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ABSTRACT
We extend some of the well-established self-interaction correction (SIC) schemes of density-functional theory—the Perdew–Zunger SIC and
the average-density SIC—to the case of systems with noncollinear magnetism. Our proposed SIC schemes are tested on a set of molecules
and metallic clusters in combination with the widely used local spin-density approximation. As expected from the collinear SIC, we show that
the averaged-density SIC works well for improving ionization energies but fails to improve more subtle quantities like the dipole moments of
polar molecules. We investigate the exchange-correlation magnetic field produced by our extension of the Perdew–Zunger SIC, showing that
it is not aligned with the local total magnetization, thus producing an exchange-correlation torque.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0179087

I. INTRODUCTION

In practical (spin) density-functional theory (DFT) calcula-
tions, one needs to select an approximate functional of the density
to compute the exchange-correlation energy and the correspond-
ing potential.1 Most of the commonly employed approximations are
known to suffer from the so-called self-interaction error,2 an error
that implies that the electron can interact with itself via the total elec-
tronic density. The self-interaction error can lead to problems in the
prediction of the electronic properties of molecules and materials.
For example, it can cause an underestimation of the bandgap of insu-
lators and semiconductors and an underestimation of the ionization
potential and electron affinity of molecules. Therefore, correcting
for the self-interaction error is important for obtaining reliable DFT
predictions of the electronic properties of molecules and materials.3

The search for schemes correcting the self-interaction error,
known as self-interaction correction (SIC), has been pioneered by
Perdew and Zunger,2 even if prior attempts have been made to solve
this problem for exchange.4 Their proposed method, now referred to

as the Perdew–Zunger self-interaction correction (PZ-SIC), leads to
an exchange-correlation energy functional that is an explicit func-
tional of the orbitals and, hence, an implicit density functional.
Implementations of the PZ-SIC approach are often performed in
a generalized Kohn–Sham sense,5 where the exchange-correlation
potential depends on the orbital on which it acts. Alternatively,
and in the spirit of the original Kohn–Sham DFT, a local mul-
tiplicative exchange-correlation potential can be constructed from
PZ-SIC using the optimized effective potential (OEP) technique.6
The so-constructed exchange-correlation potentials have the cor-
rect asymptotic behavior and exhibit discontinuities as a function
of particle number.3,7

It is possible to solve the OEP equations exactly,8,9 but this is
known to be numerically challenging, and one often resorts to the
scheme introduced by Krieger, Li, and Iafrate (KLI) to approximate
the full solution of the OEP equations.10 A further simplification
of the KLI approach is the Slater approximation, which neglects
the orbital-dependent part in the OEP equations and replaces it by
an orbital-averaged term.10 The so-called globally averaged method
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(GAM) is defined in a similar spirit.11,12 An even more drastic
approximation for the SIC consists of replacing in the PZ-SIC the
orbital-dependent part directly by an averaged value for all orbitals,
leading to the average-density SIC (AD-SIC).13 More recently, Zope
and co-workers proposed new schemes like the local-scaling SIC,14

which are intended to fix some of the known deficiencies of the
original PZ-SIC; unlike the other methods mentioned earlier, this
method is not a simplification of the OEP equation but an alternative
to PZ-SIC.

To our knowledge, all of these methods have so far only been
proposed and employed in the context of spin DFT (SDFT) with
collinear spins, with a notable exception of the perturbative treat-
ment of SIC for noncollinear spin performed in Ref. 15. However,
there exist many electronic systems in which noncollinear mag-
netism, spin–orbit coupling (SOC), and other relativistic effects are
relevant, and these are usually treated with the local spin density
approximation (LSDA) or with semilocal approximations, which
suffer from self-interaction error.

It is the goal of this paper to explore how to extend the
applicability of the above-mentioned SIC schemes to the realm
of noncollinear magnetism.16–18 This allows one to include effects
stemming from the noncollinear magnetism and, at the same time,
improve upon the LSDA.

