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Recurrent networks are widely used as models of biological neural circuits and in artificial intelligence
applications. Mean-field theory has been used to uncover key properties of recurrent network models such as the
onset of chaos and their largest Lyapunov exponents, but quantities such as attractor dimension and Kolmogorov-
Sinai entropy have thus far remained elusive. We calculate the complete Lyapunov spectrum of recurrent neural
networks and show that chaos in these networks is extensive with a size-invariant Lyapunov spectrum and
attractor dimensions much smaller than the number of phase space dimensions. The attractor dimension and
entropy rate increase with coupling strength near the onset of chaos but decrease far from the onset, reflecting a
reduction in the number of unstable directions. We analytically approximate the full Lyapunov spectrum using
random matrix theory near the onset of chaos for strong coupling and discrete-time dynamics. We show that
a generalized time-reversal symmetry of the network dynamics induces a point symmetry of the Lyapunov
spectrum reminiscent of the symplectic structure of chaotic Hamiltonian systems. Temporally fluctuating input
can drastically reduce both the entropy rate and the attractor dimension. We lay out a comprehensive set of
controls for the accuracy and convergence of Lyapunov exponents. For trained recurrent networks, we find that
Lyapunov spectrum analysis quantifies error propagation and stability achieved by different learning algorithms.
Our methods apply to systems of arbitrary connectivity and highlight the potential of Lyapunov spectrum analysis
as a diagnostic for machine learning applications of recurrent networks.

DOI: 10.1103/PhysRevResearch.5.043044

I. INTRODUCTION

A major challenge in theoretical neuroscience, machine
learning, and statistical physics is to develop mathematical
concepts to characterize high-dimensional activity and find
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collective degrees of freedom and information representations
of strongly interacting populations of elements, such as neu-
rons. What mechanisms determine the diversity of collective
activity in recurrent networks and how can it be quanti-
fied? What are the number of stable and unstable directions
along the trajectory and how does this relate to trainability
of networks? We address these long-standing questions using
firing-rate networks.

Theoretical work suggested that complex rate activity in
neural systems may originate from chaotic dynamics in recur-
rent networks. A seminal study showed that in large networks
of randomly connected firing-rate units chaotic dynamics does
not emerge through a transition scenario consisting of a se-
quence of increasingly more complex forms of motion but
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FIG. 1. Transition to chaos for sufficiently strong coupling g in
rate networks. (a) Linear stability of rate dynamics near the zero
fixed point. Real vs imaginary part of eigenvalues λ̂i of the stability
matrix for g = 0.99. (b) For subcritical couplings (g = 0.99) the
trivial fixed point of the system hi = 0 is the only stable solution.
(c) In large networks the trivial fixed point loses stability at gcrit = 1
and chaos emerges from the nonlinear interaction of rate units where
the spectral radius crosses unity (gray dotted line). (d) Rate chaos for
g = 1.2 (other parameters: network size N = 1000, integration step
�t = 10−3τ ).

through a single sharp transition from an inactive state to
a chaotic state [1] (Fig. 1). In this class of models, each
rate unit maps its synaptic input hi smoothly into a fir-
ing rate through a hyperbolic tangent input-output transfer
function φ. Coupling strengths are drawn independently from
a Gaussian distribution with zero mean and standard deviation
g/

√
N , where N is the size of the network. Dynamic mean-

field theory is applicable in the large network limit N → ∞.
In this approach, the recurrent input into a typical unit is
modeled by a Gaussian process whose statistics is determined
self-consistently. For small coupling g < 1, the trivial fixed
point hi = 0 for all i is the only stable solution to the mean-
field theory [Figs. 1(a) and 1(b)]. For increasing coupling
strength, this trivial fixed point loses stability and chaos
emerges from the nonlinear interaction of unstable activity
modes [Figs. 1(c) and 1(d)]. Sompolinsky, Crisanti, and Som-
mers showed that in the large network limit N → ∞ above
a critical strength gcrit = 1, the only stable self-consistent so-
lution is chaotic dynamics [1]. The transition to chaos occurs
when the spectral radius λ̂max of the stability matrix obtained
from linearizing the rate dynamics around the fixed point
hi = 0 crosses unity [Figs. 1(a) and 1(c)].

This classical work has been extended, and the transition
has been studied for networks with different subpopulations
[2–4], various input-output transfer functions [2,4], bistable
units [5], adaptation [6], sparse balanced network architec-
tures [2,4,7], and external stimuli [8–11]. For networks of
spiking model neurons, quantitative agreement with a corre-
sponding chaotic rate network in the limit of slow synaptic
dynamics was found [4,7] (see also [12]).

The chaotic, heterogeneous state of rate networks
possesses high computational capabilities. These arise
from its rich internal dynamics that can provide a substrate
for complex nonlinear computations, e.g., implementing
input/output maps [13–15] and learning temporal sequences
[16]; however, it is a challenge to extend this to spiking neural

networks [17–21]. Some studies proposed that computational
features are favorable near to or even slightly beyond the
so-called edge of chaos in the chaotic regime [11,15,22–27].
It was claimed and questioned much earlier in dynamical
systems research that the edge of chaos is computationally
advantageous [28–30].

Recent developments in machine learning, including the
renaissance of deep networks, have sparked additional inter-
est in principles of stability and information processing in
recurrent rate networks [31,32]. One reason for this is that
recurrent networks can be unrolled in time into infinitely
deep feed-forward networks with tied weights [33]. To avoid
vanishing or exploding gradients during learning, this analogy
suggests that learning in deep nonlinear networks is facilitated
if the weights are initialized such that the corresponding recur-
rent networks are close to the edge of chaos (gcrit = 1) [31,34–
37]. Intriguingly, transient rate chaos yields exponential ex-
pressivity in deep networks [32,38,39].

Here we calculate the full set of Lyapunov exponents of
classical continuous-time firing-rate networks. Previous ana-
lytical studies only considered the largest Lyapunov exponent,
but the full Lyapunov spectrum provides valuable additional
insights into the collective dynamics of firing-rate networks.

We use concepts from the ergodic theory of dynamical sys-
tems to further characterize the complex collective dynamics
of rate networks. Often large-scale dissipative systems evolve
towards a low-dimensional attractor, but it is a challenge to
identify and characterize this lower-dimensional manifold.
Ergodic theory provides an estimate of the attractor dimen-
sionality by characterizing the diversity of collective network
activity states [40]. It also provides access to the dynamical
entropy rate, which measures the amplification of uncertainty
due to sensitivity to initial conditions. The dynamical en-
tropy rate constrains the capability of information processing.
Given that the initial state is known only with finite precision,
the sensitive dependence on initial conditions makes predic-
tions of future states impossible in chaotic systems [41,42].
This corresponds to a dynamical entropy rate because nearby
states, which cannot be distinguished by a finite precision
readout initially, are pulled apart by the chaotic dynamics and
become distinguishable later on. Therefore, the dynamical en-
tropy rate quantifies the speed at which microscopic perturba-
tions affect macroscopic rate fluctuations [41]. Sensitivity to
initial conditions in cortical circuits might serve as a dynami-
cal mechanism to pull nearby trajectories apart [43–45]. If the
microscopic initial state contains a relevant signal, the dynam-
ical entropy rate measures the rate by which this information
becomes accessible. From a neural coding perspective, the
dynamical entropy rate can contribute to the so-called noise
entropy [46] because the dynamic amplification of micro-
scopic noise by chaotic dynamics can impair coding capacity.

Both the dynamical entropy rate and attractor dimension-
ality are invariants of dynamical systems, i.e., they do not
change under diffeomorphisms of the phase space [47–50]
and can be obtained from the set of Lyapunov exponents [51].
This is the only known general way of calculating the entropy
of a high-dimensional differentiable dynamical system [40].
Sampling-based methods, such as the Grassberger-Procaccia
algorithm [52–54], which estimates the correlation dimension
D2, are intractable for high-dimensional systems, because the
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amount of data required to estimate the dimensionality D
scales exponentially with the dimensionality D itself [55–58].

Outline

After introducing the model in Sec. II, we demonstrate
extensive entropy rate and dimensionality of canonical chaotic
rate networks in Sec. III. Moreover, we show that both the
dynamical entropy rate and the attractor dimensionality peak
with coupling strength g, while the largest Lyapunov exponent
keeps growing with large g. We also find that time discretiza-
tion increases both the entropy rate and dimensionality. Using
random matrix theory, we analytically approximate the full
Lyapunov spectrum in several limiting cases in Sec. IV. In
Sec. V, we extend the analysis to a balanced network of
threshold-linear units. In Sec. VI we show the point symme-
try of the Lyapunov spectrum of continuous-time networks
around the negative inverse timescale. We demonstrate in
Sec. VII that the first covariant Lyapunov vector is extended.
In Sec. VIII, we find that time-varying input reduces both the
entropy rate and dimensionality. Finally, in Sec. IX, we use
Lyapunov spectra to quantify the stability of trained networks,
calculate Lyapunov spectra of LSTM networks in Sec. X and
describe in Sec. XI a mathematical link between gradients of
backpropagation through time and the Lyapunov spectrum.

II. MODEL

We study the dynamics of a randomly wired network of
nonlinear firing-rate units. The dynamics of the state hi for
i = 1, 2, . . . , N , of each firing-unit follows [1]

τ
dhi

dt
= Fi = −hi +

N∑
j=1

Ji jφ(h j ). (1)

Here hi is the total synaptic current received by firing-rate
unit i and τ is the rate-unit time constant. We draw indepen-
dent identically distributed entries of the coupling matrix Ji j

from a Gaussian distribution Ji j ∼ N (0, g2/N ), remove self-
coupling by setting Jii = 0, and choose the transfer function
φ(x) = tanh(x) [1].

III. LYAPUNOV SPECTRUM OF CLASSIC
RECURRENT NEURAL NETWORKS

To calculate the Lyapunov spectrum, we evaluate the Ja-
cobian of the flow of the dynamics. This measures how
infinitesimal perturbations of the network state evolve in the
tangent space along the trajectory hi. The instantaneous Jaco-
bian is given by

Di j (ts) = ∂Fi

∂h j

∣∣∣∣
t=ts

= −δi j + Ji jφ
′(h j (ts)). (2)

Thus, in our case, the Jacobian is a negative identity matrix
plus the coupling matrix with columns scaled by the squared
hyperbolic secant φ′ = sech2 of the network activity states hi.
For strong g, the variance of hi increases proportional to g2

[59] and most rates are in the saturated regime, so sech2(hi ) ≈
0 for most i and hence most columns of Di j (ts) are close
to zero, aside from the diagonal entries. The full Lyapunov
spectrum λmax � λ2 · · · � λN is obtained by a reorthonormal-
ization procedure [60], which is described in detail in the

(a) (b)

(d)(c)

FIG. 2. Extensive chaos revealed by the size invariance of the
Lyapunov spectrum. (a) Full Lyapunov spectra for different network
sizes N are on top of each other, indicating an identical shape (light
gray thick: N = 500, dark gray thin: N = 200, black: N = 10 000).
The Lyapunov spectrum is point symmetric around the mean Lya-
punov exponent λ̄ = −1/τ (see analytical derivation in Sec. VI and
Appendix D). (b) The largest Lyapunov exponent quickly saturates
with network size. (c) The Kolmogorov-Sinai entropy rate H grows
linearly with N as shown over two orders of magnitude. (d) The same
holds for the attractor dimensionality D (black dots: Jacobian-based
method, red lines: best fit, other parameters: g = 10, �t = 0.1τ ,
tONS = τ , tsim = 103τ ).

Supplemental Material [61], including a detailed analysis of
the convergence of the Lyapunov spectra.

A. Extensive spatiotemporal network chaos

In dissipative systems, trajectories converge towards
a lower-dimensional attractor. The dimensionality of this
attractor can be constant, proportion to the size of the system,
or have other more complex dependencies. If it is proportional
to the system’s size, the system is called extensive. This occurs
when the shape of the Lyapunov spectrum is invariant with
system size, which also implies an extensive entropy rate.

