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Summary

1. Structural diversity and niche differences within habitats are important for stabilizing species

coexistence. However, land-use change leading to environmental homogenization is a major cause

for the dramatic decline of biodiversity under global change. The difficulty in assessing large-scale

biodiversity losses urgently requires new technological advances to evaluate land-use impact on

diversity timely and efficiently across space.

2. While cost-effective aerial images have been suggested for potential biodiversity assessments in

forests, correlation of canopy object variables such as gaps with plant or animal diversity has so far

not been demonstrated using these images.

3. Here, we show that aerial images of canopy gaps can be used to assess floristic biodiversity of the

forest understorey. This approach is made possible because we employed cutting-edge unmanned

aerial vehicles and very high-resolution images (7 cm pixel)1) of the canopy properties. We demon-

strate that detailed, spatially implicit information on gap shape metrics is sufficient to reveal strong

dependency between disturbance patterns and plant diversity (R2 up to 0Æ74). This is feasible

because opposing disturbance patterns such as aggregated and dispersed tree retention directly cor-

respond to different functional and dispersal traits of species and ultimately to different species

diversities.

4. Our findings can be used as a coarse-filter approach to conservation in forests wherever light

strongly limits regeneration and biodiversity.

Key-words: biodiversity, coarse-filter approach, forest understorey, gap shape complexity

index, unmanned aerial vehicles

Introduction

The devastating loss of biodiversity requires sustained invest-

ment in coherent biodiversity monitoring and its integration

into broad-scale land-use planning (Butchart et al. 2010). At

the same time, surveying methods need to be cost-effective to

provide a framework of practical feasibility (Gardner et al.

2008).

While it is known that land-use change is the most promi-

nent driver of current global changes in biodiversity (Sala

et al. 2000), the response of biodiversity to varying land-use

intensities is so far little understood (Fischer et al. 2010).

This is particularly true for the temperate forest biome with

timber-oriented management, often leading to simplified,

species-poor forest structure and in combination with climate

change increasing susceptibility to insect attacks, fire disasters

and storm events (van Vuuren, Sala & Pereira 2006; Lindner

et al. 2010).

Empirical and theoretical studies have shown that tree thin-

ning and resultant changes in canopy gap structure strongly

affect woody regeneration and biodiversity of understorey

plants (Whitney & Foster 1988; Coates et al. 2003). Hence,

management prescriptions that increase within-stand variabil-

ity can provide important habitat features across multiple

scales to enhance biodiversity in forests (Wilson & Puettmann

2007). Creating spatially variable sizes and shapes of forest

gaps at the local plot scale thus bears the potential to optimize

land-use intensities in favour of high biodiversity. This causal

link between so-called ‘higher-level’ structures and dependent

‘lower-level’ processes is also well known from landscape-scale

analysis where habitat fragmentation such as the shape com-

plexity of larger forest patches may be related to biodiversity

(Saura & Carballal 2004). For example, it has been shown for
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the tropics that the degree of patch convolution is positively

correlated with woody plant species diversity (Galanes &

Thomlinson 2009).

Remote sensing based on satellite or aerial images is ideal to

identify and functionally link the spatial configuration of forest

patches to biodiversity at the coarse landscape scale because

the resolution of such images is sufficient to correlate diversity

with shape metrics of larger patches (Newton et al. 2009).

However, at the local plot scale, the resolution of image sensors

is commonly not high enough to permit very accurate spatial

quantifications of fine-scale canopy objects. For example, with

conventional aerial or satellite images, it is hardly possible to

correctly record small gaps of <10 or 20 m2 size (Fujita et al.

2003; Turner et al. 2003). This is probably the reason why so

far no study has yet successfully correlated plant or animal

diversity of the forest understoreywith canopy gaps as detected

in aerial images. We consider this as a major research gap

because such fine-scale correlations with biodiversity are a cru-

cial key for assessing specific land-use intensities in managed

forests. This is because actual tree thinning as a disturbance

happens at the fine scale within continuous areas or large

patches of forest.