Extending the existing SIC schemes to treat noncollinear mag-
netism requires care. Important fundamental conditions are the
local SU(2) gauge invariance of the exchange-correlation energy and
the requirement that the method properly reduces to the collinear
limit. Moreover, an important question is whether the exchange-
correlation magnetic field produced by a noncollinear SIC can
exert a local torque on the magnetization.19,20 If such a torque
exists, it must satisfy the condition that the system cannot exert a
global torque on itself (this is known as the zero-torque theorem of
SDFT).21 It is the goal of this work to discuss these points.

The paper is organized as follows. In Sec. II, we present the
motivation underlying our proposed SIC and extend the collinear
formulation of PZ-SIC and AD-SIC to the noncollinear case. Then,
in Sec. III, we report numerical results obtained for several isolated
systems, for which we analyze the effect of the SIC on the electronic
and magnetic properties of atoms, small molecules, and clusters. We
also discuss its effect on the local texture of the exchange-correction
torque. Finally, we draw our conclusions in Sec. IV.

II. THEORY
We begin by defining the concept of self-interaction for the

general case of noncollinear spin systems. Self-interaction is usually
introduced separately for exchange and correlation. Therefore, let us
first consider the exact exchange energy of a system of N electrons,22

Ex[n, m] = −
1
2∬

drdr′

∣r − r′∣
Tr [γ(r, r′)γ(r′, r)], (1)

where Tr is the trace over spin indices of the one-particle spin
density matrix γστ(r, r′) = ∑N

j ψ jσ(r)ψ∗jτ(r′), constructed from two-
component spinor orbitals, where σ =↑, ↓, and likewise for τ. Here,
the double underline in γ represents a 2 × 2 matrix in spin space.18

The charge and magnetization densities, n and m, are defined as

n(r) =
N

∑
j
∑
σ
ψjσ(r)ψ∗jσ(r), (2)

and

m(r) =
N

∑
j
ψj(r)σψ∗j (r), (3)

respectively, where σ = (σx, σy, σz) is the vector of the Pauli matrices.
The Hartree energy is given by

EH[n] =
1
2∬

drdr′
n(r)n(r′)
∣r − r′∣

, (4)

where n(r) = Tr [γ(r, r)] is the total charge density of the system.
From the above-mentioned definitions of Ex and EH, it is

straightforward to show that in the one-electron case, we have

Ex[ni, mi] + EH[ni] = 0, (5)

where ni and mi are the single orbital charge and magnetization den-
sities. This is the generalization of the result shown in Ref. 2 for the
collinear case and forms the basis of the self-interaction corrections
that we are proposing below.

More generally, for a single orbital, there is no correlation
energy, so we can say that the exchange-correlation energy should
fulfill the constraint

Exc[ni, mi] + EH[ni] = 0. (6)

Importantly, we remark here that both the exchange energy, Eq. (1),
and the Hartree energy, Eq. (4), are invariant under local rotations of
the spin. Such a local rotation of the spins is called an SU(2) rotation,
and the operation associated with the rotation of the spins is referred
to as an SU(2) gauge transformation. If the energy of an electronic
system is SU(2) gauge invariant, it means that it is left unchanged by
any SU(2) gauge transformation. This is the case for Ex, Eq. (1), and
EH, Eq. (4). We thus obtain from Eq. (6) that the property remains
true if we rotate the orbitals such that their magnetization aligns with
the z direction,

Exc[ni, R̂zmi] + EH[ni] = 0, (7)

where R̂zmi is a symbolic operator notation for performing a rota-
tion on the spin parts of all orbitals such that they are reckoned with
respect to a given global z-axis and then constructing the resulting
orbital magnetizations.

This allows us to make the link with the collinear result [see Eq.
(30) of Ref. 2]. Of course, when starting from the noncollinear for-
mulation of SDFT, one needs to break some symmetries to reduce
the four-component noncollinear theory based on the variables
(n, m) into a two-component collinear theory based on the vari-
ables (n, mz). This can be achieved, for instance, using a uniform
magnetic field of small magnitude along the z-axis, which causes the
orbitals to align their magnetization along this direction. In other
words, the system needs to be told to choose the z-axis as its spin
quantization axis.

From this, we obtain a set of necessary conditions to be able to
employ Eq. (5) to build a SIC. The first condition is that the approxi-
mate exchange-correlation functional must be locally SU(2) gauge
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invariant, i.e., it produces the same exchange-correlation energy
independently of the orientation of the orbital magnetization.

