
Simultaneous Discovery of Quantum Error Correction Codes and Encoders with a
Noise-Aware Reinforcement Learning Agent

Jan Olle,1, ∗ Remmy Zen,1 Matteo Puviani,1 and Florian Marquardt1, 2

1Max Planck Institute for the Science of Light, Staudtstraße 2, 91058 Erlangen, Germany
2Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstraße 5, 91058 Erlangen, Germany

(Dated: November 9, 2023)

Finding optimal ways to protect quantum states from noise remains an outstanding challenge
across all quantum technologies, and quantum error correction (QEC) is the most promising strategy
to address this issue. Constructing QEC codes is a complex task that has historically been powered
by human creativity with the discovery of a large zoo of families of codes. However, in the context
of real-world scenarios there are two challenges: these codes have typically been categorized only for
their performance under an idealized noise model and the implementation-specific optimal encoding
circuit is not known. In this work, we train a Deep Reinforcement Learning agent that automatically
discovers both QEC codes and their encoding circuits for a given gate set, qubit connectivity,
and error model. We introduce the concept of a noise-aware meta-agent, which learns to produce
encoding strategies simultaneously for a range of noise models, thus leveraging transfer of insights
between different situations. Moreover, thanks to the use of the stabilizer formalism and a vectorized
Clifford simulator, our RL implementation is extremely efficient, allowing us to produce many codes
and their encoders from scratch within seconds, with code distances varying from 3 to 5 and with up
to 20 physical qubits. Our approach opens the door towards hardware-adapted accelerated discovery
of QEC approaches across the full spectrum of quantum hardware platforms of interest.

I. INTRODUCTION

There is an ongoing global effort to develop a new gen-
eration of quantum technologies with an unprecedented
level of control over individual quantum states of many-
particle quantum systems. This field encompasses four
areas [1]: quantum communication, simulation, compu-
tation and sensing, each of them promising to drasti-
cally improve on preceding classical technologies. An
outstanding challenge that is present in all the afore-
mentioned areas is that quantum states are vulnerable
to the unwanted effects of noise; if not addressed, the
advantages offered over classical technologies disappear
altogether.

Quantum error correction (QEC) is a field which
emerges from the union of quantum mechanics and clas-
sical error correction [2], and it is the approach that is
thought to be essential to achieve maturity in the current
wave of quantum technologies. The core idea of QEC is
to redundantly embed the quantum information within
a subspace (called code space) of a larger Hilbert space
in such a way that different errors map the code space to
mutually orthogonal subspaces. If successful, the action
of each of these errors can be reverted and the quantum
process can continue error-free [3]. QEC is necessary for
large-scale fault-tolerant quantum computing [4, 5]. The
past few years have witnessed dramatic progress in exper-
imental realizations of QEC on different platforms [6–10],
reaching a point where the lifetime of qubits has been ex-
tended by applying QEC [11].

Since Shor’s original breakthrough [12], different qubit-
based QEC codes have been constructed, both analyti-

∗ jan.olle@mpl.mpg.de

cally and numerically, leading to a zoo of codes, each
of them conventionally labeled [[n, k, d]], where n is the
number of physical qubits, k the number of encoded logi-
cal qubits, and d the code distance that defines the num-
ber d − 1 of detectable errors . The first examples are
provided by the [[5, 1, 3]] perfect code [13], the [[7, 1, 3]]
Steane [14] and the [[9, 1, 3]] Shor [12] codes, which en-
code one logical qubit into 5, 7 and 9 physical qubits,
respectively, being able to detect up to 2 physical errors
and correct up to 1 error on any physical qubit. The most
promising approach so far is probably the family of the
so-called toric or surface codes [15], which encode a logi-
cal qubit into the joint entangled state of a d× d square
of physical qubits. More recently, examples of quantum
Low-Density Parity Check (LDPC) codes that are com-
petitive with the surface code have been discovered [16].

Numerical techniques have already been employed to
construct QEC codes. Often, this has involved greedy
algorithms, which may lead to sub-optimal solutions but
can be relatively fast. For instance, in [17] a greedy
algorithm was implemented to extend codes to higher
distance, code concatenation was explored in [18], and
greedy search for finding stabilizer codes was used in [19].
Often, such numerical methods for QEC code construc-
tion were restricted to finding a subclass of codes of a
particular structure, e.g. using reduction to classical code
search [20].

With the recent advent of powerful tools from the do-
mains of machine learning and, more generally, Artifi-
cial Intelligence (AI), there are new opportunities for the
automated discovery of QEC schemes. Of special rele-
vance to this work is the realm of Reinforcement Learn-
ing (RL), which is designed to solve complex decision-
making problems by autonomously following an action-
reward scheme [21]. The task to solve is encoded in a

ar
X

iv
:2

31
1.

04
75

0v
1

 [
qu

an
t-

ph
]

 8
 N

ov
 2

02
3

mailto:jan.olle@mpl.mpg.de

2

reward function, and the aim of RL training algorithms
is to maximize such a reward over time. RL can provide
new answers to difficult questions, in particular in fields
where optimization in a high-dimensional search space
plays a crucial role. For this reason, reinforcement learn-
ing can be an efficient tool to deal with the task of QEC
code construction and encoding.

The first example of RL-based automated discovery of
QEC strategies [22] did not rely on any human knowledge
of QEC concepts. While this allowed exploration with-
out any restrictions, e.g. going beyond stabilizer codes,
it was limited to only small qubit numbers. More re-
cent works have moved towards optimizing only certain
QEC subtasks, injecting substantial human knowledge.
For example, RL has been used for optimization of given
QEC codes [23], and to discover tensor network codes
[24] or codes based on ”Quantum Lego” parametrizations
[25, 26]. Additionally, RL has been used to find efficient
decoding processes [27–29].

At this moment, a multitude of experimental platforms
are scaling up towards the regime of qubit numbers that
make it possible to implement QEC (this includes es-
pecially various superconducting qubit architectures, ion
traps, quantum dots, and neutral atoms). Given the
strong differences in native gate sets, qubit connectivi-
ties, and relevant noise models, there is a strong need
for a flexible and efficient scheme to automatically dis-
cover not only codes but also efficient encoding circuits,
adapted to the platform at hand. In our work, we im-
plement a scheme based on deep RL in order to simul-
taneously discover QEC codes together with the encod-
ing circuit from scratch, tailored to specific noise models,
native gate sets and connectivities, minimizing the cir-
cuit size for improved hardware efficiency. In particular,
our RL agent can be made noise-aware, meaning that
one and the same agent is able to switch its encoding
strategy based on the specific noise that is present in the
system. Our approach is flexible and general, as well as
efficient through the use of a parallelized Clifford circuit
simulator.

While [30] also set themselves the task of finding both
codes and their encoding circuits, this was done us-
ing variational quantum circuits involving continuously
parametrized gates, which leads to much more costly
numerical simulations and eventually only an approxi-
mate QEC scheme. By contrast, our RL-based approach
does not rely on any human-provided circuit ansatz, can
use directly any given discrete gate set, is able to ex-
ploit highly efficient Clifford simulations, and produces a
meta-agent able to cover strategies for a range of noise
models.

The paper is organized as follows: in Section II we pro-
vide the theoretical background for stabilizer codes, code
classification and reinforcement learning. In Section III
we describe our approach to build a noise-aware reinforce-
ment learning agent that discovers multiple QEC codes
in asymmetric noise channels. Finally, we present and
analyze our numerical results in Section IV.

II. BACKGROUND

A. Stabilizer Codes in Symmetric and Asymmetric
Error Channels

Some of the most promising QEC codes are based on
the stabilizer formalism [31], which leverages the proper-
ties of the Pauli group Gn on n qubits. The basic idea
of the stabilizer formalism is that many quantum states
of interest for QEC can be more compactly described by
listing the set of n operators that stabilize them, where an
operator O stabilizes a state |ψ⟩ if O|ψ⟩ = |ψ⟩. The Pauli
group on a single qubit G1 is defined as the set of Pauli
matrices X,Y, Z with the overall phases ±1, ±i, which
form a group under matrix multiplication. The general-
ization to n qubits consists of all n-fold tensor products
of Pauli matrices (called Pauli strings). For the purposes
of QEC, global phases can be ignored.
A code that encodes k logical qubits into n physical

qubits is a 2k-dimensional subspace (the code space C)
of the full 2n-dimensional Hilbert space. It is completely
specified by the set of Pauli strings SC that stabilize it,
i.e. SC = {si ∈ Gn | si|ψ⟩ = |ψ⟩, ∀|ψ⟩ ∈ C}. SC is called
the stabilizer group of C and is usually written in terms
of its group generators gi as SC = ⟨g1, g2, . . . , gn−k⟩.
Noise affecting quantum processes can be represented

using the so-called operator-sum representation [32],
where a quantum noise channel N induces dynamics on
the state ρ according to

N (ρ) =
∑
α

EαρE
†
α , (1)

where Eα are Kraus operators, satisfying
∑

αE
†
αEα = I.