Investigating the hypothesis that gap information on aerial

images can be principally used for the ecological assessment of

plant diversity in forests is a major scientific achievement for

the following reasons:

1. Airborne imagery reflects two-dimensional measures of

gap distribution in horizontal space. Such indirect optical

approaches ‘hold the promise of not only getting better esti-

mates of species distributions and richness levels, but of also

shedding light on the processes underlying them’ (Turner

et al. 2003). For example, the spatial characteristics of gaps

determine the balance of neighbourships between different

plant functional types (clonal spread vs. seed dispersal;

shade-tolerant vs. shade-intolerant species) or between inva-

der and native species (Koukoulas & Blackburn 2004; Li,

Bogaert &Nijs 2005).

2. Aerial images are very cost-effective and therefore

routinely used by most forest administrations for recurrent

monitoring purposes of large areas. This makes them particu-

larly suitable for practical decision support (Morgan, Gergel

& Coops 2010; Pasher & King 2010). While expensive 3D

airborne laser scanning can be used to predict biodiversity in

forests (Turner et al. 2003), the cost-saving concept of a

coarse-filter approach (Beier & Brost 2010) is more

competitive when a minimum set of explanatory variables is

used, such as with 2D images (Gardner et al. 2008; Proulx &

Parrott 2008).

3. Since the emergence of digital photography, airborne

optical image sensors are subject to rapid improvement in

resolution. Consequently, path-breaking methodologies and

results from pilot studies using very high-resolution images

will be applicable to monitoring processes in the very near

future (Clark et al. 2004;Morgan, Gergel &Coops 2010).

4. As a new technology itself, unmanned aerial vehicles

(UAV) will soon be an important commercial tool for

monitoring purposes. So far, ‘we have only seen the tip of the

iceberg of what is achievable’; however, ‘unmanned aircraft

begin to take on almost any traditional role that is performed

by a piloted aircraft’ (Stafford 2007). UAV applications in

surveys have a number of advantages over established

remote-sensing methods. They provide extremely fine sub-25-

cm resolutions and thus allow the identification of previously

undetected object details, and images are rarely affected by

cloud cover because flying altitudes are usually low, flight

missions can be timed very flexibly, and owing to low fixed

charges, they are very cost-effective (Dunford et al. 2009;

Rango et al. 2009;Watts et al. 2010).

Until now, UAV applications in ecology are still rare. In the

following, we demonstrate how high-resolution images and

unmanned aircraft may be used to assess understorey biodiver-

sity in forests.

Materials and methods

STUDY SITES

Our study sites were located within beech-dominated deciduous and

mixed deciduous ⁄ coniferous forests of the so-called Biodiversity

Exploratories in Germany. These exploratories are long-term

research platforms to investigate the effects of varying land-use inten-

sities on functional biodiversity response (Fischer et al. 2010). We

selected 20 1-ha plots of mature and mainly single-layered stands in

the exploratory ‘Hainich-Dün’ in central Germany and similarly 16

plots in the ‘Schwäbische Alb’ about 300 km away in south-western

Germany. These exemplary study plots represent different land-use

intensities such as unmanaged near-natural (N = 13), selection-cut-

ting (N = 6) and traditionally managed age-class forest (N = 17)

with varying thinning patterns.Mean annual precipitation in theHai-

nich is 500–800 mm and in the Alb 700–1000 mm. Soils of the Hai-

nich have a loamy texture and are dominated by Luvisols and

Stagnosols on loess. Soils of the Alb are rich in clay and are domi-

nated by Cambisols and Leptosols on limestone. Our chosen study

sites were located on relatively level topography with only a few plots

in the Schwäbische Alb having somemoderate slopes.

Within each plot, we recorded the vascular plants (herbs, grasses,

ferns, woody plants £1Æ5 m) in seven randomly spread 10 · 10 m2

subplots. Random spreading of subplots was performed to account

for various local light conditions within the 1-ha plot and thus to get a

representative sample of shade-tolerant and light-demanding species.

