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Abstract

Detection of repeating patterns within continuous sound streams is crucial for efficient audi-

tory perception. Previous studies demonstrated a remarkable sensitivity of the human audi-

tory system to periodic repetitions in unfamiliar, meaningless sounds. Automatic repetition

detection was reflected in different EEG markers, including sustained activity, neural syn-

chronisation, and event-related responses to pattern occurrences. The current study investi-

gated how listeners’ attention and the temporal regularity of a sound modulate repetition

perception, and how this influence is reflected in different EEG markers that were previously

suggested to subserve dissociable functions. We reanalysed data of a previous study in

which listeners were presented with sequences of unfamiliar artificial sounds that either con-

tained repetitions of a certain sound segment or not. Repeating patterns occurred either reg-

ularly or with a temporal jitter within the sequences, and participants’ attention was directed

either towards the pattern repetitions or away from the auditory stimulation. Across both reg-

ular and jittered sequences during both attention and in-attention, pattern repetitions led to

increased sustained activity throughout the sequence, evoked a characteristic positivity-

negativity complex in the event-related potential, and enhanced inter-trial phase coherence

of low-frequency oscillatory activity time-locked to repeating pattern onsets. While regularity

only had a minor (if any) influence, attention significantly strengthened pattern repetition per-

ception, which was consistently reflected in all three EEG markers. These findings suggest

that the detection of pattern repetitions within continuous sounds relies on a flexible mecha-

nism that is robust against in-attention and temporal irregularity, both of which typically

occur in naturalistic listening situations. Yet, attention to the auditory input can enhance pro-

cessing of repeating patterns and improve repetition detection.
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Introduction

Detection of repeating patterns is crucial for efficient perception of sounds that continuously

unfold in time [1, 2]. Especially in complex listening situations that involve several simulta-

neously active sound sources, recognition of familiar sound patterns facilitates the segregation

of sound streams and enables rapid adaptive reactions to change in the environment [3–7].

There is compelling evidence that the human auditory system is exceptionally sensitive to pat-

tern repetitions in sounds, even when the acoustic signal contains only minimal spectro-tem-

poral structure such as in the case of (periodic) white noise [8–13].

Numerous studies have investigated both behavioural and neural correlates of pattern repe-

tition detection in continuous streams of complex and meaningless sounds, including white

noise [8, 13–21], sequences of tone pips [22–29], “tone clouds” [30, 31], and “correlated noise”

[32]. The use of such artificially generated, meaningless stimulus material is ideally suited to

study basic auditory learning of previously unfamiliar sounds (in isolation from semantic or

categorical processing), such as it takes place whenever we encounter new acoustic scenarios

(e.g., as in our infant days, or during acquisition of a foreign language). Besides above-chance

behavioural detection of repetitions with a performance that is comparable to an ideal observer

model [22], characteristic changes in several electroencephalography (EEG)/magnetoencepha-

lography (MEG) markers were found to reflect (automatic) repetition detection: First, com-

pared with random stimulus sequences (without pattern repetitions), an increase in

magnitude of the sustained response typically occurred relative to the first pattern repetition

within a sequence [22, 24, 25, 27–29]. Second, repeating pattern onsets (within the continuous

sound) evoked a characteristic negativity in the event-related potential (ERP; [15, 16, 18, 20,

26, 33]), in some studies preceded by an early positivity [20, 26, 33]. Finally, pattern repetitions

within a sound sequence enhanced inter-trial phase coherence (ITPC) of low-frequency neural

oscillations (relative to sequences without repetitions; [15, 16, 19, 20, 25]). While in most stud-

ies ITPC may have at least partly reflected a sequence of ERPs evoked by periodically repeating

pattern onsets, there is also evidence for synchronisation of oscillatory activity beyond the fre-

quency of (isochronous) pattern occurrence in the stimulation [19].

A growing number of studies has moved beyond using strictly isochronous pattern repeti-

tions and asking participants to complete an active repetition detection task. In fact, any mech-

anism that can possibly support pattern repetition detection in real-life listening situations

should be somewhat tolerant to listeners’ in-attention and temporal irregularity with regard to

pattern occurrence in the stimulus stream. Several studies showed that this is indeed the case:

A negativity in the ERP was elicited relative to the onset a repeating pattern in white noise not

only when participants’ attention was focussed on the auditory stimuli, but also when they

were presented with the noise sequences while reading a book [33], performing a visual dis-

tractor task [15], and even during sleep [16]. Similarly, pattern repetitions in white noise and

sequences of tone pips led to an increase in ITPC while participants were asleep [16] or

focussed on a concurrent visual task [25]. A repetition-related increase in sustained response

magnitude to sequences of tone pips in the absence of listeners’ attention to the auditory stim-

ulation was reported by some studies [22, 27–29], but not by others [25]. Only one study inves-

tigated the role of temporal regularity for the detection of pattern repetitions in tone pip

sequences: In this study [26], the authors reported a negativity time-locked to repeating pat-

tern onsets that was elicited consistently across temporally regular and jittered sequences,

whereas the earlier positivity occurred only in regular sequences. They therefore argued that,

while the negative component is related to the repetition of a specific pattern (irrespective of

temporal regularity), the additional positive component in regular, temporally predictable
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sequences reflects neural entrainment to the periodic stimulus rhythm and anticipation of

upcoming pattern occurrences [26].

Taken together, neither attention nor temporal regularity appears to be indispensable for

the successful detection of repeating patterns in continuous sounds. However, since earlier

studies only focussed on either of the two factors and not always directly compared different

levels of attention or regularity, less is known about the interaction between attention and reg-

ularity and about whether they substantially modulate repetition perception. For instance, it

remains unclear whether irregular repetitions could also be detected in the absence of atten-

tion, and whether attention and regularity improve (or in-attention and irregularity impair)

the detection of pattern repetitions. Moreover, previous findings revealed some discrepancy

with regard to the influence of attention on different repetition-related EEG markers (often

analysed only in separate studies). One study analysed both sustained activity and ITPC within

the same dataset and found that temporal regularity of a sound led to an increase of ITPC irre-

spective of the listeners’ attentional state, while an increase in sustained activity was only

observed during attention (but not during in-attention; [25]). Therefore, the authors argued

that the two markers might reflect functionally dissociable stages of repetition perception [25].

