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The Lorentz reciprocal theorem—that is used to study various transport phenomena in hydrodynamics—
is violated in chiral active fluids that feature odd viscosity with broken time-reversal and parity symmetries.
Here, we show that the theorem can be generalized to fluids with odd viscosity by choosing an auxiliary
problem with the opposite sign of the odd viscosity. We demonstrate the application of the theorem to two
categories of microswimmers. Swimmers with prescribed surface velocity are not affected by odd viscosity,
while those with prescribed active forces are. In particular, a torque dipole can lead to directed motion.
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The Lorentz reciprocal theorem is a powerful and
versatile principle in low-Reynolds-number fluid dyna-
mics [1,2]. It provides an integral identity that connects a
main problem—typically the problem to be solved—to an
auxiliary problem—typically one with a known solution
(see Fig. 1). The reciprocal theorem allows one to directly
determine an integral quantity in the main problem without
explicitly solving the boundary-value problem. For in-
stance, one can determine the self-propulsion speed of a
microswimmer with the knowledge of its surface velocity
[3,4]—a common way to solve the problem of phoretic
active particles [5–8], where it is even possible to com-
pletely bypass the calculation of the slip velocity [9] or to
consider non-axially-symmetric shapes [10]. Other appli-
cations include the derivation of boundary integral equa-
tions [11], perturbative solutions of flows around bodies
that deviate little from exactly solvable ones, flows in
porous media or with a slip boundary condition on the
surface [2], the presence of elastic surfaces [12], the
derivation of a lower bound on the dissipation by micro-
swimmers [13], and so on. A direct consequence of the
reciprocal theorem is the reciprocal response of a system of
particles immersed in a fluid to the forces acting on them,
which manifests itself in the symmetry of the many-body
mobility tensor (or its inverse, the resistance) [14]. The
latter can be, however, also interpreted as a fundamental
property of systems with time-reversal symmetry, related
to the Onsager reciprocity [15,16].

The reciprocal theorem has also been generalized
beyond the low-Reynolds-number limit and applied to
inertial [2,17], compressible [18], micropolar [19], and
complex fluids [20]. Since it is closely related to Green’s
second identity in vector calculus, it also has a plethora of
counterparts in other classical field theories including
aerodynamics, acoustics, convective heat and mass trans-
fer, continuum mechanics, electrostatics, and electromag-
netic waves [2]. In electrodynamics, materials with broken
Lorentz reciprocity have also been widely studied [21]. It
has been suggested that broken reciprocity can be used to
overcome the time-bandwidth limits on the performance of
a device [22].
In chiral active fluids, the breaking of the time-reversal

and parity symmetries results in a peculiar transport coef-
ficient called odd viscosity [23–25]. The viscosity, which
does not contribute to the fluid energy dissipation, leads to
novel dynamics [26,27], such as nonreciprocal (transverse)

FIG. 1. The Lorentz reciprocal theorem links the main problem
(a) of a body moving with velocity VA, fluid velocity vA in the
comoving frame, and fluid viscosity η with an auxiliary problem
(b),(c) of a body with the same shape and the velocity V̂, fluid
velocity v̂, and viscosity η̂. Here, the main problem represents an
active swimmer and the auxiliary problems in panels (b) and (c)
represent bodies with no-slip (NS) and perfect-slip (PS) boundary
conditions, respectively.
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transports [28–35], free-surface dynamics [36–38], or
chiral edge currents characterized by topological protec-
tion [39], akin to quantum Hall systems. Chirality is
prevalent across various scales in nonequilibrium systems,
allowing odd viscosity to occur in systems ranging from
electron fluids [40] to biological [41,42] and geophysical
flows [43,44]. Indeed, this viscosity has been identified
in fluids of spinning particles [45–47], in chiral suspen-
sions [48], or even in tabletop experiments at macroscopic
scales [49]. The lack of time-reversal symmetry leads to an
asymmetric response and, thus, to an asymmetric mobility
tensor [30,34,35]. Several works have explicitly shown
that the Lorentz reciprocal theorem in its classical form is
violated in fluids with odd viscosity [27,29,31,34]. A
generalization that has been proposed for odd-viscous
fluids splits the stress tensor in the auxiliary problem into
two parts and reverses the sign in the odd part [29,34]. The
limitation of this approach is that the odd viscosity leads to
an additional volume integral in the theorem, which not
only breaks the symmetric form between the main and
auxiliary problems, but also defeats the dimension-
reduction nature of the reciprocal theorem and its power
to derive integral quantities in one of the problems entirely
without solving the flow equations [2].
In this Letter, we show that the Lorentz reciprocal