The plant data were used to correlate species richness, Shannon index

(H), Shannon evenness (E) and beta diversity (bsim) of understorey
plants in each 1-ha plot with canopy objects from aerial image analy-

sis. Thereby, Shannon evenness was calculated as E = H ⁄Hmax with

H being the observed species diversity and Hmax the species diversity

under conditions of maximal equitability (Krebs 1994). Beta diversity

was calculated as 1)Simpson’s similarity index (bsim = 1)Ssim). This

measure was chosen because bsim performed best overall out of 24

tested indices of beta diversity (Koleff, Gaston & Lennon 2003). The

four measures of biodiversity are commonly used in ecological sur-

veys and should thus be suitable for comparative studies.

AERIAL IMAGES

Very high-resolution RGB images (�7 cm pixel)1) were taken at

the end of the summer in 2008 and 2009 with the UAV ‘Carolo

P200’ above the centres of the 1-ha forest plots at flying altitudes of
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� 2011 The Authors. Methods in Ecology and Evolution � 2011 British Ecological Society, Methods in Ecology and Evolution, 3, 397–404



�250 m (Figs 1 and 2; Figs S1 and S2 in Supporting information).

This state-of-the-art UAV was recently developed by the Institute of

Aerospace Systems ⁄TU Braunschweig in conjunction with the

Andromeda-Project (Chmara 2010). The UAV has a wing span of

2 m and weighs 6 kg. It can fly automatically along any predefined

spline-based trajectory for a time span of 60 min and makes every

3-s an image. All images were orthorectified based on data record-

ing of the internal UAV orientation, GPS position and a digital ter-

rain model. Orthophotos were converted into binary images, and

gap polygons were manually segmented to create shapefiles (a geo-

spatial vector data format digitized with ArcGIS-9.3 software) as

accurate as possible.

VARIABLE SELECTION

Owing to the very high-resolution image, we were able to segment

small gaps of a minimal size of up to 1 · 1 m2. Inclusion of such gap

properties is a prerequisite for any analysis of the potential impor-

tance of smallest gaps for driving understorey plant diversity. For

each gap, we calculated eight different patch (gap) metrics that are

predominantly used in landscape-scale analyses for correlations with

biodiversity and in forest applications. The first three gapmetrics area

(A), perimeter (P) and perimeter ⁄ area ratio (P ⁄A) are very basic mea-

sures. Then, circularity (C) was calculated as 4pA ⁄P2, with values of

1Æ0 describing a perfect circle and values approaching 0Æ0 indicating

increasingly elongated shapes. The gap shape complexity index

(GSCI) ¼ P=
ffiffiffiffiffiffiffiffiffi

4pA
p

is an important measure of forest gaps (Koukou-

las &Blackburn 2004). It is the ratio of a gap’s perimeter to the perim-

eter of a circular gap of the same area. A value of 1Æ0 describes a

perfect circle while increasing values indicate increasing shape com-

plexity. For example, values of 1Æ40 and 2Æ60 have 40% and 160%

complexity, respectively. The last three gapmetrics are the patch frac-

tal dimension (PFD) = 2ln (P) ⁄ ln (A) (Moser et al. 2002), the fractal

dimension (FD) = 2ln (P ⁄ 4) ⁄ ln(A) (Salvador-Van Eysenrode et al.

1998) and the fractal dimension index (FDI) ¼ 2 lnðP=
ffiffiffiffiffiffi

4p
p
Þ= lnðAÞ

(Saura & Carballal 2004). These three metrics are nonlinearly related,

and especially for small gaps with A < 10 m2, PFD may attain

higher values than FDI that, in turn, attains higher values than FD.

Thus, all eight patch metrics emphasize different nuances of two-

dimensional gap properties that may be potentially important for

linking image-detected higher-level structures to dependent lower-

level processes of the biota.

For each patch metric, we calculated the total sum (Tot), mean

(M), median (Mdn), standard deviation (SD) and coefficient of varia-

tion (CV) for all segmented polygons including the smallest 1-m2

gaps. We also calculated these same statistics once for only the 10

largest gaps (measured by area), once for the nine, eight, seven and so

on largest gaps. This gives a total of 50 variables per patch metric.

