation dynamics at the initiation site.

In Fig 11, we analyzed the transfer impedance and AP initiation dynamics of Brette’s mod-

els with different soma sizes. As a comparison, we also present the analysis for Brette’s models

with high voltage sensitivity of the sodium activation function. We will show that the enhanced

encoding ability seen in Fig 10 originates from the acceleration of axonal AP initiation

dynamics.

An increase in soma size changes the input encoding in two ways. The filter from input cur-

rent to voltage at the initiation site is changing and an increased lateral current drains more of

the depolarizing sodium current. The transfer impedance, shown in Fig 11D, decays faster

with a bigger soma. This effect dominates for the steep sodium activation curve (ka = 0.1mV)

and underlies the reduction in dynamic gain in Fig 11B. The second effect, the increased cur-

rent sink of the larger soma, indeed led to a decreased AP initiation speed, but while this was

almost negligible for ka = 0.1mV, it was very large for the conventional sodium activation

curve (ka = 6mV) in Fig 11C. As a result, the voltage at which sodium currents overcome cur-

rent drainage by leak and lateral current is shifted by more than 10mV to a region where the

sodium activation curve is steeper. For better comparison, Fig 11E aligns the local minima of

two axonal AP initiation dynamics. The AP initiation dynamics are slower and smoother for

the small soma. In this sense, the enormous soma size accelerates the initial AP initiation, cre-

ating a steeper axonal AP waveform and thereby an enhanced dynamic gain in the high-fre-

quency region.

Discussion

Our study demonstrates that the experimentally observed high bandwidth encoding of cortical

neurons is critically influenced by the properties of the ion channels in the AIS, and further

modulated by the electrotonic structure of axo-somatic and somato-dendritic compartments.

We used the dynamic gain function for an extensive comparison of model variants, designed

to test the resistive coupling hypothesis [31, 32] and the impact of AIS ion channels. By choos-

ing the same, well-defined working points for all models, we eliminated free parameters and

assured unbiased comparison. Resistive coupling [39], also called compartmentalization [31],

is not sufficient to account for the ultrafast population coding. We found the dynamic gain

function to be weakly influenced by the separation between AP initiation site and soma, as was

the initial slope of the AP phase plot at the initiation site. A weak impact on AP initiation and

population encoding was also observed when we changed the sodium conductance amplitude

or the soma size. Even extreme choices for these parameters were insufficient to induce a high

bandwidth of the dynamic gain function. An increased voltage sensitivity of sodium channel

activation, however, substantially enhanced AP initiation speed and population encoding abil-

ity. Our results indicate that the key determinant of population encoding ability is the effective
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voltage dependence of AP initiating ion current, subsumed here into a single sodium channel

type. It remains an intriguing discrepancy that experimental characterizations of neuronal

sodium channels report voltage sensitivities corresponding to ka = 4–6 mV [40].

The models we used for these simulations are based on a design by Romain Brette [31].

While it features fewer ion channel types than realistic models of cortical neurons, it retains
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Fig 11. Transfer impedance and AP initiation dynamics for different soma sizes. A and B Dynamic gain functions

of Brette’s model for a variety of soma sizes. ka is set to 6mV and 0.1mV respectively. xNa = 40μm. τ = 5ms. Legend

panel in A. C AP initiation dynamics seen at the axon with ka = 6mV. D Transfer impedance for different soma sizes.

The passive neuron models are identical for both ka values. E and F Axonal AP initiation dynamics with local minima

aligned at (0mV, 0mV/ms).

https://doi.org/10.1371/journal.pcbi.1009775.g011
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the essential features to study AP initiation dynamics in the context of neuron morphology.

The model lacks repolarizing current and sodium current inactivation. As a consequence, a

forcible voltage reset is required to terminate an AP. This can have a minor impact on the

inter-spike interval distribution but will not affect the supra-threshold dynamics, which influ-

ences the encoding bandwidth. We drive the model by current injections rather than the

changing synaptic conductances that underlie fluctuating input in vivo. The range of working

points that can be realized with this paradigm might be even more extensive than is physiologi-

cally accessible. Therefore our findings should also hold within the physiological range of

working points.