The most elementary example is the so-called depolariz-
ing noise channel,

NDP(ρ) = pIρ+ pXXρX + pY Y ρY + pZZρZ , (2)

where pI + pX + pY + pZ = 1 and the set of Kraus op-
erators are Eα = {√pII,√pXX,√pY Y,√pZZ}. When
considering n qubits, one can generalize the depolariz-
ing noise channel by introducing the global depolarizing
channel,

NGDP(ρ) =

n⊗
j=1

N (j)
DP(ρj) , (3)

consisting of local depolarizing channels acting on each
qubit j independently. Taken as is, this error model gen-
erates all 4n Pauli strings by expanding (3). A commonly
used simplification is the following. Assume that all error
probabilities are identical, i.e. pX = pY = pZ ≡ p (and
pI = 1 − 3p). Then, the probability that a given error
occurs decreases with the number of qubits it affects. For
instance, if we consider 3 qubits, the probability associ-
ated with XII is p(XII) = p(1−3p)2, and in general the
leading order contribution to the probability of an error
affecting m qubits is pm. This leads to the concept of the

3

weight of an operator as the number of qubits on which it
differs from the identity and to a hierarchical approach
to building QEC codes. In particular, stabilizer codes
are described by specifying what is the minimal weight
in the Pauli group that they cannot detect.

The fundamental theorem in QEC is a set of necessary
and sufficient conditions for quantum error detection dis-
covered independently by Bennett, DiVincenzo, Smolin
and Wootters [33], and by Knill and Laflamme in [34]
(KL conditions from now on). These state that a code
C with associated stabilizer group SC can detect a set of
errors {Eµ} ⊆ Gn, if and only if for all Eµ we have either

{Eµ, gi} = 0 , (4)

for at least one gi, or the error itself is harmless, i.e.

Eµ ∈ SC . (5)

The smallest weight in Gn for which none of the above
two conditions hold is called the distance of the code.
For instance, a distance−3 code is capable of detecting
all Pauli strings of up to weight 2, meaning that KL
conditions (4), (5) are satisfied for all Pauli strings of
weights 0, 1 and 2. Moreover, the smallest weight for
which these are not satisfied is 3, meaning that there is
at least one weight−3 Pauli string violating both (4) and
(5). However, some weight−3 Pauli strings (and higher
weights) will satisfy the KL conditions, in general.

While these conditions are framed in the context of
quantum error detection, there is a direct correspondence
with quantum error correction. Indeed, a quantum code
of distance d can correct all errors of up to weight t =
⌊(d−1)/2⌋ [31]. Thus, d = 3 codes can both detect up to
all weight−2 errors and can correct all weight−1 errors.
If all the errors that are detected with a weight smaller
than d obey (4), the code is called non-degenerate. On
the other hand, if some of the errors satisfy (5), the code
is called degenerate.
The default weight-based [[n, k, d]] classification of

QEC codes implicitly assumes that the error channel is
symmetric, meaning that the probabilities of Pauli X, Y
and Z errors are equal. However, this is usually not the
case in experimental setups: for example, dephasing (Z
errors) may dominate bit-flip errors.

In our work, we will consider an asymmetric noise
channel where pX = pY but pX ̸= pZ . To quantify the
asymmetry, we use the bias parameter cZ [30], defined as

cZ =
log pZ
log pX

. (6)

For symmetric error channels, cZ = 1. If Z-errors domi-
nate, then 0 < cZ < 1, since pZ = pcZX and pX , pZ ≪ 1;
conversely cZ > 1 when X/Y errors are more likely than
Z errors.

The weight of operators and the code distance can
both be generalized to asymmetric noise channels [35–
38]. Consider a Pauli string operator Eµ and denote as
wX the number of Pauli X inside Eµ (likewise for Y , Z).

Then one can introduce the cZ−effective weight [30] of
Eµ as

we(Eµ, cZ) = wX(Eµ) + wY (Eµ) + cZwZ(Eµ) , (7)

which reduces to the symmetric weight for cZ = 1, as
expected. The cZ−effective distance of a code de(cZ) is
then defined [30] as the largest possible integer such that
the KL conditions (4), (5) hold for all Pauli strings Eµ

with we(Eµ, cZ) < de(cZ). Like in the symmetric noise
case, the meaning of this effective distance is that all
error operators with an effective weight smaller than de
can be detected.

B. Code Classification

It is well known that there is no unique way to de-
scribe quantum codes. For instance, there are multiple
sets of code generators that generate the same stabilizer
group, hence describing the same code. Moreover, the
choice of logical basis is not unique and qubit labeling
is arbitrary. While such redundancies are convenient for
describing quantum codes in a compact way, comparing
and classifying different codes can be rather subtle. For-
tunately, precise notions of code equivalence have been
available in the literature since the early days of this field.
In this work, we will refer to families of codes based on
their quantum weight enumerators (QWE) [39], A(z) and
B(z), which are polynomials with coefficients

Aj =
1

(2k)2

∑
w(Eµ)=j

Tr (EµPC) Tr
(
E†

µPC
)
,

Bj =
1

2k

∑
w(Eµ)=j

Tr
(
EµPCE

†
µPC

)
, (8)

where j runs from 0 to n and PC is the orthogonal pro-
jector onto the code space. Intuitively, Aj counts the
number of error operators of weight j in SC while Bj

counts the number of error operators of weight j that
commute with all elements of SC . Logical errors are thus
the ones that commute with SC but are not in SC , and
these are counted with Bj −Aj .

Such a classification is especially useful in scenarios
with symmetric noise channels, where it is irrelevant
whether the undetected errors contain a specific Pauli op-
erator at a specific position. However, such a distinction
can in principle be important in asymmetric noise chan-
nels. While generalizing (8) to asymmetric noise chan-
nels with effective weights is straightforward, comparing
codes across different values of noise bias becomes cum-
bersome. Hence, in the present work we will always refer
to (symmetric) code families according to (8) for all val-
ues of cZ , i.e. we will effectively pretend that cZ = 1
when computing the weight enumerators of asymmetric
codes.

4

C. Reinforcement Learning

Reinforcement Learning (RL) [40] is designed to dis-
cover optimal action sequences in decision-making prob-
lems. The goal in any RL task is encoded by choosing a
suitable reward r, a quantity that measures how well the
task has been solved, and consists of an agent (the entity
making the decisions) interacting with an environment
(the physical system). In each time step t, the environ-
ment’s state st is observed. Based on this observation,
the agent takes an action at which then affects the cur-
rent state of the environment. A trajectory is a sequence
of state and action pairs that the agent takes. An episode
is a trajectory from an initial state to a terminal state.
For each action, the agent receives a reward rt, and the
goal of RL algorithms is to maximize the expected cumu-
lative reward (return), E [

∑
t rt]. The agent’s behavior is

defined by the policy πθ(at|st), which denotes the prob-
ability of choosing action at given observation st, and is
parameterized by a neural network with parameters θ.

Within RL, policy gradient methods [21] optimize the
policy by maximizing the expected return with respect to
the parameters θ with gradient ascent. One of the most
successful algorithms within policy gradient methods is
the actor-critic algorithm [41]. The idea is to have two
neural networks: an actor network that acts as the agent
and that defines the policy, and a critic network, which
measures how good was the action taken by the agent.
In this paper, we use a state-of-the-art policy-gradient
actor-critic method called Proximal Policy Optimization
(PPO) [42], which improves the efficiency and stability
of policy gradient methods.

III. REINFORCEMENT LEARNING
APPROACH TO QEC CODE DISCOVERY

The main objective of this work is to automatize the
discovery of QEC codes and their encoding circuits using
RL. We will be interested in a scenario where the encod-
ing circuit is assumed to be error-free. This is applicable
to quantum communication or quantum memories, where
the majority of errors happen during transmission over a
noisy channel or during the time the memory is retaining
the information.

Eventually we will show that it is possible to train a
meta-agent that is capable of adapting its strategy ac-
cording to the noise model, without any retraining. This
leverages the concept of transfer learning, where improve-
ments gained in training for one scenario (here, one value
of a noise parameter) carry over and accelerate the train-
ing progress for other scenarios. A scheme of our ap-
proach can be found in Fig. 1.

