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ABSTRACT 
Sign language is a rich form of communication, uniquely conveying 
meaning through a combination of gestures, facial expressions, and 
body movements. Existing research in sign language generation 
has predominantly focused on text-to-sign pose generation, while 
speech-to-sign pose generation remains relatively underexplored. 
Speech-to-sign language generation models can facilitate efective 
communication between the deaf and hearing communities. In this 
paper, we propose an architecture that utilises prosodic information 
from speech audio and semantic context from text to generate sign 
pose sequences. In our approach, we adopt a multi-tasking strategy 
that involves an additional task of predicting Facial Action Units 
(FAUs). FAUs capture the intricate facial muscle movements that 
play a crucial role in conveying specifc facial expressions during 
sign language generation. We train our models on an existing Indian 
Sign language dataset that contains sign language videos with audio 
and text translations. To evaluate our models, we report Dynamic 
Time Warping (DTW) and Probability of Correct Keypoints (PCK) 
scores. We fnd that combining prosody and text as input, along 
with incorporating facial action unit prediction as an additional 
task, outperforms previous models in both DTW and PCK scores. 
We also discuss the challenges and limitations of speech-to-sign 
pose generation models to encourage future research in this domain. 
We release our models, results and code to foster reproducibility 
and encourage future research1. 

CCS CONCEPTS 
• Computing methodologies → Neural networks; Learning 
latent representations; Computer vision; Information extrac-
tion. 

∗Also with Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands.
1https://github.com/Mounika2405/MultiFacet-Speech-to-Sign.git 
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1 INTRODUCTION 
Sign language is a rich form of communication that seamlessly 
blends together the fuidity of hand movements and gestures, the 
expressiveness of facial expressions and head movements, and the 
subtle nuances of body language. It is this harmony of hand move-
ments and expression that makes it complete and efective. Accord-
ing to the World Health Organization (WHO), over 1.5 billion people, 
which accounts for approximately 20% of the global population, 
live with hearing loss, underscoring the importance of accessibil-
ity in communication [15]. While the feld of Natural Language 
Processing (NLP) has made remarkable progress in developing lan-
guage technologies that simplify daily tasks, the advancement in 
technology to support sign language has not been as substantial 
[32]. Towards this end, automatic sign language translation and 
generation systems provide an efcient and accessible means of 
communication between deaf people and the hearing community. 

Recent years have seen a surge of interest in sign language tech-
nologies, with researchers exploring various computer vision and 
deep learning approaches to tackle this complex task [17]. While 
many of these works utilize text or gloss as input for generation 
tasks, the area of speech-to-sign language generation remains rel-
atively underexplored [17]. Gloss, often used to represent sign 
language, has been found to lack accuracy in capturing the com-
plete linguistic and expressive aspects of sign language [29, 35]. A 
study on the Phoenix dataset [4] showed that a signifcant portion 
of the data contained linguistic elements not present in the gloss 
representation [35]. While text input can help generate semantic 
signs, incorporating prosodic information extracted from audio 
can provide more comprehensive data for a richer sign language 
output[7]. 

Inspired by co-speech gesture generation literature[14], which 
shares similarities with sign language generation, we utilize audio 
along with text as input to generate sign pose sequences. In this 
paper, we introduce MultiFacet, an architecture that uses prosodic 
information derived from speech and semantic information sourced 

205

https://github.com/Mounika2405/MultiFacet-Speech-to-Sign.git
https://doi.org/10.1145/3610661.3616550
https://doi.org/10.1145/3610661.3616550
mailto:permissions@acm.org
mailto:Mounika.Kanakanti@mpi.nl
mailto:m.shrivastava@research.iiit.ac.in
mailto:shantanu.singh@research.iiit.ac.in
mailto:mounika.k@research.iiit.ac.in
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3610661.3616550&domain=pdf&date_stamp=2023-10-09


ICMI ’23 Companion, October 09–13, 2023, Paris, France Mounika Kanakanti, Shantanu Singh, and Manish Shrivastava 

from text. This integrated data serves as the input for generating 
key points of both facial and hand movements. Furthermore, our ap-
proach includes the prediction of Facial Action Units (AUs) within 
a multi-tasking setup. We evaluate our model using Dynamic Time 
Warping (DTW) and Probability of Correct Keypoints (PCK) metrics 
against the existing Indian Sign Language dataset[11] and demon-
strate the critical importance of prosody and facial action unit 
prediction in better sign language generation. In summary, our 
main contributions are as follows: 

• Leveraged prosody information from the audio and semantic 
context from text for generation of continuous sign pose 
sequences. 