theorem can be generalized to hold in the presence of
odd viscosity. To demonstrate its applicability, we use it to
determine the swimming velocity of two categories of
microswimmers in a Stokes fluid with odd viscosity: first
to swimmers with an imposed slip velocity on their surface
and then to swimmers with a prescribed tangential force
density. We solve both problems for spherical swimmers in
a 3D fluid as well as disk-shaped swimmers in 2D. In both
cases, we show that odd viscosity does not affect the motion
of swimmers with prescribed surface velocity, but it does
affect thosewith prescribed propulsive forces. A particularly
interesting case is a “twister” which propels itself by
exerting only a torque dipole on the fluid.
Generalized reciprocal theorem.—We begin our deriva-

tion by first showing that the Lorentz reciprocal theorem
can be extended to hold in fluids with generalized viscosity
tensors. Consider two force-free Stokes flows: the main
flow described by divσ ¼ 0 and∇ · v ¼ 0 and the auxiliary
flow (denoted by )̂ described by divσ̂ ¼ 0 and ∇ · v̂ ¼ 0,
where the divergence is defined as ðdivσÞi ≡ ∂jσij. Here,
σij ¼ −pδij þ ηijkl∂lvk and σ̂ij ¼ −p̂δij þ η̂ijkl∂lv̂k are
the stress fields, v is the velocity field, p is the pressure, and
η is the fluid viscosity tensor. Note that, unlike in the
regular derivation, we allow different viscosities between
the main and auxiliary problems. We start with the identity
∂jðσ̂ijviÞ ¼ ð∂jσ̂ijÞvi þ σ̂ij∂jvi, where the first term van-
ishes because divσ̂ ¼ 0 and the second can be written as
−p̂δij∂jvi þ η̂klijð∂lvkÞð∂jv̂iÞ. In this expression, the
first term vanishes, because the flow is divergence-
free, ∇ · v ¼ 0, leaving ∂jðσ̂ijviÞ ¼ η̂klijð∂lvkÞð∂jv̂iÞ. By

subtracting a similar expression in which the main and the
auxiliary problems are swapped, we obtain the identity

∂jðviσ̂ijÞ − ∂jðv̂iσijÞ ¼ ðη̂klij − ηijklÞð∂lvkÞð∂jv̂iÞ: ð1Þ

In a standard isotropic fluid, the viscosity has the form
ηijkl ¼ ηðδikδjl þ δilδjkÞ, and, by choosing equal viscos-
ities in the main and the auxiliary problems, η ¼ η̂, the rhs
of Eq. (1) vanishes. Integrating the lhs over the fluid
volume leads to the venerable Lorentz reciprocal theorem
[2,14].
In the following, we show that the Lorentz reciprocal

theorem with any viscosity tensor can be rescued with the
right choice of the viscosity tensor in the auxiliary problem,
namely, such that

η̂klij ¼ ηijkl: ð2Þ

Then the rhs of Eq. (1) is zero as in the classical case. By
integrating the identity over the fluid volume and using the
divergence theorem to obtain corresponding surface inte-
grals over all bounding surfaces S [2], we recover the
Lorentz reciprocal theorem:

Z
S
dSv · σ̂ · n ¼

Z
S
dSv̂ · σ · n; ð3Þ

where n is a surface normal pointing into the fluid
and v · σ̂ · n ¼ viσ̂ijnj.
For a fluid with odd viscosity, the viscosity tensor η ¼

ηe þ ηo consists of a symmetric (even) part ηeijkl ¼ ηeklij
and an antisymmetric (odd) part ηoijkl ¼ −ηoklij [23,24].
Condition (2) is, therefore, fulfilled if the even component
in the auxiliary problem is the same as in the main problem,
whereas the odd component changes sign:

η̂e ¼ ηe; η̂o ¼ −ηo: ð4Þ

These relations state that one has to reverse the sign of the
odd viscosity in the auxiliary problem to obtain the
quantities in the main problem. Note that the reciprocal
theorem also holds in a fluid with rotational viscosity
where a torque appears in response to the vorticity [50],
allowing for a local relaxation dynamics of the angular
momentum [27,51]. The viscosity tensor then takes the
form ηRijkl ¼ ηRðδikδjl − δilδjkÞ, which gives η̂R ¼ ηR,
consistent with the dissipative nature of rotational visco-
sity. The theorem can also be extended to account for body
forces acting on the fluid and for multiphase or compress-
ible fluids [52].
Surface-driven microswimmers.—As a showcase appli-

cation of the generalized reciprocal theorem, we now use it
to determine the velocity of a microswimmer in a fluid with
odd viscosity (see Fig. 1). We choose the main problem to
represent the self-propelled swimmer with velocity VA and
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the auxiliary problem as a passive body of the same shape
dragged with velocity V̂. We apply the reciprocal theorem
[Eq. (3)] to the fluid surrounding the swimmer. Since
both velocities vanish at large distances, the integrals are
reduced to the surface of the swimmer:

Z
S
dSðVA þ vAÞ · f̂ ¼

Z
S
dSðV̂ þ v̂Þ · fA; ð5Þ

where f̂ ¼ σ̂ · n is the traction, defined as the force density
exerted by the fluid on the body, and vA and v̂ are the fluid
velocities in the comoving frame for the main and the
auxiliary problems, respectively. From the force-free con-
dition of the swimmer (FA ¼ 0), we find

R
S dSV̂ · fA ¼

V̂ · FA ¼ 0 in Eq. (5).
We consider two types of surface-driven micro-

swimmers: (i) The commonly studied swimmer models
have a prescribed effective slip velocity vA at their surface,
which is not influenced by the actual tractions fA. (ii) In the
opposite limit, the active mechanism in the swimmer impo-

ses prescribed tangential tractions fkA ¼ ðI − nnÞ · fA on
the surface, while the normal components f⊥A ¼ n · fA
adjust themselves to satisfy the condition of vanishing
normal velocity at the surface. The choice of the auxiliary
problem differs between the two scenarios.
To solve the problem of a swimmer with prescribed

surface velocity vA, we use a body with a no-slip (NS)
boundary condition as an auxiliary problem. The condition
v̂NS ¼ 0 at the swimmer surface simplifies Eq. (5) to [2,3]

VA · F̂NS ¼ −
Z
S
dSvA · f̂NS: ð6Þ

Next, we apply the theorem to a swimmer that is driven
by a prescribed active force density fkA on its surface [54].
In this case, we choose the auxiliary problem as a body with
a perfect-slip (PS) boundary with zero tangential traction

f̂kPS ¼ 0 and zero normal velocity v̂PS · n ¼ 0. This type of
boundary condition applies, for instance, to an idealized air
bubble in a fluid. Since vA is tangential at the surface, we
have vA · f̂PS ¼ 0 and Eq. (5) simplifies to

VA · F̂PS ¼
Z
S
dSv̂PS · fA: ð7Þ

Equations (6) and (7) determine the swimming velocity
VA of the swimmer driven by its surface velocity and active
force density, respectively, and these relations also hold for
purely 2D fluids without momentum decay [2,55,56]. In
the following, we will apply them to spherical swimmers in
3D and to disk-shaped swimmers in 2D fluids with odd
viscosity.
3D odd flows.—We now solve the auxiliary passive

problems for spherical swimmers in 3D—first with the

no-slip and then with the perfect-slip boundary conditions.
In 3D fluids, multiple independent odd viscosities can
arise [27,31]. Here, we use a minimal model motivated by
a system with aligned spinning microscopic components,
which has been shown by microscopic theory to have a
single odd viscosity (see Ref. [42]). This system uniquely
breaks parity symmetry while maintaining cylindrical
symmetry about some axis (hereafter, the z axis). Then
ηo can be characterized by an odd viscosity ηo, which gives
the stress tensor [42,57]

σij ¼ −pδij þ 2ηeEij þ ηoðϵzikEkj þ ϵzjkEkiÞ; ð8Þ

where ηe is the even (shear) viscosity, Eij ¼ ð∂ivj þ
∂jviÞ=2 is the strain-rate tensor, and ϵ is the 3D Levi-
Civita tensor. Because of its nondissipative nature, ηo can
be either positive or negative depending on the chirality of
the fluid, unlike the always positive ηe. Using divσ ¼ 0
and∇ · v ¼ 0, one obtains the corresponding “odd” Stokes
equation [31,42]. In the limit of λ ¼ ηo=ηe ≪ 1, the
primary Green’s function of the 3D odd Stokes equation
can be expressed with G ¼ Ge þGo, where Ge ¼ ðIþ
rr=r2Þ=r and Go ¼ −ðλ=2Þϵ · ðez − zr=r2Þ=r [31,34,57].
When λ ≠ 0, the nonreciprocal response Gij ≠ Gji arises
due to the violation of the Lorentz reciprocity.
The flow around a no-slip sphere with radius a, fixed