A. Encoding Circuit

In order to encode the state of k logical qubits on n
physical qubits one must find a sequence of quantum
gates that will entangle the quantum information in such
a way that QEC is possible with respect to a target noise
channel. Initially, we imagine the first k qubits as the
original containers of our (yet unencoded) quantum in-
formation, which can be in any state |ψ⟩ ∈ (C2)

⊗k. The
remaining n − k qubits are chosen to each be initialized
in the state |0⟩. These will be turned into the corre-
sponding logical state |ψ⟩L ∈ (C2)

⊗n via the application
of a sequence of Clifford gates on any of the n qubits
(where Clifford gates are defined to be those that map
Pauli strings to Pauli strings and are generated by the
Hadamard H, the Phase S and the CNOT gates). In the
stabilizer formalism, this means that initially the gener-
ators of the stabilizer group are

Zk+1, Zk+2, . . . , Zn . (9)

The task of the RL agent is to discover a suitable encod-
ing sequence of gates. After applying each gate, the n−k
code generators (9) are updated. The agent then receives
a representation of these generators as input (as its ob-
servation) and suggests the next gate (action) to apply.
In this way, an encoding circuit is built up step by step,
taking into account the available gate set and connectiv-
ity for the particular hardware platform. This process
terminates when the KL conditions (4), (5) are satisfied
for the target error channel and the learned circuit can
then be used to encode any state |ψ⟩ of choice.
Before discussing how to implement the KL condi-

tions in terms of a reward function, we illustrate this
process with the encoding of the three-qubit repetition
code, which is a [[3, 1]] code that can correct single-
qubit bit flips. This means that there are two code
generators and that the targeted error set consists of
all weight−1 and weight−2 bit-flip (Pauli−X) operators
(XII, IXI, IIX,XXI,XIX, IXX), since detecting this
set implies being able to correct all single-qubit bit-flips.
The generators start being IZI, IIZ in the absence of
gates, and transform into ZZI, ZIZ after applying two
CNOT gates with control on the first qubit and target
on the second and third qubits. Initially, only the error
operator XII is not detected. After the first CNOT gate,
the undetected error becomes XXI, and after the second
CNOT all target errors are detected.

B. Reward

The most delicate matter in RL problems is building
a suitable reward for the task at hand. Our goal is to
design an agent that, given an error model that includes
a set of errors {Eµ} ⊆ Gn with associated occurrence
probabilities {pµ}, is able to find an encoding sequence
that protects the quantum information from such noise.

5

Code
Discovery

Clifford Gate Set H

Qubit
Connectivity

q1
q2 q3

q4 q5

Error Operators {I, Xi, Yi, Zi, . . . }

RL Agent

Action

Observation
Code Generators
: IXIIIXg1
: IIZIIIg2

: IIIZIIg3
: IIIIZIg4

Environment

H

Apply Gate

CX(0,3)

Reward

Noise parameter(s)

: XZIIIZg5

H

q6

|ψ⟩

Noise model 1

|0⟩
|0⟩
|0⟩
|0⟩
|0⟩

Noise model 2

Noise model 3

FIG. 1. QEC code and encoding discovery using a noise-aware RL meta-agent. A set of error operators, a gate set and
qubit connectivity is chosen. Different error models can be considered by varying some noise parameters, which are fed as an
observation to the agent. The agent then builds a circuit using the available gate set and connectivity that detects the most
likely errors from the target error model by using a reward based on the Knill-Laflamme QEC conditions according to Eq. (10).
After training, a single RL agent is able to find suitable encodings for different noise models, which are able to encode any
state |ψ⟩ of choice.

Let us consider a quantum communication setup to
have a concrete picture. Here, we imagine Alice and Bob
exchanging some quantum bits of information contained
in a state |ψ⟩. We assume that they are able to im-
plement all gates and measurements without errors and
that errors only happen while the message is traveling
through the communication channel. Alice encodes state
|ψ⟩ into |ψ⟩L and sends it through the noisy channel,
after which it is received by Bob in the form of a pos-
sibly corrupted, mixed state. Since Bob knows the en-
coding that Alice has used, he also knows what are the
stabilizer generators. Hence, Bob proceeds to perform
syndrome measurements according to the stabilizer gen-
erators of the code and finally corrects the errors that he
believes have happened along the way. If done perfectly,
the corrected state becomes the original state |ψ⟩L sent
by Alice. However, even when both Alice and Bob have
access to perfect gates and measurements, the probabil-
ity of recovering the state is not one. The reason is that
multiple errors may trigger the same syndrome measure-
ment, and in some cases Bob will mistakenly correct for
an error that did not actually happen. An option for
our RL agent could thus be to maximize the probability
of recovering the initial state, or what is the same, min-
imizing the probability that Bob applies a wrong error
correction operation. Unfortunately, optimizing for this
task is computationally very expensive. Indeed, for each
syndrome, there are different errors that could have trig-
gered it. On top of that, from all the errors that could
have triggered that syndrome, computational resources
have to be employed in finding the most dangerous one,
which then has to be selected as the candidate error to
be corrected. Such expensive calculations would have to
be carried out in every step of the RL procedure.

A much cheaper alternative that avoids performing
such error categorization is to use a scheme where the
cumulative reward (which RL optimizes) simply is max-
imized whenever all the KL conditions are fulfilled. One
implementation of this idea uses the weighted KL sum as
an instantaneous reward:

rt = −
∑
µ

λµKµ , (10)

where Kµ = 0 if either (4) or (5) are satisfied for the
corresponding error operator Eµ, and Kµ = 1 otherwise.
Here λµ are real positive numbers that we will take to
be hyperparameters. For any choice of λµ, if all errors in
{Eµ} can be detected, the reward is zero, and is negative
otherwise, thus leading the agent towards the goal we set
out to solve. Later, we will also be interested in situa-
tions where not all errors can be corrected simultaneously
and a good compromise has to be found. In that case,
one simple heuristic choice for the reward (10) would be
λµ = pµ, giving more weight to errors that occur more
frequently. While we will later see that maximizing the
KL reward given here is not precisely equivalent to mini-
mizing the overall probability of incorrectly classified er-
rors, one can still expect a reasonable performance at
this task, which would be the ultimate goal in any QEC
scheme.
RL optimizes the cumulative reward R, i.e. the sum of

rt over all time steps. Therefore, defining the instanta-
neous reward rt in terms of the weighted KL sum means
we are asking the agent that it keeps this sum as small as
possible on average. While this might seem less desirable
than setting R itself to be the KL sum at the final time
step, we have heuristically found that the ansatz adopted
here produces good training behavior and is still able to

6

find codes and their encoding circuits.
Referring back to the encoding procedure for the 3-

qubit repetition code, the weighted KL sum starts be-
ing pXp

2
I because only the error operator XII is not de-

tected, changing to p2XpI < pXp
2
I after application of the

first CNOT gate. When all KL conditions are satisfied,
the weighted KL sum is zero and all error operators that
were considered can be detected, leading to a successful
encoding.

A nice feature of our reward is that one can favor cer-
tain types of codes. For instance, we can target non-
degenerate codes only by ignoring (5). Moreover, mak-
ing the reward non-positive favors short gate sequences,
which is desirable when preparing these codes in actual
quantum devices.

C. Noise-aware meta-agent

Regarding the error channel to be targeted, here there
are in principle several choices that can be made. The
most straightforward one is choosing a global depolariz-
ing channel as given by (3). This still allows for asym-
metric noise, i.e. different probabilities pX , pY , pZ . One
option would be to train an agent for any given, fixed
choice of these probabilities, necessitating retraining if
these characteristics change. However, we want to go be-
yond that and discover a single agent being capable of
deciding what is the optimal encoding strategy for any
level of bias in the noise channel (6). For instance, we
want this noise-aware agent to be able to understand that
it should prioritize detecting ZZZ errors over XX errors
in a scenario with cZ = 0.5, but that it should do the
opposite for larger values of cZ . This translates into two
aspects: The first one is that the agent has to receive the
noise parameters as input. In the illustrative example
further below, we will choose to supply the bias parame-
ter cZ as an extra observation, while keeping the overall
error probability fixed. The second aspect is that the list
of error operators will have to contain more operators
than the total number that can actually be detected reli-
ably, since it is now part of the agent’s task to prioritize
some of those errors while ignoring the least likely errors.
All in all, the list of operators participating in the reward
(10) will be fixed and we will choose those with at most
(symmetric) weight d−1, for a certain d; the idea is then
that when varying cZ , the probabilities of these errors
will change and the agent will have to figure out which
are the most dangerous errors that must be detected in
every case.

