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Abstract 

Everyday life requires an adaptive balance between distraction-resistant maintenance of 

information and the flexibility to update this information when needed. These opposing 

mechanisms are proposed to be balanced through a working memory gating mechanism. Prior 

research indicates that obesity may elevate the risk of working memory deficits, yet the underlying 

mechanisms remain elusive. Dopaminergic abnormalities have emerged as a potential mediator. 

However, current models suggest these abnormalities should only shift the balance in working 

memory tasks, not produce overall deficits. The empirical support for this notion is currently 

lacking, however. To address this gap, we pooled data from three studies (N = 320) where 

participants performed a working memory gating task. Higher BMI was associated with overall 

poorer working memory, irrespective of whether there was a need to maintain or update 

information. However, when participants, in addition to BMI level, were categorized based on 

certain putative dopamine-signaling characteristics (Single Nucleotide Polymorphisms; 

specifically, Taq1A and DARPP), distinct working memory gating effects emerged. These SNPs, 

primarily associated with striatal dopamine transmission, specifically influenced updating in high-

BMI individuals. Moreover, blood amino acid ratio, which indicates central dopamine synthesis 

capacity, combined with BMI, shifted the balance between distractor-resistant maintenance and 

updating. These findings suggest that both dopamine-dependent and dopamine-independent 

cognitive effects exist in obesity. Understanding these effects is crucial if we aim to modify 

maladaptive cognitive profiles in individuals with obesity. 
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INTRODUCTION   

In order to function efficiently in a dynamic environment, we must be able to resist distractions 

while simultaneously being open to update information in response to evolving goals and task 

requirements. This tension demands a delicate balance, which is thought to be governed by one 

of our core cognitive control systems - our working memory (WM). Computational and 

neurophysiological theories propose a metaphorical "gate" that regulates the access to WM 

(Badre, 2012; O’Reilly and Frank, 2006). When the gate is closed, WM representations are 

isolated from perceptual input and interference is prevented. When the gate is opened, rapid 

updating is allowed. Evidence strongly implicates the prefrontal cortex (PFC) in distractor-

resistant maintenance, while updating is thought to be supported by the striatum (Miller and 

Cohen, 2001; D’Ardenne et al., 2012; Braver and Cohen, 2000). Importantly, the neurotransmitter 

dopamine plays a crucial role in balancing these complementary processes. Within the PFC, tonic 

dopamine levels mediate maintenance in an inverted-U-shaped manner: very high and very low 

levels promote gate opening, while medium levels promote gate closing (Cools and D'Esposito, 

2011). Within the striatum, phasic increases in dopamine are needed to signal WM updating 

(Hazy, Frank, and O’Reilly, 2006; D’Ardenne et al., 2012). Importantly, the effectiveness of the 

phasic rise in dopamine to override PFC tonic dopamine signals depends on the initial striatal 

tonic level (Cools and D'Esposito, 2011; Schouwenburg, Aarts, & Cools, 2010; Ranganath & 

Jacob, 2016). Decreases in tonic dopamine levels in the striatum seem to raise the threshold for 

updating signals, thus potentially hindering updating (O’Reilly and Frank, 2006). Supporting this, 

worse updating of WM contents can be observed in unmedicated patients with Parkinson's 

disease (Fallon et al. 2017), older individuals (Podell et al., 2012), or more generally, in individuals 

with lower dopamine synthesis capacity (Colzato et al., 2013). Notably, dominance in one process 

typically comes at the cost of the other (Dreisbach & Fröber, 2019; Dreisbach et al., 2005; Fallon 

and Cools, 2017). Consequently, an individual's capacity to ignore or update (ir)relevant 

information may vary according to their baseline dopamine levels (e.g. Cools & D’Esposito, 2011; 

Furman et al., 2021, Jongkees, 2020).   

 Interestingly, the intricate relationship between dopamine levels and working memory 

gating might be key in further understanding discrepancies in the literature regarding working 

memory functioning in obesity. While many studies show reduced (general) working memory in 

obese individuals (e.g., Yang et al., 2020, 2019, 2018; Gonzales et al., 2010; Coppin et al., 2014), 

there are others who do not find such associations (e.g., Calvo et al., 2014; Schiff et al., 2016; 

Alarcon et al., 2016). Based on the above considerations regarding how dopamine supports 

working memory gating, the failure to reliably find associations between obesity and working 

memory may be due to prior studies not clearly differentiating between distractor-resistance and 

updating in the context of working memory. This distinction may indeed be crucial, however, as 

emerging evidence suggests potential specific impairments in WM gating in obesity. For instance, 

obesity has been associated with lower dopamine tone (Horstmann et al., 2015), suggesting 

potential challenges in working memory updating, akin to other populations with diminished 

dopamine mentioned earlier. Moreover, functional and structural changes in WM gating-related 

brain areas (Wang et al., 2001; Volkow et al., 2012; Horstmann, 2017). Additionally, individuals 

with obesity consistently demonstrate a preference for immediate, short-term rewards despite 

negative long-term outcomes (Horstmann et al., 2011; Mathar et al., 2015), and a tendency to 

persist with previously rewarded actions despite current devaluation (Horstmann et al., 2015a). 
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Given the close relationship of such reward-learning processes and working memory (Collins & 

Frank, 2012), these behavioral patterns may reflect difficulties to update WM contents with new 

reward information, suggesting cognitive issues that extend beyond mere valuation impairments. 

However, there is currently a lack of empirical support for this interpretation. To address this gap 

in knowledge, the present study aims to examine potential obesity-dependent impairments in 

working memory gating. To this end, we pooled together data on Body-Mass-Index (BMI; kg/m²) 

and a working memory gating task from three different studies conducted in our lab. In light of the 

behavioral and neuropharmacological findings discussed above, we hypothesized that individuals 

with a high BMI would display worse updating, potentially offset by enhanced distractor-resistant 

maintenance.   