The second condition is that the noncollinear and collinear
functionals should produce the same energy at the same den-
sity for a magnetization along the z direction. In other words,
Enoncoll.

xc [ni, mi,z êz] = Ecoll.
xc [niσ , 0], where it is stipulated that mi,z

= ni,↑↑ − ni,↓↓ and ni,↓↑ = ni,↑↓ = 0 (and hence mi,x = mi,y = 0). The
collinear functional Ecoll.

xc [niσ , 0]appears in the definition of PZ-SIC
(see below).

These conditions are naturally fulfilled by the LSDA when using
the method proposed originally by Kübler et al.23 The first con-
dition is also fulfilled by the more recently proposed noncollinear
exchange meta-GGA,22,24 which also properly recovers the result of
the Becke–Roussel collinear exchange functional25 for closed-shell
systems.

A. Noncollinear Perdew–Zunger SIC
Based on Eq. (5), we can propose a generalization of the

PZ-SIC to the noncollinear case. Let us first start by reviewing briefly
the collinear case. The idea behind the PZ-SIC consists of remov-
ing all the single-electron self-interaction errors for a given density
functional approximation. This leads to the energy functional

ESIC
xc = EDFT

xc [n↑, n↓] − ∑
σ={↑,↓}

∑
i

fi,σ(EH[niσ] + EDFT
xc [niσ , 0]). (8)

In this expression, n↑ and n↓ refer, respectively, to the up and down
channels of the total electronic density, and the fi,σ are occupation
numbers. For each orbital φi, one needs to compute the correspond-
ing Hartree and exchange-correlation energy from its individual
density niσ and subtract it from the energy computed from the total
density.

This above-mentioned expression is intrinsically limited to the
collinear case but can be easily generalized to the noncollinear case.
Indeed, in the latter case, the exchange-correlation functional is not
a functional of the density in the two spin channels (Exc[n↑, n↓]) but
a functional of the total density n and the local magnetization m.
This immediately suggests generalizing Eq. (8) to the noncollinear
case as

ESIC
xc = EDFT

xc [n, m] −∑
i

fi(EH[ni] + EDFT
xc [ni, mi]). (9)

This correction removes the self-interaction of each orbital φi, as in
the collinear case.

In practice, the noncollinear PZ-SIC scheme can be challeng-
ing to implement. First of all, it requires finding the local effective
potential originating from this orbital-dependent scheme, unless
one wants to resort to using a generalized Kohn–Sham scheme that
allows for orbital-dependent potentials.5 Finding this local multi-
plicative potential is usually achieved by solving the OEP equation6,8

or some simplified version of it, like the KLI approximation.10

A more subtle complexity comes from the fact that different
orbitals can produce the same density. For a typical density func-
tional approximation like LSDA, this is not a problem. However, this
becomes a well-known problem with PZ-SIC, whose results depend
on the orbitals and hence vary under a unitary transformation of the
orbitals.26–30 It was first realized by Perderson and co-workers28,29

that certain conditions needed to be fulfilled to minimize the

PZ-SIC energy, referred to as the localization equations. In
practice, one needs to explicitly minimize all possible unitary
transformations.8,31 Alternatively, one can use specific orbitals that
make the SIC a true density functional.32 We will briefly discuss this
point below with numerical examples.

Finally, let us comment on an important difference between the
collinear case and the noncollinear case, which concerns the practi-
cal solution of the KLI equations to get to an approximate solution to
the full OEP equation. When solving these equations, the potential
is defined up to a constant, which is fixed by imposing for isolated
systems that vxc,σ → 0 for r going to infinity.10 This leads to a dif-
ferent constant for the up and down potentials in the collinear case.
However, in the noncollinear case, we end up with a single constant,
as we have a 2 × 2 matrix in spin space for the potential. As a con-
sequence, for an open-shell system without SOC, for which we can
directly compare the collinear and noncollinear results, the poten-
tials for the majority spin are very similar, but in the minority spin
channel, they may be different.