The current study aims to systematically assess in a two-by-two design how attention and tem-

poral regularity (as well as their interaction) shape pattern repetition perception and influence

its different neural signatures (within the same dataset). To this end, we presented listeners

with sequences of correlated noise that contained (or did not contain) repetitions of a certain

sound segment, with repetitions occurring either in a temporally regular or jittered manner,

while attention was directed either towards the pattern repetitions or away from the auditory

stimulation. We analysed three different EEG markers, all of which were previously related to

successful repetition detection in different studies, but not systematically compared within the

same dataset: global field power (GFP) as a measure of sustained activity throughout the

sequence, ERPs time-locked to repeating pattern onsets, and ITPC. That way, we might be

able to reconcile previous, partly discrepant, findings on the role of attention and regularity

and provide a more comprehensive view on auditory repetition perception and its neural

correlates.

Materials and methods

The present study is a reanalysis of a dataset that was previously used to explore a different

research question, namely the formation of memories for recurring sound patterns across trials

[34]. Conversely, the current analysis investigates the perception of pattern repetitions within
sounds.

Participants

29 participants (26 female, three male), aged 18 to 32 years (M = 21.38 years, SD = 3.21 years),

took part in the study. None of them reported impaired hearing or a history of any neurologi-

cal or psychiatric disorder, and all of them had normal or corrected-to-normal vision. Partici-

pants were recruited at Leipzig University between April and July 2022. All participants were

naïve regarding the purpose of the study, gave written informed consent before the start of the

experiment, and received course credits for their participation. Consent forms were stored sep-

arately from the experimental data, and any personal data were pseudonymised, such that after

data collection individual participants could not be identified. We obtained written approval

by a local ethics committee (Ethics Advisory Board at Leipzig University; reference number:

2022.01.26_eb_128) prior to the study, and all experimental procedures were in accordance

with the Declaration of Helsinki.
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Stimuli

We used sequences of correlated noise as auditory stimulus material. Correlated noise was

described in detail by McDermott and colleagues [5] and refers to randomly generated white

noise sequences that were transformed using a generative model to match statistical properties

of natural sounds. This type of stimulus material offers the advantage that the stimuli resemble

natural sounds more closely than previously used artificially generated stimuli (e.g., white

noise) while retaining good acoustic control. Stimulus sequences were created using the

Gaussian Sound Synthesis Toolbox (http://mcdermottlab.mit.edu/Gaussian_Sound_Code_

for_Distribution_v1.1) in Matlab (version R2021a; The MathWorks Inc., USA), with a dura-

tion of 3500 ms, including 5-ms onset and offset ramps (half-Hanning windows). Transforma-

tion of the white noise sequences resulted in correlated noise sequences with a correlative

structure, i.e., adjacent sampling points along the temporal and spectral dimension were corre-

lated with regard to their spectral energy values, and the strength of this correlation decreased

with increasing distance. Decay constants were the same as in the original study (-0.065 per 20

ms and -0.075 per 0.196 octaves), such that the structure of the generated stimuli matches the

correlative structure of natural sounds [5].

We created sequences of random correlated noise without repetitions (“no repetition”; no-

rep) and sequences that contained repetitions (“repetition”; rep). In rep sequences, a certain

200-ms segment occurred in total six times throughout the sequence. Rep sequences were cre-

ated by inserting a separately generated 200-ms sound pattern into the 3500-ms sequence. For

half of the rep sequences within an experimental block the same repeating 200-ms pattern was

used, whereas for the other half a new pattern was created for each sequence. Pattern recur-

rence across trials was unrelated to the present research question and only relevant for our pre-

vious investigation of memory formation for specific recurring patterns across multiple trials,

which was performed on the same dataset (for details, please refer to our publication of this

previous study; [34]). As the procedure of inserting short patterns into the longer continuous

sequence resulted in local disruptions in the correlative structure of the sound at pattern

boundaries, we controlled for these local changes by inserting six (different) 200-ms segments

into no-rep sequences. Cross-fading (using 5-ms half-Hanning windows centred 2.5 ms rela-

tive to the beginning and -2.5 ms relative to the end of an inserted 200-ms patterns) was used

to avoid audible artefacts due to abrupt changes in the spectrum at segment boundaries. In all

sequences, the time point of the first pattern onset was selected randomly between 50 and 500

ms relative to sound onset. The following pattern onsets occurred either with a constant inter-

val of 300 ms (regular) or variable intervals between 50 and 550 ms (jittered) between patterns.

In jittered sequences, intervals between patterns were chosen randomly, with the restriction

that the duration of two consecutive inter-pattern intervals must differ by at least 50 ms. Stim-

ulus sequences are illustrated in Fig 1 (panel A), and audio examples can be found in the online

supplemental material (https://osf.io/xn9t4/).

Procedure

Participants completed two EEG sessions on separate days (with on average 13 days in

between). In the first session, listeners’ attention was directed away from the auditory

sequences (no-attention), which they were instructed to ignore while performing a visual dis-

tractor task that required continuous monitoring of the visual stimulation. In the second ses-

sion, their attention was directed towards the auditory sequences (attention) by a repetition

detection task, which required them to indicate in each trial whether the sequence contained a

repetition. The fixed session order served to avoid active knowledge about the repetitions in

the auditory sequences during the no-attention session after participants performed the
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Fig 1. Illustration of the study design. A: Illustration of regular and jittered acoustic stimulus sequences with and without pattern

repetitions. B: Experimental design. Participants took part in two EEG sessions. In the first session, their attention was directed away

from the auditory stimulation, and in the second session, they were instructed to focus on repetitions in the sounds. Both sessions

consisted of ten blocks in a random order, each of which contained 30 trials.

https://doi.org/10.1371/journal.pone.0284836.g001
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auditory repetition detection task in the session before. In each session, they completed five

blocks with regular and five blocks with jittered sequences in a random order, with breaks

between blocks as required. Each block consisted of 60 randomly ordered auditory sequences,

50% of which were rep and no-rep sequences, respectively. In 50% of the rep sequences per

block, the repeating pattern was the same across trials within the block, whereas the remaining

rep sequences contained a repeating pattern that occurred in only one trial throughout the

experiment. Between two consecutive sequences, silent intervals ranged between 2175 and

2625 ms in duration (in steps of 50 ms). The experimental design is illustrated in Fig 1 (panel

B).