  Given dopamine's central role in WM gating, such behavioral patterns might be driven by 

the abnormal dopamine signaling observed in obesity (Horstmann et al., 2015). However, in 

addition to this, inherent predispositions with respect to dopamine signaling have been shown to 

further influence WM gating. In this context, several single-nucleotide polymorphisms (SNPs) 

related to dopamine transmission have garnered significant attention in recent years. For 

instance, Catechol-O-methyltransferase (COMT) Val158Met activity primarily influences 

dopamine breakdown in the PFC (Tunbridge et al., 2004; Sesack, Hawrylak, Matus, Guido, & 

Levey, 1998), and carrying the Met allele of this SNP is associated with reduced COMT activity, 

leading to higher synaptic dopamine levels (Bilder et al., 2004). Consistent with this, individuals 

with the Met allele tend to perform better on tasks that require stable maintenance of working 

memory representations compared to those with the Val allele (Berryhill et al., 2013; Farrell et al., 

2012; Savitz, Solms, & Ramesar, 2006). Furthermore, the Taq1A polymorphism has been 

associated with D2 receptor density in the striatum. A-allele carriers of this polymorphism exhibit 

lower receptor density and show distinct performance patterns on tasks involving working memory 

updating (Pohjalainen et al., 1998; Jönsson et al., 1999; Eisenstein et al., 2016; Stelzel et al., 

2010; Persson et al., 2015; Li et al., 2019). Interestingly, Taq1A and COMT have been 

demonstrated to interactively influence working memory functioning (Berryhill et al., 2013; Xu et 

al., 2007, Reuter et al., 2006, Gracia-Gracia et al., 2011; Stelzel et al., 2009, Wishart et al., 2011, 

Persson & Stenfors, 2018). Consequently, we aim to examine this interactive effect and assess if 

it varies with BMI. In addition, the SNPs DARPP-32 and C957T have also been linked to working 

memory (Hotte et al., 2006; Ma et al., 2022; Smith, Swift-Scanlan & Boettiger, 2014; Xu et al., 

2007; Klaus et al., 2019; Jacobsen et al., 2006). DARPP-32, or Dopamine and cAMP-regulated 

neuronal phosphoprotein, is a protein that potently modulates dopamine D1-dependent synaptic 

plasticity in the striatum (Ouimet et al., 1984; Calabresi et al., 2000; Lindskog et al., 2006; Girault 

& Nairn, 2021), and C957T is known to impact dopamine D2 mRNA translation (Duan et al., 2003) 

and postsynaptic D2 receptor availability in the striatum (Hivonen et al., 2005). Both SNPs have 

also been associated with (diet-induced) weight gain (Sharma & Fulton, 2013; Hu et al., 2006, 

Müller et al., 2012). Their effect on BMI-dependent WM gating, however, remains unknown. In 

order to test the impact of these four candidate polymorphisms we also added participants’ 

genetic information, extracted from their blood, to our analyses. We hypothesized that BMI-

dependent distractor-resistant maintenance and/or updating of working memory representations 

would be modulated by (1) an interaction of COMT and Taq1A, a main effect of (2) DARPP, and/or 

a main effect of (3) C957T.  

  In addition to our primary investigations, we further conducted exploratory analyses on a 
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subsample of our data. Two of the three studies had data available on the ratio of phenylalanine 

and tyrosine to other large neutral amino acids. This ratio represents the peripheral dopamine 

precursor availability and can be considered a potential proxy for central dopamine synthesis 

capacity (Leyton et al., 2004; Montgomery et al., 2003). Existing evidence suggests that this 

measure may be linked to WM performance in a diet-dependent manner (Hartmann et al., 2020). 

By looking at amino acid ratio and its connection to BMI-dependent WM gating, we sought to 

assess the influence of dopamine at the system level.  
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RESULTS  

Sample descriptives  

Three participants were excluded from the analyses, as they performed below chance (<50% 

correct in all four conditions). One subject was excluded as they reported that they didn’t perform 

the task properly during the post-task strategy assessment. The final sample thus consisted of 

320 participants. The average age of the sample was 26.93 years (SD = 6.82, min = 12.17, max 

= 49.75). There were 166 males. Mean BMI was 26.38 kg/m² (SD = 6.35, min = 17.51, max = 

45.54). Mean IQ was 105.41 (SD = 10.61, min = 71, max = 122). Data for DFSQ was missing for 

5 subjects. Mean DFSQ score was 54.89 (SD = 11.61, min = 33, max = 97). Please refer to Table 

1 for a list of full sample characteristics (per study).   

BMI-related Impairments in Working Memory Updating Depend on Taq1A, but not COMT 

Genotype 

As expected, results for model 1 showed a significant main effect of BMI on overall task 

performance (X2 = 16.80, df = 1, pcorrected < 0.001), such that BMI was negatively associated with 

accuracy (OR = 0.84, CI = 0.78 – 0.91, see Figure 2). Against our main hypothesis, however, 

there was no difference in this effect between the working memory conditions. The two-way 

interaction between BMI and condition was insignificant (X2 = 2.66, df = 3, pcorrected > 1), indicating 

no evidence for BMI to have different effects across our working memory conditions. We found 

significant main effects of IQ, gender, tiredness, and concentration (all corrected p-values < 

0.008). As expected, IQ and concentration were positively associated with task performance 

(ORIQ = 1.24, CIIQ = 1.14 – 1.35; ORconcentration = 1.30, CIconcentration = 1.20 – 1.41), while tiredness 

predicted task performance in a negative manner (OR = 0.87, CI = 0.80 – 0.95). Males performed 

worse than females on the task (OR = 0.86, CI =0.82 – 0.97). Please refer to Table 2 for the full 

model output displaying the original, uncorrected p-values.   