B. Noncollinear averaged density SIC
While the PZ-SIC is known to produce very good results, it is

also known to be numerically expensive to evaluate, as one needs to
solve one Poisson equation and compute the exchange-correlation
energy for each occupied Kohn–Sham state, and one further needs
to solve the OEP equations to obtain the local multiplicative poten-
tial needed to perform Kohn–Sham SDFT calculations. This is why
several simplified methods have been proposed. Among them, the
most effective method is probably AD-SIC, which, a bit surpris-
ingly given its simplicity, can produce excellent results for atoms
compared to PZ-SIC.33 The motivation of this method is that if all
orbitals have a similar localization, we can replace their density in
Eq. (8) by their averaged density.8 This is particularly suited for
calculations with identical atoms and pseudopotential-based sim-
ulations, as orbitals are similar in these cases. However, AD-SIC
suffers from a size-consistency problem as it is explicitly based on
the number of electrons,8 which makes it unsuitable for extended
systems. In this section, we show how to generalize the AD-SIC to
the noncollinear case.

In the collinear case, the AD-SIC is obtained by replacing in
Eq. (8) the orbital and spin-resolved density niσ by the average spin-
resolved density nσ/Nσ , where Nσ = ∫ drnσ(r) is the number of
electrons in the spin channel σ. This directly leads to the collinear
AD-SIC energy functional,

EAD−SIC
xc = EDFT

xc [n↑, n↓] − ∑
σ={↑,↓}

Nσ(EH[nσ/Nσ]

+ EDFT
xc [nσ/Nσ , 0]). (10)

Following this logic, one could be tempted to average not the
up and down densities of collinear SDFT, but the full spin-density
matrix of non-collinear SDFT or, equivalently, the local charge
and magnetization densities. Inserting this into Eq. (9), one would
directly obtain

EAD−SIC
xc = EDFT

xc [n, m] −N(EH[n/N] + EDFT
xc [n/N, m/N]). (11)

However, this choice does not produce the correct collinear limit.
In order to illustrate this, let us consider a Li atom in a uniform
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magnetic field aligned along the z direction. In this case, the sys-
tem has three electrons, two residing at the 1s level and one at the
2s level. It is straightforward to see that the one electron in the 1s
(spin-channel α) and the one in the 2s level have their orbital mag-
netization antialigned with the external magnetic field, while the
second 1s electron (spin-channel β) has its orbital magnetization
aligned with the external magnetization. The densities correspond-
ing to these states are denoted n1s,α, n2s,α, and n1s,β. Assuming
that the approximate functional that we want to be corrected with
AD-SIC fulfills the requirements mentioned in the introduction
[SU(2) gauge invariance, the same energy for a single orbital den-
sity with mz > 0 in the noncollinear case, and the same density in
the up channel for the collinear functional], we can treat the same
Li atom as a collinear electronic system with a static magnetic field
along the z axis.

Let us now compute the collinear and noncollinear AD-SIC
corrections for this Li atom. The AD-SIC for the collinear-spin case,
Eq. (10), is

ΔEAD−SIC−col.
= −2EH[

n1s,α + n2s,α

2
] − EH[n1s,β]

− 2Exc[
n1s,α + n2s,α

2
, 0] − Exc[n1s,β, 0]. (12)

If we use the proposed averaged density SIC, as in Eq. (11), we get

ΔEAD−SIC
xc = −3(EH[

n1s,α + n2s,α + n1s,β

3
]

+ EDFT
xc [

n1s,α + n2s,α + n1s,β

3
,

×
m1s,α +m2s,α +m1s,β

3
]). (13)

Clearly, this expression will not lead to the desired collinear limit,
as seen directly from the Hartree term. However, it is possible to
recover the collinear limit using the same logic as originally pro-
posed by Kübler et al.23 for treating LSDA with noncollinear spin.
By diagonalizing first the spin-density matrix, we obtain two densi-
ties, n↑ and n↓, which we can average by normalizing them by their
integrals (thus defining the number of “up” and “down” electrons in
the frame defined by the local magnetization). Similarly to the LSDA
case, the potential is computed in the local frame and independently
for the up and down channels, and then rotated back to the global
frame using the total magnetization. This procedure will produce the
collinear limit expected in the above Li atom example.