As we argued in Sec. II, if one expands (3), Pauli
strings of all weights would participate in the error set
{Eµ}. Imposing a cutoff at (symmetric) weight d−1 im-
plies that the number of error operators to keep track of
is

|{Eµ}|w≤d−1 =

d−1∑
w=0

3w
(
n

w

)
, (11)

which grows exponentially with d. As we will see, this
exponential growth of the number of error operators that
have to be tracked will impose the most severe limitation
in our approach.

D. Fast parallelized Clifford simulator

RL algorithms exploit trial-and-error loops until a sig-
nal of a good strategy is picked up and convergence is
reached, so it is of paramount importance that simula-
tions of our RL environment are extremely fast. Luck-
ily, thanks to the Gottesman-Knill theorem, the Clifford
circuits needed here can be simulated efficiently classi-
cally. Optimized numerical implementations exist, e.g.
Stim [43]. However, in an RL application we want to
be able to run multiple agents in parallel in an efficient,
vectorized way that is compatible with modern machine
learning frameworks. For that reason, we have imple-
mented our own special-purpose vectorized Clifford sim-
ulator. Briefly, we use the symplectic binary formalism
of the Pauli group [44] to represent the stabilizer gener-
ators. SC is then represented by a check matrix H [44],
which is a (n − k) × 2n binary matrix where each row i
represents the Pauli string gi from SC . Clifford gates are
also implemented using binary matrices, and we achieve
a massive parallelization by running Clifford-based simu-
lations of quantum circuits in parallel, meaning that the
agent interacts with a batch of RL environments (quan-
tum circuits) at every timestep. Our Clifford simulator
is implemented using Jax [45], a state-of-the-art modern
machine learning framework with good vectorization and
just-in-time compilation capabilities. On top of that, we
also train multiple RL agents in parallel on a single GPU.
This is achieved by interfacing with PureJaxRL [46], a
library that offers a high-performance end-to-end JAX
RL implementation. We plan to make the codes of our
implementation public in the near future.

The efficiency of Clifford simulations, as well as the use
of powerful state-of-the-art RL algorithms, enables us to
easily go beyond the recent results of [30], which were
based on variational quantum circuits. In particular, we
are able to straightforwardly discover codes and encoding
circuits for both larger number of qubits (14 vs 20) and
larger code distances (4 vs 5).

IV. RESULTS

We will first illustrate the basic workings of our ap-
proach for a symmetric noise channel before introducing
the meta-agent that is able to simultaneously discover
strategies for a range of noise models.

7

FIG. 2. Example of a training trajectory for [[7, 1, 3]] code
discovery. Here, 16 parallel agents each interact with batches
of 32 circuits processed in parallel. Each agent finds a different
encoding circuit, and the training finishes in 16 sec on a single
GPU.

A. Codes in a symmetric depolarizing noise
channel

We now illustrate the versatility of our approach by
discovering a library of different codes and their associ-
ated encoding circuits. We fix the error model to be a
symmetric depolarizing channel with error probability p,
meaning pI = 1 − 3p, pX = pY = pZ = p, and thus no
noise parameter is needed. We also vary the target code
distance d from 3 to 5. The corresponding target error
set is Eµ = {I,Xi, Yi, Yj , XiXj , . . . , ZiZj} for d = 3, and
likewise for d = 4, 5, with the set for d = 5 including
all Pauli string operators of up to weight 4. In our nu-
merical experiments, we choose pI = 0.9, which enters
the reward function where we choose the weights pro-
portional to the error probabilities (recall the discussion
above). Although the final discovered codes and encod-
ing circuits are independent of this choice, it can affect
the learning progress.

For illustrative purposes, we take the gateset to be
{Hi,CNOT(i < j)}, i.e. a directed all-to-all connectiv-
ity, which is sufficient given that our unencoded logical
state is at the first qubits by design. Nevertheless, both
using alternative gatesets or other connectivities works
well. The final physical hyperparameter is the maximal
number of gates that we allow before restarting the learn-
ing trajectory. This number will be varied from 20 to 50,
depending on the target code parameters. Unless we say
so explicitly, we target both non-degenerate and degen-
erate codes.

To begin, we display an example of a typical training
trajectory in Fig. 2 to show the efficiency of our imple-
mentation. There, 16 agents are tasked to find [[7, 1, 3]]
codes, which each of them completes successfully running
in parallel in 16 sec on a single GPU. The average cir-
cuit size starts being 25 by design, i.e. if no code has
been found after 25 gates, the circuit gets reinitialized.

This number starts decreasing when codes start being
found and it saturates to a final value, which is in gen-
eral different for each agent. The noticeable variance in
the circuit sizes that are found in Fig.2 is a testament
that different codes (in the sense of possibly belonging
to different code families) with the same code parame-
ters [[7, 1, 3]] may have been found, yet making such a
distinction requires further postprocessing.

We now move on to the main results of this Section,
which are summarized in Fig. 3. There we show a classifi-
cation of stabilizer codes with a range of different param-
eters [[n, k, d]]. In the following discussion we separate
d = 3, 4 from d = 5, since the latter are more challenging
to find.

For d = 3 and d = 4 codes we proceed as follows:
for any given target [[n, k, d]], we launch a few train-
ing runs. Once the codes are collected, we categorize
them by calculating their quantum weight enumerators,
see Eq. (8), leading to a certain number of non-degenerate
(Ad−1 = Bd−1 = 0) and degenerate (Ad−1 = Bd−1 ̸= 0)
families. We repeat this process and keep launching new
training runs until no new families are found by further
runs. In this way, our strategy presumably finds all sta-
bilizer codes that are possible for the given parameters
n, k, d. This total number of families is shown in Fig. 3,
with labels (x, y) for each [[n, k, d]], where x is the num-
ber of non-degenerate families and y is the number of
degenerate ones. It should be stressed that categorizing
all stabilizer code families is in general an NP-complete
problem [47], yet our framework is very effective at solv-
ing this task. To the best of our knowledge, this work pro-
vides the most detailed tabulation of (x, y) populations
together with encoding circuits for the code parameters
that we have studied.

This approach discovers suitable encoding circuits,
given the assumed gate set, for a large set of codes.
Among them are the following known codes for d = 3 (see
[48] for explicit constructions of codes [[n, n− r, 3]] with
minimal r, for all n): The first one is the five-qubit per-
fect code [13], which consists of a single non-degenerate
[[5, 1, 3]] code family and is the smallest stabilizer code
that corrects an arbitrary single-qubit error. Next are
the 10 families [47] of [[7, 1, 3]] codes, one of which corre-
sponds to Steane’s code, the smallest d = 3 CSS code [14].

The smallest single-error-correcting surface code,
Shor’s code [12], is rediscovered as one of the 143 degen-
erate code families with parameters [[9, 1, 3]]. The small-
est quantum Hamming code [49] [[8, 3, 3]] is obtained as
well. Our approach is efficient enough to reach up to
20 physical qubits. The largest code parameters that we
have considered for d = 3 are [[20, 13, 3]], finding codes
and encoding circuits in 800 sec with 45 gates (see Ap-
pendix B).

The circuit size shown for each [[n, k, d]] in Fig. 3 is
the minimal one found across all discovered families. In
general, different families have different circuit sizes, and
even within the same family we find variations in circuit
sizes.

8

(1,0)

(0,1)

(3,7) (25,143)(10,26)

(1,0)
(12,0)

(1,0)(13,0)

(11,2)
(102,105)

(328,68)

(142,2)

Ci
rc

ui
t s

ize

Number of physical qubits

(6,1)
(32,57) (56,486)Out[]=

● ● ● ● ●
■ ■ ■
◆ ◆ ◆

▲ ▲

▼ ▼

○○

4 6 8 10 12 14 16
0

10

20

30

40

n

L

● k=1 ■ k=2 ◆ k=3 ▲ k=5 ▼ k=7 ○ k=9

incl. Steane incl. Shor

Smallest quantum
Hamming code

Perfect
code

(1,0)

(2,2)

(22,0)
(14,0)

(1,0)

Ci
rc

ui
t s

ize

Number of physical qubits

Out[]=
●

●

●
●

■■

10 11 12 13 14 15 16
25
30
35
40
45
50

n

L

(7,5)
(26,167)Ci

rc
ui

t s
ize

Number of physical qubits

(77,239)

(1,0) (16,5) (117,181)

(31,0)
(234,56)

Out[]= ●
●

●

■ ■ ■

◆
◆

9 10 11 12 13 14
10
15
20
25
30
35
40

n

L

d=3 d=4 d=5

Out[]=

● ● ● ● ●
■ ■ ■
◆ ◆ ◆

▲ ▲

▼ ▼

○○

4 6 8 10 12 14 16
0

10

20

30

40

n

L

● k=1 ■ k=2 ◆ k=3 ▲ k=5 ▼ k=7 ○ k=9Number of logical qubits:

FIG. 3. Discovering codes and encoding circuits for various numbers of physical qubits, logical qubits, and distances. Selection
of families of stabilizer codes tailored to symmetric depolarizing noise channels, found with our RL framework. The labels (x, y)
indicate the number of non-degenerate (x) and degenerate (y) code families. The circuit size shown is the absolute minimum
throughout all families, and different families in general have different minimal circuit sizes. Since further d = 3, 4 training
runs do not increase family populations, it is likely that there are no more stabilizer codes for the shown [[n, k, d = 3, 4]]. Codes
[[n, k = 4, 6, 8, d = 3]] are also found but not shown to keep the figure uncluttered. For the computationally harder case of d = 5
we display the results found in a finite allotted time.