The close relation between the voltage dependence of AP initiation currents and the encod-

ing bandwidth is consistent with previous theoretical studies. For model currents with expo-

nential [24] or piecewise linear voltage dependence [28], increases in the voltage dependence

substantially improved the encoding of high-frequency input components. The low cutoff fre-

quency that we report here for the model from [31] with standard voltage sensitivity resembles

the results of single compartment conductance-based models [24, 29] in which a similar volt-

age dependence was used. Encoding of neurons with an infinite voltage sensitivity, represented

by the fixed AP threshold in integrate-and-fire models, was first considered by [16] and more

extensively studied by [17]. We closely reproduce its encoding behavior when we increase the

axonal current’s voltage sensitivity. A remaining difference is the finite bandwidth, plausibly

caused by the finite activation speed of our model, τact = 0.1ms as compared to the instanta-

neous activation in a LIF model.

We report a modulatory impact of neuron morphology, which is consistent with previous

studies [11, 33, 41]. The neuron’s electrotonic structure affects the effective impedance trans-

forming fluctuating current input into voltage at the initiation site. [11, 33, 41] showed that for

current injections proximal to the initiation site, the impedance of a large somato-dendritic

compartment causes an apparent boosting of high-frequency components. On the other hand,

an increasing distance between injection site and initiation site can attenuate high-frequency

components, as we show in Figs 3 and 8. For simple morphologies, such passive effects can be

understood analytically [42]. Our analysis reveals another effect of the electrotonic structure,

mediated by an altered AP initiation dynamics. An increased somatic current sink drastically

reduces the depolarizing currents available at the initiation site. However, the voltage threshold

for AP initiation is also strongly shifted towards the voltage at which the ion currents attain

their peak voltage dependence (Fig 11). These two effects have opposing impact on the activa-

tion dynamics at threshold and consequentially, the combined effects of increased somato-den-

dritic size can reduce the bandwidth, as in the case of high voltage sensitivity ka = 0.1mV, or

increased the bandwidth, as in the case of a low voltage sensitivity ka = 6mV, similar to the AP

waveform change reported by [33]. While several of our findings have been reported before in

different models and with different emphasis, our study offers the first exhaustive comparison

of models, preserving an invariant firing rate and ISI distribution under all parameter varia-

tions. It thus provides an unambiguous dissection of the different passive and active effects.

Over the past decade, the simple picture of the initial axon as a high channel density focus

in an otherwise uniform axonal membrane has been superseded by findings of an ever more

intricate nanoscale organisation of the AIS. It is structured by the interplay of cell-adhesion,

cytoskeletal and scaffolding proteins and nanoscale ion channel clusters [43–46]. Dynamic

gain studies consistently suggest that the AIS molecular nano-architecture is under substantial

selective pressure to equip the population of hundreds to thousands of cells to which a particu-

lar neuron belongs, with a high encoding bandwidth [9, 14, 18]. From this perspective, the AIS

appears as an intricately structured service organelle that is built and maintained by the indi-

vidual neuron but fulfills its essential function only at the higher level of populations and
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neuronal circuits. The population coding speed hinges on the voltage sensitivity of the AP ini-

tiation current, and is modulated by the electrotonic structure of the neuron. In real neurons,

more than one ion channel type contributes to the AP initiation dynamics and a pioneering

study has already shown that not only Na currents, but also Kv1 potassium currents, activating

around AP threshold, improved AP locking to high input frequencies [6]. The critical impor-

tance of axonal conductances is further supported by observations of reduced encoding band-

width following local manipulations of axonal conductances through pharmacological

intervention or mutation of the axon cytoskeleton [9, 14].

Systematic studies connecting AIS molecular architecture, to theory-driven, statistical anal-

ysis of population encoding performance are required to understand the impact of AIS molec-

ular design, plasticity and pathology on population level information processing. Dynamic

gain measurements are currently the most sensitive tool for such an approach, as demon-

strated by recent experimental and theoretical studies [14, 41]. However, it is crucial that the

comparison across neurons is performed systematically and without bias. Specifically, the AP

trains evoked in such experiments should have the same overall statistics, because the dynamic

gain function of a neuron depends on the operating point it is tested at. Here, we fixed the fir-

ing rate and the CV of the ISI distribution, following [47]. Such standardization assures that

the firing patterns of different simulations have similar entropy, highlighting the actual popu-

lation encoding differences across models.

