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Abstract

The human isocortex consists of tangentially organized layers with unique cytoarchitectural

properties. These layers show spatial variations in thickness and cytoarchitecture across

the neocortex, which is thought to support function through enabling targeted corticocortical

connections. Here, leveraging maps of the 6 cortical layers based on 3D human brain histol-

ogy, we aimed to quantitatively characterize the systematic covariation of laminar structure

in the cortex and its functional consequences. After correcting for the effect of cortical curva-

ture, we identified a spatial pattern of changes in laminar thickness covariance from lateral

frontal to posterior occipital regions, which differentiated the dominance of infra- versus

supragranular layer thickness. Corresponding to the laminar regularities of cortical connec-

tions along cortical hierarchy, the infragranular-dominant pattern of laminar thickness was

associated with higher hierarchical positions of regions, mapped based on resting-state

effective connectivity in humans and tract-tracing of structural connections in macaques.

Moreover, we show that regions with similar laminar thickness patterns have a higher likeli-

hood of structural connections and strength of functional connections. In sum, here we char-

acterize the organization of laminar thickness in the human isocortex and its association

with cortico-cortical connectivity, illustrating how laminar organization may provide a founda-

tional principle of cortical function.

Introduction

Cortical cytoarchitecture, that is, the organization and characteristics of neurons across the

depth of the cerebral cortex, varies markedly across the cortical mantle [1–4]. Characterizing

this variation has been an important focus of histological studies over the past century. Early
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studies were largely based on visual inspection and qualitative descriptions of cytoarchitectural

features across the cerebral cortex to identify local borders between regions [2] or to describe

more global cytoarchitectural variations [4,5]. With methodological advances of recent

decades, there has been a shift towards more quantitative investigations of cortical cytoarchi-

tecture based on statistical analysis on 2D histological sections [6–8]. The central idea of these

studies has been to quantify the variation of cell body–stained image intensity across the corti-

cal depth, i.e., "cortical profile." This is followed by observer-independent analysis of how cor-

tical profiles vary across the cerebral cortex and define borders of regions, particularly with

respect to the central moments, i.e., mean, standard deviation, kurtosis, and skewness [1,6,7].

The release of BigBrain, a whole-brain ultrahigh-resolution postmortem histological atlas of a

65-year-old male [9], enables such quantitative investigations at a much larger scale, for exam-

ple, to quantify large-scale microstructural gradients at a neocortical [10] and mesiotemporal

level [11].

Quantitative studies of cortical profiles have helped improve our understanding of

cytoarchitectural variability of the human cerebral cortex. However, the cerebral cortex is a

layered structure, and models of cortical profiles are, at least explicitly, agnostic to cortical lay-

ering. The layers in the neocortex are generally described as 6 horizontally superimposed

stripes of gray matter with characteristic features such as size, type, and density of the neurons,

which can again be differentiated into multiple sublayers [1,4]. From the pial to the gray-white

matter interface, they include layer I, which contains mostly dendrites and axon terminals and

has a low cellular density; layers II and III, which mainly contain pyramidal cells, with a size

gradient in neurons of layer III that become larger towards its lower extent; layer IV, which

consists of densely packed small pyramidal and non-pyramidal neurons; layer V, which is

composed of pyramidal neurons that are small and intratelencephalic (layer Va) or large and

sparse (layer Vb); and layer VI with corticothalamic pyramidal cells and heterogeneously

shaped neurons [2,4,12,13]. One of the prominent cytoarchitectural features that vary across

the cerebral cortex is its laminar structure, with respect to laminar thickness, as well as neuro-

nal size and density of each layer. Indeed, laminar features have been an important focus of

many qualitative studies of human cytoarchitectural variation [3,4,14]. For example, agranular

and dysgranular cortical types are defined based on the absence or thinness of layer IV, relative

to eulaminate and koniocortical regions [4,14]. However, studies on quantitative analysis of

cortical cytoarchitecture with respect to its laminar features in humans are limited. Yet, under-

standing layered organization of the human neocortex may provide further insights into how

intracortical circuits ultimately support function [15,16].

The laminar pattern and likelihood of cortico-cortical connections are suggested to relate

to the interregional variation of cortical cytoarchitecture [3,17,18]. Connectivity is shown to be

more likely between regions with similar cytoarchitecture [19–24]. In addition, the gradation

of cytoarchitecture is suggested to predict the laminar pattern of cortico-cortical connections

[3,17,18,25,26], categorized as "feedback" (FB), "feedforward" (FF), or "lateral" based on tract-

tracing data [27–29]. These laminar projections have, in turn, been used to describe an order-

ing of regions along a cortical hierarchy, in which FF projections are suggested to carry high-

dimensional sensory information from lower to higher regions and are reciprocated by FB

projections transmitting context and modulatory signals from higher to lower regions [29,30].