The RL framework presented here easily allows to find
encoding circuits for different connectivities. The connec-
tivity affects the likelihood of discovering codes within a
certain family during RL training as well as the typical
circuit sizes. In Fig. 4, we illustrate this for the case of
[[9, 3, 3]] codes, with their 13 families, for two different
connectivities: an all-to-all (directed, i.e. CNOT(i < j))
and a nearest-neighbor square lattice connectivity.

We now move to distance d = 5 codes. These are
more challenging to find due to the significantly increased
number of error operators (11) to keep track of, which
impacts both the computation time and the hardness of
satisfying all KL conditions simultaneously. Neverthe-
less, our strategy is also successful in this case. It is
known that the smallest possible distance−5 code has
parameters [[11, 1, 5]], a result that we confirm with our
strategy. We find the single family for this code to have
weight enumerators

A = (1, 0, 0, 0, 0, 0, 198, 0, 495, 0, 330, 0) , (12)

B = (1, 0, 0, 0, 0, 198, 198, 990, 495, 1650, 330, 234) ,

and an encoding circuit consisting of 32 gates in the min-
imal example, which we show in Appendix B.

In order to reduce computational effort, for n ≥ 14 we
ignored (5), and as a result the codes found in Fig. 3
n ≥ 14 are only non-degenerate.

Moreover, the increased memory requirements from
keeping track of more error operators (11) means that
the number of agents that can be trained in parallel on
a single GPU decreases. For instance, from the 4 agents
that we train in parallel, it is rare that any of them finds
an encoding sequence that leads to d = 5 code discov-
ery. In addition, each of these training runs needs 1-4
hours, depending on the code parameters and whether
degenerate codes are also targeted. Nevertheless, future
performance improvements are likely possible.

B. Noise-aware meta-agent

We now move on to codes in more general asymmetric
depolarizing noise channels. This lets us illustrate a pow-
erful aspect of RL-based encoding and code discovery:
One and the same agent can learn to switch its encod-
ing strategy depending on some parameter characterizing
the noise channel. This can be realized by training this
noise-aware agent on many different runs with varying
choices of the parameter, which is fed as an additional
input to the agent. One motivation for this approach is
that the agent may learn to generalize, i.e. transfer what
it has learned between different values of the parameter.
In the present example, the parameter in question is

the bias parameter cZ = log pZ/ log pX introduced above,
Eq. (6). This allows the same agent to switch its strat-
egy depending on the kind of bias present in the noise
channel. Once a particular value of cZ is chosen, the
error probabilities characterizing the noise channel are
(pI , pX , pX , p

cZ
X). Normalization of the error probabilities

imposes a relationship between pI and pX , which means
that there is only one other free parameter besides cZ ,
either pI or pX . It is more beneficial for training and
generalization to keep pI fixed and solve for pX ; other-
wise the magnitude of the probabilities {pµ} changes a
lot when varying cZ , leading to poorer performance.

The error set Eµ is now taken to be all Pauli
strings of (symmetric) weight ≤ 4, i.e. {Eµ} =
{I,Xi, Yi, Zi, XiXj , . . . , ZiZjZkZl}, but their associated
error probabilities (and thus their effective weights ac-
cording to (7)) will vary depending on cZ . For every
RL training trajectory, a new cZ is chosen and the error
probabilities pµ are updated correspondingly. For the
number of physical qubits that we will consider, the KL
conditions (4), (5) cannot be exactly satisfied. Hence, we
are forcing the agent to achieve some compromise: the
most likely errors will have to be detected at the expense
of not detecting other, less likely ones.

9

[[9,3,3]]

* *

all-
to-all

* *

FIG. 4. Influence of connectivity. Characteristics of the 13
families of [[9, 3, 3]] codes found with our framework, clus-
tered according to families distinguished by their quantum
weight enumerators (8). Families 9 and 13 (*) are degener-
ate, while the rest are non-degenerate. We have trained a
total of 10240 agents for each of both cases. In the all-to-
all (directed: CNOT(i < j)) connectivity, 9574 agents were
successful, while this number went down to 3808 in the other
case. The bars display how these codes are distributed across
different families. Codes in the same family found by different
agents are not necessarily distinct, so the bars are rather an
indication of the likelihood of a training run to find a code
within the family. The points show the mean circuit size,
averaged within each family, while the error bar is its stan-
dard deviation. It is interesting to see that even with different
connectivities, families occur with similar likelihoods during
training. We explicitly list the corresponding quantum weight
enumerators computed with (8) in Appendix A.

Regarding more detailed aspects of our imple-
mentation, we sample cZ from the set cZ ∈
{0.5, 0.6, 0.7, . . . , 1.9, 2} with a uniform probability dis-
tribution. The hyperparameters λµ of the reward (10)
are defined as

λµ =
pµ

max(pµ)

∣∣∣∣
cZ

, (13)

by which we mean that for every cZ , the corresponding
set of pµ’s gets normalized by the maximal value of pµ in
that set.
We choose pI = 0.9, even though both slightly smaller

and larger values around pI ≈ 0.9 perform equally well.
However, going below pI <∼ 0.8 or above pI >∼ 0.95 comes
with different challenges. In the former (for large er-
rors), we lose the important property that the sum of
pµ’s decreases as a function of weight, (

∑
µ pµ)w=1 >

(
∑

µ pµ)w=2 > In the latter (small errors), the range
of values of pµ is so large that one would need to use a 64-
bit floating-point representation to compute the reward
with sufficient precision. Since both RL algorithms and
GPUs are currently designed to work best with 32-bit
precision, we decide to avoid this range of values for pI
during training, but we will still evaluate the strategies
found by the RL agent on different values of pI .
We apply this strategy to target codes with parame-

ters n = 9, k = 1 in asymmetric noise channels. We
allow a maximum number of 35 gates. Moreover, we con-
sider an all-to-all connectivity, taking as available gate set
{Hi, Si,CNOT(i, j)}, where Si is the phase gate acting
on qubit i.
As is the case for most RL learning procedures, ev-

ery independent learning run will typically result in a
different learned strategy by the agent. We will thus
train many agents and post-select the few best perform-
ing ones. Now, there are in principle two different ways
to make this selection: The first one is based on how well
they minimize the weighted KL sum (which is what they
were trained for). The second one is by evaluating the
probability that a single error correction cycle will end
in failure, i.e. the probability that the wrong correction
would be applied based on the detected syndrome. More
concretely, we classify the agents by summing these two
quantities over cZ . By evaluating them based on these
two criteria we will be able to see whether agents trained
with a computationally cheaper reward (the weighted KL
sum) can be reused for the more complex task of mini-
mizing the failure probability. To be precise, we define
the failure probability as

pf =
∑
syn

p(correct wrong error|syn)p(syn) , (14)

where syn is one of the possible 2n−k syndromes, and
where the error correction strategy is to always correct
the most likely error to have happened given that specific
syndrome. If more than one error is equally likely, we
randomly select one of them.