In our dynamic gain analysis, we observed a clear impact of the voltage dependence of the

axonal currents on the AP initiation dynamics and the bandwidth of population encoding. Sev-

eral experimental studies have shown that the AIS can undergo plastic changes when their activ-

ity levels are changed [48–54]. In the auditory system, deprivation of external input not only

increased the length of AIS and sodium channel densities [49] but also changed the dominant

potassium channel type [50], which enhanced the neuronal excitability. In response to increased

stimulation, however, excitatory neurons in different systems were found to become less excit-

able and to shift their axonal ion channels away from the soma by several micrometers [51, 53,

54]. In the simple model that we studied here, such smalls shifts did not lead to a pronounced

change in dynamic gain or excitability, however, the study by Kuba et al. [50] raises the intrigu-

ing possibility that AIS plasticity also affects the composition of the axonal ion channels and

thereby the dynamic gain [14]. Post-translational modifications of ion channels through

enzymes or modulation through auxiliary subunits are expected to impact dynamic gain within

minutes or hours. Studies of AIS plasticity should therefore be complemented by measurement

of the dynamic gain. A particularly drastic change of operating conditions, transient hypoxia

and spreading depolarization has recently been shown to lead to a disruption of the AIS organi-

zation, and in this case the bandwidth of the dynamic gain was indeed substantially reduced

[18]. While AIS plasticity can adjust neuronal excitability in a relatively short period of time, the

dendrite morphology might impact the dynamic gain on developmental time scales or cause

differences between species [10, 21, 23] or individuals affected by AIS pathologies [55]. Our

dynamic gain analysis of Brette’s model provides an approach and baseline for analyzing differ-

ent neuronal populations, mutants and manipulations as well as multi-compartment models.

This analysis approach can be generalized to study how neuron morphology and axonal con-

ductances contribute to the dynamic gain in more complicated scenarios.

Methods

Model

Simulations were performed with NEURON versions 7.3, 7.6 and 8.0 [56] as a module for

Python 2.6, 3.7, or 3.9. All code is available at https://github.com/chenfeizhang/Brette_gwdg.
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We used a ball-and-stick neuron model composed of a soma and an axon. All parameters were

identical to the model in [31], the equivalence of the models was confirmed by reproduction of

published results (see Fig 1A). Here, the somatic compartment was modeled as a cylinder with

equal length and diameter, which has the same effective capacitance as the sperical soma in

[31]. The soma diameter was dS = 50μm and its length was lS = 50μm. The axon had diameter

dA = 1μm and length lA = 600μm. Passive properties of the soma and axon are listed below.

Axial resistivity was Ra = 150Ocm; specific membrane capacitance was cm = 0.75μF/cm2 and

specific membrane resistance was Rm = 30000Ocm2 with leak reversal potential of EL =

−75mV. The only voltage dependent conductance in the model represents sodium current at a

single location, at a distance xNa away from the soma. This was modeled as a NEURON point

process. This sodium current has a Boltzmann activation curve similar to experimental obser-

vations [57] (V1/2 = −40mV ka = 6mV). This was combined with a voltage independent activa-

tion and deactivation time constant of τm = 0.1ms. As in [31], sodium channel inactivation

was ignored. The sodium peak conductance was �gNa ¼ 5:23 � 10� 9S. The reversal potential of

the sodium current was ENa = 60mV. In a subset of simulations, the voltage dependence of the

sodium current was changed as noted in the results.

The neuron model was thus defined by the following system of differential equations.

cm
@VSðx; tÞ

@t
¼

dS
4Ra

@
2VSðx; tÞ
@x2

�
VSðx; tÞ � EL

Rm
þ
IðtÞ
pdS

d x �
lS
2

� �

ð1Þ

cm
@VAðy; tÞ

@t
¼

dA
4Ra

@
2VAðy; tÞ
@y2

�
VAðy; tÞ � EL

Rm
�

�gNamðVAðy; tÞ � ENaÞ

pdA
d y � xNað Þ ð2Þ

where

tm _m ¼ m1ðVAÞ � m

and

m1ðVAÞ ¼ 1=ð1þ expððV1=2 � VAÞ=kaÞÞ:

The voltage at the soma was denoted VS(x, t) with x 2 [0, lS]. The voltage in the axon was

denoted VA(y, t) with y 2 [0, lA]. The stimulus current was injected in the middle of the soma,

and denoted I(t). δ(�) was the Dirac delta function.