  When investigating the interactive effects of COMT and Taq1A on BMI-dependent WM 

gating (model 2), results reveal that the four-way interaction of BMI x condition x COMT x Taq1A 

was non-significant (X2 = 4.09, df = 6, pcorrected > 1). This indicats that the two SNPs did not have 

the expected differential effects on WM gating. Interestingly, however, we could observe a 

significant three-way interaction between Taq1A genotype, BMI, and condition (X2 = 12.40, df = 

3, pcorrected = 0.024), indicating that Taq1A genotype might moderate BMI-dependent effects on 

gating. There were no main effects of COMT  (X2 = 0.159, df = 2, pcorrected > 1) or Taq1A (X2 = 

1.13, df = 1, pcorrected > 1), and all other two- or three-way interactions involving COMT were 

insignificant (all corrected p-values > 0.34). Please refer to Table 3 for the full model output with 

original, uncorrected p-values.    

  To further investigate the significant Taq1A x condition x BMI interaction, we ran simple 

effects analyses, testing the Taq1A-BMI interaction separately for each condition. These analyses 

showed that the BMI-genotype interaction was significant in the update condition (p = 0.002). In 

this condition, A1-carriers had 33.9% (SE = 7.58) lower probability to score correctly with one unit 

increase of BMI, whereas for non-carriers there was only -1.22% (SE = 7.21%) change. BMI-

Taq1A interactions for all other conditions were insignificant (all p-values > 0.079), suggesting 

that the effect was specific to updating and hence might drive the observed overall three-way 

interaction (Fig. 3).   

  In order to determine whether our results stemmed from mere match/non-match response 
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biases or from proper ignoring/updating, we conducted a follow-up analysis, investigating the 

effects of the probe type presented at the end of each trial. The probe could either be the target 

item, a completely novel item, or a distractor item, meaning that the probe was one of the items 

that had to be encoded initially, but then be overwritten. Thus, a distractor probe measures the 

cognitive challenge of updating in its most exact form, while a target or novel item primarily assay 

match/non-match responses. For this analysis, we thus subsetted our data, including updating 

trials only, and re-ran our model augmented with the factor probe type. Results showed a 

significant main effect of probe type (X2 = 94.11, df = 2, p < 0.001). trials where the probe was a 

distractor were the hardest (mean accuracy = 86.44%), followed by target probe trials (mean 

accuracy = 91.58%), and novel probe trials (94.96%). The three-way interaction between probe 

type, BMI, and Taq1A genotype was not significant (X2 = 1.645, df = 2, p = 0.439), indicating that 

the probe type did not affect the BMI-Taq1A interaction in updating trials. High-BMI A-allele 

carriers were worse than non-carriers in all three probe trial types similarly. However, this pattern 

was most pronounced in the distractor condition (see Figure 4).   

BMI-related Impairments in Working Memory Updating Depend on DARPP-32  

Investigation of the effects of DARPP on BMI-dependent working memory gating, revealed a 

significant 3-way interaction of DARPP-32, BMI, and condition (X2 = 20.21, df = 3, pcorrected < 

0.001), such that there was a DARPP-32 x BMI interaction in the update condition only (pposthost = 

0.006, see Figure 5). G-carriers had a 32.4% (SE = 7.86) lower probability to score correctly per 

increasing unit of BMI, while the probability was only 4.39% (SE = 6.61) lower in A/A 

homozygotes. Post hoc tests for all other conditions were insignificant (all p-values > 0.216). Main 

effects stayed similar to our previous model (all corrected p-values < 0.008). The main effect of 

DARPP-32 was insignificant (X2 = 0.03, df = 1, pcorrected > 1), as well as the interaction of DARPP-

32 with BMI (X2 = 0.18, df = 1, pcorrected > 1) and with condition (X2 = 1.00, df = 3, pcorrected > 1). For 

the full model output with original, uncorrected p-values, please refer to Table 4.   

  Again, to pinpoint where this effect comes from, we ran a follow-up analysis, investigating 

whether the type of probe item had an influence. We subsetted our data, including only updating 

trails, and re-ran our model augmented with the factor probe type. Results revealed a significant 

main effect of probe type (p < 0.001), and a significant three-way interaction between probe type, 

BMI, and DARPP genotype (X2 = 10.792, df = 2, p = 0.005). Post hoc analyses indicated that this 

interaction was driven by a significant DARPP-BMI interaction in distractor (p = 0.046) and target 

(p = 0.008) trials, while there was no such interaction in novel trials (p = 0.242; see Figure 6). 

 

No Association of C957T with BMI-dependent Working Memory Gating  

Our analysis revealed no significant main effect of the C957T polymorphism (X2 = 0.03, df= 1, 

pcorrected > 1). All other main effects stayed significant (all corrected p < 0.012), except for the effect 

of BMI (X2 = 3.49, df= 1, pcorrected = 0.247). Furthermore, we found no substantial evidence for two- 

or three-way interactions involving the C957T polymorphism (all corrected p > 0.186), suggesting 

that C957T does not significantly interact with BMI or one of our working memory conditions. See 

Table 5 for the full model output.  

BMI-dependent Alterations in Working Memory Gating are Influenced by Peripheral 
Dopamine Synthesis Capacity   
When investigating potential influences of dopamine changes on the system level (model 5), we 
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found a significant three-way interaction between amino acid ratio, BMI, and condition (X2=10.88, 
df = 3, pcorrected < 0.049). Post hoc simple effects analyses suggested that this interaction seems 
to be driven by differential performance specifically in update vs. ignore (X2 = 5.57, df = 1, p = 
0.018). As BMI increases, higher ratios of amino acids promote better performance in updating, 
but worse performance in ignoring (see Figure 7, upper panel). All other comparisons (update vs. 
control short; ignore vs. control long; control long vs. control short, update vs. control long, ignore 
vs. control short) did not yield significant differential relationships between amino acid ratio and 
BMI (all p values > 0.168).   
  The main effects of BMI, condition, and amino acid ratio were insignificant (all pcorrected > 
1). The main effect of z-IQ (X2= 11.64, df = 1, pcorrected = 0.002) and z-concentration (X2= 18.60, df 
= 1, pcorrected < 0.001) were significant, both relating positively to performance (ORIQ = 1.28, 
ORconcentration = 1.33). The interactions between BMI and condition (X2= 9.80, df = 3, pcorrected = 
0.081), and between amino acid ratio and condition (X2= 8.69, df = 3, pcorrected = 0.135) were not 
significant. BMI and amino acid ratio showed no significant two-way interaction (X2 = 0.322, df = 
1, pcorrected > 1). Because there was an extreme BMI data point, we re-ran the model excluding 
this data point to check whether the results still hold. The three-way interaction between Amino 
Acid Ratio, BMI, and condition became trend-significant (pcorrected = 0.063, see Table S1 & Figure 
S1).   
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DISCUSSION  