at r ¼ 0, can be represented to the first order in λ̂ ¼ η̂o=η̂e

as a superposition of a Stokeslet and a source dipole
(see Supplemental Material for the derivation [52]):

v̂NS ¼ −V̂ þ 3a
4

�
Gþ a2

3
D

�
· V̂

− λ̂
3a
16

�
Ge þ a2

3
De

�
· ðez × V̂Þ; ð9Þ

with D ¼ 1
2
∇2G and De ¼ 1

2
∇2Ge. In the above, −V̂ is the

uniform velocity field for r → ∞. Inserting Eq. (9) and the
corresponding pressure [52] into Eq. (8) yields the force
acting on the particle:

F̂NS ¼ −6πη̂ea
�
Iþ λ̂

4
ϵ · ez

�
· V̂ ¼ 4πa2f̂NS: ð10Þ

The force is modified by η̂o when the sphere moves
laterally in the xy plane, while the motion along the z
axis causes no corrections, resulting in Stokes’ law [14,58].
The second auxiliary problem we need to solve is the

flow around a spherical body with the perfect-slip boun-
dary. The flow can be expressed as [52]

v̂PS ¼ −V̂þ a
2
G · V̂þ a3

6

h
λ̂De · ðez × V̂Þ−Do · V̂

i
; ð11Þ
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with Do ¼ 1
2
∇2Go. For conventional fluids without η̂o, the

perfect-slip boundary conditions are satisfied solely with a
simple Stokeslet. Only the tangential component of
Eq. (11) remains at the surface, which is evaluated as

v̂kPS ¼
1

2

h
ðnn− IÞ · ðV̂ − λ̂ez × V̂Þ− λ̂ez ·nn× V̂

i
: ð12Þ

The force acting on the perfect-slip sphere follows as

F̂PS ¼ −4πη̂eaV̂; ð13Þ

with no modifications in the leading order of η̂o, which is
consistent with a spherical bubble in a classical fluid [14].
2D odd flows.—As in the 3D case, we first analyze

the odd Stokes flow for the no-slip boundary problem and
then proceed to discuss the perfect-slip one. Because of the
Stokes paradox, the velocity around a 2D object diverges at
infinity, and the flow problem is, therefore, ill posed in the
laboratory frame [14]. However, to obtain the swimming
velocity of the active swimmer, it is sufficient to establish
the relationship between the force F̂ acting on the passive
object and its surface velocity v̂ in the comoving frame
rather than deriving these expressions independently. In this
way, the Stokes paradox is bypassed. Note that the solutions
of 2D odd flows we will use below are exact for any value
of the odd viscosity, unlike 3D odd flows where λ̂ ≪ 1 is
assumed.
The flow around a no-slip disk can be expressed as [52]

v̂NS ¼
1

8πη̂e
F̂NS −

1

4πη̂e

�
gþ a2

2
d

�
· F̂NS; ð14Þ

where g ¼ − lnðρ=aÞIþ ρρ=ρ2 and d ¼ 1
2
∇2g are the 2D

Stokeslet and source dipole [11], respectively, with ρ ¼
ðx; yÞ and ρ ¼ jρj. The flow around a no-slip body is not
affected by the odd viscosity, which is a general feature of
incompressible fluids in 2D systems [36]. The force is
simply found as

F̂NS ¼ 2πaf̂NS; ð15Þ

where the traction is constant over the surface, as in the case
of the no-slip sphere in Eq. (10).
The flow around a circular object with the perfect-slip

boundary condition (n · v̂PS ¼ 0 and f̂kPS ¼ 0 at ρ ¼ a) can
be exactly expressed as [52]

v̂PS ¼
1

4πη̂e
ðI − gÞ · F̂PS −

1

8πη̂e
λ̂

1þ λ̂2

× ðIþ a2dÞ ·
�
ez × F̂PS þ λ̂F̂PS

�
: ð16Þ

In contrast to the no-slip case, the flow with a perfect-slip
boundary condition depends on η̂o. The surface velocity has
only a tangential component, which reads