We discover codes with the following parame-
ters: [[9, 1, de(cZ = 0.5) = 2]], [[9, 1, de(cZ = 0.6) = 3]],
[[9, 1, de(cZ = 1.4) = 4]], [[9, 1, de(cZ = 2) = 5]]. Codes
in-between, 0.5 ≤ cZ < 0.6, have de = 2, 0.6 ≤ cZ < 1.4
have de = 3, and so on. Even though all encodings that
the agent outputs have circuit size 35, we notice that
trivial gate sequences are applied at the last few steps,
effectively reducing the overall gate count. We remark
that this feature is not problematic: it means that the

10

W
eig

ht
ed

 K
L

su
m

Sm
al

les
t u

nd
et

ec
te

d
 e
ffe

ct
iv

e
we

ig
ht

Bias parameter cZ

a

Bias parameter cZc Bias parameter cZ

Fa
ilu

re
 p

ro
ba

bi
lit

y

b

d

Fa
ilu

re
 p

ro
ba

bi
lit

y

1 − pI

∼ (1 − p I)2
.98

∼ (1 − pI)2

cZ = 0.5
cZ = 1.0
cZ = 2.0

∼ (1 − pI)2
.07

FIG. 5. Performance of the noise-aware RL agent. The agent finds n = 9, k = 1 codes and encoding circuits, simultaneously
for different levels of noise bias cZ , with single-qubit fidelity pI = 0.9. In panels a,b,c, green represents the agent that was
post-selected among all trained agents for performing best at minimizing the weighted KL sum, averaged over all cZ values.
Orange refers to the agent minimizing the failure probability, averaged over cZ . Dashed lines correspond to averages and
shaded regions to the standard deviations over the best 30 agents of each class. a Weighted KL sum as a function of the noise
bias parameter cZ (best agent: solid green line). b Failure probability as a function of the noise bias parameter cZ . Here
the best agent, as measured in this way, follows the solid orange line with square markers. c Smallest undetected effective
weight (effective code distance is the integer part) as a function of the noise bias parameter cZ . While there is almost a perfect
overlap between both ’best’ agents until cZ = 1.1, the situation changes afterwards, leading at cZ = 2 to a de = 5 code (green)
or a de = 4 code (orange) that perform equally well in terms of the failure probability, as seen in b. d Evaluation of the
failure-probability of the best-performing agent (orange in the other panels) for larger values of pI (smaller errors) than the
ones it was trained on.

agent is done well before a new training run is launched,
and the best thing it can do is collecting small negative
rewards until the end. We manually prune the encodings
to get rid of such trivial operations, and the resulting
circuit sizes vary from 22 to 35, depending on the value
of cZ .

The main results are shown in Fig. 5. We start by com-
paring the two best-performing post-selected agents ac-
cording to minimizing the weighted KL sum (green) and
minimizing the failure probability (orange), see Fig. 5a,b.
There we see that it is in general not true that minimiz-
ing the weighted KL sum will automatically correspond
to a lower failure probability. Nevertheless, there is a
nice correlation between the two, especially in the region
cZ < 1. More explicitly, the two best-performing agents
show an almost identical performance in terms of both
the weighted KL sum and the failure probability in this
region. The situation changes when cZ ≥ 1, where we see

that the optimal agents for the weighted KL sum are not
optimal in terms of minimizing the failure probability,
especially when cZ ≥ 1.5.

The results from Fig. 5a,b suggest that there are two
”branches” separated by a ”phase transition” at cZ = 1.
Indeed, the two-branch structure can be easily under-
stood in terms of the degree of asymmetry in the noise
channel. For cZ < 1, Z−errors are more likely than
X/Y−errors, while the opposite happens for cZ > 1.
For cZ < 1, a single error ”species” had to be prioritized,
but this number grows to two for cZ > 1. At the middle
point, cZ = 1, there is no preference for any of the three
species.

The last comparison between these two agents that we
do is based on the smallest undetected effective weight of
the codes found in Fig. 5c. The same behavior as before
is observed: almost-perfect correlation up to cZ = 1, and
discrepancy at larger values of cZ . Surprisingly, the code

11

c Z
=0

.5
c Z

=1
.4

c Z
=0

.9
c Z

=2
.0

q0 : • H •
q1 : •
q2 : S H
q3 : H • • • H • • H • • H
q4 : • •
q5 : S H • •
q6 : H • • H • S H
q7 : • •
q8 : • S H

q0 : • •
q1 : •
q2 : •
q3 : H • • • H • • • H • •
q4 : • H • S H •
q5 : H •
q6 : H • •
q7 : •
q8 :

q0 : • •
q1 : •
q2 : •
q3 : H • • • • H • • • H • •
q4 : • H •
q5 :

q6 : H • • S H
q7 : •
q8 :

q0 : • • •
q1 : •
q2 :

q3 : H • • • • • H • • H • •
q4 : • H •
q5 :

q6 : H • • •
q7 : • •
q8 :

I X
Y Z

generators giqu
bi

t
in

de
x

q j

a b

c Z
=0

.5
c Z

=1
.4

c Z
=0

.9
c Z

=2
.0

A B

1
0
0
0
10
…

1
0
0
4
50
…

1
0
0
0
6
…

1
0
0
4
42
…

B
ias param

eter cZ

c Weight enumeratorsCode generatorsEncoding circuits

FIG. 6. Characteristics of the 9-qubit codes and encodings found by the noise-aware meta-agent post-selected for minimizing
the failure probability. a Encoding circuits: Here we see that many small gate sequences (highlighted with different colors)
are reused across different values of cZ . This is an indication of transfer learning, i.e. the power of the meta-agent. b Code
generators gi corresponding to the encoding circuits, where we do not make a distinction between X or Y . Here we see that
the code generators gi vary across different values of cZ . c Associated code family according to their (symmetric) weight
enumerators A, B. The same code family is used from 0.5 ≤ cZ < 0.9, while a family switching occurs at cZ = 0.9, and it is
kept until cZ = 2.

0.5 1.0 1.5 2.0
Bias parameter cZ

Q
ub

it
in

de
x

1

3

7

5

9

Code generator g1I X
Y Z

q j

FIG. 7. Evolution of the first code generator g1 as a function
of the bias parameter cZ .

found by the best agent according to the weighted KL

sum (green) at cZ = 2 has de = 5, while the best code at
minimizing the failure probability (orange) has de = 4.
However, at the specific point cZ = 2 these two codes
perform equally in terms of the failure probability (see
Fig. 5b).

Now, we focus on the agent that performs best at min-
imizing the failure probability (orange) since it is the one
of most interest in physical scenarios. We are specifically
interested in doing a more detailed analysis to under-
stand what are the characteristics of the codes that are
being found. We begin by evaluating the performance of
the same agent on different values of pI . This is shown
in Fig. 5d, where we see that there is indeed a gain by
encoding the quantum state, and it asymptotically fol-
lows a power law with exponent >∼ 2 depending on the
specific value of cZ .

We continue by analyzing the encoding circuits and
code generators for some selected values of cZ . These
are chosen after computing the (symmetric) quantum
weight enumerators according to Eq. (8), which we show

12

in Fig. 6c. There we see that the same code family
is kept for 0.5 ≤ cZ < 0.9, where Z errors are more
likely than X/Y . From that point onward, the agent
switches to a new code family that is kept until the end,
cZ = 2. We thus choose to analyze the encoding cir-
cuits and their associated code generators for the values
cZ = {0.5, 0.9, 1.4, 2}.

We begin by showing the encoding circuits in Fig. 6a,
highlighting common motifs that are re-used across vari-
ous values of cZ with different colors, indicative of trans-
fer learning. Another interesting behavior is that S gates
are used more prominently at small values of cZ , in par-
ticular in the combination S ·H. What this combination
of gates does is a permutation: X → Y , Y → Z, Z → X
(ignoring signs), which is very useful to exchange Y by Z
efficiently. Moreover, we recall that the circuits that we
show are pruned, i.e. trivial sequences of gates are man-
ually eliminated. The agent actually uses lots of S gates
at the very end of the encoding for almost all values of
cZ . This is no accident: we have constructed a scenario in
whichX/Y errors are essentially indistinguishable, in the
sense that they occur with equal probability. Thus the S
gate (which exchanges X by Y) acts like an idling oper-
ation. This is cleverly leveraged by the agent to shorten
the encoding circuits: once it cannot improve the final
reward further, the strategy then becomes to reach that
point as soon as possible and collect that final reward for
as many steps as possible.

The final aspect we investigate is the code generators
of such encoding circuits, which are shown in Fig. 6b.
To aid visualization, we have chosen different colors for
different Pauli matrices. However, since our scenario is
by construction symmetric in X/Y , we choose to repre-
sent X and Y by the same color. Since the code used at
cZ = 0.5 is the only one from a different code family, it
is natural that its code generator pattern is the most dis-
tinct. However, we see that the generators of the remain-
ing values of cZ have similar structures at certain points.
We also include in Fig. 7 how the first code generator g1
(the first column in Fig. 6) changes across all values of
cZ . For instance, the transition between different code
families is clearly visible at cZ = 0.9. In addition, other

(not shown) features such as the agent using the same
circuit throughout 1.2 ≤ cZ ≤ 1.6 can also be glimpsed
from Fig. 7 (even though one would need to analyze how
all the generators evolve).