The visual display in the no-attention session consisted of eight squared dark-grey frames

(width/height: 0.50˚ visual angle) arranged in a circle (radius: 2.11˚ visual angle) on a grey

background at equal distance from a white fixation cross. In each of the 240 visual trials per

block, a white square appeared at one of the eight frame positions for 150 ms. Participants

were asked to fixate the cross in the centre of the screen and press a button a quickly as possible

whenever the white square appeared at the same frame position as two trials before. The first

five trials of each block were always non-targets, and 2-back targets occurred randomly in 10%

of the trials, each of which was followed by at least two non-targets. While square positions

were chosen randomly for non-target trials, targets occurred equally often at each position.

The visual stimulus onset asynchrony ranged between 1425 and 1575 ms (in steps of 10 ms),

and visual stimulation had no temporal relationship with the auditory stimulation. Auditory

stimulation began five seconds after the visual stimulation at the beginning of each block. At

the beginning of the session, participants completed a short training block without concurrent

auditory stimulation, during which they received feedback about the correctness of their

response in each trial. During the actual experiment, feedback (hit/false alarm rates and mean

reaction time) was provided only at the end of a block.

At the beginning of the attention session, the different types of auditory sequences were

introduced to the participants. An example sequence (which was not used during the actual

experiment) was provided for sequences with “regular repetitions” (rep, regular), “irregular

repetitions” (rep, jittered) or “no repetitions” (no-rep) and could be repeated as often as listen-

ers wanted. They were informed that repetitions occurred in 50% of the trials and that regular

and irregular sequences occurred in separate blocks. A white fixation cross on a grey back-

ground was displayed during sound presentation, followed by the response options (“repeti-

tion”/”no repetition”) during the response interval (until a response was given or a maximum

of 2000 ms expired). Participants pressed either the left or the right button (counterbalanced

across participants) on a response time box with their left or right index finger, respectively.

Feedback (percentage of correct responses) was again provided at the end of a block.

Participants were seated inside an acoustically and electrically shielded chamber during the

experiment. Task instructions and visual stimuli were presented on a computer screen located

at approximately 80 cm distance from the participants’ eyes. Auditory stimuli were delivered

binaurally via headphones (Sennheiser HD-25-1, Sennheiser GmbH & Co. KG, Germany).

Stimulus presentation and response registration was controlled using the Psychophysics

Toolbox extension (PTB-3; [35, 36] in GNU Octave (version 5.2.0), and behavioural responses

were recorded with a response time box (Suzhou Litong Electronic Co., China).

EEG data acquisition

We recorded the continuous EEG from 64 Ag/AgCl electrodes mounted in an elastic cap

according to the extended 10–20 system. To record horizontal and vertical eye movements,

additional electrodes were placed on the outer canthus of both eyes and above and below the
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right eye. Signals were also recorded from the left (M1) and right (M2) mastoid and from and

electrode placed on the tip of the nose, which served for offline referencing. Offsets of all elec-

trodes were kept below 30 μV. Signals were referenced to the CMS-DRL ground, amplified

with a BioSemi ActiveTwo amplifier (BioSemi B.V., Amsterdam, The Netherlands), and digi-

tised with a sampling rate of 512 Hz.

Data analysis and statistical inference

Since the focus of the current study was the perception of pattern repetitions within a sound

(and not the effect of pattern recurrence across trials as in the previous study; [34]), all

sequences with pattern repetitions were collapsed into the same condition (rep) for the present

analysis. To make sure that the repetition of patterns across sequences did not bias the current

results, the analysis was repeated analogously excluding sequences that contained repetitions

of patterns that reoccurred across trials. This approach yielded a virtually identical pattern of

results, thus we decided to include all sequences for the sake of statistical power.

Behavioural data

Analysis of behavioural data was done in RStudio (version 4.0.2, RStudio Inc., USA). Perfor-

mance in the repetition detection task in the attention session was analysed within the frame-

work of signal detection theory [37]. Trials were classified as hits when participants correctly

indicated that a rep sequence contained repetitions and as false alarms when they erroneously

indicated that a no-rep sequence contained repetitions. We then computed the d’ sensitivity

index from hit and false alarm rates separately for regular and jittered blocks, applying a log-

linear transformation [38] to avoid infinite values. To statistically test whether there was a dif-

ference in repetition detection performance between regular and jittered blocks, we compared

d’ scores using a two-sided paired t-test, with the standard .05 alpha criterion to define statisti-

cal significance. Bayesian tests were computed, using the package “BayesFactor” [39, 40], and

Bayes Factors (BF10), interpretable as the posterior probability of the null (H0) and alternative

hypothesis (H1) given the data, are reported in addition to the frequentist statistics. BF10 > 3

(10) was considered moderate (strong) evidence for the alternative hypothesis and BF10 < 0.33

(0.1) was considered moderate (strong) evidence for the null hypothesis, in accordance with

widely used conventions [41], and values in between were considered inconclusive.

EEG data

Offline processing of EEG data was done in Matlab (version R2022b), using the EEGLAB (ver-

sion 14.1.2; [42]) and FieldTrip [43] toolboxes, and statistical analysis in RStudio (version

4.0.2).

