Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

Recommendations by Concise User Profiles from Review Text

MPG-Autoren
/persons/resource/persons231571

Torbati,  Ghazaleh Haratinezhad
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons230702

Tigunova,  Anna
Databases and Information Systems, MPI for Informatics, Max Planck Society;

/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

arXiv:2311.01314.pdf
(Preprint), 935KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Torbati, G. H., Tigunova, A., Yates, A., & Weikum, G. (2023). Recommendations by Concise User Profiles from Review Text. Retrieved from https://arxiv.org/abs/2311.01314.


Zitierlink: https://hdl.handle.net/21.11116/0000-000D-E9AE-9
Zusammenfassung
Recommender systems are most successful for popular items and users with
ample interactions (likes, ratings etc.). This work addresses the difficult and
underexplored case of supporting users who have very sparse interactions but
post informative review texts. Our experimental studies address two book
communities with these characteristics. We design a framework with
Transformer-based representation learning, covering user-item interactions,
item content, and user-provided reviews. To overcome interaction sparseness, we
devise techniques for selecting the most informative cues to construct concise
user profiles. Comprehensive experiments, with datasets from Amazon and
Goodreads, show that judicious selection of text snippets achieves the best
performance, even in comparison to ChatGPT-generated user profiles.