• Exploring the importance of facial action unit prediction for 
generating hand and face key points in Indian sign language. 

• We conducted ablation studies and extensively discussed 
the limitations of our work to inspire future research and 
advancements in this domain. 

2 RELATED WORK 
Sign Pose Generation Most of the works in sign language gen-
eration are based on text or gloss as inputs[17]. [20] generated 
continuous hand pose sequences using text as input. While this is a 
great step in the feld, it is only a partial representation of sign lan-
guage, as facial expressions and body language also play a critical 
role in conveying meaning [9, 16]. Later works attempted to address 
this limitation by including both manual (hand movements) and 
non-manual (facial expressions) features in the generation process 
but still relied on text or gloss as input. [18] used adversarial training 
for multichannel sign production with text as input. Furthermore, 
in another study, [21] represented sign sequences as skeletal graph 
structures with gloss as an intermediate representation. [28] gen-
erated key points for hands and face by concatenating embedding 
outputs from a text encoder and a gloss encoder. [29] frst gener-
ated Hamnosys notation from text, which was further converted to 
continuous sign pose sequences. These approaches made strides 
towards incorporating non-manual features but still lacked the use 
of prosodic information as input corresponding to the non-manual 
features in sign language. [19, 25] generated photo-realistic sign 
videos using text as input. They frst generated skeleton poses from 
text and then generated sign videos conditioned on these poses. 

To address this concern of loss of prosody in gloss representa-
tion, [35] presented gloss enhancement strategies for introducing 
intensity modifers in gloss annotations using Phoenix dataset [4]. 
Intensity modifers are the ones that quantify nouns, adjectives 
or adverbs in a sentence ((e.g., very happy or little happy). Recent 
works explored the use of speech Mel spectrogram inputs to gener-
ate hand movements in Indian Sign Language [11]. While this ap-
proach is a step in the right direction, generating hand movements 
alone is insufcient to capture the full extent of sign language. 

Co-speech Gesture Generation Co-speech gesture genera-
tion studies have shown the signifcance of using both speech and 
text as input for generating semantically relevant and rythmic ges-
tures [14]. [1, 12, 33] have proposed continuous gesture generation 
systems using audio and text as input, further underscoring the 
importance of multimodal information for generating meaningful 
gestures. 

Non-Manual Recognition in Sign Language [26] presented 
3D-CNN based multimodal framework for recognition of gram-
matical errors in continuous signing videos belonging to diferent 
sentence types. The methodology they employed encompassed 
two primary stages. Initially, 3D-CNN networks were leveraged to 
recognise the grammatical elements from manual gestures, facial 
expressions, and head movements. Subsequently, a sliding win-
dow technique was adopted to establish correlations between these 
modalities, thereby facilitating the detection of grammatical errors 
in the signing videos. 

In this paper, by incorporating prosody and non-manual fea-
ture recognition, such as predicting Facial Action Units, we aim to 
improve the accuracy and naturalness of sign language generation. 

3 SPEECH TO SIGN LANGUAGE GENERATION 
Given audio and text inputs, our aim is to generate sequences of sign 
poses denoted as S, which include both upper body and face key-
points. To accomplish this, we adopt a multi-task learning approach, 
incorporating a speech encoder, a Facial Action Units decoder, and 
a sign pose decoder. The overall architecture is illustrated in Figure 
1. 

3.1 Input Embeddings 
To facilitate the generation process, we extract two types of embed-
dings from the input data: BERT embeddings for text and Tacotron 
2 GST[30] encodings for audio. We use the GST model provided by 
NVIDIA2 which was pre-trained on train-clean-100 subset of Lib-
riTTS dataset[34] to represent the expressive features in audio. The 
BERT embeddings, denoted as Etext, capture the semantic informa-
tion embedded within the text, allowing our model to understand 
the linguistic context. We represent the input text as a sequence 
of tokens {�1, �2, ..., �� }, and BERT provides the corresponding 
embeddings {��1 , ��2 , ..., ��� } with a dimensionality of 768. 

