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Abstract—The control of nonlinear large-scale dynamical mod-
els such as the incompressible Navier-Stokes equations is a
challenging task. The computational challenges in the controller
design come from both the possibly large state space and the non-
linear dynamics. A general purpose approach certainly will resort
to numerical linear algebra techniques which can handle large
system sizes or to model order reduction. In this work we propose
a two-folded model reduction approach tailored to nonlinear
controller design for incompressible Navier-Stokes equations and
similar PDE models that come with quadratic nonlinearities.
Firstly, we approximate the nonlinear model within in the class of
LPV systems with a very low dimension in the parametrization.
Secondly, we reduce the system size to a moderate number
of states. This way, standard robust LPV theory for nonlinear
controller design becomes feasible. We illustrate the procedure
and its potentials by numerical simulations.

Index Terms—Model reduction, LPV systems, Robust control,
Nonlinear control

I. INTRODUCTION

We consider general nonlinear, control-affine systems of
type

ẋ(t) = f(x(t)) +Bu(t), (1)

where x is the system’s state with values in Rn with n possibly
large, where u is the input with values in Rp, and where
f : Rn → Rn.

The computer-aided controller design for (1) with n large
is a challenging problem with no generic approach being es-
tablished yet. Commonly used methods like backstepping [1],
feedback linearization [2, Ch. 5.3], or sliding mode control [3]
require structural assumptions and, thus, may not be accessible
to a general computational framework. The both holistic and
general approach via the HJB equations is only feasible for
very moderate system sizes or calls for model order reduction;
see, e.g., [4] for a relevant discussion and an application in
fluid flow control. As an alternative to reducing the systems
size, one may consider approximations to the solution of the
HJB of lower complexity. For that, e.g., truncated polynomial
expansions [5] are considered or heuristic approximative solu-
tions via the so called state-dependent Riccati equation; see,
e.g., [6], [7].

In this work, we propose the embedding of (1) into the class
of linear parameter-varying (LPV) systems of type

ẋ(t) = A(ρ(t))x(t) +Bu(t), (2)

with A(ρ(t)) ∈ Rn×n for parameter values ρ(t) ∈ Rr by
implementing two layers of complexity reduction so that es-
tablished theory and algorithms ([8]) for robust LPV controller
design become available.

As laid out in [9], the controller design techniques for LPV
systems can be classified into the categories polytopic, LFT-
based, and gridding.

A general assumption of all these approaches is that the set
of possible parameter values is bounded. If, in addition, the
parameter dependency of the coefficients is affine-linear, then
the theory and the related computations simplify significantly;
see, e.g., [8], [10].

The polytopic approach is seen as the most developed
approach with the notable results from [8], [11] that provide
algorithms and theory for a scheduled H∞-robust controller
and that are the base of the hinfgs routine in the MATLAB
Robust Control Toolbox.

In a first approximation step, we seek for very low-
dimensional encodings of the states for replacing the nonlinear
source terms by a low-dimensional linear parameter varying
(LPV) surrogate. In this step that is directed to adapt the
nonlinearity to a format that is accessible to the LPV theory for
computer-aided controller design, we tailor the approximations
for a best representation of the source terms at very low-
dimensions.

We will show that this approach can lead to LPV models
that well approximate the actual dynamics with as much as r
dimensions in the parametrization, with r well less than 10.
Thus, application of standard linear matrix inequalities (LMI)
approaches already comes into reach. Still, this would require
the solution of at least r + 1 but more likely of about 2r

coupled LMIs of the size of the original system. Therefore,
we propose a second layer of approximation that is tailored
for the low-order LPV representation to accurately follow the
original dynamics with a moderately sized state space.
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This integrated approach to nonlinear controller design via
tailored approximations and established robust LPV theory has
not been considered so far.

Direct relations to the vast research on LPV systems are
given as follows. Although the typically considered LPV
systems are of moderate size (see [9, Tab. V] that classifies
state space dimensions larger than 10 as high dimensional),
the unfavourable increase of complexity with the parameter
dimension has triggered various work on reducing the so-
called scheduling dimension; see, e.g., [12], [13], [14], or [15]
that base on sparse optimization, principal component anal-
ysis (PCA), auto encoders, or general deep neural networks,
respectively.

The idea of using model order reduction in combination
with LPV controller design has been followed by [16] where
a PDE system is reduced as a whole before the treatment as an
LPV system. Recently, we have delivered a proof of concept
([7]) that LPV approximations of nonlinear systems can with
low parameter dimensions work well for nonlinear controller
design.