In the case of the firing-rate networks studied here, we find
extensive chaos, indicated by the invariance of the shape of
the Lyapunov spectrum to network size N [Fig. 2(a)] for suffi-
ciently large networks (although the structure of the attractor
depends on the realization of the connectivity Ji j). The Lya-
punov spectrum is point symmetric around its constant mean
value −1/τ . We will investigate the origin of the symmetry
of the Lyapunov spectrum in Sec. VI. The largest Lyapunov
exponent quickly saturates as a function of network size
[Fig. 2(b)]. We investigate the finite-size effect on the largest
Lyapunov exponent, its convergence to the value predicted by
dynamic mean-field theory, and the finite-size effect in the
transition to chaos gcrit in Appendix B. The entropy rate H ,
also called the Kolmogorov-Sinai entropy rate, quantifies the
amplification of small state differences by the chaotic dynam-
ics. While formally defined via partitions of the phase space,
it is under weak mathematical constraints given by the sum of
the positive Lyapunov exponents: H = ∑

λi>0 λi (see Supple-
mental Material [61] on Kolmogorov-Sinai entropy rate and
Kaplan Yorke attractor dimensionality). For a size-invariant
Lyapunov spectrum, it also grows linearly, as demonstrated
over two orders of magnitude in Fig. 2(c). The same is true
for the attractor dimensionality [Fig. 2(d)], which is given by
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(a) (b)

(d)(c)

FIG. 3. Entropy rate and attractor dimensionality of tanh firing-
rate network dynamics. (a) Full Lyapunov spectra of rate networks
with different coupling strengths g, color coded from blue (small
g) to red (large g). (b) The largest Lyapunov exponent shows the
theoretically predicted linear growth for g < 1 and first quadratic and
then logarithmic growth for g > 1 as a function of g [1]. (Green dots:
direct numerical simulations, black line: Jacobian-based method.)
(c) The dynamical entropy rate H grows with g for moderate values
of g but peaks (see Fig. 4 for large g behavior). (d) Relative attractor
dimensionality D/N peaks at D/N < 10% [see Figs. 4 and 5(a) for
large g behavior]. (Averages over 20 network realizations in black,
red error bars indicate double std across 20 network realizations,
parameters: N = 1000, �t = 10−2τ , tsim = 104τ , tONS = τ ).

the interpolated number of Lyapunov exponents that sum to
zero,

D = k +
∑k

i=1 λi

|λk+1| with k = max
n

{
n∑

i=1

λi � 0

}
. (3)

Intuitively, the attractor dimension is the dimensionality of the
highest dimensional infinitesimal hypersphere, whose volume
does not shrink or grow through the chaotic dynamics. In other
words, on the attractor, growth along unstable manifolds is
being compensated by shrinking along the stable manifolds.
Thus, a D-dimensional hypersphere is merely deformed over
time, with the volume preserved on average.

The extensivity of the Lyapunov spectrum for continuous-
time rate networks was conjectured earlier [1], but never
before demonstrated. Extensive chaos is often found in ex-
tended systems that are decomposable into locally interacting
subsystems, whose number grows linearly with system size
[62]. As this is not fulfilled for this fully randomly connected
rate network, extensive chaos in our networks is not a trivial
property. Globally coupled networks, for instance, can exhibit
nonextensive chaos [63].

B. Entropy rate and dimensionality

Next, we investigate the role of the synaptic coupling
strength g (Fig. 3). The full Lyapunov spectrum shows an in-
teresting dependence on g. For increasing g, the first half of the
Lyapunov spectrum is increasingly curved [Fig. 3(a)]. Note
that the Lyapunov spectrum is point symmetric for all values
of g. The largest Lyapunov exponent shows the theoretically
predicted g-dependence in the stable regime g < 1 [Fig. 3(b)].
In the chaotic regime g > 1, it grows first quadratically and
then logarithmically with g in agreement with previous find-

(a) (b)

(d)(c)

FIG. 4. Peak in dynamical entropy rate and attractor dimension-
ality for large g. (a) For increasing coupling strength g, the Lyapunov
spectrum is increasingly bent upward with a decreasing fraction of
positive Lyapunov exponents (N = 2000). (b) The largest Lyapunov
exponent grows monotonically for increasing values of g as predicted
analytically [see Fig. 21(b)]. For very large g, the largest Lyapunov
exponents flattens (black lines, N = 2000; orange lines, N = 3000).
Increasing N reduces the flattening, indicating a finite N effect on
λmax. (c) The dynamical entropy rate H peaks as a function of g.
(d) The relative attractor dimensionality D/N also peaks as function
of g. Both positions of the peak in D and H do not shift with
N indicating that the peak is not a finite N effect. (Parameters:
relative tolerance = 10−10, tONS = τ , tsim = 103τ , averages across
three network realizations).

ings [1,59]. Note that the asymptotic large g behavior λmax ∝
log(g) is only expected when first N → ∞ and then g → ∞.
The calculation of the largest Lyapunov exponent is confirmed
both by tracking the amplitude of a small perturbation in
direct numerical simulations and by using the Jacobian-based
method [60] [Fig. 3(b)]. While the exponential separation rate
of nearby trajectories increases for growing g, the overall
dissipation of the system, measured by the mean Lyapunov
exponent λ̄ = 1

N

∑
i λi is independent of g and only depends

on the time constant τ . The reasons for this are provided
in Appendix D. We now focus first on the entropy rate and
attractor dimensionality.

The dynamical entropy rate is zero for g � 1 and first
grows for increasing values of g [Fig. 3(c)]. Our numerical
results show that for very large g, the dynamical entropy rate
peaks with g (see Fig. 4) Indeed, we show that Hτ < D < N
(Appendix F), when measuring H in units of nat/τ . Again,
this asymptotic behavior is only expected when first sending
N and then g → ∞. In case the specific initial state of the
network does not encode relevant information, the growth of
the entropy rate with g can be interpreted as an increasing
contribution to noise entropy.

We found that the attractor dimension first increases with
g [Fig. 3(d)] in the chaotic regime g > gcrit and peaks as a
function of g at less than 10% of the number of phase space
dimensions N [Fig. 5(a), see also Appendix F for large g
behavior]. This suggests that despite vanishing pairwise cor-
relations [1], rate unit activities are not independent of each
other. Even for strongly chaotic networks, the strange attractor
of the network dynamics does not fill the entire phase space
but only a small but extensive fraction of it. Note that the

043044-4



LYAPUNOV SPECTRA OF CHAOTIC RECURRENT … PHYSICAL REVIEW RESEARCH 5, 043044 (2023)

(a) (b)

FIG. 5. PCA and attractor dimensions of networks with tanh
transfer function. (a) Principal component analysis (PCA)-based di-
mensionality estimate (green) and attractor dimension based on the
Lyapunov spectrum (black) for different values of synaptic strength
g. Both PCA dimensions saturate for g 	 1, but they saturate at
different levels and with distinct exponential rates, while the attractor
dimension peaks (error bars are double std across 20 network real-
izations). PCA dimension estimate of dynamics depends on whether
tanh(hi ) or hi is considered. (b) Both PCA-based dimensionality
estimates are extensive, as indicated by the approximately linear
growth with N (other parameters: N = 1000 for (a), g = 10 for (b),
�t = 0.1τ , tONS = τ , tsim = 104τ ).

geometric structure of the attractor nevertheless changes when
g is further increased.

C. Lyapunov spectra for large coupling g

For very large values of g, we observe that both attractor
dimensionality D and dynamical entropy rate H peak as a
function of g (Fig. 4). For increasing network size N , this
peak does not vanish or shift, indicating that it is not merely a
finite-size effect. The peak in both H and D can be explained
by a growing fraction of rate units in saturation and, therefore,
increasingly sparse Jacobian Di j (ts), thus fewer active units
at each moment and resulting in fewer unstable phase space
directions as indicated by the decreasing number of positive
Lyapunov exponents. Our seemingly contradictory claim of
decreasing dynamical entropy rate H despite a growing largest
Lyapunov exponent for large g are consistent for large N
and finite g, where the relative contribution of the largest
Lyapunov exponent to the sum of the positive Lyapunov ex-
ponents vanishes.

D. Comparison of attractor dimension and PCA dimension

In experimental and theoretical neuroscience, dimension-
ality estimates of the network activity based on principal
component analysis (PCA) are commonly used [9,10,64–69],
e.g., to quantify the spatiotemporal complexity of neural ac-
tivity in a data set. We compared the attractor dimensionality
with a dimensionality estimate based on second-order statis-
tics of the activity hi and φ(hi ) given by the effective number
of principal components that account for most of the vari-
ance (Supplemental Material [61] for details and definition
of PCA-dimension via participation ratio of the normalized
eigenvalues of the covariance matrix of hi or φ(hi )).

We found that a PCA-based dimension strongly differs
depending on whether it is estimated based on the statistics
of the firing rates φ(hi ) or on hi (Fig. 5). The finding that
Dφ(h)

PCA > Dh
PCA is explained by the fact that the sigmoid shape

of φ removes variance from the high-variance directions,
thus a larger number of PCs is needed to explain the same
fraction of the total variance. This is analogous to previous
findings in feed-forward networks [66]. Generally, we find for
all dimensionality estimates growth of dimension with g in
weakly chaotic networks. However, for large g 	 1, we find
a peak and subsequent slight decay of the attractor dimension
[Figs. 4 and 5(b)]. In contrast, both PCA dimensions saturate
for g 	 1, but they saturate at different levels and with distinct
rates. The PCA-based dimensionality [both based on hi and
φ(hi )] grows extensively with network size N , as does the
attractor dimensionality [Fig. 5(b)].

PCA-based estimates of dimension are generally not in-
variant with respect to changes of coordinates and can be
misleading if applied to limited data sets. Extensivity of the
PCA-based dimension does not generally imply extensiv-
ity of the attractor dimension, nor vice versa. In addition,
PCA analyses, because they are based on a pairwise corre-
lation function, can miss low-dimensional structure hidden in
higher-order correlations. In general, the PCA-based dimen-
sion can both under- and overestimate the attractor dimension
[as in Fig. 5(a)].

E. Lyapunov spectrum of discrete-time firing-rate network

The dynamics of discrete-time rate networks has attracted
much attention because of its mathematically simplicity
[8,67,70–73]. We next assess the effect of introducing finite
temporal discretization. Here we aim to understand the impact
of time discretization on chaotic dynamics. We thus set τ = 1
and study the evolution of the map

hi(ts + �t ) = fi = (1 − �t )hi(ts) + �t
N∑

j=1

Ji jφ(h j (ts)).

In the limit �t → 0, a continuous-time dynamics
[1,2,11] is recovered. For �t = 1, the discrete-time network
[8,8,72,73] is obtained.

The Jacobian for the discrete-time map is

Di j (ts) = ∂ fi

∂h j

∣∣∣∣
t=ts

= (1 − �t )δi j + �t · Ji jφ
′(h j (ts)). (4)

The full Lyapunov spectrum is again obtained by a reorthonor-
malization procedure of the Jacobians along a numerical
solution of the map [60]; for details, see Supplemental Ma-
terial [61].

Time discretization has a drastic effect on the Lyapunov
spectrum (Figs. 6 and 7). In discrete-time networks (�t =
1), the Lyapunov spectrum is not point symmetric anymore
[Fig. 6(a)]. The largest Lyapunov exponent grows slowly as a
function of coupling strength g [Fig. 6(b)], as expected from
previous analytical results [8]. However, the slow increase
of the largest Lyapunov exponent with coupling strength g
is overcompensated by a faster decay of the number of pos-
itive Lyapunov exponents, which results in a peak of both
dynamical entropy rate H [Fig. 6(c)] and attractor dimension-
ality D [Fig. 6(d)]. For increasing g, the Lyapunov spectrum
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(a) (b)

(d)(c)

FIG. 6. Lyapunov spectra of discrete-time networks. (a) Full
Lyapunov spectra of discrete-time rate networks with different cou-
pling strengths g, color coded from blue (small g) to red (large g).
(b) The largest Lyapunov exponent grows as expected monotonically
as a function of g [8]. (c) The dynamical entropy rate H peaks with
coupling strength g. (d) Relative attractor dimensionality D/N also
peaks. (Averages over 10 network realizations in black, red error
bars indicate double std across 10 network realizations, parameters:
N = 1000, �t = τ , tsim = 105τ , tONS = τ ).

bends down to strongly negative values. This is because as
g increases, the variance of rate units grows, resulting in a
larger fraction of units in saturation. The Jacobian becomes
column-sparse and rank-deficient, leading to sparse tangent
space dynamics. As described later, this means that an in-
creasing fraction of directions in tangent space can not carry
any error signals when training with backpropagation through
time (see Appendix E). In the discrete-time case, no intrin-
sic timescale of decay from a leak term is present, and the

(a) (b)

(d)(c)

FIG. 7. Full Lyapunov spectrum for different time discretization
�t . (a) The full Lyapunov spectrum reveals drastic changes for
increasing �t . For finite �t , the Lyapunov spectrum loses its sym-
metry (see also Fig. 8 and compare with Fig. 3). While the majority
of Lyapunov exponents decrease for increasing �t , the number of
positive exponents increases. (b) The largest Lyapunov exponent
converges for small �t . For increasing �t , it first decreases and then
increases moderately. (c) The dynamical entropy rate converges for
small �t and increases for large �t . (d) The attractor dimensionality
behaves similarly to the dynamical entropy rate, (other parameters:
N = 1000, g = 10, tONS = τ , tsim = 104τ ; averages across 10 net-
work realizations).