The Tacotron 2 GST encodings, denoted as Eaudio, extract both 
linguistic content and prosody information from the audio input. 
The GST model was pre-trained on LibriTTS dataset [34] with 
the objective of learning a large range of acoustic expressiveness. 
We represent the audio input as a sequence of mel-spectrograms 
{�1,�2, ...,�� }, where each mel-spectrogram has T × 256 dimen-
sions. Tacotron 2 GST[30] provides the corresponding embeddings 
{��1 , ��2 , ..., ��� }. 

3.2 FAUs Preprocessing 
Amongst various methods for denoting facial expressions, the Fa-
cial Action Coding System (FACS) stands as a comprehensive and 
standardized tool [31]. It has been meticulously designed to de-
scribe and analyze these nonverbal cues by precisely identifying 
distinct facial muscle movements. Central to FACS are its action 
units (FAUs), a set of codes representing individual facial muscle 
actions, which, when combined, profciently portray a diverse ar-
ray of emotions and expressions. As a result of its efcacy, FACS 
fnds widespread application across various disciplines, including 
psychology, neuroscience, anthropology, and computer graphics, 
providing an objective and systematic means to categorize and 
comprehend facial expressions. 
2https://github.com/NVIDIA/mellotron/tree/master 
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Figure 1: The Architecture: We propose a novel architecture to generate sign pose sequences by utilising the prosodic information 
from speech and semantic context from text. We also incorporate additional decoders to facilitate rich sign pose generation: (i) 
Facial Action Unit decoder and (ii) Cross modal decoder. 

While FACS is an index of facial expressions with an anatomical 
basis, it generally does not provide the degree of muscle activation. 
While there are modifers that extend this coding system to accom-
modate intensities as well, we don’t consider them in our study due 
to limited resources and no clear consensus on their use. 

The use of FACS for sign language translation or generation is 
relatively understudied [5, 6, 23]. One of the primary reasons for its 
limited use is the costly annotation required for the existing sign 
language datasets. To overcome this issue, we propose using an 
existing state-of-the-art model, ME-GraphAU [13], to predict the 
action units for our chosen dataset and use it as weak-supervision 
during sign-language generation task. We encourage readers to 
refer to [13] for details related to architecture, training dataset and 
output format for the aforementioned model. 

The output of the chosen model is noisy and lacks temporal con-
sistency since the prediction occurs on a per-frame basis. Training 
with such an output would invariably lead to noisy supervision and 
poor learning on the model’s part for the proposed task. As such, 
we propose a pre-processing pipeline for reducing the noise using 
the following steps: 

• Threshold the output of the model using the probabilities as 
confdence for each action unit and remove any low conf-
dence predictions. 

• For these pruned predictions, we use linear interpolation for 
estimating their new values. 

• Finally, to reduce the remaining noise, we use hanning smooth-
ing over each action unit and get the fnal output. We use a 
window length of 11, which corresponds to 0.5 seconds at 
24FPS frame-rate of our source videos. 

We show an example of the original prediction and output of 
each step in the above-mentioned pipeline in Figure 2. 

Figure 3 shows the ground truth facial action units extracted. 

3.3 Model Components 
The input embeddings Etext and Eaudio are then passed to their 
respective encoders in our model: 

1. Prosody Encoder: The transformer-based speech encoder, de-
noted as �speech, processes the Tacotron 2 GST encodings Eaudio to 
obtain intermediate representations Hspeech. This can be expressed 
as: 

Hspeech = �speech (Eaudio) 
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Figure 2: Illustration of the Facial Action Units (FAUs) prepro-
cessing pipeline: thresholding using action unit probabilities, 
linear interpolation, and Hanning smoothing. 

Figure 3: Representation of Ground Truth Facial Action Units, 
generated using Blender[3] for visualization purposes. 

2. FAUs Decoder: We incorporate the FAUs prediction task as an 
additional objective to capture facial expressions. The FAUs decoder, 
denoted as �FAUs, processes the Tacotron 2 GST encodings Eaudio 
to predict the Facial Action Units, denoted as FAUs. This can be 
expressed as: 

FAUs = �FAUs (Eaudio)
Facial AUs is a widely used facial expression coding system that 
consists of a set of action units that correspond to diferent facial 
muscle movements. We use a transformer-based decoder[27] for 
this task and train it using cross-entropy loss. 

1 � � ∑ ∑ 
LFAUs = − ��,� log(��,� ) (1)

� 
�=1 �=1 

where � is the number of training examples, � is the number 
of Facial Action Units, ��,� is the ground-truth label for the �-th 
Facial Action Unit in the �-th example (either 0 or 1), and ��,� is 

the predicted probability for the �-th Facial Action Unit in the �-th 
example. 