Pre-processing. Pre-processing of EEG data was done separately for each of the two sessions

per participant. After re-referencing the data to the channel on the tip of the nose, noisy chan-

nels were identified if their signal variance exceeded an absolute z-score of 3.0. These channels

were excluded from pre-processing and later spherically spline interpolated. The remaining

data where then high-pass and low-pass filtered using Kaiser-windowed sinc finite impulse

response (FIR) filters. The cut-off for the low-pass filter was 35 Hz (transition bandwidth: 5

Hz, maximum passband deviation: 0.001, filter order: 372), while high-pass filters with differ-

ent cut-offs were applied for the three EEG markers that we analysed (see below). After filter-

ing, the continuous data were epoched from -100 to 4000 ms relative to sequence onset. To

remove physiological and technical artefacts, an independent component analysis (ICA) was

used, computed on a copy of the data filtered with a 1-Hz high-pass filter (transition band-

width: 0.5 Hz, maximum passband deviation: 0.001, filter order: 3710) to improve signal-to-
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noise ratio for the decomposition. Before ICA decomposition, epochs with a peak-to-peak dif-

ference exceeding 750 μV were discarded and data were down-sampled to 128 Hz. ICA

weights, obtained with an infomax algorithm implemented in the runica function in EEGLAB,

were transferred to the dataset with the final pre-processing parameters. Classification of inde-

pendent components was done automatically using the IC Label plugin [44], and all compo-

nents classified as eye blinks, muscle or cardiac activity, line or channel noise were removed.

Any auditory event within 500 ms before and after a button press or within 500 ms after a

visual target in the no-attention session was excluded from the analysis to minimise the influ-

ence of motor and visual activity on auditory EEG responses.

Sustained response: Global field power (GFP). For the analysis of sustained activity, data

were high-pass filtered (during pre-processing) with a low cut-off at 0.1 Hz (transition band-

width: 0.2 Hz, maximum passband deviation: 0.001, filter order: 9274) to avoid filtering out

slow potential shifts that are characteristic for the sustained response. From the pre-processed

data, we extracted epochs that ranged from -100 to 3000 ms relative to the onset of the first pat-

tern per sequence and baseline-corrected them to the 100-ms interval prior to first pattern

onset. Sequence epochs were discarded if their peak-to-peak difference exceeded 300 μV, and

the remaining epochs were re-referenced to the average of all channels. For each participant,

averages were computed for rep and no-rep sequences in each of the four attention and regu-

larity conditions. GFP at each sampling point was computed from these within-participant

averages as the root mean square (RMS) of the signal across all scalp electrodes [45].

For statistical evaluation, mean GFP was extracted for each attention and regularity condi-

tion from a time window that ranged from 500 to 3000 ms relative to the first pattern onset,

i.e., from the first pattern repetition to the end of the sequence. We used a three-way repeated-

measures ANOVA (implemented in the R package “ez”) with the factors Repetition (rep, no-

rep), Attention (attention, no-attention), and Regularity (regular, jittered) to test whether GFP

differed between sequences with and without sequences, and whether this effect is modulated

by attention and regularity. Greenhouse-Geisser correction was applied whenever Mauchly’s

test indicated non-sphericity (p< .05). A corresponding Bayesian ANOVA [46] was again

computed in addition to the frequentist ANOVA. Reported BF10’s reflect the evidence for

models that include the respective (main or interaction) effect relative to reduced matched

models without the respective effect (in line with recent recommendations; [47]). A significant

main effect of Repetition would indicate that the brain successfully picked up the pattern repe-

titions within sound sequences, and a significant interaction of Repetition with Attention or

Regularity would indicate that the repetition effect is modulated by the respective factor. To

further elucidate the nature of the modulation by Attention or Regularity, significant (p< .05)

two-way interactions with Repetition were followed up using (both frequentist and Bayesian)

paired t-tests. Specifically, we computed the rep vs. no-rep contrast separately for the two levels

of the modulating factor (Attention or Regularity), and subsequently compared the rep-

minus-no-rep difference between the two levels (i.e., attention vs. no-attention, or regular vs.

jittered).

Event-related potential (ERP) responses to repeating pattern onsets. For the ERP analysis,

data were filtered with a 1-Hz high-pass filter (transition bandwidth: 0.5 Hz, maximum pass-

band deviation: 0.001, filter order: 3710) in order to filter out slow potentials. Extracted epochs

ranged from -100 to 500 ms relative to single pattern onsets, averaged across the second to the

sixth pattern occurrence per sequence. Pattern epochs were discarded if their peak-to-peak dif-

ference exceeded 150 μV, and no baseline correction was applied. After re-referencing to the

algebraic mean of both mastoids, we computed first within-participant averages and then

grand averages across participants for rep and no-rep sequences in each of the four attention

and regularity conditions.
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A non-parametric cluster-based permutation approach was used to determine time win-

dows of interest for the statistical evaluation of mean ERP amplitudes. To identify clusters of

significant differences in amplitude between rep and no-rep sequences at adjacent sampling

points along both temporal and spatial dimension, we computed a cluster-based permutation

test on rep vs. no-rep averages across the four attention and regularity conditions [48, 49].

Averaging across attention and regularity conditions before computing the cluster-based per-

mutation test served to reduce the risk of biased analysis parameter choices [50]. Both alpha

level and cluster alpha were set to 0.05, and cluster-level significance probability was estimated

using a Monte Carlo approximation with 1000 permutations. In the time range from 0 to 500

ms relative to pattern onset, the test revealed an early positive cluster, followed by a negative

cluster, both of which were broadly distributed across fronto-centro-temporal electrodes. Sig-

nificant time points were extracted for both of these clusters, resulting in two time windows of

interest, the first one ranging from 0 to 160 ms and corresponding to an early positivity, and

the second one ranging from 190 to 380 ms and corresponding to a subsequent negativity.