The present investigation sought to evaluate whether obesity might be associated with 

impairments in working memory gating. Consistent with previous literature (Yang et al., 2020, 

2019, 2018; Gonzales et al., 2010; Coppin et al., 2014, Hartmann et al., 2023) we found evidence 

for impairments in overall working memory in individuals with a high BMI. Yet, we could not 

observe the expected interaction of BMI and condition, indicating no specific effect of BMI on WM 

gating. Interestingly, however, distinct effects of BMI on gating became apparent when taking into 

account potential changes in inherent dopamine signaling. Specifically, individuals carrying a risk-

allele of Taq1A or DARPP-32 performed significantly worse on updating with increasing BMI. This 

finding is compelling as we are the first to show such selective effects. Against our expectation, 

however, we did not find evidence for a BMI-dependent interaction effect of COMT and Taq1A on 

working memory gating, nor did we find any effects of C957T. 

Selective BMI-Genotype Effects on Working Memory Updating  

Our findings are partially in line with our hypothesis. While we did observe the expected worsening 

in updating in individuals with a high BMI, this effect became apparent only when participants -

along with BMI - were categorized based on certain putative dopamine-signaling characteristics. 

This finding is compelling as we are the first to show such selective effects.  

  Notably, it were the Taq1A and DARPP-32 SNPs that selectively modulated WM updating 

in a BMI-dependent manner. Intriguingly, both of these SNPs are associated with, predominantly, 

striatal dopamine signaling (Hemmings & Greengard, 1986, Meyer-Lindenberg et al., 2007, 

Gluskin & Mickey, 2016), implying a targeted modulation of processes occurring within the 

striatum. The decline in updating performance was notable only among individuals carrying either 

the A-allele (Taq1A) or the G-allele (DARPP-32). Both of these alleles have previously been 

considered risk alleles for various conditions and behaviors involving maladaptive cognitive 

flexibility, such as addiction (Smith et al., 2008; Munafo, Matheson, & Flint, 2007; Deng et al., 

2015), Schizophrenia (Meyer-Lindenberg et al., 2007; González-Castro, 2016; Albert et al., 2002), 

or impaired reinforcement learning (Frank et al., 2007; Doll et al., 2011). In non-risk-allele carriers, 

however, performance remained stable despite increasing BMI. This pattern suggests that 

possessing the more advantageous genotype could potentially mitigate the impact of a high BMI 

on working memory updating. Moreover, in the normal-weight BMI range, carriers of a risk allele 

(in both, Taq1A and/or DARPP) slightly outperformed their non-risk allele carrying counterparts. 

This distinction was particularly pronounced in trials where the probe was a distractor, suggesting 

that the effect is primarily due to "real" updating, i.e. when initially encoded items need overwriting, 

as opposed to simple match/non-match responses (as in novel vs. target probe items). This is 

especially intriguing as it emphasizes that carrying a ”risk allele” can in fact be advantageous 

under certain cognitive demands – a claim that has also been put forward by e.g. Stelzel et al. 

(2010). It is only when the risk allele is combined with other adverse factors (such as high BMI) 

that its detrimental potential is unleashed. 

Mechanistic Accounts for our Findings  

Mechanistically, our findings are potentially due to differential go/no-go path activation in the basal 

ganglia – pathways that are crucially involved in governing working memory gating. In essence, 

the D1 pathway modulates the 'go' signaling responsible for updating, while the D2 pathway 

facilitates 'no-go' signaling crucial for distractor-resistant maintenance (Frank & O`Reilly, 2006).   
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  Considering Taq1A, evidence points at increased striatal dopamine synthesis and 

corresponding increases in striatal BOLD signals in A-carriers compared to non-carriers (Laakso 

et al. 2005; Stelzel et al., 2010). These findings suggest that the phasic dopamine signal needed 

to trigger “go” (i.e. updating), might be enhanced in A-carriers. This aligns with the idea that A-

carriers, who possess fewer D2 receptors (Thompson et al., 1997; Pohjalainen et al., 1998; 

Jönsson et al., 1999) fall more within the ambit of the D1/go-dominant regime (Klein et al., 2007). 

Our data support this speculation by displaying slightly better updating performance in A-carriers 

in the normal-weight BMI range. However, as BMI increases, this trend seems to become 

maladaptive, as updating performance deteriorates in A-carriers. We propose two possible 

explanations for this. First, with increasing BMI, there might be a form of “over-updating”, that is, 

also unnecessary information is kept in an accessible state throughout the experiment. This would 

pertain to theories put forward by Durstewitze and Seamans (2001) in which they argue that both, 

too little or too much dopamine, can lead to too shallow barriers between distinct cognitive 

networks, potentially promoting excessive cognitive flexibility. It might hence be that in high-BMI 

A-carriers there is a more salient gating signal, facilitating the updating of all task representations. 

Indeed, the BMI-dependent decline in updating performance in A-carriers was qualitatively larger 

in trials where the probe was a distractor - possibly attributed to difficulties in disposing of the 

distractor, because it remained in this more accessible cognitive state. Alternatively, the 

combination of reduced D2 receptors (in A-carriers) and diminished tonic dopamine (as in 

obesity), could impair the efficiency of signal transmission necessary for updating, thereby leading 

to improper updating. Further research is needed to disentangle which of these explanations is 

more plausible.  