3. Sign Pose Decoder: Our sign pose decoder, denoted as �pose, 
is a transformer-based autoregressive decoder that takes the in-
termediate representations Hspeech as input to generate the se-
quence of sign poses S. The keypoints for each frame in the sign 
pose sequence are represented as a 3D tensor, with dimensions 
num_frames × 85 × 3. The output of the decoder can be formulated 
as: 

�̂�,� = DPose (Hspeech,n, y�,0:� −1) (2) 

Note that during training, the decoder uses ground-truth poses as 
input for stability and faster convergence. During inference, the 
pose inputs to the decoder are its own predictions upto the given 
timestep. 

We use regression loss to train the sign pose decoder, given by: 

� 85∑ ∑ 
Lpose = 

1 ∥��,� − �̂�,� ∥2 (3)
� 
�=1 �=1 

where � is the number of training examples, ��,� is the ground-
truth value of the �-th keypoint for the �-th example, and �̂�,� is the 
predicted value of the �-th keypoint for the �-th example. 

4. Cross-Modal Discriminator We use the same discriminator 
used by [11] to match the speech segments with corresponding 
pose sequences. The loss for the cross-modal discriminator can be 
defned as follows: 

�∑ 
LGAN = 

1 
log(1 − (Dcross-modal (Hspeech, n, ŷn))) (4)G � 

�=1 

�∑ 
LGAN 1 

= −D log((Dcross-modal (Hspeech, n, yn))) 
� 
�=1 (5) 

+ log(1 − (Dcross-modal (Hspeech, n, ŷn))) 

where Dcross-modal is the cross-modal discriminator. Hspeech, n 
is the intermediate representation for the �-th example obtained 
by the prosody encoder. Variables yn and ŷn are the ground-truth 
and predicted pose sequences respectively. LD

GAN and LG
GAN are 

the standard binary cross-entropy loss used for discriminator and 
generator respectively. 

3.4 Multi-Tasking Setup 
We use a weighted sum of the losses from the individual decoders 
to compute the overall loss. 

· LGANLtotal = �FAUs · LFAUs + �pose · Lpose + �discriminator G 

where �FAUs, �pose, and �discriminator are hyperparameters that 
control the relative importance of the FAUs loss, pose loss, and 
discriminator loss, respectively. 

The weights for each task are chosen to balance the contribution. 
All the decoders are trained in a multitasking setup. The model 
is trained to minimize the multitasking loss Ltotal using gradient-
based optimization techniques. 
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4 IMPLEMENTATION DETAILS 
We set up our transformer model with two layers for both encoders 
and decoders, each equipped with eight attention heads. Both en-
coders and decoders use a hidden size of 512. We use the Adam 
optimiser with an initial learning rate of 0.001, which can be re-
duced if the training plateaus. We apply gradient clipping with a 
threshold of 5.0 and use a batch size of 32 for training efciency. 
We incorporate Future Prediction as proposed by [20]. The train-
ing loss function includes L1 regularisation along with losses for 
specifc components, each weighted accordingly. For the loss func-
tion, the values for �Pose, �FAUs, �Discriminator are 1, 0.001, 0.0001 
respectively. 

5 EXPERIMENTS 

5.1 Dataset 
The dataset used in our study is the continuous Indian Sign Lan-
guage dataset, which was released by [11]. This dataset contains 
sign videos along with corresponding audio and text transcription, 
covering various topics, such as current afairs, sports, and world 
news. The dataset comprises 9137 videos and has a vocabulary size 
of 10k. 

To represent the sign videos in our analysis, we extracted 3D 
joint position keypoints using Mediapipe [8]. This process involved 
detecting 37 landmark points for the eyes, eyebrows, lips, and face 
outline, along with 6 landmark points for the shoulders, elbows, and 
hips. Additionally, each hand was represented with 21 landmark 
points, bringing the total to 85 keypoints for upper body, hands 
and face. 

5.2 Baseline Models 
Text2Sign We adopt the progressive transformers introduced by 
[20] as the foundation of our approach. We extend their proposed 
architecture and train them on the Indian Sign Language Dataset 
with 3D keypoints for face and upper body. 
Speech2Sign [11] utilised mel spectrograms as input to generate 
sign pose sequences of hand movements. They incorporate a text 
decoder and a cross-modal discriminator for learning the corre-
lation between speech and sign pose sequences. We extend this 
architecture to generate face and body key points and consider it 
as our baseline. 