V. CONCLUSIONS AND OUTLOOK

We have presented an efficient RL framework that is
able to simultaneously discover QEC codes and their en-
coding circuits from scratch, given a qubit connectivity,
gate set, and error operators. It learns strategies simul-
taneously for a range of noise models, thus re-using and
transferring discoveries between different noise regimes.
We have been able to discover codes and circuits up to
20 physical qubits and code distance 5. This is thanks to
our formulation in terms of stabilizers, that serve both as
compact input to the agent as well as the basis for rapid
Clifford simulations, which we implemented in a vector-
ized fashion using a modern machine-learning framework.
In the present work, we have focused on the quantum

communication or quantum memory scenario, where the
encoding circuit itself can be assumed error-free since we
focus on errors happening during transmission. As a re-
sult, our encoding circuits are not fault tolerant, i.e. sin-
gle errors, when introduced, might sometimes proliferate
to become incorrigible. Flag-based fault tolerance [50]
added on top of our encoding circuits could turn them
fault tolerant. Another very interesting extension of our
scheme would be to design rewards that directly target
codes that admit transverse logical gates or have other
useful aspects, such as the requirements in [16] for codes
that can outperform the surface code.

ACKNOWLEDGMENTS

Fruitful discussions with Sangkha Borah, Jonas Land-
graf and Maximilian Naegele are thankfully acknowl-
edged. This research is part of the Munich Quantum
Valley, which is supported by the Bavarian state govern-
ment with funds from the Hightech Agenda Bayern Plus.

[1] A. Aćın, I. Bloch, H. Buhrman, T. Calarco, C. Eichler,
J. Eisert, D. Esteve, N. Gisin, S. J. Glaser, F. Jelezko,
S. Kuhr, M. Lewenstein, M. F. Riedel, P. O. Schmidt,
R. Thew, A. Wallraff, I. Walmsley, and F. K. Wilhelm,
The quantum technologies roadmap: a european commu-
nity view, New Journal of Physics 20, 080201 (2018).

[2] S. M. Girvin, Introduction to quantum error correc-
tion and fault tolerance, SciPost Physics Lecture Notes
10.21468/scipostphyslectnotes.70 (2023).

[3] M. Inguscio, W. Ketterle, and C. Salomon, Proceedings
of the International School of Physics” Enrico Fermi.”,
Vol. 164 (IOS press, 2007).

[4] J. Preskill, Fault-tolerant quantum computation (1997),

arXiv:quant-ph/9712048 [quant-ph].
[5] A. Paler and S. J. Devitt, An introduction into

fault-tolerant quantum computing, in 2015 52nd
ACM/EDAC/IEEE Design Automation Conference
(DAC) (2015) pp. 1–6.

[6] S. Krinner, N. Lacroix, A. Remm, A. Di Paolo, E. Genois,
C. Leroux, C. Hellings, S. Lazar, F. Swiadek, J. Her-
rmann, et al., Realizing repeated quantum error correc-
tion in a distance-three surface code, Nature 605, 669
(2022).

[7] C. Ryan-Anderson, J. G. Bohnet, K. Lee, D. Gresh,
A. Hankin, J. Gaebler, D. Francois, A. Chernoguzov,
D. Lucchetti, N. C. Brown, et al., Realization of real-time

https://doi.org/10.1088/1367-2630/aad1ea
https://doi.org/10.21468/scipostphyslectnotes.70
https://arxiv.org/abs/quant-ph/9712048
https://doi.org/10.1145/2744769.2747911
https://doi.org/10.1145/2744769.2747911
https://doi.org/10.1145/2744769.2747911

13

fault-tolerant quantum error correction, Physical Review
X 11, 041058 (2021).

[8] L. Postler, S. Heuβen, I. Pogorelov, M. Rispler, T. Feld-
ker, M. Meth, C. D. Marciniak, R. Stricker, M. Ring-
bauer, R. Blatt, et al., Demonstration of fault-tolerant
universal quantum gate operations, Nature 605, 675
(2022).

[9] I. Cong, H. Levine, A. Keesling, D. Bluvstein, S.-
T. Wang, and M. D. Lukin, Hardware-efficient, fault-
tolerant quantum computation with rydberg atoms,
Physical Review X 12, 021049 (2022).

[10] R. Acharya, I. Aleiner, R. Allen, et al., Suppressing quan-
tum errors by scaling a surface code logical qubit, Nature
614, 676 (2023).

[11] V. Sivak, A. Eickbusch, B. Royer, S. Singh, I. Tsioutsios,
S. Ganjam, A. Miano, B. Brock, A. Ding, L. Frunzio,
et al., Real-time quantum error correction beyond break-
even, Nature 616, 50 (2023).

[12] A. R. Calderbank and P. W. Shor, Good quantum error-
correcting codes exist, Phys. Rev. A 54, 1098 (1996).

[13] R. Laflamme, C. Miquel, J. P. Paz, and W. H. Zurek,
Perfect quantum error correcting code, Phys. Rev. Lett.
77, 198 (1996).

[14] A. M. Steane, Simple quantum error-correcting codes,
Phys. Rev. A 54, 4741 (1996).

[15] A. Y. Kitaev, Quantum computations: algorithms and
error correction, Russian Mathematical Surveys 52, 1191
(1997).

[16] S. Bravyi, A. W. Cross, J. M. Gambetta, D. Maslov,
P. Rall, and T. J. Yoder, High-threshold and
low-overhead fault-tolerant quantum memory (2023),
arXiv:2308.07915 [quant-ph].

[17] M. Grassl and S. Han, Computing extensions of linear
codes using a greedy algorithm, in 2012 IEEE Inter-
national Symposium on Information Theory Proceedings
(2012) pp. 1568–1572.

[18] M. Grassl, P. W. Shor, G. Smith, J. Smolin, and B. Zeng,
New constructions of codes for asymmetric channels via
concatenation, IEEE Transactions on Information The-
ory 61, 1879 (2015).

[19] M. Li, M. Gutiérrez, S. E. David, A. Hernandez,
and K. R. Brown, Fault tolerance with bare ancillary
qubits for a [[7,1,3]] code, Phys. Rev. A 10.1103/Phys-
RevA.96.032341 (2017).

[20] I. Chuang, A. Cross, G. Smith, J. Smolin,
and B. Zeng, Codeword stabilized quan-
tum codes: Algorithm and structure, Jour-
nal of Mathematical Physics 10.1063/1.3086833
(2009), https://pubs.aip.org/aip/jmp/article-
pdf/doi/10.1063/1.3086833/15610997/042109 1 online.pdf.

[21] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour,
Policy gradient methods for reinforcement learning with
function approximation, Advances in neural information
processing systems 12 (1999).

[22] T. Fösel, P. Tighineanu, T. Weiss, and F. Marquardt,
Reinforcement learning with neural networks for quan-
tum feedback, Phys. Rev. X 10.1103/PhysRevX.8.031084
(2018).

[23] H. P. Nautrup, N. Delfosse, V. Dunjko, H. J. Briegel,
and N. Friis, Optimizing quantum error correction codes
with reinforcement learning, Quantum 10.22331/q-2019-
12-16-215 (2019).

[24] C. Mauron, T. Farrelly, and T. M. Stace, Optimiza-
tion of tensor network codes with reinforcement learning,

arXiv:2305.11470 (2023).
[25] V. P. Su, C. Cao, H.-Y. Hu, Y. Yanay, C. Tahan,

and B. Swingle, Discovery of optimal quantum er-
ror correcting codes via reinforcement learning (2023),
arXiv:2305.06378 [quant-ph].

[26] C. Cao and B. Lackey, Quantum lego: Building quan-
tum error correction codes from tensor networks, PRX
Quantum 3, 020332 (2022).

[27] P. Andreasson, J. Johansson, S. Liljestrand, and
M. Granath, Quantum error correction for the toric
code using deep reinforcement learning, Quantum 3, 183
(2019).

[28] R. Sweke, M. S. Kesselring, E. P. van Nieuwenburg,
and J. Eisert, Reinforcement learning decoders for fault-
tolerant quantum computation, Machine Learning: Sci-
ence and Technology 2, 025005 (2020).

[29] L. D. Colomer, M. Skotiniotis, and R. Muñoz-Tapia, Re-
inforcement learning for optimal error correction of toric
codes, Physics Letters A 384, 126353 (2020).

[30] C. Cao, C. Zhang, Z. Wu, M. Grassl, and B. Zeng, Quan-
tum variational learning for quantum error-correcting
codes, Quantum 10.22331/q-2022-10-06-828 (2022).

[31] D. Gottesman, Stabilizer codes and quantum error cor-
rection (1997), quant-ph/9705052 [quant-ph].

[32] M. A. Nielsen and I. L. Chuang, Quantum computation
and quantum information (Cambridge university press,
2010).