  Regarding DARPP, the G-allele has been associated with reduced striatal D1 efficacy 

(Meyer-Lindenberg et al., 2007). Moreover, Frank et al. (2007) and Doll et al. (2011) showed that 

carrying a G-allele was associated with worse go-learning – a process requiring activation of the 

same pathway that is likely to be activated during updating of working memory contents. Similarly, 

Frank and colleagues (2009) demonstrate that the G-carrier group compared to the A/A allele 

group displayed worse approach learning – again a process relying on go-path activation. 

However, there were no effects of DARPP on no-go learning (Frank et al., 2007), which requires 

activation of the same pathway that is likely to be activated during distractor-resistant 

maintenance. Our results related to DARPP hence broadly align with the literature and suggest 

that, particularly, markers of inefficient striatal go-signaling (G-carriers) predict BMI-dependent 

effects on working memory updating.  

 Collectively, our observations hint at potential abnormalities in go/no-go path signaling in 

high-BMI risk-allele carriers.  

Possible Accounts for the Absence of COMT and C957T Effects  

Considering that according to the prevailing models, PFC and striatum interact to foster effective 

WM gating, the question arises as to why we could not observe the expected COMT-Taq1A 

interaction on BMI-dependent working memory gating. We posit several explanations for the 

absence of the anticipated interaction.   

  Firstly, these polymorphisms may indeed exert a limited interactive effect on working 

memory gating. In line with this notion, prior findings concerning the interactive effects of COMT 

and Taq1A on working memory have yielded contradictory results. For instance, Garcia-Garcia 
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et al. (2011) and Stelzel et al. (2009) reported patterns of COMT-Taq1A interactions in the context 

of working memory updating that were consistent with each other. In contrast, Wishart et al. (2011) 

observed an opposing interaction pattern, while Persson & Stenfors (2018) did not identify any 

COMT-Taq1A interaction at all. Notably, all these studies explored genotype interactions using 

paradigms that either assessed the two memory processes separately (Gracia-Garcia et al., 2011; 

Wishart et al., 2011; Persson & Stenfors, 2018) or in a manner that they were not distinctly 

discernible (Berryhill et al., 2013). None of these studies examined the comprehensive interaction 

of COMT, Taq1A, and working memory updating vs. ignoring within a single paradigm, as we did 

here. We hoped to shed more light on the possible origins of the contradictions, as with our design 

we could specifically probe the distinct associations of each genotype with each memory process. 

However, we couldn't achieve this as we didn't find an interaction between COMT, Taq1a, and 

the conditions. We can hence not make any clear conclusions. Secondly, it has recently been 

debated whether COMT actually has a noteworthy effect on cognition at all. Some meta-analyses 

find (small) effects (Barnett et al., 2007), while others don’t (Geller et al., 2017, Barnett et al., 

2008; also see Goldman et al., 2009; Wacker, 2011; and Barnett et al., 2011 for a discussion on 

the meta-analysis from Barnett et al., 2008).  

  Beyond this, the absence of significant effects related to COMT could further be 

interpreted as underscoring the selectiveness of our observed effects. COMT effects are 

predominantly observed in the PFC (Mier, Kirsch & Meyer-Lindenberg, 2010; Egan et al., 2011; 

Käenmäki et al., 2010) and rather tied to maintenance of working memory contents (Nolan et al., 

2004; Rosa et al., 2010). This lends weight to the interpretation that distractor-resistant 

maintenance, or prefrontal processes, remain unaffected by BMI. In a similar vein, also our 

findings concerning the C957T polymorphism bolster the selective nature of our findings. Much 

like COMT, this polymorphism is presumably more involved in working memory maintenance, that 

is, prefrontal-related functioning. Supporting this notion, Xu and colleagues (2007) found an 

association between the C957T polymorphism and specifically maintenance of (phonological and 

serial) information, but not with other tasks requiring updating. Furthermore, this polymorphism 

has also been associated with D2 binding potential in extrastriatal regions (Hirvonen et al., 2009b) 

and greater WM-related activity in PFC (Li, Bäckmann & Persson, 2019). Last but not least, the 

results with respect to C957T involvement in striatal-dependent cognition are mixed (see e.g. 

discussion part in Baker, Stockwell, & Holroyd, 2013). It hence seems that C957T effects are not 

as specific to striatal processes.  

Selective Modulation of Working Memory Gating: System-Level Dopamine versus Genetic 

Profiles 

Our findings are the first to show a selective modulation of working memory updating, as opposed 

to the previously observed trade-off between ignoring and updating (e.g. Fallon and Cools, 2017; 

see Cools (2019) for an extensive review). To the best of our knowledge, none of the previous 

studies investigating working memory gating in relation to dopamine signaling have found such a 

selective modulation. We speculate that this is because these studies looked at broader changes 

in the dopamine system, i.e. by using drug manipulations or comparing Parkinson’s vs. healthy 

controls, rather than particular genetic profiles. Such broad “system-level” dopamine changes 

may impact both, PFC signaling pertaining to distractor-resistant maintenance, and striatal 

signaling associated with updating. This, in turn, might foster the commonly observed inverted-U-
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shaped relationship between dopamine and cognition: In cases where baseline dopamine levels 

are low, a dopamine increase (for instance, through agonists) would enhance ignoring, albeit at 

the expense of updating. Conversely, at medium baseline dopamine levels an increase would 

lead to impaired ignoring, potentially benefiting updating (for a more detailed discussion, see 

Cools and D'Esposito, 2011). Indeed, we also see this pattern, when looking at system-level 

dopamine changes: depending on BMI, low (or high) peripheral dopamine synthesis capacity (as 

indicated by blood amino acid ratios) was associated with worsening of distractor-resistant 

maintenance, while improving updating (or vice versa). It should be noted that the sample for our 

amino acid analyses was much smaller (N = 160) than the one used in our SNP analysis (N = 

320), and the BMI-range for this sub-sample was narrower (mean = 23.63, SD = 2.78, min = 

18.63, max = 36.42). This was because only two of the three studies had the data on amino acids 

available. Interestingly the system-level effect of amino acid ratio becomes visible in a healthy- to 

overweight BMI range, indicating that already small changes in BMI can promote different 

dopamine-dependent cognitive profiles.  