The direct consequence of this procedure is that both the LSDA
energy/potential and the AD-SIC corrections are evaluated in the
same frame, which makes this approach consistent and also invari-
ant under local and global SU(2) rotations. However, the price to
pay is that the exchange-correlation magnetic field originating from
the AD-SIC correction term is aligned with the local magnetization,
meaning that no exchange-correlation torque is produced by the
correction scheme.

III. NUMERICAL RESULTS
We have implemented the above-mentioned equations in the

real-space code Octopus34 in order to perform tests. For the case of
PZ-SIC, we only computed the solution of the OEP equations at the

KLI level, using the explicit solution for noncollinear spin proposed
in our recent work (see supplementary information in Ref. 22). All
our SIC calculations are performed self-consistently.

A. Isolated Xe atom
In order to investigate the interplay between SIC and SOC, as

well as numerical and theoretical problems related to the various
schemes, we first consider the case of an isolated Xe atom. We use a
grid spacing of 0.30 Bohr,35 employing norm-conserving fully rela-
tivistic Hartwigsen–Goedecker–Hutter (HGH) pseudo-potentials.36

The simulation box is taken as a sphere of radius 12 Bohr, centered at
the atomic center. In Fig. 1, we show the splitting of the 5p electronic
levels into 5p1/2 and 5p3/2 levels for LSDA, LSDA + AD-SIC, and
LSDA+ PZ-SIC. In all cases, the collinear limit is correctly recovered
for PZ-SIC and AD-SIC. We found that the inclusion of the SIC does
not change how SOC affects the energy levels, and the degeneracy of
the energy levels is properly described by our corrections. As visible
from the figure, we nicely recover the collinear limit, indicated by the
symbols in Fig. 1. We also checked that in the case of vanishing SOC
strength, using a small magnetic field along x, y, or z directions pro-
duces identical results, as expected from the SU(2) invariance of our
proposed formulation. However, we note that for more complicated
molecules, the collinear limit is not always recovered (see below).

Let us now comment on the dependence on a unitary transfor-
mation of the orbitals used in the evaluation of Eqs. (8) and (9). In
order to reveal this, we define a new set of orbitals, {φ̃i}, such that

φ̃i(r) =∑
j

Uijφj(r), (14)

where U is a unitary matrix. The two sets of orbitals, {φj} and {φ̃i},
have the same density, but their contribution to their PZ-SIC energy
is different. To illustrate this, we consider the following three cases:
(i) the canonical orbitals obtained directly from the solution of the
Kohn–Sham equations; (ii) the so-called subspace diagonalization

FIG. 1. Splitting of 5p levels of Xe due to SOC vs the spin–orbit strength computed
for LDA (blue curves), LDA + AD-SIC (orange curves), and LDA + PZ-SIC (red
curves). The symbols (square, circle, and triangle) indicate the results obtained for
the corresponding spin-unpolarized calculations.
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TABLE I. Total energy Etot and ionization potential Ip, in Hartree, for the collinear and
collinear cases using different orbitals, as explained in the main text.

Collinear case Noncollinear case

Canonical SCDM Canonical SCDM

Etot −15.5938 −15.6492 −15.5938 −15.6499
Ip 0.4449 0.4674 0.4449 0.4695

procedure in which the unitary matrix is found by diagonalizing the
Hamiltonian matrix in the subspace of the canonical orbitals (a stan-
dard technique37 for reducing the computational cost of iterating
the Kohn–Sham equations); (iii) the localization method known as
the SCDM38 that produces Wannier functions by direct construction
from a set of selected columns of the density matrix.

In Table I, we report the total energy and ionization potential
of Xe for the first and last approaches for both the collinear and non-
collinear cases. Here and in the following, the ionization potential is
obtained from the eigenvalues and not from the difference of total
energies. We find no difference between the canonical orbitals and
the ones obtained by subspace diagonalization. As expected, more
localized orbitals produce lower total energy and a higher ionization
potential.