[33] C. H. Bennett, D. P. DiVincenzo, J. A. Smolin, andW. K.
Wootters, Mixed-state entanglement and quantum error
correction, Phys. Rev. A 54, 3824 (1996).

[34] E. Knill and R. Laflamme, Theory of quantum
error-correcting codes, Phys. Rev. A 10.1103/Phys-
RevA.55.900 (1997).

[35] L. Ioffe and M. Mézard, Asymmetric quantum
error-correcting codes, Phys. Rev. A 10.1103/Phys-
RevA.75.032345 (2007).

[36] L. Wang, K. Feng, S. Ling, and C. Xing, Asymmet-
ric quantum codes: Characterization and constructions,
IEEE Transactions on Information Theory 56, 2938
(2010).

[37] M. F. Ezerman, S. Ling, and P. Sole, Additive asymmet-
ric quantum codes, IEEE Transactions on Information
Theory 57, 5536 (2011).

[38] G. G. L. Guardia, On the construction of asymmet-
ric quantum codes, International Journal of Theoretical
Physics 10.1007/s10773-014-2031-y (2014).

[39] P. Shor and R. Laflamme, Quantum analog of the
macwilliams identities for classical coding theory (1997).

[40] R. S. Sutton and A. G. Barto, Reinforcement learning:
An introduction (MIT press, 2018).

[41] V. Konda and J. Tsitsiklis, Actor-critic algorithms, Ad-
vances in neural information processing systems 12
(1999).

[42] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and
O. Klimov, Proximal policy optimization algorithms,
arXiv:1707.06347 (2017).

[43] C. Gidney, Stim: a fast stabilizer circuit simulator, Quan-
tum 5, 497 (2021).

[44] S. Aaronson and D. Gottesman, Improved simula-
tion of stabilizer circuits, Phys. Rev. A 10.1103/phys-
reva.70.052328 (2004).

[45] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, A. P. George Necula, J. Vander-
Plas, S. Wanderman-Milne, and Q. Zhang, JAX: com-

https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1038/s41586-022-05434-1
https://doi.org/10.1103/PhysRevA.54.1098
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevLett.77.198
https://doi.org/10.1103/PhysRevA.54.4741
https://arxiv.org/abs/2308.07915
https://doi.org/10.1109/ISIT.2012.6283537
https://doi.org/10.1109/ISIT.2012.6283537
https://doi.org/10.1109/TIT.2015.2401567
https://doi.org/10.1109/TIT.2015.2401567
https://doi.org/10.1103/PhysRevA.96.032341
https://doi.org/10.1103/PhysRevA.96.032341
https://doi.org/10.1063/1.3086833
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.3086833/15610997/042109_1_online.pdf
https://arxiv.org/abs/https://pubs.aip.org/aip/jmp/article-pdf/doi/10.1063/1.3086833/15610997/042109_1_online.pdf
https://doi.org/10.1103/PhysRevX.8.031084
https://doi.org/10.22331/q-2019-12-16-215
https://doi.org/10.22331/q-2019-12-16-215
https://arxiv.org/abs/2305.06378
https://doi.org/10.1103/PRXQuantum.3.020332
https://doi.org/10.1103/PRXQuantum.3.020332
https://doi.org/10.22331/q-2022-10-06-828
https://arxiv.org/abs/quant-ph/9705052
https://doi.org/10.1103/PhysRevA.54.3824
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.55.900
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1103/PhysRevA.75.032345
https://doi.org/10.1109/TIT.2010.2046221
https://doi.org/10.1109/TIT.2010.2046221
https://doi.org/10.1109/TIT.2011.2159040
https://doi.org/10.1109/TIT.2011.2159040
https://doi.org/10.1007/s10773-014-2031-y
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.22331/q-2021-07-06-497
https://doi.org/10.1103/physreva.70.052328
https://doi.org/10.1103/physreva.70.052328
http://github.com/google/jax

14

posable transformations of Python+NumPy programs
(2018).

[46] C. Lu, J. Kuba, A. Letcher, L. Metz, C. S. de Witt, and
J. Foerster, Discovered policy optimisation, Advances in
Neural Information Processing Systems , 16455 (2022).

[47] S. Yu, Q. Chen, and C. H. Oh, Graphical quantum error-
correcting codes (2007), arXiv:0709.1780 [quant-ph].

[48] S. Yu, J. Bierbrauer, Y. Dong, Q. Chen, and C. Oh, All
the stabilizer codes of distance 3, IEEE transactions on
information theory 59, 5179 (2013).

[49] D. Gottesman, Class of quantum error-correcting codes
saturating the quantum hamming bound, Phys. Rev. A
54, 1862 (1996).

[50] R. Chao and B. W. Reichardt, Quantum error cor-
rection with only two extra qubits, Phys. Rev. Lett.
10.1103/physrevlett.121.050502 (2018).

Appendix A: Quantum Weight Enumerators of
[[9, 3, 3]]

Here we list the quantum weight enumerators of the
13 families of [[9, 3, 3]] codes appearing in the main text,
ordered accordingly.

A = (1, 0, 0, 0, 0, 6, 16, 24, 15, 2) ,

B = (1, 0, 0, 40, 162, 480, 952, 1224, 933, 304) , (A1)

A = (1, 0, 0, 0, 2, 4, 12, 28, 17, 0) ,

B = (1, 0, 0, 48, 146, 472, 984, 1216, 917, 312) , (A2)

A = (1, 0, 0, 0, 2, 2, 16, 28, 13, 2) ,

B = (1, 0, 0, 44, 162, 452, 984, 1236, 901, 316) , (A3)

A = (1, 0, 0, 0, 1, 3, 18, 26, 12, 3) ,

B = (1, 0, 0, 40, 170, 456, 968, 1240, 909, 312) , (A4)

A = (1, 0, 0, 1, 0, 3, 16, 27, 15, 1) ,

B = (1, 0, 0, 48, 162, 456, 952, 1248, 933, 296) , (A5)

A = (1, 0, 0, 0, 0, 4, 20, 24, 11, 4) ,

B = (1, 0, 0, 36, 178, 460, 952, 1244, 917, 308) , (A6)

A = (1, 0, 0, 0, 1, 5, 14, 26, 16, 1) ,

B = (1, 0, 0, 44, 154, 476, 968, 1220, 925, 308) , (A7)

A = (1, 0, 0, 1, 0, 1, 20, 27, 11, 3) ,

B = (1, 0, 0, 44, 178, 436, 952, 1268, 917, 300) , (A8)

A = (1, 0, 1, 0, 0, 4, 13, 28, 17, 0) ,

B = (1, 0, 1, 57, 171, 481, 931, 1171, 944, 339) , (A9)

A = (1, 0, 0, 0, 4, 0, 12, 32, 15, 0) ,

B = (1, 0, 0, 52, 146, 444, 1016, 1228, 885, 324) , (A10)

A = (1, 0, 0, 0, 0, 0, 36, 0, 27, 0) ,

B = (1, 0, 0, 36, 162, 540, 792, 1404, 837, 324) , (A11)

A = (1, 0, 0, 2, 0, 0, 16, 30, 15, 0) ,

B = (1, 0, 0, 56, 162, 432, 952, 1272, 933, 288) , (A12)

A = (1, 0, 1, 0, 0, 0, 21, 28, 9, 4) ,

B = (1, 0, 1, 49, 203, 441, 931, 1211, 912, 347) , (A13)

Appendix B: Encoding circuits

Here we show some minimal encoding circuits for se-
lected code parameters.

[[11, 1, 5]]: 32 gates in a directed all-to-all connectivity:

• H • • • H • • •
H • • • H • •
H • • • H •

• H • • •
•

• • • H

[[20, 13, 3]]: 45 gates in an all-to-all connectivity:

http://github.com/google/jax
https://arxiv.org/abs/0709.1780
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/PhysRevA.54.1862
https://doi.org/10.1103/physrevlett.121.050502

15

• •
•

•
•

•
•

• • H •

• • H

•
• •

• •
•

H • • • •

H • • • • • H • • •
H • • • • • H • •

•

	Simultaneous Discovery of Quantum Error Correction Codes and Encoders with a Noise-Aware Reinforcement Learning Agent
	Abstract
	Introduction
	Background
	Stabilizer Codes in Symmetric and Asymmetric Error Channels
	Code Classification
	Reinforcement Learning

	Reinforcement Learning Approach to QEC Code Discovery
	Encoding Circuit
	Reward
	Noise-aware meta-agent
	Fast parallelized Clifford simulator

	Results
	Codes in a symmetric depolarizing noise channel
	Noise-aware meta-agent

	Conclusions and Outlook
	Acknowledgments
	References
	Quantum Weight Enumerators of [[9,3,3]]
	Encoding circuits