(a) (b)

FIG. 8. Point symmetry of Lyapunov spectrum in continuous-
time limit �t → 0 and mean Lyapunov exponent λ̄. (a) For �t →
0, the Lyapunov spectrum approaches point symmetry around i =
N/2 and λi = − 1

τ
, as shown by the convergence of the Lyapunov

spectrum towards point symmetry, so A = 1
N

∑
i |λi + λN+1−i − 2λ̄|

converges towards zero. The Lyapunov spectrum is only point sym-
metric in the limits N → ∞ and �t → 0. (b) The mean Lyapunov
exponent λ̄ converges for small �t towards −1/τ . For finite �t , the
mean Lyapunov exponent can be approximated analytically (see Ap-
pendix D). (Other parameters: N = 1000, g = 10, tONS = τ , tsim =
104τ ; averages across 10 network realizations.)

last Lyapunov exponent becomes progressively more negative
[Fig. 6(a)], indicating a rapid divergence of the condition
number of the long-term Jacobian Tt (x0). From a machine
learning perspective, the leak term can be interpreted as a
mimicking skip connection that preserves information of the
network state across (unrolled) layers even if the rate units are
saturated, thus ameliorating the problem of vanishing gradi-
ents [74]. Next, we study the effect of gradually decreasing
the time-discretization �t . At finite �t , the Lyapunov spec-
trum loses its symmetry [Fig. 7(a)]. We demonstrate that the
Lyapunov spectrum approaches point symmetry around λi =
− 1

τ
and i = N/2 for �t → 0 by showing convergence of the

Lyapunov spectrum towards its point reflection. We quantify
deviations from point symmetry by 1

N

∑
i |λi + λN+1−i − 2λ̄|;

for perfectly point symmetry Lyapunov spectra it would be
zero [Fig. 8(a)]. Even for very small �t , however, there exists
a small asymmetry because of the neutral Lyapunov exponent.
Removing the neutral Lyapunov exponent, which is associated
with a perturbation in the direction of the flow (λneutral = 0),
improves the point symmetry of the Lyapunov spectrum. Note
that the symmetry of the Lyapunov spectrum originates in the
approximate time-reversal symmetry of the dynamics, which
only becomes exact in the limit of large N (see Sec. VI). Thus,
the Lyapunov spectrum is only point symmetric in the limits
N → ∞ and �t → 0.

While the largest Lyapunov exponent changes only
moderately—and nonmonotonously—as the step size in-
creases [Fig. 7(b)], the dynamical entropy rate and attractor
dimensionality both strongly grow for large �t [Figs. 7(c) and
7(d)]. This growth of entropy rate and dimensionality is pri-
marily caused by an increasing number of positive Lyapunov
exponents [Fig. 7(a)]. At the same time, the negative end of the
Lyapunov spectrum decreases drastically [Fig. 7(a)]. This also
strongly lowers the mean Lyapunov exponent [Figs. 7(a) and
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(a) (b)

(d)(c)

FIG. 9. Analytical approximations of the full Lyapunov spectrum. (a) Lyapunov spectra of autonomous continuous-time rate networks for
different coupling strengths g, where g is color-coded from purple (small g) to red (large g), dashed lines are analytical results [Eq. (13)] for
the stable case and for g → g+

crit [Eq. (17)], full transparent lines are numerical results. (b) In the discrete-time case without leak (�t = 1),
the Lyapunov spectrum is invariant under shuffling for any g and can be approximated analytically by the triangle law for small g [Eq. (19)].
(c) Lyapunov spectra of autonomous continuous-time rate networks for g 	 1. For large g, the Lyapunov spectrum becomes invariant under
shuffling the temporal sequence of Jacobians at fixed �t = 0.1. (d) Lyapunov spectra of driven continuous-time rate networks for different
input strength σ at fixed g = 1000. Again, for large g and σ , the Lyapunov spectrum becomes invariant under shuffling the temporal sequence
of Jacobians at fixed �t = 0.1, and the full Lyapunov spectrum can be approximated by a product of random matrices with entries given by
Eq. (10). (Parameters if not stated differently: for g = 1.2 in (a) N = 8000 and tsim = 103τ , else N = 1000, tsim = 104τ , �t = 0.1τ , tONS = τ ).

8(b)]. The mean Lyapunov exponent λ̄ converges for small �t
towards −1/τ . The dependence of the mean Lyapunov expo-
nent on �t can be approximated analytically using random
matrix theory by (Appendix D)

λ̄(�t ) = log(1 − �t )

τ�t
. (5)

This analytical result agrees well with numerical simulations
[Fig. 8(b)].

IV. ANALYTICAL APPROXIMATIONS
FOR THE FULL LYAPUNOV SPECTRUM

The full Lyapunov spectrum is given by the logarithm of
the eigenvalues of the Oseledets matrix � [75],

� = lim
t→∞

[
T


t Tt
] 1

2t . (6)

where Tt is the long-term Jacobian

Tt (h0) = Dt−1(ht−1) . . . D1(h1)D0(h0) (7)

As Tt (h0) is a product of generally noncommuting matrices, it
is considered difficult to calculate the full Lyapunov spectrum

analytically [76]. However, we identified several limits where
temporal correlations between subsequent Jacobians vanish
and analytical random matrix approximations are justified
[76]. First, we demonstrate an approximation for the stable
regime g < gcrit, second in the chaotic regime just above the
transition g → g+

crit, third in the limit of large g → ∞, fourth
when each rate unit is driven by strong Gaussian white noise
process with standard deviation σ in the limit σ → ∞ (see
Sec. VIII for definition), and finally in the discrete-time case
without a leak τ = �t = 1. In the discrete-time case, we cal-
culate the full Lyapunov spectrum analytically for hard tanh
networks for arbitrary g and give expression for H and D. We
first numerically confirmed that in the limits mentioned above,
the Lyapunov spectrum becomes invariant under shuffling the
sequence of Jacobians (Fig. 9) and then found explicit or
implicit expressions for the full Lyapunov spectrum in sev-
eral cases. In the limits we are discussing in the following,
the long-term Jacobian can be approximated by a product of
random matrices of the form of Eq. (10),

Tt =
t−1∏
s=0

Ds =
t−1∏
s=0

[(1 − �t )1 + �t · J · ys]
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0 0.2 0.4 0.6 0.8 1

10 -2

10 0

10 2

0 = 0.5

0 = 1.0

0 = 2.0

FIG. 10. Distribution of Jacobian factors φ(h)′. Colored dots are
from direct numerical simulations and grey dashed lines analytical
distributions [Eq. (9)] for different values of variance �0 of the local
fields h. For small �0, most probability mass is close to 1. For
large �0, the distribution becomes bimodal because most units are
in saturation of the nonlinearity with corresponding y close to zero
and few y near 1. The values of �0 ∈ {0.5, 1.0, 2.0} correspond to
g ∈ {1.36457, 1.62321, 2.0271} and λ1 ∈ {0.0299, 0.0627, 0.116}.

We calculated the distribution of entries of the Jacobian ana-
lytically in the limit N → ∞, where all hi follow a Gaussian
distribution h ∼ N (0,�0). First, we calculated the distribu-
tion of y = φ′ analytically:

p(y) =
∫

dh δ(y − φ′(h))
e− h2

2�0√
2π�0

(8)

= exp
(− ln(1/

√
y±√

1/y−1)
2�0

)√
2π�2

0|2y
√

1 − y|
(9)

with support y ∈ [0, 1], where �0 is obtained analytically
from dynamic mean-field theory [1]. We can thus write the
Jacobian as

Di j (ts) = (1 − �t )δi j + �t · Ji jy j, (10)

where y j are random numbers drawn from the distribution in
Eq. (9). The analytically predicted distributions p(y) are in
excellent agreement with the results from direct numerical
simulations (Fig. 10). We next describe these different ana-
lytically tractable cases in more detail starting with g < 1. In
the stable regime g � gcrit, the Lyapunov spectrum is given
by the real parts of the eigenvalue spectrum of the stability
matrix [Eq. (2)]. Because the trivial fixed point hi = 0 for all i
is the only stable solution for large N , Eq. (2) reduces to Di j =
Ji j − δi j . For Ji j drawn from a Gaussian distribution Ji j ∼
N (0, g2/N ), we find that the real parts of the eigenvalues
of Di j follow the right-shifted Wigner semicircle distribution
[76–78]:

p(x) = 2

2πg2

√
g2 − (x + 1)2 (11)

with support x ∈ [−g − 1, g − 1]. Note that this is not only
expected for Ji j drawn from a Gaussian distribution, but

generally for many random matrix ensembles [79]. The cu-
mulative distribution function is given by

χ (x) = 1

2
+

arcsin
(

x+1
g

)
π

+ (x + 1)
√

g2 − (x + 1)2

πg2
. (12)

The Lyapunov spectrum in the stable regime follows from the
inverse,

λi = χ−1

(
N − i + 1

N

)
. (13)

with i
N ∈ [0, 1] and λi ∈ [−g − 1, g − 1], and with λi mea-

sured in units of 1/τ . The analytical Lyapunov spectra are
in excellent agreement with the results from direct numerical
simulations [Fig. 9(a), purple (g = 0.2) and maroon (g = 0.7)
lines].

Next, we consider the limit g → 1+ close to the transition
to chaos. For that, we need to estimate both the distribution
of Jacobian entries and their autocorrelations. The autocorre-
lations of the activity

�i(t
′) = 〈δhi(t )δhi(t + t ′)〉 (14)

can be solved self-consistently [1,59]. Close to the chaotic
instability g → g+

crit, the autocorrelations are approximately
[1,59]

�(t ′) = (g − 1)sech

(
t ′(g − 1)√

3

)
+ O((g − 1)2). (15)

Thus, the timescale of the autocorrelations of hi diverges
when approaching gcrit with τh = √

3/(g − 1) [1]. From
limg→1+ �0 = g − 1 follows that limg→1+ φ(hi(t )) = hi(t ).
Therefore the autocorrelations of Di j diverge with the same
time constant τ−1

D = (g − 1)/
√

3 and subsequent Jacobians
are almost identical. Consistent with these analytical con-
siderations, numerical simulations show that for g � 1 the
Lyapunov spectrum obtained after shuffling the sequence of
(almost identical) Jacobians is almost the same. Thus, we con-
jecture that the Lyapunov spectrum is given by the logarithms
of the singular values of a product of almost identical random
matrices, which is still approximately given by the Wigner
semicircle distribution [76,78]

χchaos(x) = 1

2
+

arcsin
( 2(x+1)

(x−2)x+3

)
π

+ 2(x + 1)
√

((g − 1)2 − 2x)(2x + (g − 2)g + 5)

π ((x − 2)x + 3)2

with support x ∈ [−2τ − λmax, λmax]. Here, we used the ana-
lytical knowledge of the largest Lyapunov exponent obtained
from dynamic mean-field theory [1,59], which behaves in the
limit g → g+

crit = 1+ as

λmax(g) = 1
2 (g − 1)2 + O((g − 1)3). (16)

The Lyapunov spectrum in the chaotic regime for g → g+
crit

follows the inverse of χchaos:

λi = χ−1
chaos

(
N − i + 1

N

)
. (17)

The analytical Lyapunov spectra are in good agreement with
the results from direct numerical simulations [Fig. 9(a), red
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line for g = 1.2]. The approximation breaks down if g is too
large and becomes more accurate as g → g+

crit.
Next, we consider the limit of large g → ∞. Expanding

the solution to the self-consistency equation for the autocorre-
lation of the local fields h in this limit around t ′ = 0 yields in
that case

�(t ′) = g2�0 − g2(1 − �0)
t ′2

2
+ O(t ′4) (18)

with �0 = 2(1 − 2/π ) [1,59]. But how can we deal with
correlations between subsequent Jacobians? We note that the
autocorrelations of the Jacobians become arbitrary short in the
limit of large g, although the autocorrelations of the activity
variables h approach Eq. (18). For large g, the model behaves
like the fully asymmetric Ising spin glass model [59,80].
Substituting �(t ′) = �0 exp(−t ′/τh) into the self-consistency
equation and taking the large t ′ limit yield a relaxation rate
for the autocorrelation equal to τ−1

h = √
1 − 2/π τ−1 [1,59].