II. POD FOR LOW-DIMENSIONAL LPV APPROXIMATIONS

Under mild conditions (see, e.g., [17]), the system (1) can
be brought into the so-called state-dependent coefficient (SDC)
form

ẋ(t) = A(x(t))x(t) +Bu(t), (3)

with A(x(t)) ∈ Rn×n. We will assume that, in particular, the
map x → A(x) ∈ Rn×n is (affine) linear, i.e. A(x) can be
realized as A(x) = A0 + L(x) with L linear.

Remark II.1. For some systems like the spatially-discretized
Navier-Stokes equations the SDC representation with affine
dependencies is naturally induced by its structure; see [18].
If the map x → A(x) is not linear, one can seek to find an
approximation that is linear; see, e.g., [15].

We note that (3) is an LPV representation (2) of (1) with
the trivial parametrization ρ(t) = x(t) and with, in particular,
a large parameter dimension namely r = n.

Next we illustrate how a general model order reduction
scheme, can provide LPV approximations with possibly low-
dimensional, e.g., r ≪ n, parameter domains.

Let Vr ∈ Rn×r be a POD basis that encodes and decodes
the state x(t) as ρ(x(t)) = V T

r x(t) and

x(t) ≈ x̃(t) = Vrρ(x(t)) =

r∑
i=1

viρi(x(t)),

where vi ∈ Rn is the i-th POD mode.
With this encoding and decoding, the nonlinear term in

system (3) can be approximated as

A(x(t))x(t) ≈ A(x̃(t))x(t) =

A(

r∑
i=1

viρi(t))x(t) = [A0 +

r∑
i=1

ρi(t)L(vi)]x(t)

which defines an affine-linear low-dimensional LPV approxi-
mation

x̃(t) = [A0 +

r∑
i=1

ρi(x̃(t))L(vi)] x̃(t) +Bu(t) (4)

to (3) and (1). We set

Ai := L(vi), i = 1, . . . , r. (5)

In the second step, we now project the LPV approximation
to reduced order coordinates. For that let Vk with k ≥ r be
the POD basis that includes Vr and ρ̄(t) = Vkx̃(t). Then an
approximation to (4) with state dimension k (as opposed to
n) reads

˙̄ρ(t) = [Ā0 +

r∑
i=1

ρ̄i(t)Āi] ρ̄(t) + B̄u(t). (6)

with Āi := V T
k AiVk, for i = 0, 1, . . . , r and B̄ := V T

k B.
Note that r can be chosen independently of k. Thus, a very

low-dimensional approximation can be achieved independently
of a possibly larger state space that can be tailored for the best
compromise in terms of size and accuracy.

III. CONTROLLER DESIGN FOR LPV SYSTEMS

The polytopic approach is seen as the most developed
approach with the notable results from [8], [11] that provide
algorithms and theory for a scheduled robust controller and
that are the base of the hinfgs routine in the MATLAB
Robust Control Toolbox.

IV. IMPLEMENTATION ISSUES

For the computation of the snapshots that are used to extract
the POD basis, a forward simulation for an example input is
performed.

A. Polytope or Bounding Box

The computed snapshots are then projected to the ρ-
coordinates in order to estimate the polytope W ⊂ Rr that
contains ρ(t).

The vertices wi of W are then used to define the controller.
Intuitively, the performance of the controller will be better

if the volume |W | of W is smaller and if the vortices wi are
closer to extremal values of ρ(t). In this respect, the optimal
choice of W would be the convex hull of the snapshots of ρ.

On the other hand, the convex hull is likely to have a
large number of vortices, which makes the application of LPV
controller design approaches costly as they, e.g., require the
solution of n coupled LMIs where n is the number of vertices
of W .

Typically, W is chosen as a bounding box with, accordingly,
2r vortices. In order to reduce the volume, the box can be
rotated and expressed in coordinates obtained of the principal
components; see, e.g., [13]. In our affine-linear case (4) with

ρ(t) = UpcU
T
pcρ(t) =: Upcρpc(t) (7)



and, accordingly,

x̃(t) = Vrρ(t) = VrUpcρpc(t) =:

r∑
i=1

vpc,iρpc,i(t) (8)

where Upc is the principal components coordinate transforma-
tion, this reparametrization reads

r∑
i=1

ρi(t)Ai = L(x̃(t)) =

r∑
i=1

ρpc,i(t)Apc,i, (9)

where Apc,i := L(vpc,i) and vpc,i denoting the i-th column of
VrUpc, for i = 1, . . . , r. For a direct retransformation of the
system, we can also resort to the relation

Apc,i =

r∑
j=1

UjiAj , (10)

where Uji is the j-th row entry of the i-th column of Upc.
Adding on these standard ways on defining the parameter

domains, in our examples we use optimization to find a
suitable polytope that gives a good compromise of volume
and number of vortices and that underbids the bounding box in
both variables. For this, the following optimization setup was
defined and solved using the built-in methods of computing
convex hulls and genetic optimization in SciPy; see, e.g., [19].
(0.) Let V ∈ Rr be (the set of vertices of) the convex hull of

given measurements of ρ(x(tj)), for j = 1, . . . , N and a
given state trajectory x.