5.3 Evaluation Metrics 
Dynamic Time Warping (DTW) Dynamic Time Warping (DTW) 
[10] is one of the evaluation metrics for speech-to-sign language 
generation models to assess the alignment between the predicted 
sign language sequences and the ground truth sign language se-
quences. 

Let � = (�1, �2, . . . , �� ) denote the predicted sign language 
sequence, where �� represents the �-th pose in the predicted se-
quence, and � is the length of the predicted sequence. Similarly, 
let the ground truth sign language sequence be denoted as � = 
(�1, �2, . . . , �� ), where �� represents the �-th pose in the ground 
truth sequence, and � is the length of the ground truth sequence. 

DTW aims to fnd an optimal alignment between the sequences 
� and � by introducing a warping path � = {(�1,�2, . . . ,�� )}, 

where �� = (�, �) denotes the alignment of �� in the predicted 
sequence with � � in the ground truth sequence. The warping path 
satisfes the conditions: �1 = (1, 1), �� = (�, � ), and �� −�� −1 ∈ 
{(1, 0), (0, 1), (1, 1)}, allowing for insertions, deletions, and matches 
between the sequences. 

The objective of DTW is to minimize the accumulated cost along 
the warping path � , which is defned by a distance or similarity 
measure between the individual poses in the sequences. Let � (�� , � � )
represent the distance between �� and � � in the pose space. The 
accumulated cost � (� ) along the warping path � is given by: 

�∑ 
� (� ) = � (��� , ��� )

�=1 

To compute the fnal DTW score, we aim to fnd the optimal 
warping path � ∗ that minimizes the accumulated cost � (� ): 

��� (�,�) = min� (� )
� 

The DTW score provides a measure of the alignment between the 
predicted and ground truth sign language sequences, considering 
the temporal diferences and variations in the movement patterns. A 
lower DTW score indicates a better alignment and higher similarity 
between the sequences. 

Probability of Correct Keypoints (PCK) PCK [2, 24] is a 
widely used evaluation metric to assess the accuracy of pose esti-
mation models. It measures the percentage of correctly predicted 
keypoints within a certain threshold distance compared to the 
ground truth keypoints. 

Let � = {�1, �2, ..., �� } be the set of ground truth keypoints, and 
� = {�1, �2, ..., �� } be the set of predicted keypoints. Each keypoint, 
�� or �� , consists of (�,�, �) coordinates representing the position 
of a particular body part, such as a hand or face. 

To compute the PCK score, we need to defne a threshold distance 
� . For each ground truth keypoint �� , we check if there exists a 
corresponding predicted keypoint � � within the threshold distance 
� . If such a predicted keypoint exists, and its distance to the ground 
truth keypoint is less than or equal to � , we consider it as a correct 
prediction. 

Mathematically, the PCK score can be computed as follows: ∑ 1 
��� = � (�� , �� )

� 
� 

where � is the total number of keypoints, and � (�� , �� ) is an 
indicator function defned as: ( 

if | |�� − �� | | ≤ � 1,
� (�� , �� ) = 

0, otherwise 

Here, | |�� − �� | | represents the Euclidean distance between the 
ground truth keypoint �� and the predicted keypoint �� . 

The PCK score is then calculated as the average of the indicator 
values over all keypoints. It represents the percentage of keypoints 
that have been correctly predicted within the specifed threshold 
distance � . A higher PCK score indicates better accuracy and align-
ment between the predicted and ground truth keypoints. 

In the context of sign language generation models, PCK can be 
used to evaluate the quality of the generated sign language poses by 
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Table 1: Comparison of Dynamic Time Warping (DTW) and 
Probabilty of Correct Keypoints (PCK) scores with base-
lines on dev and test sets. B+F indicates model that predicts 
body+face keypoints. PE - Prosody Encoder; TE: Text Encoder 

Model DTW Score ↓ PCK ↑ 
Dev set 

Text ->Sign[20] 19.55 0.61 
Speech2sign [11] 15.94 0.72 
PE + TE ->Sign 16.1 0.74 
PE + TE ->Sign + FAUs 13.37 0.79 

Test set 
Text ->Sign[20] 22.55 0.59 
Speech2sign [11] 14.08 0.78 
PE + TE ->Sign 17.3 0.72 
PE + TE ->Sign + FAUs 13.23 0.81 

comparing them to the ground truth poses. However, it’s important 
to note that PCK only considers individual keypoints and does not 
capture the overall spatial or temporal coherence of the generated 
sign language sequences. 