Thus, the autocorrelation of Di j relaxes approximately with
τD ∼ τh/g. Intuitively, for large g, the variance �0 grows
quadratically with g (�0 = 2(1 − 2/π )g2) [1,59] [see also
Fig. 21(c)]. Therefore, most rate units are in saturation, and
rate units cross the nonsaturated regime where they are sus-
ceptible to perturbations in shorter time windows. In this limit,
most Lyapunov exponents are close to the negative inverse
of the characteristic timescale −1/τ . This is in contrast to
the case of discrete-time networks where for large g the last
Lyapunov exponent becomes progressively more negative
[see Fig. 6(a)].

From τD ∼ τh/g, it follows that for g → ∞ the Jacobian
become time uncorrelated justifying the random matrix ap-
proximation. As expected, the analytical approximations of
the Lyapunov spectra approach the results from direct numer-
ical simulations when the values of g increase [Fig. 9(c)].

We also find that for strong uncorrelated input (see
Sec. VIII for numerical results), the Lyapunov spectrum be-
comes invariant under shuffling the sequence of Jacobians.
With increasing input drive σ at fixed g, all Lyapunov
exponents converge towards the negative inverse of the char-
acteristic timescale −1/τ (not shown). When simultaneously
increasing g and σ , the Lyapunov spectrum also becomes in-
variant under shuffling the Jacobians [Fig. 9(d)]. In this limit,
the first Lyapunov exponent approaches a finite value.

Finally, in the discrete-time case �t = 1 without a leak,
temporal correlations between subsequent Jacobians can be
neglected for large N [8]. For g → 1+, the Lyapunov spec-
trum can thus be obtained from a product of uncorrelated
Gaussian matrices, whose eigenvalue distribution follows ap-
proximately a triangle law [81,82]. As already pointed out
earlier [83,84], this triangular law also applies to discrete-time
recurrent neural networks and the full Lyapunov spectrum
[Fig. 9(b)] in this limit can thus be approximated by

λi ≈ log

(
exp(λmax) ·

√
1 − i

N

)
= λmax + 1

2
log

(
1 − i

N

)
,

(19)
where the largest Lyapunov exponent λmax can be obtained
analytically as described earlier both in the discrete and
continuous-time case with constant input and additive Gaus-
sian white noise drive [1,2,8,11,59]. However, Eq. (19) only

(a)

(c) (d)

(b)

FIG. 11. Analytical Lyapunov spectrum for hard tanh networks.
(a) Lyapunov spectra of hard tanh network for coupling strengths g ∈
{1, 1.8, 3, 5} and σ 2 ∈ {0, 3, 3, 10} from yellow to red, dashed lines
are analytical results [Eq. (20)], full transparent lines are numerical
results. (b) The largest Lyapunov exponent grows monotonically as a
function of g and decreases with input strength σ 2, consistently with
previous work [8] (dots: Jacobian-based method, lines: analytical
solutions). (c) The dynamical entropy rate H peaks at higher g and
is reduced by external input. (d) The relative attractor dimensionality
D/N decreases for increasing σ and peaks at higher g (curves are av-
erages over 10 network realizations, red error bars indicate double std
across 10 network realizations, parameters: N = 4000, tsim = 103τ ,
tONS = τ ).

gives a good approximation of the full Lyapunov spectrum
for g → 1+. For the hard tanh input-output transfer function
φ(x) = min(1, max(−1, x)), we can calculate the full Lya-
punov spectrum analytically for arbitrary g (Fig. 11):

λi =
{
λmax + 1

2 log
(
1 − i

pN

)
, i � pN

−∞, i > pN
(20)

where p = erf ( 1√
2g�0

) is the average fraction of unsaturated

neurons, obtained from dynamic mean-field theory [8]. The
analytical predictions for the Lyapunov spectra agree well
with the numerical calculations [Fig. 11(a)].

This results in

H

N
= p

(
λ1 + e−2λ1 − 1

2

)
(21)

and

D

N
= p

(
1 − 2λ1 − 1

W [(2λ1 − 1)e2λ1−1]

)
(22)

where W is the Lambert W function. Here the origin of the
peak in H and D as a function of g and σ despite growing
λ1 becomes obvious: The largest Lyapunov exponent keeps
on growing consistently with previous work [8], but H and D
start to decrease for large g because of a shrinking fraction
of unsaturated units p, which makes the Jacobian sparser
proportionally to p. Thus, for growing g, the slow increase
of the largest Lyapunov exponent with coupling strength g is
overcompensated by a faster decay of the number of positive
Lyapunov exponents, which results in a peak of both dynami-
cal entropy rate H and attractor dimensionality D. Increasing
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σ shifts the peak of both H and D to larger g [Figs. 11(c) and
11(d)].

For g → g+
crit, this becomes

H

N
= pλ2

1 = 1

4
p(g − gcrit )

2 (23)

and

D

N
= 2pλ1 = 2p(g − gcrit ) (24)

Thus, close to the transition, H grows quadratic with g −
gcrit while D grows linear, consistent with earlier numeri-
cal observations [84]. Equations (20)–(24) also hold for the
discrete-time threshold-linear transfer function and in the
present of time-dependent external input, but λ1, p and gcrit

then take different values.

V. LYAPUNOV SPECTRUM OF BALANCED
RATE NETWORK WITH THRESHOLD-LINEAR

TRANSFER FUNCTIONS

While odd symmetric saturated sigmoid transfer functions,
e.g., φ(x) = tanh(x) are popular because of their mathemat-
ical tractability [1,59] and because the saturation prevents
runaway activity, the firing rate of many cortical neuron types
seems in a physiological operating regime not to be lim-
ited by intrinsic electrophysiological features. Evidence for
this comes from the observation that artificially driven neu-
rons can fire at much higher rates [85] than they actually
do in experimental recordings of awake behaving animals
[86]. In balanced networks, large externally incoming exci-
tatory currents are dynamically canceled by net inhibitory
recurrent currents, which yields a broad parameter regime
of asynchronous irregular activity in spiking network models
[87–91]. Such balanced state models were recently extended
from spiking networks to firing rate networks [2,4,7,92].

Here we extend our Lyapunov spectrum analysis to bal-
anced networks with a threshold-linear transfer function and
investigate the role of the synaptic coupling strength g on
the Lyapunov spectrum (Fig. 12). Threshold-linear transfer
functions are also commonly used in deep learning [93,94].
Another reason to investigate this transfer function is that
experimentally measured neural nonlinearities in sensory
neurons have been approximated by a power-law threshold
nonlinearity [95–99].

Focus on the dynamics of an inhibitory network of N
threshold-linear rate units that balance a constant excitatory
external input. The dynamics of each firing-rate unit follows

τ
dhi

dt
= −hi +

∑
j

Ji jφ(h j ) + I (25)

where I is a positive constant and φ(x) = max(x, 0). We draw
entries of the coupling matrix Ji j from a Gaussian distribution
Ji j ∼ N (−ḡ/N, g2/N ) (like [2]).

As in the previously considered tanh networks, the first
half of the Lyapunov spectrum is increasingly curved for
increasing g [Fig. 12(a)]. For large g, the network dynamics
turns unstable, and the activities hi diverge [2], therefore there
is no chaotic large g-limit for fixed mean coupling strength
J . The divergence occurs at much larger g than displayed

(a) (b)

(d)(c)

FIG. 12. Entropy rate and dimensionality of a balanced firing-
rate network with threshold-linear transfer function. (a) Top 200
Lyapunov exponents of rate networks for different coupling strengths
g, where g is color-coded from blue (small g) to red (large g). (b) The
largest Lyapunov exponent grows monotonically as a function of
g below the divergence. (Green dots: direct numerical simulations,
black line: Jacobian-based method). (c) The dynamical entropy rate
H peaks with coupling g. (d) Relative attractor dimensionality D/N
has a peak as a function of g, error bars are smaller than line
width. (black curves are averages over 20 network realizations, red
error bars indicate double std across 20 network realizations, pa-
rameters: N = 4000, ḡ = 300, I = 300, tsim = 103τ , tONS = τ , for
(a) g ∈ {1, 2, 5, 7.5, 15}).
in Fig. 12. The largest Lyapunov exponent shows the an-
alytically predicted behavior [2]. We confirmed the results
obtained from the Jacobian-based method [60] by tracking the
amplitude of a small perturbation in direct numerical simu-
lations [Fig. 12(b)]. Similar to tanh networks, the dynamical
entropy rate peaks as a function of g because the growth
of a small fraction of positive Lyapunov exponents is over-
compensated by a decreasing number of positive Lyapunov
exponents for large g [Fig. 12(c)]. We find that the peaks in
H [Fig. 12(c)] and D [Fig. 12(d)] occur at smaller values of
g for balanced threshold-linear networks compared to tanh-
networks [Figs. 4, 5(a), and 5(b)]. Note that there is a striking
difference between the attractor dimension (black) and both of
the PCA-based dimensions in case of threshold-linear transfer
functions. Moreover, there is also a vast difference between
the PCA-based dimension depending on whether it is esti-
mated based on the statistics of the firing rates φ(hi ) or on
hi [Fig. 12(d) light green vs dark green].

VI. POINT-SYMMETRY OF LYAPUNOV SPECTRA
FOR CONTINUOUS-TIME DYNAMICS

A symmetry of Lyapunov spectra around zero is usu-
ally found in dynamical systems with a symplectic structure
[100–104]. This is given, for example, in Hamiltonian sys-
tems, where the Lyapunov spectrum is symmetric around
zero. Symmetry around a negative value was previously de-
scribed in a class of dissipative dynamical systems with
viscous damping [100]. The recurrent neuronal networks we
considered have an asymmetric connectivity Ji j �= Jji. Thus,
there is no conservation of energy and no time-reversal sym-
metry. Also, a pseudo-Hamiltonian structure is not given.
Moreover, our findings indicate that symmetric Lyapunov
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spectra are not a generic feature of recurrent neural networks.
But what is the origin of the symmetry in our case of recurrent
neural firing-rate networks? The symmetry of the Lyapunov
spectrum of recurrent networks in the continuous-time limit
originates in the approximate time-reversal symmetry of the
dynamics. This can be directly seen by a change of variables
into a reference frame that contracts with time. Introducing the
new variables z = e

t
τ h turns the original equation of motion

[Eq. (1)] to

τ
dzi

dt
= e

t
τ

N∑
j=1

Ji jφ
(
e− t

τ z j
)
. (26)

Making the replacement z(t ) = z̃(−t ), gives

τ
dz̃i

dt
= e

t
τ

N∑
j=1

(−Ji j )φ
(
e− t

τ z̃ j
)
. (27)

Thus, with reversed time, one obtains the same dynamics with
coupling matrix J̃i j = −Ji j . J̃i j follows the same distribution
as −Ji j . As for large N , the Lyapunov spectrum does not
depend on the realization of the network connectivity, which
is drawn from a Gaussian distribution Ji j ∼ N (0, g2/N ),
the Lyapunov spectrum is invariant under flipping the sign
of Ji j . Thus, the dynamics is statistically invariant under
time-reversal, where “statistically invariant” means under the
statistics of the connectivity. The Oseledets matrix in the
contracting reference frame is

�̃(z0) = lim
t→∞

[
e− t

τ T̂t (z0)
T̂t (z0)e− t
τ

] 1
2t (28)

= e− 1
τ lim

t→∞[T̂t (z0)
T̂t (z0)]
1
2t (29)

= e− 1
τ �̂(z0). (30)

Growing tangent space volume elements in forward time
correspond to shrinking tangent space volume elements in
backward time. Because of the time-reversal symmetry, they
are approximately inverse, i.e., the eigenvalues μi of the
Oseledets matrix satisfy

e− 1
τ μ+

i ≈ e− 1
τ

1

μ−
N−i+1

(31)

where +(−) indicate forward (backward) time direction.
Thus, the Lyapunov exponents, given by the logarithm of the
eigenvalues of the Oseledets matrix satisfy

λ+
i − 1

τ
≈ − 1

τ
− λ−

N−i+1, (32)

where the factor − 1
τ

comes from the shrinking reference
frame. Note that in contrast to Hamiltonian systems where
the symplectic structure of the Hamiltonian implies an exact
symmetry of the Lyapunov spectrum around zero, here, the
symmetry is only approximate for finite-size networks and
around the negative inverse of the characteristic time scale
due to the global damping on dynamics through the leak term.
Also note that in autonomous systems that are not at a fixed
point, there is always a zero Lyapunov exponent λneutral = 0
corresponding to neutral shifts in the direction of time that
does not have a symmetric analog at λ = − 2

τ
. Finally, we

note that our symmetry argument assumes that there exist sta-
tistically analogous backward trajectories, which is generally
not correct but justified in our case because of the statistical
mirror-symmetry of the connectivity p(Ji j ) around zero. For
example, this does not generally hold after training, where the
negative connectivity J̃i j = −Ji j can yield statistically very
different dynamics.