(i.) In the i-th iteration, extend V by nk vertices v
(i)
k ∈ Rr

and compute the convex hull V (i) of V ∪{v(i)1 , . . . , v
(i)
nk}

(ii.) Update v
(i)
k to minimize both the volume and the number

of vertices of V (i).
We report on efficiency (and feasibility) of the computation

of the LPV controller and on its performance for the three
approaches of considering

• the bounding box in the original ρ(t) coordinates,
• the bounding box in the PCA coordinates of ρ(t), or
• an optimized polytope of fewer vertices

as the polytope for the parameter variation; see Figure 1 for
an illustration of the bounding box and an optimized polytope.

V. NUMERICAL EXAMPLE

We consider the two-dimensional cylinder wake with con-
trol at moderate Reynolds numbers; see Figure 2. The controls
are designed as two outlets at the cylinder periphery of size
π/6 located at ±π/3 through which fluid can be injected
or sucked away. Mathematically, the control is modelled by
parabola-shaped spatial shaped function that is scaled by the
scalar control value. For inclusion in the FEM scheme, these
Dirichlet conditions are relaxed towards Robin-type boundary
conditions with a relaxation parameter ϵ = 10−5; see [20] for
implementation details.

As the output y, we consider averaged velocities in 3 square
domains of observations of size D2 located at a distance of H
behind the cylinder symmetrically with respect to the channel
middle. Here D denotes the diameter of the cylinder and H

Fig. 1. An illustration of the first three components of ρ(t), of the bounding
box (with 8 vortices), and an optimized polytope of less volume and with
only 5 vortices). Each data object is in three-dimensional space but projected
along the coordinate axes to planes in the two-dimensional space.

Fig. 2. Illustration of the computational domain and the developed state of
the uncontrolled flow field.

the height of the channel. With the two components of the
velocity, overall, an output y(t) ∈ R6 is obtained with the first
3 values corresponding to the stream wise components and the
final 3 values to the lateral components of the velocities.

The corresponding PDE model is spatially discretized
by Taylor-Hood quadratic-linear mixed finite elements on
a nonuniform grid. From the FEM model of about 50 000
degrees of freedom, the low-dimensional LPV approximation
is obtained through the following algorithm

1) Starting from the steady-state solution, the FEM model
is integrated in time from t = 0 to t = 5 with a test
input applied to trigger the instabilities.

2) From the FEM solution, 417 equispaced snapshots are
collected to define the POD basis.

3) With the POD basis, the reduced order LPV approxima-
tion as in (6) is computed.

In view of determining k and r, i.e., the size of the POD
reduced model and the size of the parameter in the LPV
approximation, we note that the system is chaotic which makes
a quantitative decision delicate (as small perturbations have
arbitrarily large effects). That’s why we took the qualitative
view of examining the resulting limit cycles of selected
components in the phase portraits of y2 vs. y5 and y1 vs. y5,
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Fig. 3. Phase portraits y2 vs. y5 and y1 vs. y5 of the output y for POD
dimension k = 24 and parameter dimension r = 6, 10, 15 on the time
interval (0, 12).

see Figures 3–4 for results of different choices of k and r and
Figure 5 for the reference. These phase portraits show the data
points, say (y2(ti), y5(ti)), for 500 time equidistant instances
ti from the output y of the corresponding simulations with
zero inputs on the time interval (0, 12).

For the following numerical studies we chose the setup
k = 36 and r = 6 that, judging from Figure 4 (first line)
in comparison to Figure 5 (first line), seems to well cover at
least the range of values in the phase portraits for the smaller
values of r.

A. Computing the LPV Controller

For the computation of the LPV controller we used the
Matlab Robust Control Toolbox[21] in the release 2022b with
built-in function hinfgs that computes an LPV controller
with a guaranteed quadratic robustness performance γ∗. The
computational costs of the underlying optimization with cou-
pled LMI constraints are significant and make larger values of
k and r quickly infeasible for numerical studies.

As for the different approaches of defining the enclosing
polytope W ⊇ {ρ(t) : t > 0} we made the following
observations.

• The bounding box in the original coordinates with 26 =
64 achieves the best robustness performances γ∗ though
with rather high computational costs.