Mean amplitudes were extracted from these two time windows at a fronto-central cluster of

nine electrodes (F1, F2, Fz, FC1, FC2, FCz, C1, C2, Cz). Statistical evaluation was done sepa-

rately for the positivity and negativity, and followed the same procedures as described above

for the sustained response.

Inter-trial phase coherence (ITPC). For the analysis of ITPC, data were high-pass filtered

with a cut-off at 0.5 Hz (transition bandwidth: 0.5 Hz, maximum passband deviation: 0.001, fil-

ter order: 3710). Pre-processed data were epoched from -200 to 800 ms relative to single pat-

tern onsets at the second to the sixth pattern occurrence per sequence. Pattern epochs were

demeaned, and any epoch with a peak-to-peak difference that exceeded 150 μV was discarded.

Signals were averaged within the same fronto-central electrode cluster as for the ERP analysis

(see above), and 1500-ms zero-padding was applied at both ends of each epoch. We then used

a convolution with Morlet wavelets to extract phase information from single epochs over a fre-

quency range from 1 to 10 Hz (in steps of 0.2 Hz), with parameters of the wavelet linearly

adjusted from three to seven wavelet cycles. ITPC between epochs was computed for each par-

ticipant from the results of the wavelet convolution at each sampling point in the time-fre-

quency space, separately for rep and no-rep sequences in each of the four attention and

regularity conditions. We again used a cluster-based permutation approach to determine the

time-frequency window of interest for statistical evaluation. After averaging across the four

attention and regularity conditions, we computed a cluster-based permutation test (rep vs. no-

rep), with an alpha level and cluster alpha of 0.001 (and again using a Monte Carlo approxima-

tion with 1000 permutations to estimate cluster-level significance probability). The test

revealed a broad significant cluster that ranged from 0 to 500 ms relative to pattern onset and

spanned a frequency range from 1 to 4 Hz.

We extracted mean ITPC from this time-frequency window of interest for subsequent sta-

tistical evaluation, which followed the same procedures as for the analysis of sustained

response and ERPs to repeating pattern onsets.

Results

Behavioural data

Participants detected pattern repetitions in the acoustic sequences on average above chance in

both regular (M ± SD of d’: 2.01 ± 0.97) and jittered (M ± SD of d’: 1.84 ± 1.11) blocks. There

was no significant difference between the two (t(28) = 1.92; p = .065; d = 0.36; BF10 = 0.99),

however Bayesian evidence was inconclusive. Thus, there might in fact be a trend towards
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better repetition detection performance in regular than in jittered sequences, though the effect

of temporal regularity seems to be rather small.

EEG data

Sustained response: GFP. As displayed in Fig 2, GFP overall increased rather sharply at

the beginning of a sequence before reaching a relatively sustained plateau phase throughout

the rest of the sequence from around the onset of the first pattern repetition (i.e., the second

pattern onset within the sequence). In regular rep sequences (across both attention condi-

tions), we observed an additional periodic modulation of the potential during the sustained

phase at the frequency of the isochronous repeating pattern onsets (i.e., 2 Hz). Any such

response relative to repeating pattern onsets would be levelled out due to the random shift of

pattern onsets in jittered sequences. Crucially, GFP was significantly higher in rep compared

to no-rep sequences (main effect of Repetition: F(1, 28) = 48.39, p< .001, partial η2 = .63, BF10

= 2.21*105), suggesting that the brain automatically picked up pattern repetitions in rep

sequences. This repetition effect was modulated by attention (Repetition x Attention interac-

tion: F(1, 28) = 6.80, p = .014, partial η2 = .20, BF10 = 0.87): While there was a significant

increase in GFP for rep compared to no-rep sequences during both attention (t(28) = 6.65; p<
.001; d = 1.24; BF10 = 5.05*104) and in-attention (t(28) = 5.55; p< .001; d = 1.03; BF10 =

3.30*103), the effect was larger when listeners’ attention was focussed on the sounds (t(28) =

2.61; p = .014; d = 0.48; BF10 = 3.34). Conversely, the influence of regularity on the repetition

effect was less clear (Repetition x Regularity interaction: F(1, 28) = 5.41, p = .027, partial η2 =

.16, BF10 = 0.47): The repetition effect was significant in both regular (t(28) = 4.67; p< .001;

d = 0.87; BF10 = 366.93) and jittered (t(28) = 6.81; p< .001; d = 1.26; BF10 = 7.41*104) blocks,

and there was a trend towards a larger effect in jittered blocks, although only with inconclusive

Bayesian evidence (t(28) = 2.33; p = .027; d = 0.43; BF10 = 1.96).

ERPs to repeating pattern onsets. ERPs to the onsets of the repeating pattern within a

sequence are shown in Fig 3. Repeating pattern onsets in rep sequences elicited an early posi-

tivity, followed by a later negativity from around 200 ms relative to pattern onset, both with a

fronto-central topography, whereas no such ERP modulation occurred for no-rep sequences.

This pattern-related positivity-negativity complex was elicited consistently across all attention

and regularity conditions, with differences only in the latency of the positivity: While the onset

of the positivity was around pattern onset in jittered sequences, it was shifted forwards in regu-

lar sequences, likely related to anticipation of upcoming pattern repetitions in temporally regu-

lar and predictable sequences. For both positivity (0–160 ms) and negativity (190–380 ms)

effects of Repetition, Attention and Regularity pointed into the same directions: Mean ampli-

tudes were larger (i.e., more positive or negative, respectively) in rep than in no-rep sequences

(main effect of Repetition: positivity: F(1, 28) = 123.29, p< .001, partial η2 = .81, BF10 =