VII. EXTENDED FIRST COVARIANT LYAPUNOV VECTOR

To quantify how many rate units contribute to the chaotic
dynamics at each moment in time, we investigated properties
of the covariant Lyapunov vectors �v(k)(t ). The first covariant
Lyapunov vector gives at any point in time the direction in
which almost all initial infinitesimal perturbations grow with
average rate λmax. It corresponds to the first Gram-Schmidt
vector and is denoted here as �v with

∑N
i=1 vi(t )2 = 1. The

number of rate units contributing to the maximally growing
direction at time t can be measured by the participation ratio
P(t ) = (

∑N
i=1 vi(t )4)−1 [105–107]. If all rate units contribute

equally to the Lyapunov vector |vi(t )| = 1/
√

N , the partic-
ipation ratio is P(t ) = 1/(N/N2) = N . If only one rate unit
contributes to the Lyapunov vector, the participation ratio is
P(t ) = 1. The Lyapunov vector of firing-rate networks indi-
cates that a temporally varying subset of rate units governs
the most unstable direction [Figs. 13(a) and 13(c)]. There
is only a moderate temporal fluctuation of the participation
ratio [Fig. 13(c)], which declines proportionally to 1/

√
N

with network size (not shown). Moreover, the local Lya-
punov exponent λlocal

max (t ), which measures the instantaneous
growth rate of the first covariant Lyapunov vector fluctuates
in time, indicating different local growth rates along the tra-
jectory [Fig. 13(e)]. Also these temporal fluctuations decrease
∝ 1/

√
N (not shown). The participation ratio P̄ = 〈P(t )〉 is

independent of g both for networks with tanh [Fig. 13(b)] and
threshold-linear input-output transfer function (not shown).

To further characterize the nature of the chaotic collective
network state, we investigated the scaling of the mean par-
ticipation ratio P̄ with network size. Whether the Lyapunov
vector is called localized or delocalized depends on how P̄
scales as a function of network size N . A delocalized state
is indicated by a linear scaling P̄ ∼ N , while in the case of
a localized state, the participation ratio is independent of N .
We found a linear scaling P̄ = N/3 for both tanh [Fig. 13(d)]
and threshold-linear transfer function. This results from the
fact that the entries of the first covariant Lyapunov vector are
independent Gaussian with vi ∼ N (0, 1/N ) [see probability
density in Fig. 13(f)], which yields

P̄ = N

(
1√
2π

∫ ∞

−∞
x4e− 1

2 x2
dx

)−1

= N

3
. (33)

This is in contrast to chaos in sparse spiking neural net-
works, where a sublinear scaling of the participation ratio
of the first covariant Lyapunov vector with network size has
been reported for sparse networks of quadratic integrate-and-
fire neurons in the balanced state [91]. We conclude that the
direction of greatest instability in random rate networks is sup-
ported by a macroscopic number of rate units, which indicates
the existence of collective Lyapunov modes that characterize
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(a)

(c)

(e) (f)

(d)

(b)

FIG. 13. Spatiotemporal analysis of network chaos and delocalized first covariant Lyapunov vector. (a) First covariant Lyapunov vector
�v(t ) (gray scale of |vi(t )| of a subset of 100 random directions), (b) Average participation ratio P̄ vs g stays constant, consistent with prediction
of P̄ = N/3 [Eq. (33)]. (c) Participation ratio P(t ) of first covariant Lyapunov vector (CLV). (d) Average participation ratio P̄ vs network size
N indicates delocalized CLV P̄ = N/3 (dashed). (e) Local Lyapunov exponent λlocal

max (t ). (f) Distribution of entries of first covariant Lyapunov
vector v [gray simulation, black theory N (0, 1/N )]. (Parameters: N = 1000, g = 2, �t = 10−2τ , tONS = τ , tsim = 103τ , averages across 10
network realizations.)

the instability of the collective dynamic. This is a promising
direction for future research that might link the microscopic
phase space structure to macroscopic modes of activity [108].

VIII. LYAPUNOV SPECTRUM OF EXTERNALLY
DRIVEN NETWORK

Thus far, we have analyzed the autonomous dynamics of a
deterministic firing-rate network, but it is interesting to extend
this to a nonautonomous system driven by time-varying input
[8,10,11,73,109]. We consider an input-driven network,

τ
dhi

dt
= Fi = −hi +

N∑
j=1

Ji jφ(h j ) + ξi(t ), (34)

where in the case considered here ξi are independent Gaus-
sian white noise processes with autocorrelation function
〈ξi(t )ξi(t + t ′)〉 = τσ 2δ(t ′) that are fixed across initial condi-
tions of h.

To assess the dynamic stability of the stochastic differ-
ential equation, we employ the theory of random dynamical
systems (RDS) [110]. This theory characterizes how reliably
different initial states respond to an external input realization
fixed across perturbed and unperturbed trajectories. We call a
system reliable if different initial conditions converge to the

same (time-dependent) trajectory, and unreliable otherwise
[111]. More formally, the evolution of a sample measure μt

ξ

is studied for a time-dependent noise realization ξ (t ) with
t ∈ (−∞,∞) that is fixed across initial conditions of the
system. This is described in more detail in the Supplemental
Material [61].

The mathematical expression for the Jacobian of the flow
of the dynamics is the same as in the autonomous case Eq. (2).
However, despite this similarity, an external input can have a
strong effect both on the distribution of hi and on the autocor-
relations �i(τ ) = 〈δhi(t )δhi(t + τ )〉. First, input fluctuations
increase the width of the distribution of hi, meaning that more
units are in the saturated regime, and the Jacobian becomes
sparser, which suppresses chaos [8]. Second, input fluctua-
tions temporally decorrelate network states, which destroys
temporal correlations of subsequent Jacobians resulting in an
independent dynamic reduction of chaos [11]. The full Lya-
punov spectrum, which is independent of input realization ξ

[112], is again obtained by a reorthonormalization procedure
of the Jacobians along a numerical solution of the stochas-
tic differential equation integrated with the Euler-Maruyama
method [60]; for details, see the Supplemental Material [61].

We explored the effect of increasing input strength σ on the
Lyapunov spectrum (Fig. 14). For increasing input strength
σ , the Lyapunov spectrum is increasingly pushed towards the
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(a) (b)

(d)(c)

FIG. 14. Time-varying stimuli reduce both the dynamical en-
tropy rate and attractor dimensionality. (a) For increasing input
strength σ , the Lyapunov spectrum is increasingly pushed towards
the mean Lyapunov exponent −1/τ . (b) The largest Lyapunov ex-
ponent decreases, and the transition is smoothed, consistent with
previous work [11]. (c) The dynamical entropy rate H is reduced
for increasing σ . (d) The relative attractor dimensionality D/N
decreases for increasing σ . (Parameters: N = 1000, �t = 10−2τ ,
tONS = τ , tsim = 103τ , averages across 10 network realizations.)
σ ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}.

mean Lyapunov exponent −1/τ [Fig. 14(a)]. Increasing σ

monotonically reduces the largest Lyapunov exponent as pre-
viously observed in discrete [8,73] and continuous time [11]
[Fig. 14(b)]. A similar effect has been observed in rate net-
works driven by periodic input [9,10] and in one-dimensional
mappings [113].

Input fluctuations reduce the conditional dynamical entropy
rate and conditional attractor dimensionality

The dynamical entropy rate for a given time-dependent
external input, which we will call conditional dynamical en-
tropy rate, is calculated from the sum of the positive Lyapunov
exponents, decreases for increasing external input strength
σ [Fig. 14(c)]. For sufficiently strong input, the conditional
entropy rate drops to zero. Thus, time-varying input impedes
the flow of information from the microscopic states to the
macroscopic network states. If the information in the micro-
scopic state is considered to be noise, one can conclude that
stronger external input fluctuations reduce the noise entropy
arising from sensitivity to initial conditions. The conditional
attractor dimensionality also decreases for increasing input
strength σ [Fig. 14(d)]. Sufficiently strong input suppresses
chaos, implying that the sample measure collapses on a (wan-
dering) random sink [114–116]. In other words, almost all
initial conditions converge onto a set of measure zero. Thus,
while the network dynamics with strong time-varying input
might still seem to be high-dimensional because it explores
a large fraction of the phase space over time, the conditional
attractor dimensionality given the external input can shrink
drastically with a time-varying external input that is fixed
across initial conditions. Such a transition is relevant for infor-
mation processing because the network loses its dependence
on initial conditions, which could be a desirable feature if the
network must reliably generate different output trajectories

for different input patterns [14–16]. Note that this perspective
considers input that is fixed across initial conditions, which
is a very different perspective from considering noise that is
different across initial conditions as, e.g., in [117,118], which
results in a thickening of the attractor and thus an increased
dimension. The same holds for the dynamic entropy rate,
which diverges in stochastic systems [119].

IX. APPLICATIONS TO QUANTIFYING STABILITY
OF TRAINED RECURRENT NEURAL NETWORKS

The networks we studied up to this point had random con-
nectivity, but collective network dynamics is strongly shaped
by wiring and learning algorithms for training recurrent neural
networks in machine learning work by tuning connectivity.
We now show that training a recurrent network to perform
a task is reflected in the dynamic stability, as quantified by
the Lyapunov spectrum, and show in some examples how
it can affect the dimensionality and dynamic entropy rate.
During training, network dynamics becomes confined to a
low-dimensional manifold (Fig. 15). When initializing with
a random network structure in the chaotic regime (g > 1), the
dynamics evolves on a high-dimensional attractor that spans
an extensive fraction of the full N-dimensional phase space
(Fig. 2). A projection of the high-dimensional strange chaotic
attractor onto the first two principal components is shown for
a network of 50 rate units in Fig. 15(b). After training the
network to perform a simple sine oscillation through a linear
readout, the network dynamics is confined to a periodic orbit
[Fig. 15(d)]. Note that the sine is computed by the coordi-
nated activity of many rate units together that individually
have dynamics different from the sine target [Fig. 15(c)]. For
this task, the largest Lyapunov exponent becomes zero after
training. This is expected for an autonomous network because
all but the neutral direction along the flow become stabilized.
Therefore, the dynamic entropy rate is trivially zero, and the
attractor dimension is unity.

The Lyapunov spectrum can also be used as a quantifica-
tion of how stable trajectories are after training. In Fig. 16,
we compare the result of training a recurrent rate network
to output an oscillation with temporally varying frequency
in response to a periodic input pulse with three different
training algorithms, backpropagation through time (BPTT),
FORCE [15], and full-FORCE [120]. In BPTT, the full re-
current weight matrix and a readout vector are iteratively
adapted by minimizing an error function using (stochastic)
gradient descent [121]. FORCE recursively updates a rank-
one perturbation uiw j to Ji j such that the linear readout z(t ) =∑

j w jφ(x j (t )) matches a (potentially time-varying) target
output. Full-FORCE does a full-rank recursive update of a
task-performing network to match for each unit the activity
to a teacher network. For full-FORCE, the Jacobian of the
dynamics is

DfF
i j (t ) = −δi j + Ji jφ

′(x j (t )), (35)

for FORCE, it is

DF
i j (t ) = −δi j + (Ji j + uiw j )φ

′(x j (t )). (36)
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(a)

(c)
(d)

(b)

FIG. 15. Reorganization of rate network phase space during learning. (a) Local Lyapunov exponent [λlocal
i (t )], output z(t ) = wᵀφ(x(t )),

and activity of example rate units φi(t ) before learning in the chaotic state. (b) Chaotic network activity φ(t ) before learning projected on the
first two principal components. (c) Same as (a) after learning a periodic task using FORCE [15]. (d) Same as (b) after training. (Parameters:
N = 200, g = 1.5, �t = 10−1τ , tONS = 10−1τ , τ = 10−2s.)

We obtained Lyapunov exponents before, within, and after
training by evolving an orthonormal basis along the trajectory
using the analytical Jacobians as described before and in more
detail in the Supplemental Material [61].

We find that the full-rank method full-FORCE results
in a more negative largest Lyapunov exponent and thus a
microscopically more stable dynamics (Fig. 16). Moreover,
subsequent Lyapunov exponents drop quicker towards the
negative inverse of the characteristic timescale −1/τ . The
external periodic input pulses makes the dynamics nonau-
tonomous; therefore, no neutral Lyapunov exponent occurs.
Note that convergence of infinitesimally different initial con-
ditions does not necessarily imply stability with respect to
finite-size perturbations. For example, in spiking networks
there exists multistability [122], and also trained firing-rate
networks often exhibit multistability (not shown).