The boundary conditions of Eqs (1) and (2) were given as VS(lS, t) = VA(0, t),
dS

@2VSðx;tÞ
@x2 jx¼lS ¼ dA

@2VAðy;tÞ
@y2 jy¼0

,
@VSðx;tÞ
@x jx¼0

¼ 0, and
@VAðy;tÞ

@y jy¼lA ¼ 0. The first two conditions

implied the continuity of voltage and current at the connecting point of soma and axon. The

other two conditions represented the sealed ends of the neuron model.

Simulations

To drive the neuron model, we injected Gaussian colored noise currents I(t) into the soma as

in prior experimental and theoretical studies [4–6, 9, 10, 35, 37]. We recorded the voltage at

the position of the sodium channels in the axon and in the middle of soma. We refer to these

as axonal and somatic voltage. We used the default backward Euler method in NEURON to

integrate Eqs (1) and (2) with a time step of Δt = 25μs and a spatial grid of Δx = 1μm.

An AP was detected, when the axonal voltage reached a detection threshold. For each vari-

ant of the model, this detection threshold was chosen as the axonal voltage at which the AP

evolved most rapidly, i.e. the point of maximal rate of voltage rise. In this way, the AP detection

time was least influenced by the ongoing random current fluctuations.
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Because the neuron model does not feature sodium channel inactivation nor repolarizing

voltage activated currents, we terminated each AP by a forced reset. Specifically we globally

reset the membrane voltage to EL and the sodium gating variable m to m1(EL). The reset is

performed upon crossing the reset threshold, which is chosen such that on average reset occurs

2ms after the AP detection threshold was crossed.

We used an Ornstein-Uhlenbeck (OU) process [58, 59] to create the current stimuli, which

are characterized by their correlation time τ, standard deviation σ and mean current μ:

tdIðtÞ ¼ ðm � IðtÞÞdt þ
ffiffiffiffiffi
2t
p

sdWðtÞ

where W(t) denotes a Wiener process with zero mean and unit variance. A given set of mean

and standard deviation results in AP sequences that can be characterized by the average firing

rate ν and the CV of the ISI distribution. Changes in the input parameter do change the operat-

ing point (ν,CVISI) of the neuron model, and thereby also its dynamic gain function. Therefore,

we compared different model variants at the same operating point: ν = 5 ± 0.25Hz and CVISI =

0.85 ± 0.05, representing in the fluctuation-driven regime in which cortical pyramidal neurons

operate in vivo. For a subset of simulations, different operating points were chosen, as stated in

the results. The OU parameters σ and μ that drive the model to this operating point were deter-

mined in independent simulation runs.

For studies of the impact of sodium peak conductance on population encoding, the voltage

values were reset to -90mV after an AP to maintain type 1 excitability throughout the whole

range of sodium peak conductances.

To compare the AP waveforms for different model variants, we injected each model with

the constant input that generated the target firing rate. The local minima of phase plots were

aligned at (0mV, 0mV/ms).

Linear response, dynamic gain and transfer impedance

To compute the dynamic gain of a neuron model, that is, its linear response function from the

injected current to the firing rate, we followed [37] as outlined below. The linear response

function was given by

L fð Þ ¼
FðCInðtÞÞ

FðCIIðtÞÞ
ð3Þ

where F denotes the Fourier transformation, CIν and CII the input-output correlation and

input auto-correlation functions, respectively. The Fourier transform of the input auto-corre-

lation equals the power spectral density of the input, according to the Wiener-Khinchin theo-

rem. For an Ornstein-Uhlenbeck process, the power spectral density is Pðf Þ ¼ 2ts2

1þð2ptf Þ2
.

To compute the input-output correlation function we made use of the following equality

CInðtÞ ¼ hDIðt þ tÞDnðtÞi ¼
1

T

Z

dtDIðt þ tÞ
X

i

dðt � tiÞ � hni

 !

