Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Unleashing the secrets of plant-fungal interactions using a transformation-free confocal staining technique that supports AI-assisted quantitative analysis

MPG-Autoren
/persons/resource/persons196609

Haueisen,  Janine
Max Planck Fellow Group Environmental Genomics (Stukenbrock), Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons146855

Stukenbrock,  Eva H.       
Max Planck Fellow Group Environmental Genomics (Stukenbrock), Max Planck Institute for Evolutionary Biology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Nelson, A. C., Kariyawasam, G., Wyatt, N. A., Li, J., Haueisen, J., Stukenbrock, E. H., et al. (in preparation). Unleashing the secrets of plant-fungal interactions using a transformation-free confocal staining technique that supports AI-assisted quantitative analysis.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-E891-9
Zusammenfassung
Laser scanning confocal microscopy’s ability to generate high-contrast 3D images has become essential to studying plant-fungal interactions. Techniques such as visualization of native fluorescence, fluorescent protein tagging of microbes, GFP/RFP-fusion proteins, and fluorescent labelling of plant and fungal proteins have been widely used to aid in these investigations. Use of fluorescent proteins have several pitfalls including variability of expression in planta and the requirement of gene transformation. Here we used the unlabeled pathogens Parastagonospora nodorum, Pyrenophora teres f. teres, and Cercospora beticola infecting wheat, barley, and sugar beet respectively, to show the utility of a staining and imaging technique that uses propidium iodide (PI), which stains RNA and DNA, and wheat germ agglutinin labeled with fluorescein isothiocyanate (WGA-FITC), which stains chitin, to visualize fungal colonization of plants. This method relies on the use of KOH to remove the cutin layer of the leaf, increasing its permeability. This permeability allows the staining solution to penetrate and efficiently bind to its targets, resulting in a consistent visualization of cellular structures. We have also used this staining technique in conjunction with machine learning to analyze fungal volume, which indicates the fitness of the pathogen in planta, as well as quantifying nuclear breakdown, an early indicator of programmed cell death (PCD). This technique is simple to use, robust, consistent across host species, and can be applied to any plant-fungal interaction. Therefore, this technique can be used to characterize model systems as well as non-model interactions where transformation is not routine.