X. LYAPUNOV SPECTRUM OF RECURRENT
LSTM NETWORK

Training recurrent neural networks on tasks that involve
long time lags with gradient-based methods is hampered by
the loss of gradient information. Long short-term memory
(LSTM) units were introduced to ameliorate this problem
of vanishing or exploding gradients by adding a latent—
potentially slow—additional degree of freedom for each rate
unit with dedicated input, output, and forget gates that con-
spire to retain information over extended time lags [123]. The

dynamics of each of the N LSTM units follow the map [123]:

ft = σg(Uf ht−1 + Wf xt + b f ), (37)

ot = σg(Uoht−1 + Woxt + bo), (38)

it = σg(Uiht−1 + Wixt + bi ), (39)

c̃t = σh(Ucht−1 + Wcxt + bc), (40)

ct = ft � ct−1 + it � c̃t , (41)

ht = ot � φ(ct ), (42)

where � denotes the Hadamard product, σg(x) = 1
1+exp(−x)

is the sigmoid function, σh(x) = tanh(x), and entries of the
matrices Ux are drawn from Ux ∼ N (0, g2

x/N ). The bias terms
bx are scalars for simplicity. Subscripts f , o, and i denote
respectively the forget gate, the output gate, the input gate and
c is the cell state. Note that each LSTM unit has two dynamic
variables c and h and three gates f , o, and i that govern signals
going in and out of the cell c. The full Lyapunov spectrum is
again obtained by a reorthonormalization procedure of the Ja-
cobians along a numerical solution of the map [60]; for details,
see the Supplemental Material [61]. As a proof-of-concept,
we calculate Lyapunov spectra of recurrent LSTM networks
both in the autonomous case and for Gaussian white noise
input that is fixed across initial conditions (Fig. 17). In the
case of external input, the entries of the input coupling matri-
ces Wx are drawn from Wx ∼ N (0, g̃2

x/N ) and ξi independent
Gaussian white noise processes with autocorrelation function
〈ξi(t )ξi(t + t ′)〉 = τσ 2δ(t ′) that are fixed across initial condi-
tions. We find that saturating the forget gates by increasing
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(a) (b)

FIG. 16. Quantification of dynamic stability after training rate networks on task using FORCE, full-FORCE, and backpropagation through
time. (a) Example output z(t ) = wᵀφ(x(t )) of a network of 500 units trained with FORCE (blue), full-FORCE (orange), and backpropagation
through time (green). (b) Lyapunov exponents calculated at the end of the training. We find that the full-rank method full-FORCE results
in a more negative largest Lyapunov exponent and thus a microscopically more stable dynamics. Moreover, subsequent Lyapunov exponents
drop quicker towards the negative inverse of the characteristic timescale −1/τ . (Other parameters: N = 500, g = 1.5, �t = 0.1τ , tONS = τ ,
tsim = 104τ , σ = 0 averages across 10 network realizations.)

b f of the LSTM network results in slow latent modes and an
accumulation of Lyapunov exponents close to 0 [Fig. 17(a)].
As bias current b f in the forget gate increases, the first half
of the Lyapunov spectrum is increasingly pushed to zero.
Concomitantly, the autocorrelation of the latent state indicates
the emergence of slow latent modes [insets in Fig. 17(c)].
This finding is consistent with a previous stability analysis
of the trivial fixed points of the state-to-state Jacobian D
[analogous to Eq. (2) in our case], which suggested an accu-
mulation of eigenvalues of the Jacobian close to 1 for closed
forget gates [36,37]. At the same time, the second half of the
Lyapunov spectrum sharply drops to very negative values for
increasing b f , similarly to the classical tanh rate network with
discrete-time dynamics [Fig. 6(a)], with no plateau from an
intrinsic characteristic timescale (as the one coming from a
leak term [Fig. 9(c)], or a synaptic integration timescale, or
adaptation current [4,6,124]). Moreover, our results indicate
that LSTM networks can have a high attractor dimensionality
D even in a weakly chaotic state when saturating the forget
gates [Fig. 17(d)], as a growing number of near-zero Lya-
punov exponents is necessary to yield a total sum of zero. In
contrast, the dynamical entropy rate H is only governed by
positive Lyapunov exponents, which do not reflect the large
number of Lyapunov exponents close to zero for increasing b f

[Fig. 17(c)]. Therefore, the attractor dimensionality increases
for large b f while the dynamical entropy rate decreases. We
find this phenomenon independent of network size N (not
shown), which suggests extensive chaos, as in the classical
rate networks (see Fig. 2). Note that the largest Lyapunov
exponent, entropy rate H , and attractor dimensionality D vary
considerably across network realizations (error bars in Fig. 17
indicate double standard dev. across 10 network realizations),

consistent with our findings in classical tanh networks (see
Appendix B).

Driving each LSTM with independent Gaussian white
noise process independent (Wx �= 0) input leads to a reduction
of chaos, decreasing dynamical entropy rate H and attractor
dimensionality D (Fig. 17 dashed and dotted lines). In contrast
to the case of the classical rate networks [11] (Fig. 14), we
find that slow modes and near-zero Lyapunov exponents can
persist even in the presence of strong input. This might be
explained by the multiplicative gating, which is different from
the case of classical rate networks [11] (Fig. 14).

XI. RELATING GRADIENTS IN BACKPROPAGATION
THROUGH TIME TO THE FULL LYAPUNOV SPECTRUM

We found a direct mathematical link between the Lya-
punov spectrum of the recurrent network dynamics and the
problem of vanishing and exploding gradients when train-
ing with backpropagation through time. In backpropagation
through time, all connection weights are iteratively updated
by stochastic gradient descent such that a loss is locally re-
duced [125–128]. The gradient of the loss with respect to the
weights of the recurrent network is evaluated by unrolling
the network dynamics in time. The resulting expression
for the gradient involves the long-term Jacobian Tt (more
details in Appendix E),

∂Et

∂J
= ∂Et

∂ht

∑
τ

(
t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′

)
∂hτ

∂J
(43)

= ∂Et

∂ht

∑
τ

Tt (hτ )
∂hτ

∂J
. (44)
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(a)

(c) (d)

(b)

FIG. 17. Lyapunov spectrum, dynamical entropy rate, and dimensionality of recurrent LSTM network. (a) For increasing bias current in
the forget gate bf , the first half of the Lyapunov spectrum is increasingly pushed towards zero. Concomitantly, the autocorrelation of the latent
state indicates the emergence of slow latent modes. [In inset in (c) the normalized autocorrelation of h averaged over all units in network
show emergence of slow timescales for closed gates.] (b) The largest Lyapunov exponent goes for increasing bf toward zero (full line not
external input, dotted and dashed lines show input strengths σ ∈ {1, 2}). Note that input does not push the Lyapunov exponent below 0.
(c) The dynamical entropy rate H is also reduced for growing bf . (d) In contrast, the relative attractor dimensionality D/2N even increases
with bf , despite decreasing λmax. Dimensionality is reduced by time-varying external input. (Parameters: N = 2000, tONS = 1, tsim = 104,
gf = go = gi = gc = 3.0, bo = bi = bc = 0.0, median across 10 network realizations, red error bars indicate double std across 10 network
realizations.)

A common problem in training recurrent networks is that
because of the chain of matrix multiplications in the long-
term Jacobian Tt , the gradients tend to vanish or to explode
exponentially with time, which impedes training especially
in the case of long temporal dependencies [33,121,123,129].
How well error signals can be propagated backward in time
is constrained by the dynamics in the tangent space that is
spanning a tangle of stable and unstable manifolds nearby the
trajectory.

The singular values of the long-term Jacobian, which
determine how quickly gradients vanish or explode during
backpropagation through time, are directly related to the Lya-
punov exponents of the dynamics: The Lyapunov exponents
are given by the logarithm of the singular values of the long-
term Jacobian (see Appendix E). They also yield a direct
estimate of the condition number of the long-term Jacobian
[Eq. (45)],

κ2
(
Q̃s+sONS

) = κ2
(
Rs+sONS

) = σ1
(
Rs+sONS

)
σm

(
Rs+sONS

) = Rs+sONS
11

Rs+sONS
mm

. (45)

The condition number κ2 of the deformed orthonormal system
can be estimated based on the ratio of the largest λmax and the
last Lyapunov exponent λm that is calculated,

κ2
(
Q̃s+sONS

) ≈ exp ((λmax − λm)sONS�t ).

Thus, the Lyapunov spectrum shapes the number of dimen-
sions available for error propagation. To avoid diverging or
vanishing gradients, one should initialize recurrent networks
such that many singular values of the long-term Jacobian are
close to one [31,34–38]. This is equivalent to having many
Lyapunov exponents of the forward dynamics close to zero,
which means that many directions in tangent space grow and
shrink only slowly. As the product of Jacobian is generally
numerically ill conditioned, we suggest using the orthonor-
malization procedure discussed here to quantify and improve
the stability of the tangent space. Furthermore, the trainability
of RNNs, as quantified by the maximum time difference a
recurrent neural network can be trained across using BPTT
before running into vanishing/exploding gradients, can be
quantified by Lyapunov exponents of the forward dynamics.
We can thus use Lyapunov exponents to compare the effect
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of different initializations, nonlinearities, and optimizers on
trainability. We predict that after learning long-term depen-
dencies, there should be some Lyapunov exponents close to
zero reflecting the slow timescales.

XII. DISCUSSION

A. Summary

We used canonical measures from the ergodic theory of
strange attractors to characterize the chaotic dynamics of ran-
domly wired networks of firing-rate units. In this paper we
calculated the full Lyapunov spectrum of a continuous-time
random rate network and use it to study dynamical entropy
rate and attractor dimensionality.

We showed that, in the classical model, dynamical entropy
rate and relative attractor dimensionality first grow and then
saturate as a function of coupling strength g. Thus, both the
intensity and diversity of network activity states saturates
for strong coupling, despite a monotonously growing largest
Lyapunov exponent. We analytically approximated the full
Lyapunov spectrum in several limiting cases using random
matrix theory. We found that time-varying input reduces both
entropy and dimensionality.

We demonstrated that the shape of the Lyapunov spectrum
is size invariant and exhibits a linear growth of attractor di-
mensionality and entropy rate with network size N . This is
clear evidence of extensive chaos, which was previously con-
jectured in [1]. We further found the Lyapunov spectrum to be
point symmetric around the mean Lyapunov exponent −1/τ ,
which we derived analytically (Appendix D). A symmetry of
Lyapunov spectra around zero is usually found in dynami-
cal systems with a symplectic structure [100,103]. Symmetry
around a negative value was previously described in a class of
dissipative dynamical systems with viscous damping [100].

We found a strong effect of time-discretization: Increasing
the step size breaks the symmetry of the Lyapunov spectrum
and sharply increases the entropy rate and dimensionality.
This has methodological implications for further studies: The
leak term present in continuous-time networks but absent in
discrete-time networks leads to fundamental differences in the
properties of their dynamics.

In balanced networks of threshold-linear units, we found
that similar to the classical tanh model, both the entropy rate
and attractor dimensionality first increase for small values of g
and peak for large g. Different from the classical tanh model,
the Lyapunov spectrum is not point symmetric. Moreover, we
observed very different PCA-based dimensions, depending on
whether they are calculated based on firing rates φ or on the
local fields h.

Time-dependent input reduced both the entropy rate and
attractor dimensionality. For strong input, we found that all
trajectories collapsed to a time-dependent random sink. If the
input is interpreted as an incoming signal, this means that
trajectories are reliable across repetitions of the same input
realization and do not depend on the initial conditions of the
recurrent network.

Finally, we showed that Lyapunov spectra are a useful
tool to characterize dynamic stability properties of trained
networks and to analyze the solution trajectories without

assuming fixed points or “slow points” as done, for instance,
in [130–133]. Moreover, we show a direct link between the
Lyapunov exponents of the forward dynamics and the gra-
dient stability when training recurrent neural networks with
backpropagation through time.

B. Relation to previous work

Firing-rate networks can generate spontaneous rate fluc-
tuations by recurrent chaotic dynamics [1]. Mechanisms
underlying rate chaos have attracted substantial attention in
studies of network heterogeneity [3], bistability [5], exter-
nal stimuli [8–11], and the role of the single unit transfer
function [2] and slow synaptic dynamics [4,7] for the col-
lective network state; see also, e.g., [72,73,92,134–138].
Our approach provides a toolkit from dynamical systems
theory to analyze how these different factors shape the
complex rate dynamics and the structure of the tangent
space.