For the two largest gaps, we skipped the median, and for the single

largest gap, we just used the patch metric as such. For example, the

abbreviated gap variable ‘Mdn_GSCI_3’ is the median of the gap

shape complexity index of the three largest gaps of a 1-ha plot. All 50

variables of all patchmetrics were applied to all 1-ha plots.

The direct relationship between understorey light and biodiversity

may be affected e.g. by soil condition (Lalanne et al. 2010). Therefore,

we included the four additional covariates pH, bulk density (BD),

organic carbon concentration (OC) and organic carbon stock

(C_stock) in subsequent analyses to judge their relative importance

for the biodiversity assessment based on aerial image analysis. Soil

samples were taken approximately at the centre of each 1-ha plot (for

details see Fischer et al. 2010; Data S3 in Supporting Information).

The soil data used in this analysis originate from the upper 10 cm

because this layer is most influential on understorey vegetation such

as herbs, grasses or ferns. The four soil parameters were measured as

continuous variables with e.g. OC measured in g kg)1 or C_stock in

kg m)2.

STATIST ICAL ANALYSES

Several statistical analyses were applied to evaluate the dependency

between image-based variables (or soil covariates) and understorey

biodiversity. In Analysis 1, we used all gap variables based on the

eight patch metrics for linear correlations with biodiversity as mea-

sured by Pearson’s r. This initial data screening allowed us to get an

overview on the systematic importance of certain patch metrics for

correlation with understorey diversity. To avoid the likelihood that

our meaningful R2 values ‡ 0Æ25 could have arisen just by chance, we

tested the significance of each correlation coefficient using 9999 per-

mutations following the procedure by Legendre & Legendre (1998).

Following Møller & Jennions (2002), we have chosen a value of R2

‡ 0Æ25 as ‘meaningful’ because a predictor variable causes a large

effect if 25% ormore of the variance is explained.

In Analysis 2, we used at first only the gap variables with highest

correlation with biodiversity for univariate linear regressions.

Fig. 1. Start of the unmanned aerial vehicle Carolo P200. Initially,

the UAV gets manually started. Once it has reached the desired

height, it can fly automatically along any predefined spline-based tra-

jectory.

Fig. 2. Very high-resolution image. The aerial image shows an inten-

sively managed, beech-dominated age-class forest of the region Hai-

nich-Dün. The resolution permits accurate identification of gap

objects up to aminimal size of 1 m2. After orthorectification, only the

central 1-ha square of the image is used for gap analysis.
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Afterwards, multiple linear regressions were fitted to judge the rela-

tive importance of soil covariates for modelling our four biodiversity

measures species richness, Shannon H, evenness E and beta diversity

bsim. For this purpose, our single most important gap variable and

the four soil covariates pH, bulk density, organic carbon concentra-

tion and organic carbon stock were simultaneously forced into step-

wise forward regression modelling in the form of

Y = B0 + B1 · X1 +B2 · X2 + B3 · X3 + B4 · X4 + B5 · X5

+ E. The outcome of stepwise inclusion of the five variables is based

on goodness-of-fitmeasures (multipleR2).

In Analysis 3, we investigated whether ‘region’ as a covariate does

have a significant effect on the image-based assessment of biodiversity

given that one and the same gap variable is used for the combined

data of the regions Alb and Hainich together. This was tested with

analysis of covariance (ancova) where we took the best image-based

predictor, showing strongest correlation with biodiversity as continu-

ous variable and region as a factor with the two categorical levels Alb

andHainich.

All statistical analyses were performed using R-2.11 software

(http://www.R-project.org/).