8.30*1047; negativity: F(1, 28) = 182.74, p< .001, partial η2 = .87, BF10 = 2.91*1055). While the

repetition effect was not significantly modulated by regularity (Repetition x Regularity interac-

tion: positivity: F(1, 28) = 0.21, p = .654, partial η2 = .01, BF10 = 0.32; negativity: F(1, 28) = 1.57,

p = .220, partial η2 = .05, BF10 = 0.27), there was a substantial influence of attention (Repetition

x Attention interaction: positivity: F(1, 28) = 25.99, p< .001, partial η2 = .48, BF10 = 1.49*103;

negativity: F(1, 28) = 52.98, p< .001, partial η2 = .65, BF10 = 4.46*107): Amplitudes differed

significantly between rep and no-rep sequences during both attention (positivity: t(28) =

12.57; p< .001; d = 2.33; BF10 = 1.54*109; negativity: t(28) = 13.88; p< .001; d = 2.58; BF10 =

1.53*1011) and in-attention (positivity: t(28) = 7.71; p< .001; d = 1.43; BF10 = 6.39*105; nega-

tivity: t(28) = 9.70; p< .001; d = 1.80; BF10 = 5.48*107), but an attentional focus on the auditory
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Fig 2. Sustained activity throughout the sequence. Global field power (GFP) relative to the onset of the first pattern occurrence per sequence

(0 ms) for rep and no-rep sequences in each of the four Attention x Regularity conditions. Bar plots display mean amplitudes in the time

window of interest (500 to 3000 ms; marked by the light-grey box). Shaded areas and error bars indicate ± 1 SEM.

https://doi.org/10.1371/journal.pone.0284836.g002
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Fig 3. Event-related responses to repeating pattern onsets. Event-related potentials (ERPs) relative to the onset of repeating patterns at position

2 to 6 within the sequence (0 ms) for rep and no-rep sequences in each of the four Attention x Regularity conditions. Bar plots display mean

amplitudes in the time windows of interest (early positivity: 0 to 160 ms; later negativity: 190 to 380 ms; marked by light-grey boxes) at a fronto-

central electrode cluster. Topographies show the rep-minus-no-rep difference potential in the respective time window of interest. Shaded areas

and error bars indicate ± 1 SEM.

https://doi.org/10.1371/journal.pone.0284836.g003
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sequences increased this repetition effect (positivity: t(28) = 5.10; p< .001; d = 0.95; BF10 =

1.07*103; negativity: t(28) = 7.28; p< .001; d = 1.35; BF10 = 2.30*105).

ITPC. As shown in Fig 4, pattern repetitions within a sound sequence led to an increase

in ITPC of neural oscillations (compared to no-rep sequences). ITPC was strongest around the

onsets of the repeating pattern for low frequencies around the rates of pattern occurrence in

the stimulation. In regular sequences, the ITPC peak appeared more focal along the frequency

dimension, which reflects the strict 2-Hz periodicity in the stimulation compared to jittered

sequences that comprise a broader range of frequencies (1.33 to 4 Hz). Statistical evaluation of

mean ITPC between 0 and 500 ms relative to pattern onset showed that phase coherence of

1–4 Hz oscillations was overall stronger in rep than in no-rep sequences (main effect of Repeti-

tion: F(1, 28) = 69.61, p< .001, partial η2 = .71, BF10 = 8.91*1023). The repetition effect was sig-

nificantly modulated by attention (Repetition x Attention interaction: F(1, 28) = 63.35, p<
.001, partial η2 = .69, BF10 = 5.12*109): The increase in ITPC for rep compared to no-rep

sequences was significant during both attention (t(28) = 9.25; p< .001; d = 1.72; BF10 =

2.09*107) and in-attention (t(28) = 4.37; p< .001; d = 0.81; BF10 = 178.13), but the difference

was substantially larger during attention (t(28) = 7.96; p< .001; d = 1.48; BF10 = 1.14*106).

Similarly, regularity also influenced the magnitude of the repetition effect (Repetition x Regu-

larity interaction: F(1, 28) = 7.03, p = .013, partial η2 = .20, BF10 = 2.09): While there was a sig-

nificant repetition effect in both regular (t(28) = 7.57; p< .001; d = 1.41; BF10 = 4.56*105) and

jittered (t(28) = 7.55; p< .001; d = 1.40; BF10 = 4.35*105) blocks, the effect was larger in regular

blocks (t(28) = 2.65; p = .013; d = 0.49; BF10 = 3.65).

Discussion

The current study set out to test whether and how listeners’ attention and the temporal regu-

larity of pattern occurrence within a continuous sound sequence modulate pattern repetition

perception. We presented listeners with sequences of correlated noise that contained or did

not contain repetitions of a certain sound segment. Pattern repetitions within a sequence were

either temporally regular or jittered, and listeners’ attention was either directed towards or

away from the sounds during stimulus presentation. Besides behavioural repetition detection

(when participants attended to the sounds), we measured repetition perception and its modu-

lation by attention and regularity by means of three different EEG signatures: sustained activity

throughout the full sequence (from repetition onset), ERPs and ITPC time-locked to repeating

pattern onsets.

Overall, listeners were able to behaviourally detect repetitions well above chance (when

they attended to the sounds), and successful repetition detection was reflected consistently in

all three neural markers across attention and regularity conditions. Concretely, repetitions of a

specific pattern within a continuous acoustic stimulus led to an increase in sustained activity

from the first pattern repetition through the end of the sequence (for consistent previous

results, see: [22, 24, 25, 27–29]), a characteristic positivity-negativity complex in the ERP time-

locked to repeating pattern onsets [15, 16, 18, 20, 26, 33], and enhanced ITPC of low-frequency

(1–4 Hz) oscillations [15, 16, 19, 20, 25]. It is plausible to assume that both our ERP and ITPC

findings reflect a similar underlying effect, namely a phase alignment of neural activity relative

to repeating pattern onsets. Consistent findings from both complementary approaches under-

line the robustness of the repetition effect and allow to compare our data to a number of previ-

ous studies that reported only either one or the other EEG marker. Notably, besides replicating

findings of different earlier studies, we could demonstrate automatic detection of irregular,

unpredictable pattern repetitions while listeners focussed on a demanding visual distractor

task. Thus, we show that not only strict periodicities [15, 16, 22, 25, 27–29, 33], but also more