Overall, it is apparent from these results that our noncollinear
functional suffers from the same problems as the collinear formu-
lation. One solution would be to implement a minimization of the
PZ-SIC energy correction with respect to the unitary transforma-
tion U, which we defer to some future work. In the following, unless
specified explicitly, orbitals from the subspace diagonalization are
always employed.

B. Diatomic closed-shell systems
We continue analyzing the effect of our proposed functional on

small closed-shell molecules, for which SOC is known to be impor-
tant for their electronic structure. It is known that SOC plays an
important role in the bond length of closed-shell dimers, as well as
their harmonic frequency and their dissociation energy.39 However,
the choice of the functional is also important for these properties,39

FIG. 2. Eigenvalues of the highest bonding (σ1/2g, π1/2u, and π3/2u) and lowest
antibonding (π1/2g and π3/2g) molecular orbitals of the bismuth dimer as a function
of the SOC strength computed for LDA (blue curves), LDA + AD-SIC (orange
curves), and LDA + PZ-SIC (red curves). The dots indicate the results obtained
for spin-unpolarized calculations.

and we expect the SIC to be relevant for improving the theoretical
modeling of these molecules.

We start by considering the Bi2 molecule. We performed
calculations at the experimental bond length40 of 2.661 Å for
LSDA, LSDA + AD-SIC, and LSDA + PZ-SIC. We used a grid
spacing of 0.30 Bohr, employing norm-conserving fully relativis-
tic Hartwigsen–Goedecker–Hutter (HGH) pseudo-potentials.36 The
simulation box was obtained from the union of two spheres of radius
12 Bohr centered on each atom. As shown in Fig. 2, the inclusion
of the SIC does not change how SOC affects the energy levels of
the molecules, and the degeneracy of the energy levels is properly
described by our corrections.

As in the case of Xe, the AD-SIC properly recovers the collinear
limit, while we found that the PZ-SIC does not converge when the

TABLE II. Ionization potentials, in eV, of diatomic systems using their experimental geometry, including SOC, for different
energy functionals.

Bi2 Au2 I2 HI IF PbO TlF

Exp. 7.3a 9.5b 9.307c 10.386d 10.54e 9.4f 10.52g

LSDA 4.898 6.104 6.062 6.627 6.549 6.373 5.959
LSDA + AD-SIC 7.773 9.481 8.651 10.294 10.015 10.190 10.614
LSDA + PZ-SIC 7.120 9.324 8.252 10.028 9.481 10.372 11.778
aReference 41.
bReference 42.
cReference 43.
dReference 44.
eReference 45.
fReference 46.
gReference 47.
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SOC strength is set to zero. Indeed, in this case, Bi2 is non-magnetic,
and hence, any local SU(2) rotation of the spins associated with a
given orbital leaves the energy unchanged but changes the poten-
tial. In order to get a converged ground state in the absence of SOC,
we apply a tiny magnetic field (of magnitude 10−3 a.u.). Unlike the
case of Xe, we found here two possible solutions. By aligning the
external magnetic field along the molecular axis, we get the limit of
vanishing SOC strength. Aligning the magnetic field perpendicular
to the molecular axis, we get the same eigenvalues as in the collinear
calculation. This is analyzed more in detail in Appendix A.

We also performed similar simulations for other diatomic
molecules using their experimental geometry (see Table II). For
all molecules, we employ a grid spacing of 0.3 Bohr and a radius
for atom-center spheres of 12 Bohr, except for Au2, for which we
included semi-core states and used a grid spacing of 0.25 Bohr.
Overall, we find that the inclusion of the SIC drastically improves
the agreement with respect to the experiment for the ionization
potential, as expected from the vast literature on collinear SIC.

We also investigated the polar diatomic molecules HI, IF, PbO,
and TlF at their experimental geometry and compared the dipole
moments for different levels of description with the experimental
values Table III. We used here a grid spacing of 0.2 Bohr to ensure
convergence of the dipole moments with respect to the grid spac-
ing. Consistent with the collinear case,48 we found that the dipole
moment on average deviates more from the experimental value
when using SIC than simply using noncollinear LSDA. Importantly,
the limitations of the approximation of an averaged density used to
get to AD-SIC appear more clearly on the dipole moments than on
the ionization energy. We also performed geometry relaxation. As
found in the collinear case,26,49,50 we obtain that including PZ-SIC
and AD-SIC shortens the bonds, resulting in underestimated bond
lengths compared to the LSDA, the latter being in better agree-
ment with experimental values. However, one should note that this
problem affects PZ-SIC and related approaches and, as shown in
Ref. 50, other SIC methods such as the locally scaled SIC can lead
to improved bond lengths compared to LSDA.