Results

In Analysis 1, we searched for a single best predictor variable

to evaluate biodiversity based on linear correlations with gap

properties. The highest R2 (0Æ74) we found here was for corre-

lating species richness of the regionHainich with themedian of

the GSCI of the three largest gaps (Fig. 3). Generally, species

richness was the best response measure to assess biodiversity

from image analysis (Table 1). Overall, there was a systematic

response of biodiversity to the eight patch metrics. For exam-

ple, summarized over all three separate correlations (regions

Hainich, Alb and data ofHainich + Alb locations combined),

variables of the GSCI were in 93% positively correlated with

species richness and caused in 68% a large effect with an

R2 ‡ 0Æ25 (Table 1). This systematic suitability of theGSCI for

image-based assessments of understorey diversity is also indi-

cated by the following fact: Among the 20 variables causing

highest positive correlations with species richness in the

Hainich (R2 = 0Æ64–0Æ74), 15 variables were based on the

GSCI. Likewise, among the 20 variables causing highest posi-

tive correlations with species richness for combined data of the

Hainich and Alb together (R2 = 0Æ35–0Æ47), 13 variables were
based on theGSCI.

Also, Analysis 2 demonstrated that species richness is a

highly suitable response variable for image-based evaluations

of biodiversity. All univariate regression results were very

highly significant with P values <0Æ001 and R2 values ranging

from 0Æ47 to 0Æ74 (Table 2). All other univariate regressions

with gap measures were significant, too, except for the Shan-

non index in the Alb where the variable Tot_PFD was close to

significance at 0Æ05 level (P = 0Æ058). These results underline
the high suitability of gap-based variables for remotely sensed

assessments of understorey biodiversity.

Multiple regressions revealed that gap-based predictor vari-

ables always made the strongest contribution to explain varia-

tion in the four biodiversity measures. This is evident from the

sorting order of the five included predictors with gap variables

being always placed at first position (B1) right after the inter-

cept (B0). In contrast, the effects of soil variables were relatively

low. In the Hainich, none of the four soil variables made any

significant contribution to the regression model, and in the

Alb, only organic carbon stock had a significant effect on beta

diversity (Table 2). For the combined analyses of Hainich and

Alb together, organic carbon stock had a significant effect on

species richness and beta diversity and bulk density had a sig-

nificant effect on evenness.

In Analysis 3, one and the same gap variable was used for

the combined data of the regions Alb and Hainich together.

ancova indicated that ‘region’ as a covariate did have a signifi-

cant effect on the assessment of species richness and evenness

(Table 3). Hence, the predictability of these two biodiversity

measures from aerial image analysis was affected by differences

Fig. 3. Example of a strong correlation between information

from gap objects and biodiversity of the understorey in the region

Hainich. The independent predictor variable Mdn_GSCI_3 is the

median of the gap shape complexity index of the three largest gaps

per 1-ha plot.

Table 1. Summarized percentages of positive correlations with

biodiversity

Gap metric

Species

richness Shannon Evenness

Beta

diversity

A 75 (40) 69 (25) 35 (5) 38 (0)

P 85 (55) 69 (25) 31 (2) 83 (0)

P ⁄A 35 (3) 28 (0) 68 (2) 54 (0)

C 41 (17) 47 (0) 58 (3) 39 (0)

GSCI 93 (68) 81 (21) 25 (0) 97 (0)

PFD 35 (1) 27 (0) 71 (1) 39 (0)

FD 89 (33) 73 (1) 38 (1) 89 (8)

FDI 63 (9) 51 (0) 72 (2) 58 (10)

Gap metrics are area (A), perimeter (P), perimeter ⁄ area ratio

(P ⁄A), circularity (C), gap shape complexity index (GSCI), patch

fractal dimension (PFD), fractal dimension (FD) and fractal

dimension index (FDI). Each number reflects the total proportion

of positive correlation coefficients (Pearson) summarized over all

3 · 50 variables per metric in the three separate correlations

(Hainich, Alb and data of Hainich + Alb combined). The differ-

ence to 100% is thus negative correlations with biodiversity.

Numbers in braces reflect the total percentages of positive corre-

lations with R2 ‡ 0Æ25.
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between both regions. However, regional effects had no

significant influence on regressions with the Shannon index or

beta diversity.

Discussion

Our results are based on two independent temperate forest

regions in Germany that are located several hundred

kilometres apart from each other. While we have demon-

strated this method for a limited number of exemplary for-

est plots in both regions, we controlled for sampling error

using permutation tests (Legendre & Legendre 1998). All R2

values showing large effects were not the result of chance or

sampling error but constitute significant correlations.