5.4 Results and insights 
We report DTW[10] and Probability of Correct Keypoints scores on 
the Indian Sign Language dataset and compare it with the results 
of both Text2Sign[20] and Speech2Sign [11] methods. From table 
1 we observe that our model performs signifcantly better than 
the existing Speech2Sign[11] method. Figure 4 shows the sample 
qualitative results. An interesting observation from the provided 
sample results, as well as other instances in our evaluation, is that 
while our model encounters challenges in accurately capturing the 
precise positions of hands and facial features in specifc frames, 
these representations exhibit a visual similarity to the target RGB 
frames. It is worth noting, however, that minor disparities in hand 
positions and facial expressions can convey substantially diferent 
meanings in sign language. Consequently, we refrain from drawing 
defnitive conclusions from our qualitative assessments and defer 
such considerations to future research endeavors. 

6 ABLATION ANALYSIS 
To evaluate the contribution of each component in our proposed 
architecture, we conduct ablation studies on our model. Specifcally, 
we perform experiments where we remove each component from 
the multitasking setup one by one and compare the results with 
the full model. 

Table 2 summarizes the results of our ablation studies. As can be 
seen, removing the FAUs decoder results in a drop in performance 
in both metrics. The results demonstrate the efectiveness of our 
multitasking approach in leveraging multiple modalities for sign 
language generation. However, we observe that the results are still 
close to the model that uses only the text encoder. 

In summary, our ablation studies demonstrate the efectiveness 
of our multitasking approach in leveraging multiple modalities for 
sign language generation. 

Table 2: Comparison of ablation studies. PE - Prosody En-
coder; TE-Text Encoder 

Model DTW Score ↓ PCK ↑ 

TE ->Sign 13.82 0.81 
TE ->Sign + FAUs 15.69 0.78 
PE ->Sign 17.16 0.73 
PE ->Sign + FAUs 14.52 0.75 
PE + TE ->Sign + FAUs (Ours) 13.23 0.81 

7 LIMITATIONS & CHALLENGES 
Evaluation Methods: Although our model has achieved state-
of-the-art results based on DTW scores, it is essential to conduct 
human evaluation with expert sign language interpreters to ensure 
the quality and relevance of the generated sign language. DTW 
scores only assess the alignment between ground truth poses and 
predicted poses but do not measure the correlation with the input 
speech. Correlating these scores with human evaluation ratings is 
crucial for understanding the model’s performance in real-world 
communication scenarios. Metrics that measure the coherence and 
synchronization of other non-manual elements, such as body pos-
ture, head movements, and eye gaze are also necessary [26]. There-
fore, when designing a sign language generation model, accounting 
for these linguistic elements and their dynamic interactions is es-
sential to produce more accurate and culturally appropriate sign 
language outputs. 

Fine Movements: The current model successfully learns coarse 
hand movements but lacks the ability to capture fne movements 
of fngers and facial parts (See Figure 5 in Appendix A)s. This lim-
itation is attributed to the use of Mean Squared Error (MSE) loss, 
which penalizes larger movements more than fne movements. To 
address this issue, alternative loss functions, such as a keypoint loss 
proposed by [22], can be explored. This loss involves a hand key-
point discriminator pre-trained on 2D hand poses and may improve 
the model’s capability to generate more accurate and intricate hand 
movements. 

More Linguistic Information: One signifcant challenge lies 
in handling the sequential nature of input speech or text, as op-
posed to the simultaneous nature of sign language. Speech unfolds 
in a linear manner, and sign language relies on the integration 
of multiple components in parallel. Thus, capturing and mapping 
these linguistic structures efectively requires specialized attention. 
Understanding how signers use space, directionality, and facial 
expressions to indicate diferent grammatical constructs is crucial 
for generating natural and contextually appropriate sign language. 
Currently, our model focuses primarily on generating hand and fa-
cial movements, neglecting other crucial components. Future work 
should explore incorporating non-manual markers, body language, 
and gaze direction into the generation process to enhance the natu-
ralness and comprehensiveness of sign language communication. 