PLOS ONE Neural signatures of automatic repetition detection in temporally regular and jittered acoustic sequences

PLOS ONE | https://doi.org/10.1371/journal.pone.0284836 November 10, 2023 13 / 19

https://doi.org/10.1371/journal.pone.0284836


Fig 4. Phase coherence of neural oscillations. Inter-trial phase coherence (ITPC) over frequencies and time relative to the onset of repeating

patterns at position 2 to 6 within the sequence (0 ms) at a fronto-central electrode cluster for rep and no-rep sequences in each of the four

Attention x Regularity conditions. Bar plots display mean ITPC between 1 and 4 Hz in a time window from 0 to 500 ms relative to pattern onset

(marked by dotted lines). Error bars indicate ± 1 SEM.

https://doi.org/10.1371/journal.pone.0284836.g004
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irregular pattern repetitions within continuous auditory input are processed pre-attentively.

This suggests that repetition detection does not rely on a merely temporal mechanism (i.e., the

detection of an autocorrelation with a fixed time lag in the acoustic signal), but may involve

enhanced sensitivity for previously encountered patterns (e.g., through rapid plastic changes),

leading to amplified neural responses for pattern repetitions.

While pattern repetitions were detected automatically in both regular and jittered

sequences during both attention and in-attention, repetition perception was substantially

modulated by both factors. Our two-by-two within-subject design allowed to directly compare

different levels of attention and regularity, and to show that an attentional focus onto the

sounds substantially enhanced repetition perception. The repetition effect (i.e., the difference

between sequences with and without pattern repetitions) was larger during attention than dur-

ing in-attention to the auditory stimulation across all three neural markers. In contrast, earlier

studies had suggested rather comparable magnitudes of the repetition effect between attention

and no-attention as reflected in sustained activity [27], ERPs [15, 16, 33], and ITPC [25]. How-

ever, most of these studies did either not compare attention conditions directly [15, 16, 22],

used a between-subject design [27], or controlled attention less strictly [33]. We argue that

attention to the stimulus sequences (and, in particular, potential repetitions therein) enhances

perceptual representation of the sound and thereby facilitates repetition detection. Sharpened

short-term representations of the repeating pattern through attention may in turn boost robust

memory formation for specific patterns that recur across multiple trials at a longer time scale

(and potentially higher level of abstraction), which has been demonstrated previously [8, 13–

17, 21, 23, 24, 30–32]. Nevertheless, it should be noted that, despite the attention-related

improvement, pattern repetitions are generally tracked automatically, also in the absence of

attention.

Conversely, the influence of temporal regularity on repetition perception appeared some-

what less clear and consistent across different neural markers: While there was no difference

in amplitude and morphology of the ERP to repeating pattern onsets between regular and jit-

tered sequences, the repetition effect tended to be smaller for regular sequences in terms of

sustained activity, but larger in terms of ITPC. The absence of a regularity-related difference in

the ERP effect is only partly in agreement with the results of a previous study [26], which

showed no difference in amplitude of the negative ERP component between regular and jit-

tered pattern repetitions, whereas the early positive ERP component exclusively occurred in

the regular condition. By contrast, the occurrence of both components across regular and jit-

tered sequences in our data suggests that positivity and negativity do not subserve different

functions (e.g., tracking of stimulus periodicity vs. detection of repeating pattern onsets), but

rather that the positivity-negativity complex as a whole is related to pattern repetition detec-

tion. Nevertheless, the (descriptive) forward shift of the onset of the positivity for regular

(compared to jittered) pattern onsets may indicate that anticipation of upcoming pattern

occurrences in predictable sequences is reflected in the latency (but not in the magnitude) of

the ERP response. If anticipation of upcoming pattern onsets indeed modulates the time

course of the ERP such that the early positivity reaches into a time window before actual pat-

tern onset, baseline correction could introduce amplitude differences between regular and

irregular sequences by differentially shifting the whole positivity-negativity complex into a

negative or positive direction (which may also explain discrepancies with regard to the pres-

ence of the early positivity in earlier studies, e.g., [15, 26]). A similar interpretation may hold

for the stronger ITPC effect we observed for regular than for jittered sequences: The strict peri-

odicity in the stimulation allowed for (additional) entrainment of brain responses to the stimu-

lus rhythm and for temporal prediction of the next pattern onset, which was not possible in

unpredictable jittered sequences. Importantly, the presence of a significant repetition-related
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ITPC increase for jittered sequences suggests that the phase alignment of EEG responses can-

not be explained merely by entrainment to the stimulus periodicity. Instead, synchronisation

of neural responses relative to repeating pattern onsets occurred irrespective of their temporal

regularity, possibly achieved via phase-reset of ongoing oscillations [19, 51]. Finally, there was

a trend towards a larger repetition effect in sustained activity for jittered compared to regular

sequences, which may seem counterintuitive at first glance. Especially in the attention condi-

tion, this effect seems to be driven by a GFP difference between regular and jittered sequences

without pattern repetitions, whereas mean GFP was (descriptively) fairly similar for sequences

with repetition. This suggests that there might have been rudimentary processing of local dis-

ruptions in the correlative structure of the stimulus sequences when they occurred strictly peri-

odically (but not when their occurrence was jittered and unpredictable), which in turn

decreased the difference between rep and no-rep sequences (i.e., the repetition effect).