We compared the attractor dimension with a dimension-
ality estimate based on principal component analysis, which
is commonly used in neuroscience [9,10,64,65,69,139]. We
often find a different behavior of the PCA-based dimen-
sionality and the attractor dimension: For classical tanh-rate
networks, the attractor dimension peaks with g, but both PCA-
based dimensions monotonously increase and saturate, albeit
at different levels and with distinct rates.

Note that Lyapunov exponents and the attractor dimension
are invariant under diffeomorphisms of the phase space [50].
In contrast, PCA-based dimensionality estimates are gener-
ally not invariant with respect to changes of coordinates and
can be misleading for limited data sets [140]. Because the
PCA-based dimensionality estimates are based on a two-point
correlation function, they miss low-dimensional structure hid-
den in higher-order correlations. Generally, the PCA-based
dimensionality can both under- and overestimate the attractor
dimensionality.

There are different dimensionality estimates used in neu-
roscience that carry different meanings and interpretations:
besides quantifying the dimensionality of a single trajec-
tory across time [9,64,65], the dimensionality across different
stimuli [141], or within stimulus categories [142] or task-
related [143] and others have been considered. Note that these
dimensionality estimates often assume a multivariate Gaus-
sian distribution of the activity variable. It is largely an open
question, how these relate to the attractor dimensionality dis-
cussed here. If the Gaussianity assumption is dropped, there
are more agnostic sampling-based estimates of entropy rate
and dimensionality available [52–54], but the data required
scales exponentially in D [55–58].

Our approach allows interpolation from continuous time to
discrete dynamics. Discrete-time dynamics of rate networks
has previously been studied in random diluted networks [72],
networks with random external fields [84,144], noise-driven
networks [8], and on a ring network [83,145]. Extensive
Lyapunov spectra were already found in earlier studies in
discrete-time rate networks [83,84], as well as in spiking
neural networks [91,146–148]. A deeper mathematical under-
standing of the necessary conditions for extensive chaos is still
missing.
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Chaotic rate dynamics provide a substrate for com-
plex nonlinear computations, such as learning input-output
relations [13,15,17,26,131,149,150] and learning temporal
sequences [16]. Intriguingly, transient rate chaos yields ex-
ponential expressivity in deep networks, which has been
explained by transient chaos across layers [32]. Our tools
facilitate the quantification of the reorganization of the col-
lective network dynamics during learning and the underlying
mechanisms of different computing strategies. Recently, sim-
ilar reservoir computing techniques have been used for
time-series prediction of spatiotemporal chaotic systems
[150,151] and to infer its ergodic properties (e.g., the first
few Lyapunov exponents) from data [152]. This was recently
also extended to gated networks trained with backpropagation
[153].

A suppression of chaos by time-dependent input was stud-
ied previously, both with white noise input in discrete-time
[8] and continuous-time networks [11] and with sinusoidal
input [10]. Such a transition has relevance for information
processing because the network loses its dependence on ini-
tial conditions, which is expected to affect the ability of a
network to generate controlled output trajectories in response
to specific input patterns after learning [14–16]. A transition
to complete control by an external stimulus and concomitant
independence of initial conditions was previously studied in
rate networks in the context of echo state networks for reser-
voir computing and termed the echo state property [154–157].
In FORCE-trained networks, the recurrent network is driven
by a low-rank input during training, which is replaced by a
feedback loop after training [15,158]. It would be interesting
to extend our work to low-rank perturbations of the recurrent
weight matrix and to investigate how such perturbations shape
the dynamics and the whole Lyapunov spectrum. Recently,
it was found that for balanced networks, much larger input
amplitude is necessary to suppress chaos if neurons receive
common time-varying input, compared to when all neurons
receive independent input [159].

It might seem surprising that the entropy and dimension-
ality are reduced by time-varying input, which increases the
variance of the network activity. This can be understood from
a perspective of random dynamical systems, where the time
evolution of a perturbation is studied with a fixed external in-
put realization. In this perspective, the conditional entropy and
conditional attractor dimension for a given external input are
reduced as the variance of the time-varying external input is
increased; thus, the network becomes more reliable [160]. In
all scenarios studied here (both with tanh and threshold-linear
transfer function φ and both for discrete and continuous-time
dynamics), we found that temporally uncorrelated input re-
duces chaos, and thus makes the network more reliable. This is
in contrast to other systems, where time-varying input can also
enhance chaos (e.g., in the kicked rotor or in spiking networks
[161,162]).

An accumulation of Lyapunov exponents close to zero is
consistent with previous theoretical work based on spectra
of the state-to-state Jacobian D [analogous to Eq. (2) in our
case], which suggested an accumulation of eigenvalues of the
Jacobian close to 1 for closed forget gates [36,37]. This work
was recently also extended to a dynamic mean-field theory of
gated networks [163].

C. Outlook

We are only beginning to use ergodic theory to un-
derstand neural computation. By employing these concepts
in large-scale rate networks, we have laid a foundation
for further investigation. Computational ergodic theory of
firing-rate networks is currently the only way to measure
information-theoretic quantities in large recurrent circuits. It
is an important challenge to obtain a more comprehensive un-
derstanding of how different factors shape collective network
dynamics.

The link between firing-rate networks and spiking neu-
ral networks has been studied by investigating networks in
the limit of very slow synaptic dynamics. In this limit, the
synaptic input current integrates over a long time, and the
network dynamics is analogous to a rate network [7] with
quantitatively similar activity fluctuations. An interpolation
from spiking to rate dynamics with increasing τs and a com-
parison of the associated Lyapunov spectra of rate and spiking
networks might improve our understanding of chaos both in
spiking and rate networks.

Collective network dynamics is expected to be strongly
shaped by the detailed weight matrix, and learning algo-
rithms operate by modifying the dynamics via changes of
the connectivity. Investigating how features of connectiv-
ity shape the dynamics is therefore important and can also
be investigated with these tools. The role of an excess of
bidirectional connections [164], other second-order motifs
[165], and strong self-coupling [5] could all be examined.
A time-resolved analysis of dynamic stability of the recur-
rent network dynamics using covariant Lyapunov vectors
and local Lyapunov exponents can also help to understand
the mechanisms of learning, the geometry of error propa-
gation, and under what conditions the training of recurrent
networks fails.
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APPENDIX: OVERVIEW

We first describe several checks of the convergence of the
Lyapunov spectra with various system parameters (A). We
then describe finite network-size effects (B) and compare dy-
namic mean-field theory with the analytical behavior for large
g and g → g+

crit (C). We then give an analytical approximation
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(a) (b)

(d)(c)

FIG. 18. Convergence of Lyapunov spectrum with simulation time tsim. (a) Convergence of selected Lyapunov exponents λi for ten different
network realizations with simulation time (in units of τ )(i = 1, 100, 200, . . . 1000) for σ = 0 and g = 3. (b) Same as top left, but for σ = 1
and g = 3. (c) σ = 0 and g = 0.6. (d) σ = 1 and g = 0.6. (Other parameters: N = 1000, �t = 0.01τ , tsim = 103τ , tONS = τ ).

of the mean Lyapunov exponent (D) and provide additional
details the the mathematical link of gradients in BPTT and
Lyapunov spectrum (E). Finally, we show that H is bounded
as function of g (F).

APPENDIX A: CONVERGENCE OF
THE LYAPUNOV SPECTRUM

We checked the convergence of the Lyapunov spectrum
as a function of different simulation parameters. First, the
Lyapunov exponents were checked to converge with sim-
ulation time tsim (Fig. 18). Figure 12 shows the temporal
convergence of selected Lyapunov exponents for ten random
network realizations for different values of g and σ . The
Lyapunov spectra were independent of initial conditions but
showed some variability across different realizations of the
random network structure. There are two main contributions
to the variability of numerically calculated Lyapunov spectra,
finite-time sampling noise and quenched fluctuations. Indeed,
Lyapunov exponents are asymptotic properties numerically
estimated from finite-time calculations. Variability also arises
from the quenched disorder across different random network
realizations. The first contribution would vanish in the limit of
long simulations for ergodic systems. The second contribution
is expected to vanish in the large network limit due to self-
averaging. Quantities that are self-averaging converge in the
limit of large system size to the ensemble average.

Second, we confirmed that the orthonormalization interval
is chosen sufficiently small [Fig. 19(a)]. If the reorthonor-
malization is not carried out sufficiently often, the long-term
Jacobian Tt (x0) becomes ill conditioned. As a consequence,
the orthonormalization becomes numerically unstable, and

errors start to accumulate. This results in a flattening of the
Lyapunov spectrum beginning at small Lyapunov exponents
[Figs. 19(a) and 19(d)]. As described above, a suitable or-
thonormalization interval inversely scales with the difference
between the smallest and largest Lyapunov exponent that is
calculated |λmax − λk|. Therefore, it is no surprise that for
large �t , the errors in the Lyapunov spectrum grow faster
with tONS [Figs. 19(c) and 19(d)], because the difference
|λmax − λk| is larger [Fig. 19(a)].

Third, we checked convergence with the integration time
step �t [Fig. 7(a)]. For large g, the integration time step �t
has to be chosen smaller, because the autocorrelation of the
Jacobians becomes very short (τAC � τ ), despite the finite au-
tocorrelation of the dynamical variables hi for g → ∞ [1,59].

Fourth, we confirmed the convergence of the shape of the
Lyapunov spectrum for large network size N [Fig. 2(b)]. Note
that even for very small �t , there exists a small asymmetry
in the Lyapunov spectrum because of the neutral Lyapunov
exponent (λi = 0). Thus, the Lyapunov spectrum is only
symmetric in the limits N → ∞ and �t → 0. Fifth, we
confirmed numerically that the neutral Lyapunov exponent
(λi = 0) associated with a perturbation in the direction of
the flow converges towards zero in the limit of small �t
(not shown).

Sixth, we confirmed numerically that the Lyapunov spec-
trum does not depend on the realization of the initially random
orthonormal system. Dependence in the realization of the
orthonormal system would indicate that the ONS did not
converge to the eigenvectors of the Oseledets matrix Eq. (6)
[166] (not shown).

Seventh, for large N , the numerical estimate of the largest
Lyapunov exponent can be compared to one calculated
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FIG. 19. Convergence of Lyapunov spectrum with reorthonormalization interval tONS. If the reorthonormalization is not performed
sufficiently often, the Lyapunov spectrum is flattening from the end for large tONS. (a) Lyapunov spectra for tONS ∈ {0.1, 0.2, 0.3,

0.5, 1, 2, 5, 10, 20, 50, 100}τ for �t = 0.01. (b) �λmax shows the deviation of the largest Lyapunov exponent for different tONS from the
smallest tONS = 0.1τ . The same is shown for H and D. For our typical parameter sets, an orthonormalization interval of tONS = 1τ is sufficient
to keep errors in H and D orders of magnitudes smaller than the deviations across network realizations due to quenched fluctuations. (c) Same
as (a) for �t = 1. (d) Deviations of full Lyapunov spectra for different tONS from the smallest tONS = 0.1 for �t = 0.01. (Other parameters:
N = 1000, �t = 0.01τ , g = 10, tsim = 104τ , averages across 10 network realizations.)

analytically using dynamic mean-field theory [1,2,8,11,59]
[Figs. 20(a) and 20(c)].

Eighth, we confirmed that the Lyapunov spectrum does not
systematically change when increasing the floating-point pre-
cision by using arbitrary-precision floating-point arithmetic in
spot checks (not shown).

APPENDIX B: FINITE NETWORK SIZE EFFECTS
ON THE TRANSITION TO CHAOS

AND LYAPUNOV EXPONENTS

We described so far chaos in large firing-rate networks.
Here, we investigated the finite network size effect on the
largest Lyapunov exponent and the critical coupling strength
gcrit, where the transition to chaos occurs. We calculated for
the largest Lyapunov exponent of the classical random rate
networks with tanh-nonlinearity as a function of network
size N for 100 network realizations per size. We found that
the largest Lyapunov exponent for small networks exhibits a
large diversity across network realizations [Fig. 20(a)]. For
increasing network size, the median Lyapunov exponent in-
creases and approaches an asymptotic limit for large N . At
the same time, the diversity as quantified by the 20% and 80%
percentile across the network realizations vanishes. This indi-
cates that for large network size N , the variability of Lyapunov
exponents coming from the quenched disorder of different
network realizations vanishes, and the Lyapunov exponent
becomes independent of network realization.