Errors in Skeleton Pose Extraction: One of the signifcant 
challenges in sign language generation is accurately extracting the 
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Figure 4: Qualitative Results illustrating the input text, the original video, the ground truth pose, and the predicted pose. 

skeleton pose from the input video or speech. The skeleton pose 
serves as a crucial input to the model, representing the keypoint po-
sitions of the signer’s hands, face, and body movements. Although 
advanced pose estimation techniques like Mediapipe provide robust 
keypoint predictions, there are inherent limitations and errors that 
can impact the overall performance of the sign language generation 
model. Sign language videos captured in real-world settings may 
contain various forms of noise, occlusions, and artifacts. These im-
perfections can lead to inaccuracies in the pose estimation process, 
resulting in incorrect keypoint positions. For instance, background 
clutter, complex hand gestures, or fast movements may obscure 
the hand keypoints, leading to incomplete or noisy pose represen-
tations. Additionally, sign language involves intricate hand and 
fnger movements that can sometimes be challenging to discern 
accurately (See Figure 6 in Appendix A ). The dynamic nature of 
sign language requires precise identifcation of hand shapes, fnger 
positions, and gestures. However, the inherent ambiguity in certain 
signs or gestures can lead to misinterpretations and inaccuracies in 
the extracted skeleton pose. 

Pose Representation: The representation of sign language as 
keypoint sequences in videos is abstract and results in the loss 
of some skeletal information. This may lead to some loss of fne-
grained details in the generated sign language. Future research 
could explore alternative representations that preserve more intri-
cate skeletal information for more accurate sign language genera-
tion. 

Dataset Size and Variety: Our current dataset size and variety 
might be limited, which could impact the model’s ability to capture 
the full complexity and richness of sign language. Expanding the 
dataset or exploring low-resource training techniques is essential 
to improve the model’s generalization and performance on diverse 
signing styles and linguistic patterns. 

Signer Style: Sign language relies on the signer’s individual 
style and preferences, which can signifcantly afect the model’s 
performance. Investigating the impact of varying signer styles on 
the model’s output and devising methods to adapt the model to 
diferent signing styles are critical for real-world applicability. 
In conclusion, while our model shows promising results in gener-
ating sign language from speech, there are several limitations and 
challenges that need to be addressed in future work. 

8 CONCLUSION 
In this paper, we introduced a multi-tasking approach, the Multi-
Facet model, for generating sign language poses from input speech 
and text. Our model goes beyond just hand movements, also cap-
turing facial expressions, resulting in a more comprehensive repre-
sentation of sign language. 

To assess the efectiveness of our model, we conducted experi-
ments on the Indian Sign Language dataset provided by [11]. By 
incorporating a pre-trained prosody encoder and utilizing Facial 
Action Units, we achieved even better results, surpassing previous 
methods. The potential applications of our approach extend beyond 
sign language communication. 

211



ICMI ’23 Companion, October 09–13, 2023, Paris, France Mounika Kanakanti, Shantanu Singh, and Manish Shrivastava 

Although we achieved better results with the proposed approach, 
there is signifcant room for further advancements in several as-
pects, including the datasets, methodologies, understanding of the 
intricate relationship between speech and sign language, and evalu-
ation methods. We hope that our work will inspire further research 
in this area and contribute to improving accessibility and inclusivity 
for the deaf and hard-of-hearing community. 

9 ETHICAL CONSIDERATIONS 
In our study, it is important to acknowledge that we have employed 
a limited dataset of Indian sign language videos, primarily sourced 
from YouTube. While this dataset served as a valuable starting 
point for our investigation into speech-to-sign language generation 
models, we recognise its inherent limitations regarding representa-
tiveness for the broader sign language community. It is essential 
to emphasize that the models proposed in this paper are only to 
explore the role of prosody in speech-sign language generation 
models and are not suitable for direct deployment due to their in-
sufcient scope and potential biases. Moreover, we acknowledge 
that a critical aspect, validation with signers, has not been fully 
undertaken within the scope of this study. This is a signifcant 
limitation that warrants further attention and validation in future 
research endeavours. 
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A QUALITATIVE RESULTS 

Figure 5: Sample result showing the model’s accurate hand 
movement prediction with inaccurate fnger movements. 

Figure 6: Mediapipe Errors. The keypoints for the fourth 
frame in the frst video and the sixth frame in the second 
video are predicted incorrectly due to fast/blurry movements 
whereas the keypoints for the third frame in the second 
video are predicted incorrectly as it contains a complex hand 
gesture. 
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