ð4Þ

where δ(t − ti) is the Dirac delta function, Δν and ΔI denote deviations from mean firing rate

and mean input respectively. T is the simulation time. Thus CIν(τ) is the zero-average spike-

triggered average current (STAI) multiplied with the firing rate hνi. The time window to com-

pute the (STAI) was chosen such that correlations decayed within the time window, which was

fulfilled by a window of size 800ms centered about the spike time. We then computed the Fou-

rier transform and applied a bank of Gaussian filters to the complex-valued Fourier transform

components of the STA to de-noise as proposed in [37].
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The dynamic gain was calculated from 20000 trials of numerical simulations of the stochas-

tic current driven model described above. Each trial represents 20.5s of real time (with 0.5s

burn-in time and 20s of actual recording). From the 20000 pairs of input current samples and

output AP trains we determined the STAI through Eq (4), calculated the linear response func-

tion with Eq (3) and finally obtained the dynamic gain as its absolute value G(f) = |L(f)|.
For each model variant we determined a significance threshold curve according to the zero-

hypothesis that the AP times are independent from the input waveform and hence the dynamic

gain is zero. The zero hypothesis was realized by cyclically shifting all AP times of a given trial

by the same, randomly chosen interval between 1 and 19 seconds. From all 20000 pairs of

input current and shifted AP times, a dynamic gain curve was calculated. This was repeated

500 times for different random time shifts. The 95 percentile of these curves determined the

significance threshold curve. Only significant parts of the dynamic gain functions are shown in

the following figures. For the bootstrap confidence interval, we used the 20000 individual simu-

lations to calculate 400 STAI curves from 50 simulations each. We then bootstrap re-sampled

the grand average STAI from these 400 STA estimates for 1000 times and obtained the corre-

sponding dynamic gain curves. The 95 percent confidence intervals from these bootstraps are

shown for each dynamic gain curve, typically they are smaller than the line width.

We assessed the transfer impedance of stimuli transmitted from soma to the AP initiation

site in purely passive neuron models, models, sodium peak conductance �gNa was set to 0. We

injected the soma with sinusoidal stimuli of 1Hz to 1000Hz, and recorded voltage fluctuations

along the axon. The transfer impedance function was calculated as the amplitude ratio of the

Fourier transform of output voltage fluctuations to the Fourier transform of the input stimuli

at corresponding frequencies.

Supporting information

S1 Fig. Axonal and somatic AP waveforms with various AP initiation sites. AP waveforms

are generated with constant inputs reproducing 5 Hz firing rate. Axonal and somatic voltages

are reset to the resting potential when axonal voltages reach 0 mV.

(PDF)

S2 Fig. Impact of AP initiation site on AP initiation dynamics and dynamic gain functions

with various ka. A, C, E For each ka, axonal voltage derivatives of three model variants aligned

at (0 mV, 0 mV/ms). B, D, F Dynamic gain functions calculated with the firing rate fixed at 5

Hz, CV of ISI fixed at 0.85. τ is set to 5 and 50 ms for each model variant.

(PDF)

S3 Fig. Brunel effect is larger when AP initiation dynamics is more voltage sensitive. xNa is

fixed at 40 μm. ka is set to 6 mV, 1 mV and 0.1 mV in A, B and C respectively. Increasing τ from

2 ms to 50 ms, the enhancement of dynamic gain in the high-frequency region is larger when ka
is smaller. The same working point was used for all simulations (CVISI = 0.85, ν = 5 Hz).

(PDF)

S4 Fig. Myelination of the axon does not enhance the encoding bandwidth. To simulate

myelination of the axonal section, starting 60 μm from the soma, the specific membrane con-

ductance was decreased 50 fold to 6.6�10−7S/cm2. The specific membrane capacitance was

decreased 37.5 fold to 0.02μF/cm2. xNa is 40μm. ka is 6mV. The firing rate is fixed at 5 Hz, and

CV of ISI is 0.85. With a myelinated axon, the threshold is lower and therefore, AP initiation

dynamics is slower (A and C). Bandwidth of the dynamic gain functions is hardly changed

compared to those of the Brette’s original model (B and D).

(PDF)
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