While in our design regular and jittered sequences are treated as two different categories,

one might argue that also within the jittered condition individual sequences differ with regard

to the amount of temporal jitter they contain. The restriction that consecutive inter-pattern

intervals must differ in duration by at least 50 ms served to avoid that sequences in the jittered

condition were (almost) isochronous by chance, but cannot preclude that the variance in

inter-pattern interval duration is larger in some “more jittered” compared to other “less jit-

tered” sequences. For instance, some jittered sequences may have by chance contained more

successive short inter-pattern intervals than others or some higher-order non-isochronous

temporal regularity (e.g., an alternation between short and long inter-pattern intervals), both

of which may have facilitated repetition detection in these trials. However, it should be noted

that the amount of jitter was larger in the current study (up to ± 50% of the mean interval

between pattern onsets) than in previous studies that had reported a substantial benefit of iso-

chronous pattern repetition on repetition detection (up to ± 20%; [52]) or memory formation

for specific white noise exemplars (± 10%; [17]) or found differences in pattern-related ERPs

between isochronous and jittered sequences (up to ± 40%; [26]). Thus, it seems unlikely that

the amount of jitter used in the present study explains the absence of a clear regularity benefit

(such as it was demonstrated previously).

Unlike a previous study [25], we did not find evidence for a distinct pattern of attention

modulation between sustained activity and phase coherence of neural oscillations. If anything,

our data provide more evidence for an attention modulation of the repetition effect in ITPC

than in GFP, whereas the authors of this previous study [25] reported an attention effect only

for sustained activity, but not for ITPC (i.e., neural synchronisation). They proposed that the

distinct susceptibility of sustained activity and neural synchronisation to the influence of atten-

tion may indicate that the two neural markers reflect dissociable processes, such that neural

synchronisation is related to an early attention-independent sensory process and sustained

activity to a more abstract representation of structure in sounds that requires attention [25].

While this does not preclude that different EEG markers reflect functionally nuanced pro-

cesses that contribute to (automatic) repetition perception, our data suggest that all of them

underlie a similar modulatory influence by attention. Different weighting of putative subpro-

cesses and their susceptibility to attention (and possibly regularity) modulation might rather

arouse from subtle differences in the experimentally created listening context (e.g., specific

stimulus material and distractor task).

In summary, our study replicates the results of earlier studies that showed rapid and auto-

matic detection of pattern repetitions within continuous acoustic sequences. Crucially, pattern

repetitions are processed pre-attentively even if there is no temporal regularity that could act

as a cue for upcoming (predictable) pattern occurrences. This suggests that repetition percep-

tion relies on a mechanism that flexibly adapts to varying contextual demands, such as they
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occur in naturalistic listening situations. Yet, an attentional focus on the auditory input

enhances sensory representation of repeating patterns and facilitates repetition detection.
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16. Andrillon T, Pressnitzer D, Léger D, Kouider S. Formation and suppression of acoustic memories during

human sleep. Nat Commun. 2017; 8(1): 179. https://doi.org/10.1038/s41467-017-00071-z PMID:

28790302

17. Dauer T, Henry MJ, Herrmann B. Auditory perceptual learning depends on temporal regularity and cer-

tainty. J Exp Psychol Hum Percept Perform. 2022; 48(7): 755–770. https://doi.org/10.1037/xhp0001016

PMID: 35587435
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20. Ringer H, Schröger E, Grimm S. Within- and between-subject consistency of perceptual segmentation

in periodic noise: A combined behavioral tapping and EEG study. Psychophysiology. 2023; 60(2):

e14174. https://doi.org/10.1111/psyp.14174 PMID: 36106761

21. Song K, Luo H. Temporal Organization of Sound Information in Auditory Memory. Front Psychol. 2017;

8: 999. https://doi.org/10.3389/fpsyg.2017.00999 PMID: 28674512

22. Barascud N, Pearce MT, Griffiths TD, Friston KJ, Chait M. Brain responses in humans reveal ideal

observer-like sensitivity to complex acoustic patterns. Proc Natl Acad Sci. 2016; 113(5): E616–625.

https://doi.org/10.1073/pnas.1508523113 PMID: 26787854

23. Bianco R, Harrison PM, Hu M, Bolger C, Picken S, Pearce MT, et al. Long-term implicit memory for

sequential auditory patterns in humans. eLife. 2020; 9: e56073. https://doi.org/10.7554/eLife.56073

PMID: 32420868

24. Herrmann B, Araz K, Johnsrude IS. Sustained neural activity correlates with rapid perceptual learning

of auditory patterns. NeuroImage. 2021; 238: 118238. https://doi.org/10.1016/j.neuroimage.2021.

118238 PMID: 34098064

25. Herrmann B, Johnsrude IS. Neural Signatures of the Processing of Temporal Patterns in Sound. J Neu-

rosci. 2018; 38(24): 5466–5477. https://doi.org/10.1523/JNEUROSCI.0346-18.2018 PMID: 29773757

26. Hodapp A, Grimm S. Neural signatures of temporal regularity and recurring patterns in random tonal

sound sequences. Eur J Neurosci. 2021; 53(8): 2740–2754. https://doi.org/10.1111/ejn.15123 PMID:

33481296

27. Sohoglu E, Chait M. Detecting and representing predictable structure during auditory scene analysis.

eLife. 2016; 5: e19113. https://doi.org/10.7554/eLife.19113 PMID: 27602577

28. Southwell R, Chait M. Enhanced deviant responses in patterned relative to random sound sequences.

Cortex. 2018; 109: 92–103. https://doi.org/10.1016/j.cortex.2018.08.032 PMID: 30312781

29. Southwell R, Baumann A, Gal C, Barascud N, Friston K, Chait M. Is predictability salient? A study of

attentional capture by auditory patterns. Philos Trans R Soc B Biol Sci.; 372(1714): 20160105. https://

doi.org/10.1098/rstb.2016.0105 PMID: 28044016

30. Agus TR, Pressnitzer D. Repetition detection and rapid auditory learning for stochastic tone clouds. J

Acoust Soc Am. 2021; 150(3): 1735–1749. https://doi.org/10.1121/10.0005935 PMID: 34598638

31. Kumar S, Bonnici HM, Teki S, Agus TR, Pressnitzer D, Maguire EA, et al. Representations of specific

acoustic patterns in the auditory cortex and hippocampus. Proc R Soc B Biol Sci. 2014; 281(1791):

20141000. https://doi.org/10.1098/rspb.2014.1000 PMID: 25100695
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