Consequently, the excellent predictability of biodiversity we

found in this study is based on a systematic suitability of

some specific gap metrics such as the GSCI that may be

used to assess understorey diversity based on aerial images.

These results provide strong evidence for the dependency

between spatial disturbance structures and plant diversity in

forests because high correlations were found in both regions

and even when data of the two regions were combined.

With multiple regressions, we have shown that soil vari-

ables had a relatively small effect on our gap-based assess-

ments of biodiversity, at least if regions are considered

separately. Still, ancova revealed that regressions with spe-

cies richness or evenness for combined data have been sig-

nificantly affected by regional differences. This could have

arisen because of dissimilarities in site characteristics such as

parent material and associated soil texture, which are also

reflected in bulk densities and carbon stocks. Indeed, the

median of organic carbon stock was 4Æ2 kg m)2 for all 16

plots of the Alb but 3Æ2 kg m)2 for the 20 plots of the Hai-

nich. We also found a median of three major tree species in

our investigated plots in the Alb but only of two tree spe-

cies in the Hainich. This could have affected our regressions

because overstorey composition may influence understorey

vegetation (Barbier, Gosselin & Balandier 2008). Also, cli-

matic differences may impair our regressions and cause

lower R2 values for combined regional data. For example,

Table 2. Results of univariate andmultiple linear regressionmodelling

Image-based variables used for univariate regressions are those that showed the highest correlation with measures of biodiversity (for

abbreviations, see Materials and methods section). These measures were subsequently used for multiple regression modelling to assess

the relative importance of the four soil covariates pH, bulk density (BD), organic carbon concentration (OC) and organic carbon stock

(C_stock). All five variables were simultaneously forced into stepwise forward regression modelling, and the order of the regression coef-

ficients B1 to B5 reflects the importance of the five variables for explaining variation in understorey biodiversity (multiple R2). Numbers

were rounded to two digits after the comma for B, the standard error (SE) of B and multiple R2. P values were not rounded but given

to three digits after the comma to indicate very highly significant cases with P < 0Æ001. All significant contributions (at least P < 0Æ05)
of variables are given in bold numbers.
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the higher annual precipitation of the Schwäbische Alb

(Fischer et al. 2010) could have been an intrinsic factor in

our ancova. We, therefore, recommend that similar future

studies should explicitly investigate the regional effects on

remotely sensed assessments of biodiversity in forests.

Overall, the study has demonstrated a high potential for pre-

dicting biodiversity in forests from high-resolution aerial

images. Gaps created by natural tree death or man-made thin-

ning seem to be amajor driver of understorey plant diversity in

deciduous forests because light distribution is strongly limiting

for understorey species that vary in their optimal light require-

ment. Although we do not know the exact causal mechanisms,

as amajor limiting resource, ‘understorey light can be used as a

single synthetic factor grouping less apparent microclimatic

variations’ (Barbier, Gosselin & Balandier 2008), making this

coarse-filter approach to the assessment of biodiversity a

highly efficient tool.

Here, we emphasize that it is the spatially implicit informa-

tion on gap shape measures of several gaps per hectare that is

necessary to cause strong correlations with biodiversity. Sev-

eral gaps per hectare with their shape complexity function as

higher-level structures and partition essential resources such as

understorey light into various quantities and qualities. This

structural filter then determines biodiversity by providing

many niches for the survival and reproduction of different spe-

cies with different competitive strength, shade tolerance and

dispersal mode. Hence, the spatial characteristics of gaps like

perimeter or shape are important because they determine the

competitive or facilitative relationships of plant species in the

understorey (Li, Bogaert & Nijs 2005). As understorey struc-

ture provides microhabitat niches that may function as shelter

or food resource, cascading feedbacks may directly affect the

diversity of faunistic taxa such as insects, mammals or reptiles

as well (Bouget & Duelli 2004). Indeed, a test-wise correlation

analysis that we undertook for data of the Hainich (results not

shown) revealed also a significant and strong dependency of

arthropod species richness on a measure with the gap shape

complexity index. The result that measures based on the GSCI

strongly positively correlate with biodiversity may be ascribed

to the fact that high shape complexities provide various aggre-

gated niches to sustain coexistence ofmany species. This agrees

with theoretical findings where highest biodiversity emerged at

highly correlated disturbances (Banitz et al. 2008).