• The bounding box in the PCA coordinates comes with
the same number of vertices to consider. However, the
observed convergence in γ∗ was tediously slow which
led to infeasible numerical costs for lower target values
of γ∗.
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Fig. 4. Phase portraits y2 vs. y5 and y1 vs. y5 of the output y for POD
dimension k = 36 and parameter dimension r = 6, 10, 15 on the time
interval (0, 12).
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Fig. 5. Phase portrait of selected components of the output y for the full
order FEM model on the time interval (0, 12). Because of the symmetry of
the overall setup, the phase portraits of the remaining components bear no
additional information and are not shown here.

• Using an optimized polytope of 20 vertices, each iteration
in the hinfgs computation was sped up by a factor
of 3 which well compensated for an overall slower
convergence. However the slower convergence even led
to stagnation so that the best achievable values of γ∗ were
larger than that of the bounding box approach.

The results on the performance of hinfgs for the different
setups and for different levels of γ∗ are displayed in the
chart of Fig. 6. The conducted experiments suggest that a
compact representation of W (in the sense that its vertices
are evenly distributed in space or that the ratio of surface over
volume of W is rather small) is beneficial for convergence
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in γ∗. Apparently, the vertices of the optimized polytope
are further apart (see Fig. 1) which may explain the slower
convergence and earlier stagnation. An explanation for the
minor performance of the PCA coordinate transformation may
call on the interpretation of the PCA concentrating the variance
of the data in the leading principal components. This may
result in vertices that widely distributed in one dimension and
closely located in another. Nonetheless, the strong (in this case
negative) effect supports the idea that a transformation of the
ρ coordinates has the potential of improving the performance
of hinfgs.

B. Nonlinear Closed Loop Simulations

Since the robust control toolbox in Matlab does not provide
the functionality to evaluate the LPV controller within a
general polytope1, we considered closed loop simulations with
the controller obtained through the bounding box approach.
Also the built-in simulation routines only support predefined
parameter trajectories so that the closed-loop system was set
up manually and simulated with the time integrator ode15s.

As the result, this nonlinear controller did well stabilize
the nonlinear system (with r = 6 that it was built upon)
as illustrated in Fig. 7. Also, this controller proved a certain
robustness by performing similarly well for the model with
parameter dimension r = 15 which is similar but also shows
different dynamical patterns; cp. Fig. 4(first row vs. third row).

C. Remarks on Nonlinear Systems as LPV Systems

Although the embedding of a nonlinear system via
A(ρ(t)) = A(ρ(x(t)) into the class of LPV systems is
readily covered by the available LPV theory, it comes with
practical consequences in the controller definition. Firstly, as
the trajectory of ρ is not preset but defined through the state

1Basically, Matlab has no built-in function to compute barycentric coordi-
nates in a convex polytope in dimensions higher than r = 3.

0 5 10
-0.5

0

0.5
Open loop(r=6): output

0 5 10
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0
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Closed loop(r=6): output

0 5 10

time t

-0.02

0

0.02

Closed loop(r=15): output

Fig. 7. The open loop output of the model for r = 6 and the closed loop
for LPV controller designed for the r = 6 model applied to this model and
used in the larger (r = 15) model.

trajectory x, the containing polytope (or bounding box) has to
be estimated from state estimations or approximations.

Secondly, the effect of the feedback is ambivalent. While
a functioning controller will stabilize the system around the
working point and, thus, prevent x and ρ(x) from attaining ex-
treme values, short-term perturbations may lead to overshoots
which can drive the system out of the estimated region.

While, practically, such an overshoot can often be compen-
sated, the computed controller will fail immediately as the
parameter update for the controller is no more well-defined.
In our experiments we observed these critical overshoots when
considering nonzero initial values or discontinuous disturbance
signals. Therefore, in the presented simulations, we started
from the zero initial conditions and applied a disturbance that
smoothly faded out after t = 2.

D. Code Availability

The LPV system data (ready for import in Matlab) and
the scripts that were used to obtain the presented numer-
ical results are available for immediate reproduction from
doi:10.5281/zenodo.10073483 under a CC-BY license.

VI. CONCLUSIONS AND OUTLOOK

In this work, we have employed a two-level model order
reduction approach so that, eventually, established LPV the-
ory and algorithms become available for nonlinear controller

https://dx.doi.org/10.5281/zenodo.10073483


design for general nonlinear systems like the incompressible
Navier-Stokes equations.

In a numerical experiment, we illustrated the potential and
feasibility of the combined approach and identified pitfalls of
the approach as well as limits in the existing functionality of
standard control systems software.

Notably, although the theory applies and although
favourable properties of tailored polytopes have been illus-
trated, routines for LPV controller synthesis basically only
allow for bounding boxes as enclosing polytopes. Thus, a fu-
ture work will concern interpolation of controllers in polytopes
using, e.g., the formulas provided in [22].

Another immediate future development could concern the
solution of large-scale linear matrix inequalities in the context
of LPV controller design.
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