 

Strengths and Limitations   

A major strength of this study is that it was the first to probe gene-gene interactions on a direct 

working memory maintenance and updating comparison. This is a notable advantage, as previous 

studies have usually examined these aspects in separate paradigms, which might have 

contributed to the heterogeneous results regarding SNP interaction effects on working memory 

(see above). Another main strength of our study is the sizable sample. However, despite the 

relatively large size, our sample was still not big enough for systematic and reliable analysis of 

multiple gene-gene interactions. This would be of interest however, as possible interactions of all 

SNPs presented in this paper have been shown (Zmigrod & Robbins, 2021; Frank & Hutchison, 

2009; Smith, Swift-Scanlan & Boettiger, 2014, Xu et al., 2007). Such analyses would require even 

larger cohorts, however, as the effect sizes of single SNPs are usually small. We nevertheless 

report the outcome of such highly explorative models in our supplements for the purpose of 

transparency and to guide future studies. Yet, those results should be interpreted with caution. 

Last but not least, the sample used for this study was very heterogeneous, as it was pooled 

together from three separate studies. The BMI distribution, for instance, was significantly different 

depending on gender (p = 0.01). BMI was higher in females. This was because females were 

overrepresented in the BEDOB study, which had the largest BMI range (refer to Table 1). Although 

we ran control analyses to account for this heterogeneity, we cannot exclude the possibility that 

certain properties of the data distribution could have influenced our results.  

 

Overall Conclusions  

Overall, our data aligns with previous evidence for working memory impairments in obesity. 

However, selective effects of BMI on working memory gating - specifically updating - become 

visible only when accounting for genetic markers of striatal dopamine transmission. Our study is 

the first to show such selective effects. Previous research, that generally utilized drug 

manipulations, consistently demonstrated system-level modulations, leading to a trade-off 

between ignoring and updating information. While we also observe this trade-off when examining 

more comprehensive system-level relationships (i.e. blood amino acid ratio), the specificity of our 

SNP-related findings to updating sets them apart from previous studies. Our results hence pave 
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the way for new individualized treatments for obesity, as they 1) highlight that carrying a risk-allele 

may produce particular cognitive impairments, which may be masked when genotypes are not 

taken into account, and 2) suggest that the previously documented deficits in reward learning 

might span beyond just (food) rewards and could be rooted in broader issues concerning 

information updating, particularly in those with a genetically predisposed susceptibility.  
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MATERIALS AND METHODS  
Participants   
The data used in this study were collected in the scope of three separate pre-registered cross-
sectional studies, which are all part of a larger line of research in the O’Brain Lab: GREADT (see 
https://osf.io/w9e5y), BEDOB (see https://osf.io/fyn6q), and WORMCRI (see 
https://osf.io/zdmkx). Prior to participation, participants were screened for a history of clinical drug 
or alcohol abuse, neurological or psychiatric disorders, and first-degree relative history of 
neurological or psychiatric disorders. Symptoms of depression were assessed via a screening 
interview using the Structured Clinical Interview for DSM-IV (SCID, Wittchen 1997; in BEDOB & 
WORMCRI) or Beck Depression Inventory (BDI, Beck et al., 1996; in GREADT).  

Study Design   
All measures relevant to the present study were collected in a comparable manner. In all studies, 
participants were first asked to come to the lab for a screening session where in- and exclusion 
criteria were checked. Weight and height were measured to calculate BMI. After inclusion, blood 
samples were taken from the participants to assess COMT Val158Met, Taq1A, C957T, and 
DARPP-32 genotypes. Analysis of these SNPs was performed in the laboratory for ‘Adiposity and 
diabetes genetics’ at the Medical Research Center, University Leipzig, Leipzig, Germany. In 
WORMCRI and GREADT, we also took serum blood samples in order to extract information on 
the amino acid profiles. Participants, therefore, came overnight-fasted for these two studies. 
Serum blood samples were analyzed at the “Institut für Laboratoriumsmedizin, Klinische Chemie 
und Molekulare Diagnostik (ILM)” Universitätsklinikum Leipzig, Germany. After the blood draw, 
participants did a number of neuropsychological tests among which were the digit span task 
(Wechsler, 2008; assessing baseline working memory), and a proxy for IQ (in BEDOB: 
“Wortschatztest” (Schmidt & Metzler, 1992; assessing verbal IQ); in GREADT and WORMCRI: 
“Wiener Matrizen Test” (Formann, Waldherr & Piswanger, 2011). After that, participants filled in 
several questionnaires, of which the Dietary Fat and free Sugar Questionnaire (DFSQ; Francis & 
Stevenson, 2013; Fromm & Horstmann, 2019; assessing eating behavior), was subject to all three 
studies. On the second test day, participants completed the working memory task (described 
below), either during fMRI (GREADT & BEDOB) or during EEG (WORMCRI). After completion of 
the task, all participants were asked to indicate the level of tiredness and concentration they felt 
during the task on a 10-point Likert scale. For a more detailed description of each study’s design, 
please refer to the respective pre-registration mentioned above.  
 
Working Memory Task 
Participants completed a modified version of a delayed match-to-sample task originally designed 
by Fallon and Cools (2014). This modified version has already been described in Hartmann et al. 
(2023) and Herzog et al. (2023). The task comprises 4 conditions (Fig. 1). In the ignore condition, 
testing distractor-resistant maintenance, participants first have to memorize two target stimuli, 
signaled by the letter "T" centered in between the two. Next, they are presented with two new 
stimuli, this time marked by a centered “N”, indicating non-targets which have to be ignored. After 
that, participants are presented with a probe stimulus and have to determine whether one of the 
first two target stimuli matches the presented probe. In the update condition, participants are first 
shown two target stimuli (centered "T"). After that, they see a new set of target stimuli (again 
indicated by a centered "T"). These two new stimuli replace the previously presented stimuli as 
the target and thus have to be evaluated for a match when the probe is presented subsequently. 
The two control conditions do not have any interference and are matched to the temporal delay 
between encoding the to-be-matched targets and probe. The probe is presented for 2000 msec. 
The task is separated into four blocks, with each block entailing 8 trails of each condition, 
interleaved among all blocks. Each block thus consists of 32 trials. The total number of trials in 
the task amounts to 128. Feedback is presented after each of those blocks. Each trial is separated 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 20, 2024. ; https://doi.org/10.1101/2023.11.03.565528doi: bioRxiv preprint 

https://osf.io/w9e5y
https://osf.io/fyn6q
https://osf.io/zdmkx
https://en.wikipedia.org/wiki/DSM-IV
https://doi.org/10.1101/2023.11.03.565528
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

by a jittered inter-trial interval ranging from 2000 to 6000 msec. The stimuli are randomly 
computer-generated, monochromatic RGB “spirographs”. The primary outcome measure is 
accuracy. The total duration of the task is approximately 30 minutes. 