C. Magnetic cluster
We now investigate the effect of SIC on the properties of small

magnetic clusters by specifically considering the iron dimer, Fe2 (see
Table IV).51 Clusters of this type have been widely studied by means
of LSDA, including SOC (see, for instance, Ref. 52 and references
therein). Unless stated differently, SOC is included throughout. In
all calculations, we employ a grid spacing of 0.15 Bohr, a radius for
atom-center spheres of 12 Bohr, and we include the semi-core states

TABLE III. Dipole moments, in Debye, of diatomic systems using their experimental
geometry, including SOC, for different energy functionals.

HI IF PbO TlF

Exp.a 0.45 1.95 4.64 4.23
LSDA 0.466 1.768 4.508 4.032
LSDA + AD-SIC 0.549 2.905 6.446 5.984
LSDA + PZ-SIC 0.389 1.960 5.893 4.376
aReference 40.

TABLE IV. Electronic and magnetic properties of Fe2 for different energy function-
als. Ionization potential (Ip) is given in eV, and the total (M) and atomic magnetic
moments (∣m∣) are given in μB and are obtained by integrating the density on a
sphere of radius 1.909 Bohr around the atoms. Exchange-only LSDA (LSDAx) results
were also reported.

Ip M ∣m∣

LSDA 3.327 6.00 2.71
LSDA + AD-SIC 7.854 6.00 2.69
LSDA + PZ-SIC 6.843 6.00 2.59
LSDAx 3.453 8.00 3.29
LSDAx + AD-SIC 7.464 7.00 2.97
LSDAx + PZ-SIC 5.995 7.50 3.10
Slater 6.760 6.00 2.96

for Fe atoms. A small Fermi–Dirac smearing of 10 meV for the occu-
pations was also used. The Fe–Fe distance was taken for the Fe dimer
to be the experimental one of 2.02 Å.53

In all cases that included both LSDA exchange and correlation
energy, we found a total magnetic moment of 6μB, in agreement
with prior works. We note that our LSDA value matches well with
the atomic magnetic moment reported in the pioneering work of
Oda et al.54 The fact that the atomic magnetic moments computed
on a sphere around the atoms decrease indicates that for Fe2, the
SIC tends to push away the magnetization from the atomic cen-
ter, while the increase of the ionization potential is consistent with
an increased localization of the orbitals. This points toward a non-
negligible contribution of itinerant electrons to the magnetic prop-
erties of this cluster. We also computed the values for exchange-only
LSDA, together with SIC corrections. The total magnetic moments
are not properly predicted in these cases, demonstrating the key
importance of correlations in order to obtain reliable magnetic
structures.

We finally turn our attention to the exchange-correlation
torque τ(r), defined as

τ(r) = m(r) × Bxc(r), (15)

where m is the local magnetization density and Bxc is the exchange-
correlation magnetic field. We computed this quantity using LSDA
and LSDAx with PZ-SIC and also with the Slater potential. As a ref-
erence here, we consider the Slater potential, which was shown to
give reasonable results compared to the result of the exact-exchange
potential computed at the level of KLI.22 From our results (see
Figs. 3(a) and 3(d)), the Slater potential produces a small exchange-
correlation torque around the atoms, where the symmetries of the
system are clearly apparent. Our results for PZ-SIC [Figs. 3(b), 3(c),
3(e), and 3(f)] show that PZ-SIC also produces a non-vanishing
torque around the atoms. While it shows, as required by the zero-
torque theorem, alternating positive and negative patterns that are
also in accordance with the symmetries of the system, the overall
shape and magnitude strongly differ from what is obtained from
Slater potential.