In our study species richness has been the best response

variable of all four biodiversity measures. The gap shape

complexity index is a highly suitable predictor of species rich-

ness because gaps with one and the same high GSCI value

may differ widely in area (Saura & Carballal 2004). Thus,

GSCI is not a direct indicator of the magnitude of distur-

bance or the quantity of total light influx. For example, in the

Hainich region, the traditionally managed selection-cutting

forests had about a 20% higher Mdn_GSCI_3 value and

10% higher species richness than the conventionally managed

age-class forests, but the total gap fraction of selection-cutting

forests was even smaller. In other words, the species richness

detected via gap shape complexity is not necessarily biased

towards ruderal species with high light demands, which may

possibly obscure the presence of more forest-characteristic

specialists.

In agreement with previous studies, here we emphasize that

in terms of biodiversity-friendly forest management it is also

the quality in the fine-scale spatial distribution of light that is

beneficial to species richness and biodiversity in general

(Coates et al. 2003; Wilson & Puettmann 2007). Obviously,

the type of tree retention achieved with selection cutting allows

for more irregularly shaped gaps, thus fostering high

understorey biodiversity. This indicates that species richness

may be actively controlled by the spatial quality, and not just

quantity, of tree harvesting and likewise that the ecological

value of this thinning action may be assessed via gap analysis

in aerial surveys.

From a technical point of view, these findings suggest that

remotely sensed biodiversity assessments using object-based

image analysis of segmented gaps such as performed in this

study may have certain advantages over coarse-filter

approaches that rely on more abstract spectral indices or tex-

ture-based analysis.While it has been shown that image texture

may be used for correlationwith bird species richness (St-Louis

et al. 2006) or spectral indices for correlation with ant species

richness (Lassau et al. 2005), spatially implicit quantification

of real objects such as gaps in forests allows for more direct

insight into the dependent ecological, lower-level processes of

plant or animal taxa.

In conclusion, we have shown that very high-resolution

images can be used to effectively assess biodiversity in temper-

ate forests. These results may also hold for other global forest

biomes wherever strong limitations of light occur. For exam-

ple, in neotropical rainforests, gap shape is an important factor

that determines microclimatological effects, subsequent eco-

logical processes and ultimately plant composition

Table 3. Results of analysis of covariance (ancova) for the combined data of the regions Hainich andAlb

Image-based gap measures used as continuous predictor variables are those that showed the highest correlation with measures of biodi-

versity for combined data of the two regions (for abbreviations, see Materials and methods section). ‘Region’ was treated as a factor

with the two categorical levels Hainich and Alb. All numbers were rounded to two digits after the comma, except for P values that were

not rounded but given to three digits after the comma to indicate very highly significant cases with P < 0Æ001. All significant contribu-

tions (at least P < 0Æ05) of variables are given in bold numbers.
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(Salvador-Van Eysenrode et al. 1998). We, therefore, strongly

encourage future studies to test this method of biodiversity

assessment in various forest regions of the world.

Our application of UAV technology in ecological studies

could serve as an inspiration for combining innovative high-

tech with the need for practical decision support. Unmanned

aerial vehicles are increasingly being used in environmental sci-

ence such as for monitoring anthropogenic pollution (Roberts

et al. 2008), rangeland condition (Rango et al. 2009) or ripar-

ian forest (Dunford et al. 2009). Even light detection and rang-

ing (LIDAR) systems may nowadays be mounted to UAVs to

get three-dimensional forest scans (Lin, Hyyppä & Jaakkola

2011). We hope that our study proposing a new method for

biodiversity assessments in forests may be seen as another

path-breaking inspiration for the interplay of biology and tech-

nology (Fields 2001).
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