Statistical Analyses of Behavioral Data  
All behavioral analyses were performed in R in RStudio v4.2.2 (R Core Team, 2015; RStudio 
Team, 2016). Generalized linear mixed models (GLM) of the ‘lme4’ package were used to analyze 
the primary outcome measure of the working memory task: accuracy. We ran a logistic regression 
using glmer() with a binomial link function. We used trial-by-trial information for each subject with 
binary coded response (0 = incorrect; 1 = correct). Trials with a reaction time < 200 ms and > 
2000 ms were excluded, as those trials can be considered false alarms and misses, respectively. 
Trials with a reaction time > 2000 ms were excluded, as they reflect misses. To first test our main 
hypothesis that working memory gating is altered, depending on BMI, we built a trial-based 
regression model including the interaction of the within-subject factor condition (ignore vs. update 
vs. control long vs. control short) and the continuous between-subject factor BMI. We further 
probed the influence of several potential covariates: study (GREADT vs. BEDOB vs. WORMCRI), 
IQ, Age, DFSQ, binge-eating phenotype, tiredness, concentration, and gender. Using the anova() 
function from the ‘stats’ package, we compared AIC and BIC (Akaike, 1979; Stone, 1979) of the 
full model against a simpler version of the model. We found the best-fitting model (lowest AIC and 
BIC) to include IQ, tiredness, concentration, and gender (see supplementary materials). Due to 
model convergence problems, the continuous predictors BMI, IQ, tiredness, and concentration 
were z-scored. Furthermore, the model did not converge with a maximal random structure 
(including the factor ‘condition’). The random structure of the model was thus reduced to include 
the factor ‘subject’ only. The final model was: 

(1)   accuracy ~ condition * BMI + IQ + tiredness + concentration + gender + (1 |subject) 

To test how BMI-dependent working memory gating is influenced by the respective dopamine 
proxy (SNP or amino acid ratio), we ran 4 additional models, each including the respective 
between-subject factor as an additional factor of interest. Model fit was again assessed using AIC 
and BIC for each model (see supplementary materials). Again, due to converges, the random 
structure of the models included the factor ‘subject’ only. The final models were: 

(2)  accuracy ~ COMT * Taq1A* condition * BMI + IQ + tiredness + concentration + gender + (1|subject)   

(3)  accuracy ~ DARPP * condition * BMI + IQ + tiredness + concentration + gender + (1|subject)  

(4)  accuracy ~ C957T * condition * BMI + IQ + tiredness + concentration + gender + (1|subject)  

(5)  accuracy ~ amino acid ratio * condition * BMI + IQ + concentration + gender + (1|subject)  

As we ran 4 additional models testing similar hypotheses, all main results for these models were 
corrected for multiple comparisons using bonferroni correction, i.e. p-values were multiplied by 4. 
Model outputs were called using the Anova() function, from the ‘car’ package.  
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FIGURES AND TABLES 

 

Figure 1. Schematic illustration of the task structure and experimental conditions. The task consists of three task 

phases. In the encoding phase, participants have to remember two target stimuli (signaled by the letter “T”), or are 

presented with a centered cross (short control trials). In the interference phase, participants either have to ignore two 

non-target stimuli (ignore trials; signaled by the letter “N”) or allow two new stimuli (again marked by a “T”) to replace 

the previously remembered target stimuli (update trials). No-interference trials (short and long control) do not require 

any manipulations in the interference phase. At the end of each trial, participants evaluate whether a presented figure 

was a target figure or not. Figure reused from Hartmann et al. (2023) with permission. 

 

Table 1. Sample Characteristics 

project all  BEDOB  GREADT  WORMCRI 

N 
(male) 

320 (166)  156 (43)  86 (86)  78 (37) 

 
mean 
(sd) 

min max 
 mean 

(sd) 
min max 

 mean 
(sd) 

min max 
 mean 

(sd) 
min max 

BMI 
26.38 
(6.35) 

17.51 45.54  
29.172 
(7.695) 

17.51 45.54  
24.025 
(2.799) 

18.632 36.419  
23.217 
(2.735) 

18.929 29.888 

IQ 
105.41 
(10.61) 

71 122  
101.575 
(11.979) 

71 122  
109.151 
(7.249) 

91 118  
107.731 
(10.416) 

74 118 

Age 
26.93 
(6.82) 

12.17 49.75  
26.879 
(8.907) 

12.167 49.75  
26.756 
(4.474) 

18 40  
26.799 
(3.859) 

20.106 36.290 

DFS 
54.89 

(11.61) 
33 97  

55.839 
(10.163) 

35 91  
57.046 

(15.107) 
33 97  

50.584 
(8.546) 

34 71 
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Figure 2. Main effect of BMI on working memory performance (model 1). Increasing BMI was associated with worse 
performance (pcorrected < 0.001, OR = 0.84). This trend was similar for all four conditions, as there was no interaction 
between BMI and condition (pcorrected > 1). Shaded areas represent the 95% confidence intervals. 

 

Table 2. Full output model 1 with uncorrected p-values. 