v̂kPS ¼
1

4πη̂e
1

1þ λ̂2
ðez × n − λ̂nÞ · F̂PS: ð17Þ

Figure 2(a) shows the velocity field around a perfect-slip
disk [see Eq. (16)]. For η̂o ¼ 0 the resulting streamlines are
symmetric with respect to the force direction F̂PS, while for
η̂o ¼ −η̂e the flow develops transverse to F̂PS and the above
symmetry about the x direction breaks down accordingly.
Similarly distorted streamlines have been obtained for an
odd-viscous liquid domain moving in a 2D fluid [30].
Microswimmers’ dynamics.—Having solved the neces-

sary auxiliary problems, now we derive the swimming
velocities of spherical and circular microswimmers by
employing the Lorentz reciprocal theorem.
For swimmers with a prescribed surface velocity, we use

Eqs. (6) and (10) and obtain the swimming velocity as

VA ¼ −
1

4πa2

Z
S
dSvA: ð18Þ

Similarly, the 2D swimming velocity follows from Eqs. (6)
and (15) as

VA ¼ −
1

2πa

Z
C
dsvA; ð19Þ

where C denotes the disk perimeter. Noting that Eqs. (18)
and (19) are the same as those for a classical fluid without
odd viscosity [2,3,56], we can conclude that velocity-
prescribed microswimmers are not affected by odd viscosity
[Figs. 3(a)–3(c)].
In stark contrast to the velocity-prescribed swimmer,

the one with prescribed forces is strongly affected by the
odd viscosity, and it can show intriguing nonreciprocal

FIG. 2. The 2D flow fields (a) around a PS disk for η̂o ¼ −η̂e,
which is used as an auxiliary problem, and (b) generated by a

swimmer with prescribed active force density fkA ¼ −f0 sinϕ for
ηo ¼ ηe, moving at an angle ϕH ¼ −π=4.
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responses. Inserting Eqs. (12) and (13) into Eq. (7) yields
the active swimming velocity for λ ¼ ηo=ηe ≪ 1:

VA ¼ 1

8πηea

Z
S
dS

h
fkA þ λfkA × ðI − nnÞ · ez

i
; ð20Þ

where we have set η̂e ¼ ηe and η̂o ¼ −ηo or λ̂ ¼ −λ.
Expression (20) shows that the positive values of λ allow
a transverse (Magnus or Hall) transport rotated clockwise by
π=2 from the regular swimming direction. Analogous to the
Hall effect in an electron fluid with a magnetic field [40],
the longitudinal and transverse velocities give a Hall angle.

For the active force density fkA ¼ f0ðI − nnÞ · ex, as in
Fig. 3(e), the angle is given by ϕH ≈ −λ=2. Interestingly,
vertical motion can also be achieved with purely azimuthal
forces. The lowest mode of such force density, with zero

total torque, turns out to be fkA ¼ f0 sinð2θÞeϕ. We call the
swimmer with this profile a twister [Fig. 3(f)], and it moves
vertically with

VA ¼ λ
2af0
15ηe

ez: ð21Þ

The nonzero values of λ allow for the nonreciprocal
response connecting the active torque dipole and its induced
motion along the z axis.
For a disk-shaped swimmer in a 2D fluid, we find using

Eqs. (7) and (17) the swimming velocity as

VA ¼ 1

4πηe
1

1þ λ2

Z
C
ds
�
fkA þ λfkA × ez

�
; ð22Þ

which gives ϕH ¼ − arctanðλÞ. The transverse velocity
exhibits a nonmonotonic dependence in the odd visco-
sity and is maximized when λ ¼ 1. Figure 2(b) shows

the streamlines induced by a microswimmer with fkA ¼
−f0 sinϕ for λ ¼ 1, moving at an angle ϕH ¼ −π=4 [52]. In
2D odd-viscous fluids, transverse transport has been verified
in the context of active rheology [29,30,35,59] or a biased-
dipolar microswimmer in a compressible fluid layer [60].
In conclusion, we have derived a generalized form of the

Lorentz reciprocal theorem for fluids with odd viscosity
and demonstrated its application to several categories of
microswimmers. Our work facilitates the solution of a
number of swimming and flow problems in fluids with odd
viscosity and should be applicable to various chiral active
systems, such as spinning colloidal suspensions [45], chiral
living assemblies [61–63], or intracellular or multicellular
environments [41,64], as well as ferrofluids [65] or electron
fluids [23,40]. In view of the number of related reciprocal
theorems in other fields, generalizations to other systems
with broken time-reversal symmetries remain an intriguing
question for the future.
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