Complementary, we calculated for different realizations
and different network size N the critical coupling strength gcrit

where the network turns chaotic as indicated by the largest
Lyapunov exponent using a noisy bisection method. For small
networks, we found a broad diversity of gcrit [Fig. 20(b)].
For many small random network realizations, we could not
find a chaotic regime at all. For increasing values of N , the
median gcrit − 1 across 100 realizations decreased ∝ 1/

√
N

from a median gcrit ≈ 4 for N = 50 to gcrit ≈ 1.1 for N = 104,
and the diversity of gcrit as quantified by the 20% and 80%
percentile across the network realizations shrank ∝ 1/

√
N .

This indicates that for large N , the coupling strength gcrit

converges to 1 and the variability arising from quenched fluc-
tuations disappears. Note that for small networks, there exists
not necessarily a unique critical coupling strength g, so details
of Fig. 20(b) may depend on the bisection scheme utilized.

APPENDIX C: DYNAMIC MEAN-FIELD THEORY

We used dynamic mean-field theory to obtain the au-
tocorrelations and the largest Lyapunov exponent. Briefly,
following [1,11,59], we solved the autocorrelations �(τ )
self-consistently. We first obtained the variance �0 = �(0),
integrated them to obtain �(τ ). We calculated the largest
Lyapunov exponent by calculating the ground-state energy
via λmax = −1 + √

1 − ε0, where the ε0 is obtained from
the smallest eigenvalue of the time-independent Schrödinger
eigenvalue equation, where the quantum potential W (τ ) =
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(a)

(c)
(d)

(b)

FIG. 20. Finite-size effect on the largest Lyapunov exponent and transition to chaos. (a) Largest Lyapunov exponent across 100 network
realizations as a function of network size N for g ∈ {2, 5, 10}. Dots indicate individual realizations, full line are median, dotted curves are 20%
and 80% percentile, dashed lines are the prediction obtained from dynamic mean-field theory where g is color-coded from blue (small g) to
red (large g). (b) Critical coupling strength gcrit as a function of network size N for 100 network realizations obtained by bisection method.
Dots indicate individual realizations, full line are median, dotted curves are 20% and 80% percentile, dashed line the analytical prediction.
(c) Difference between mean-field theory prediction and median across 100 realizations as a function of network size. (d) Same data as (b) but
gcrit − 1 depicted on log-scale (Other parameters: relative tolerance = 10−10, tsim = 104τ , tONS = τ , median across 100 network realizations).

−V ′′(c(τ )) = 1 − g2 fφ′ (c(τ ), c0) is evaluated based on the
self-consistent solution of the autocorrelation �(τ ) [1,11,59].
We compared the solution of the dynamic mean-field theory
with the previously proposed explicit expressions for auto-
correlations and the largest Lyapunov exponent in the limits
g → g+

crit and g → ∞ (Fig. 21).

APPENDIX D: RANDOM MATRIX THEORY
OF MEAN LYAPUNOV EXPONENT

From the Jacobian, we derive a random matrix approxi-
mation of the mean Lyapunov exponent λ̄ = 1

N

∑N
i=1 λi. The

mean Lyapunov exponent describes the average dissipation
rate of phase space compression, captured by the determinant
of the long-term Jacobian Tt = Dt · · · D0. In the discrete-time
case, the Jacobian is given by

Di j (ts)= ∂ f (hi(t ))
∂h j (t )

∣∣∣∣
t=ts

= (1−�t )δi j +�t · Ji jsech2(h j (ts)).

(D1)
It is known that in the chaotic regime for large N , the activity
variables hi approximately follow a Gaussian distribution both
in discrete and continuous time, h ∼ N (0,�0), where for
large N , �0 solely depends on g [1,2,8,11]. The variance of
hi grows with g2, thus the squared hyperbolic secant of hi is
close to zero for most i. For this reason, in the case of strong g,

most columns of Di j (ts) are, aside from the diagonal entries,
close to zero and Di j becomes sparse.

The long-term Jacobian Tt (h0) is

Tt (h0) = Dt−1(ht−1) . . . D1(h1)D0(h0)

=
t−1∏
s=0

Ds

=
t−1∏
s=0

((1 − �t )1 + �t · J · sech2(h(ts))).

Thus, the mean Lyapunov exponent for large N is

λ̄ =
[

1

N

N∑
i=1

λi

]
=

[
1

N

N∑
i=1

ln μi

]
=

[
1

N
ln

N∏
i=1

μi

]

=
[

1

N
ln (det �)

]
=

[
1

N
ln

(
det lim

t→∞[Tt (x0)
Tt (x0)]
1
2t
)]

=
[

1

Nτ
lim

t→∞
1

t
ln(det Tt )

]

= 1

Nτ�t

[
lim

n→∞
1

n

n−1∑
s=0

ln(det((1−�t )1+�tJφ′(h(ts))))

]
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(a)

(c) (d)

(b)

FIG. 21. Dynamic mean-field theory of autocorrelations and the largest Lyapunov exponent in the limits g → g+
crit and g → ∞. (a) Largest

Lyapunov exponent for g → g+
crit. Dots are the solution obtained from dynamic mean-field theory [1,11,59]. Full line is λ(g) = 1

2 (g − 1)2

[1,59]. (b) Largest Lyapunov exponent for g → ∞. Dots are solution obtained from dynamic mean-field theory, dash-dotted line is the explicit

approximation λmax(g) = C log(g) with C = 2
π
/
√

�0(1 − �0) and �0 = 2(1 − 2/π ) [59], dotted line is λmax(g) = −1 +
√

1 + C2(W ( g
d ))2,

where W is the Lambert W function and d = 6/((4 − π )
√

π − 2) [167]. (c) �0 obtained from dynamic mean-field theory, dashed line
are explicit limits for small g(�0 = g − 1) and large g( �0 = 2(1 − 2/π )g2) [1,59]. (d) Autocorrelations �(τ ) for g ∈ {5, 10, 100}.
For large τ and g the autocorrelations decay exponentially with time constant

√
(π − 3)/(π − 2)) (dashed lines). [Other parameters:

for (a)–(c) relative tolerance = 10−9, for (d) rel. tol. 10−11.]

= 1

Nτ�t

[〈
ln

(
det((1 − �t )1)

× det

(
1 + �t

1 − �t
Jφ′(h(ts))

))〉]
= 1

Nτ�t

[〈
ln

(
det((1 − �t )1)

×
(
1 + �t

1 − �t
tr(Jφ′(h(ts)))

))〉]
+ O((�t )2)

= 1

τ�t
ln (1 − �t ) + 1

Nτ�t

×
[〈

ln

(
1 + �t

1 − �t
tr(Jφ′(y))

))〉]
+ O((�t )2)

= 1

τ�t
ln(1 − �t ) + O((�t )2)

where y follows the distribution of Eq. (9), 〈. . . 〉 denotes
the time average, and [. . . ] denotes the ensemble average.
For small �t , we find excellent agreement with numerical
simulations [see Fig. 8(b)]. In the limit �t → 0, the mean
Lyapunov exponent becomes − 1

τ
.

APPENDIX E: MATHEMATICAL LINK OF GRADIENTS
IN BPTT AND LYAPUNOV SPECTRUM

To train recurrent networks using backpropagation through
time, one has to evaluate the gradient of the loss E with

respect to all weights of the recurrent network. This is done
by unrolling the network dynamics in time [33],

∂Et

∂J
= ∂Et

∂ot

∂ot

∂ht

∑
τ

∂ht

∂hτ

∂hτ

∂J
(E1)

= ∂Et

∂ot

∂ot

∂ht

∑
τ

(
t−1∏
τ ′=τ

∂hτ ′+1

∂hτ ′

)
∂hτ

∂J
(E2)

= ∂Et

∂ot

∂ot

∂ht

∑
τ

(
t−1∏
τ ′=τ

J diag(φ′(hτ ′ ))

)
∂hτ

∂J
(E3)

= ∂Et

∂ot

∂ot

∂ht

∑
τ

(
t−1∏
τ ′=τ

Dτ ′

)
∂hτ

∂J
(E4)

= ∂Et

∂ot

∂ot

∂ht

∑
τ

Tt (hτ )
∂hτ

∂J
, (E5)

where Dτ ′ is the Jacobian Eq. (2) that we already consid-
ered when calculating the Lyapunov spectrum. The recursive
dependence of the gradient on the previous network state
results in a product of Jacobians, which takes the form of the
long-term Jacobian Tt (h) [Eq. (7)] whose inner product gives
the Oseledets matrix [Eq. (6)].

The singular values of the long-term Jacobian Tt (hτ ),
which determine how quickly gradients vanish or explode
during backpropagation through time, are directly related to
the Lyapunov exponents of the forward dynamics: The Lya-
punov exponents of the forward dynamics are given by the
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logarithm of the singular values of the long-term Jacobian
[168]. Thus, our results on how the global coupling strength
g, simulation parameters (e.g., time-discretization �t), time-
dependent input, and nonlinearity φ (e.g., threshold-linear vs
tanh) shape the Lyapunov spectrum can directly be translated
into predictions on the gradient instability during backprop-
agation through time. A positive (negative) first Lyapunov
exponent would thus be expected to results in exploding
(vanishing) gradients. But beyond that, also the full set of
Lyapunov exponents is instructive for trainability. It was
pointed out previously [35,36,38] that the trainability of re-
current networks is constrained by the condition number κ

of the long-term Jacobian Tt (hτ ). The condition number can
be approximated by the Lyapunov spectrum: κ2(Tt (hτ )) =
σ1(Tt (hτ ))
σN (Tt (hτ )) ≈ (t − τ ) exp(λmax − λN ), where t − τ is the time
to be bridged by backpropagation through time. More
generally, how well k independent error signals ∂Et

∂θ
can prop-

agate though the tangent space is limited by the difference
between the first and the kth Lyapunov exponent multiplied
by the time difference (t − τ ) exp(λmax − λk ). Or the other
way round: to have a rank-k update of the parameter space,
you need to have at least k Lyapunov exponents sufficiently
close to 0.

APPENDIX F: LARGE G LIMIT

We note that the analytical argument for point symmetry in
the Lyapunov spectrum around i = N/2 and λi = − 1

τ
together

with the fact that D is bounded by N already imply that H has
to be bounded: Hτ < D < N , as

Hτ �
p∑

i=1

λiτ = −
D∑

i=p+1

λiτ � −
D∑

i=p+1

− 1

τ

= D − p � D < N, (F1)

where p is the number of positive Lyapunov exponents and
H is measured in nat/τ . The left-most less than equal to was
proven by Ruelle [169], the next equal sign comes from the
definition of the KY dimension [51,170–172], the next less

than equal comes from the fact that the Lyapunov spectrum
is point symmetric around − 1

τ
, so for the first half, − 1

τ
is

a lower bound on the Lyapunov exponents. The next less
than equal sign comes from the fact that p is a non-negative
number; in the case of p > 1, it is an inequality. For notational
simplicity, we assumed here an integer dimensionality D, but
the argument holds generally.

APPENDIX G: SUPPORTING INFORMATION

S1 Code - Source code for Lyapunov spectrum of rate
networks. We provide all necessary code to calculate the
full Lyapunov spectrum written in Julia [173]. The efficient
implementation is parallelized using level-3 matrix-matrix
operations from BLAS (Basic Linear Algebra Subprograms)
called via LAPACK (Linear Algebra PACKage). The code
also provides an alternative estimate of the largest Lyapunov
exponents by tracking the evolution of a small but finite ini-
tial perturbation and resizing it iteratively [51]. Furthermore,
the program provides bootstrapped 95 percentile confidence
intervals for the first and the last Lyapunov exponent, the
Kolmogorov-Sinai entropy rate, and the attractor dimension-
ality. Optionally, a principal component-based dimensionality
estimate can also be calculated. Finally, the program pro-
vides the convergence of the Lyapunov spectrum in time.
Input variables are network size N , coupling strength g, time-
discretization �t , simulation time tsim, number of Lyapunov
exponents to be calculated nLE , orthonormalization time
interval tONS, seed for initial conditions seedIC, seed for ran-
dom network realization seednet, seed for orthonormal system
seedONS, and finally the subdirectory where the results are
stored. Code written in MATLAB®/Octave/Python is avail-
able on github [174].

S2 Code - Source code for Lyapunov spectrum of input-
driven rate networks. We also provide Julia code to obtain
the full Lyapunov spectrum of a noise-driven rate network by
a reorthonormalization procedure [60]. This is done along a
numerical solution of the stochastic differential equation ob-
tained with the Euler-Maruyama method [175]. The noise
strength σ is now an additional input parameter. Code written
in MATLAB®/Octave/Python is available on github.
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