This qualitative difference in the exchange-correlation torques
may be due to subtle phase effects. PZ-SIC and Slater both are
orbital functionals, but PZ-SIC depends on orbital densities (where
the orbital phases cancel out) and Slater depends on the one-body
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FIG. 3. Exchange torque for Fe2. Top panels: The y component of the local exchange torque τ(r) in the plane y = 0, computed from (a) Slater, (b) LSDA with PZ-SIC, and
(c) LSDAx with PZ-SIC. Bottom panels: the same as the top panels, but showing the x component of the torque in the z = 0 plane.

reduced density matrix (where they do not). This suggests that the
torques depend sensitively on the phase information of the orbitals,
which would be an interesting subject for future investigation.

Importantly, we want to stress here that, like energy, the torque
obtained from PZ-SIC depends upon the unitary transformation of
the orbitals. This quantity, therefore, needs to be analyzed with great
care, and we aim in the future at implementing a minimization over
unitary transformations in order to eliminate this ambiguity, similar
to prior efforts.31

IV. CONCLUSIONS
To summarize, we presented how to extend some of the existing

SIC approaches to the case of non-collinear spins. We then ana-
lyzed numerically how these non-collinear SIC schemes behave for
various closed-shell and magnetic systems. Overall, we found that
our noncollinear schemes exhibit similar advantages and deficien-
cies as the collinear ones. The ionization energies are improved,
but bond lengths are found to be worse than those obtained for
LSDA. When the localization of individual orbitals is important, the
AD-SIC performs poorly for observables that depend on local
orbitals, like dipole moments or magnetic moments.

We further demonstrated that PZ-SIC for a noncollinear spin
can produce a non-negligible exchange-correlation torque around
the magnetic atoms, but we found large differences in the magni-
tude and texture of the exchange-correlation torque compared to the
result of the Slater potential.

Overall, our work opens the door to a better description of the
electronic and magnetic properties of systems when noncollinear
effects are important, but we note that some further work, includ-
ing the computation of accurate benchmarks, is needed in order
to get reliable results for the collinear and noncollinear PZ-SIC
schemes. Once such SIC schemes are fully established, we expect
them to become a useful tool for the description of materials with
noncollinear magnetism.
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APPENDIX: VANISHING SOC LIMIT IN Bi2
In this section, we investigate in more detail the case of Bi2

without SOC using PZ-SIC, with a tiny magnetic field included. As
explained in the main text, the dependence on the orbitals leads to
different results for a magnetic field aligned with the molecular axis
as opposed to one aligned perpendicular to it. In Fig. 4, we report the
square modulus of the four highest occupied states of Bi2 computed
with PZ-SIC, corresponding to the π1/2u and π3/2u bonding orbitals,
without SOC, and with a magnetic field aligned with the molecular
axis or perpendicular to it. While these orbitals produce the same

FIG. 4. Square modulus of the four highest occupied πu orbitals of Bi2 obtained
for a magnetic field aligned with the molecular axis (a)–(d) or perpendicular to it
(e)–(h). The plane shown in the figures is the plane perpendicular to the molecular
axis.

charge density when summed over, their individual contributions to
the PZ-SIC energy and potential are different, leading to a different
ground state.

While these results might be surprising at first glance, the
reported shapes are in fact the direct consequence of the symmetries
of the system. When the system has a magnetic field aligned with
the molecular axis, it is clear that the system is invariant under any
rotation along this axis. It is, therefore, not surprising to find radi-
ally symmetric wavefunctions in the panels (a)–(d). On the contrary,
when a tiny magnetic field is applied perpendicular to the molecular
axis, the radial symmetry is broken, resulting in the splitting of the
orbitals into two sets, one aligned with the magnetic field (e); (g) and
one perpendicular to it (f); (h).

The obtained wavefunctions, therefore, respect the symmetries
of the system in the presence of a tiny magnetic field, and it is, there-
fore, expected that taking these orbitals directly to build the PZ-SIC
energy (and the potential following from it) leads to some differ-
ences,55 even if the magnetic field itself has a negligible effect on
the charge density. Importantly, the change in the orbitals leads to
a large change of 35 mH in the total energy (the molecular-axis-
aligned magnetic field giving the lowest energy), while the magnetic
field itself only causes a splitting of these four energy levels by 15μH.
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