  Chisq Df Pr(>Chisq) 

(Intercept)  3623.78 1 <0.001 

condition  282.00 3 < .001 

zBMI  16.80 1 < .001 

zIQ  25.10 1 < .001 

Gender  10.50 1 0.001 

zWM_tired  36.00 1 < .001 

zWM_conc  9.19 1 0.002 

condition:zBMI  2.66 3 0.447 

N = 320 

Marginal R2 / Conditional R2 = 0.069 / 0.172 
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Figure 3. Interaction of Taq1A genotype, BMI, and condition on working memory performance (model 2). The two-way 
interaction of Taq1A and BMI was significant in the update condition only (p = 0.002). In this condition, carrying the A-
allele led to a decrease in performance with each increasing unit of BMI (33.9%; SE = 7.58), while there was only -
1.22% (SE = 7.21%) change in non-carriers. Shaded areas represent the 95% confidence intervals. 

Table 3. Full output model 2 with uncorrected p-values. 

  Chisq Df Pr(>Chisq) 

(Intercept)  3228.77 1 <0.001 

condition  212.81 3 < .001 

COMT  0.16 2 0.923 

Taq1A  1.13 1 0.288 

zBMI  22.15 1 < .001 

zIQ  24.09 1 < .001 

Gender  7.53 1 0.006 

zWM_tired  12.39 1 < .001 

zWM_conc  30.80 1 < .001 

condition:COMT  10.30 6 0.113 

condition:Taq1A  4.69 3 0.196 

COMT:Taq1A  2.47 2 0.291 

condition:zBMI  3.49 3 0.322 

COMT:zBMI  0.86 2 0.650 

Taq1A:zBMI  2.98 1 0.085 

condition:COMT:Taq1A  2.09 6 0.911 

condition:COMT:zBMI  6.29 6 0.391 

condition:Taq1A:zBMI  12.40 3 0.006 

COMT:Taq1A:zBMI  3.68 2 0.159 

condition:COMT:Taq1A:zBMI  4.09 6 0.665 

N = 318 

Marginal R2 / Conditional R2 = 0.076 / 0.173 
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Figure 4. Interaction of Taq1A genotype, BMI, and probe type in updating trials only. There was no significant three-
way interaction between probe type, BMI and Taq1A (p = 0.439). The BMI - Taq1A interaction was in a similar direction 
in all trials. There was a significant main effect of probe type (p < 0.001). Trials where the probe was a distractor had 
lowest probability to be correct. Shaded areas represent the 95% confidence intervals.  

 

 
Figure 5. Interaction of DARPP-32, BMI, and condition on working memory performance (model 3). The two-way 
interaction of DARPP-32 and BMI was significant in the update condition only (p = 0.006). In this condition, carrying the 
G-allele led to a decrease in performance with each increasing unit of BMI (32.4%; SE = 7.86), while there was only -
4.39% (SE = 6.61) change in A/A homozygots. Shaded areas represent the 95% confidence intervals.   
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Table 4. Full output final model 3 with uncorrected p-values. 

  Chisq Df Pr(>Chisq) 

(Intercept)  3511.81 1 < .001 

DARPP  0.03 1 0.853 

zBMI  17.18 1 < .001 

condition  274.62 3 < .001 

zIQ  25.10 1 < .001 

zWM_conc  35.27 1 < .001 

zWM_tired  10.52 1 0.001 

Gender  9.17 1 0.002 

DARPP:zBMI  0.18 1 0.668 

DARPP:condition  1.00 3 0.801 

BMI:condition  3.61 3 0.307 

DARPP:BMI:condition  20.21 3 < .001 

N = 320 

Marginal R2 / Conditional R2 = 0.071 / 0.173 

 

 
Figure 6. Interaction of DARPP-32 genotype, BMI, and probe type for update trials only. There was a significant three-

way interaction between probe type, BMI and DARPP-32 (p = 0.005). Post hoc analyses showed that the BMI - DARPP 

interaction was significant in distractor (p = 0.046) and target (p = 0.008) trials, but not in trials where the probe was a 

novel item (p = 0.242). There was a significant main effect of probe type (p < 0.001). Trials where the probe was a 

distractor had lowest probability to be correct. Shaded areas represent the 95% confidence intervals. 
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Table 5. Full output final model 4 with uncorrected p-values.  

  Chisq Df Pr(>Chisq) 

(Intercept)  328.55 1 < .001 

C957T  0.03 1 0.859 

zBMI  3.49 1 0.062 

condition  48.06 3 < .001 

zIQ  25.30 1 < .001 

zWM_conc  33.66 1 < .001 

zWM_tired  10.54 1 0.001 

Gender  8.85 1 0.003 

C957T:zBMI  0.36 1 0.548 

C957T:condition  7.97 3 0.047 

BMI:condition  0.31 3 0.958 

C957T:BMI:condition  0.07 3 0.995 

N = 318 

Marginal R2 / Conditional R2 = 0.070 / 0.171 

  

 

 
Figure 7. Interaction of Amino Acid Ratio, BMI and condition (model 5). For illustration purposes, amino acid ratio was 

artificially grouped into high, middle, and low. The difference in condition (pignore vs. update < 0.001) becomes especially 

apparent when looking at individuals with high amino acid ratios: With each increasing unit of BMI, performance gets 

worse in ignore, but better in update. There were no significant differences in the relationship of amino acid ratio and 

BMI comparing all other conditions against each other (all p > 0.168). Shaded areas represent the 95% confidence 

intervals. 
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Table 6. Full output final model 5 with uncorrected p-values. 

  Chisq Df Pr(>Chisq) 

(Intercept)  13.31 1 < .001 

AAratio  0.58 1 0.444 

zBMI  0.98 1 0.321 

condition  3.43 3 0.330 

zIQ  11.64 1 < .001 

zWM_conc  18.60 1 < .001 

Gender  5.08 1 0.024 

AAratio:zBMI  0.32 1 0.570 

AAratio:condition  8.69 3 0.034 

BMI:condition  9.80 3 0.020 

AAratio:BMI:condition  10.88 3 0.012 

N = 160 

Marginal R2 / Conditional R2 = 0.068 / 0.170 
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