Recently, it was shown that a marker of cortical myelination (T1w/T2w) was associated with

the map of laminar-based hierarchy [27]. Together with findings on the association of cortical

cytoarchitecture and laminar projections [3,17,25,26], this suggests a potential link between

cortical microstructure and hierarchy. Yet, it is unclear how laminar thickness may scaffold

connections within the cortical hierarchy. Notably, in neuroscience, the term "hierarchy" has

been used to describe different phenomena [31], such as gradients of structural and functional
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organization) which is archived in Zenodo (https://

zenodo.org/record/8410965). Our code, data and

computing environment are published in a Docker

image (https://hub.docker.com/r/amnsbr/laminar_

organization), which can be used to reproduce our

results and to perform additional analyses on the

BigBrain data without having to install

dependencies. The analyses in this project were

performed predominantly using Python (version

3.9). BigBrain maps of cortical layers are available

at https://ftp.bigbrainproject.org/. Other data used

were either openly available online or acquired by

contacting the authors and can be accessed in the

project Github repository and Docker image. We

refer the reader to the text and the project Github

repository for the description and source of this

data.
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features [27,32], topological sequence of connections [33], asymmetry of directional connec-

tions indicating interregional control or dominance [34,35], or, as described above, the sorting

of laminar projection patterns and their physiological correlates [28,29,36–41]. Throughout

this paper, we will focus on the latter 2 definitions of hierarchy, that is, laminar-based and

asymmetry-based hierarchy.

Here, we aimed to study the organization of laminar profiles across the cortical mantle and

its relevance to cortical hierarchy and interregional connectivity to further understand the

relationship between human intracortical structure and function. To do so, we leveraged pre-

viously reported maps of the locations of cortical layers across isocortical regions of the Big-

Brain that were predicted using a convolutional neural network [42]. We extend previous

work investigating the spatial arrangement of cortical profiles based on microstructure [10],

through formally probing layer-profiles in this model, and describe a data-driven axis of lami-

nar thickness covariance by quantifying the interregional covariation of laminar thickness in

the BigBrain [9,42]. To do so, we employ dimensionality reduction techniques to identify the

principal axis along which laminar thickness covaries. We next evaluate how laminar thickness

covariation relates to hierarchical positioning of cortical regions based on resting-state effec-

tive connectivity in humans and anatomical layer-wise connections in macaques. We then

investigate whether similarity of laminar structure relates to the likelihood and strength of

structural and functional interregional connections and, last, explore its links to interregional

structural covariance and maturational coupling.

Results

BigBrain laminar thickness covariance and its principal axis

We used the maps of cortical layers based on the BigBrain, an ultrahigh-resolution postmortem
histological atlas of a 65-year-old male [9,42], to study laminar thickness covariation across the

cerebral cortex (Fig 1A). We first excluded agranular and dysgranular regions, such as cingu-

late, anterior insula, temporal pole, and parahippocampal cortices, in addition to allocortex,

given their lack of a clear 6-layer structure [14]. Cortical folding impacts the laminar structure,

such that layers inside of the fold are compressed and thicker, whereas layers outside of the

fold are stretched and thinner [43–46]. Accordingly, in the BigBrain, we observed that from

the sulci to the gyri, the relative thickness of superficial layers decreases (r = -0.28, pspin <

0.001) (S1A Fig). To reduce the local effects of curvature on laminar thickness, we smoothed

laminar thickness maps using a moving disk, which reduced this effect remarkably, as the cor-

relation of curvature with the relative thickness of superficial layers dropped to r = -0.13 (pspin

< 0.001) (S1A). Following, the laminar thickness maps were normalized by the total cortical

thickness at each cortical location to get the relative thickness. The maps of relative laminar

thickness were then parcellated using the Schaefer-1000 parcellation (Fig 1B and 1C). We next

calculated the laminar thickness covariance (LTC) matrix, showing the similarity of laminar

thickness patterns between cortical areas. The LTC matrix was created by calculating the pair-

wise partial correlation of relative laminar thickness between cortical locations (controlled for

the average laminar thickness across the isocortex), which was subsequently z-transformed

(Figs 1D and S2).

Principal component analysis was then applied to the LTC matrix to identify the axes or

gradients along which differences in the loadings indicates regional dissimilarity in the laminar

thickness pattern [47]. Here, we focused on the principal axis, LTC G1, which explained

approximately 28.1% of the variance in LTC (see the second and third axes in S3 Fig). LTC G1

spanned from the lateral frontal regions, towards medial frontal, temporal, and primary visual

areas, ending in the parietal and occipital regions (Fig 1E). This axis was correlated with the
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relative thickness of layers II (r = 0.42, pvariogram < 0.001), III (r = 0.73, pvariogram < 0.001), and

IV (r = 0.17, pvariogram < 0.001) positively, and layers V (r = -0.35, pvariogram < 0.001) and VI (r

= -0.82, pvariogram < 0.001) negatively, characterizing a shift from the dominance of infra- to

supragranular layers (Fig 1G).

The spatial map of LTC G1 was mostly robust to analytical choices, i.e., using unparcelled

data (17,386 vertices) as well as alternative parcellation schemes, covariance metrics,

dimensionality reduction techniques, sparsity ratios, and the inclusion of a-/dysgranular

regions (S4 Fig). In addition, evaluating the left and right hemispheres separately, we observed

high similarity of hemisphere-specific LTC G1 maps (r = 0.74, pvariogram < 0.001; S5 Fig).

Fig 1. Laminar thickness covariance and its principal axis. (a) The laminar thickness maps based on the postmortem
histological atlas of BigBrain. (b, c) For each cortical layer, the a-/dysgranular regions were excluded, the thickness map

was smoothed using a disc, normalized by the total thickness, and parcellated. (d) The LTC matrix was created by

calculating the pairwise partial correlation of relative thickness across layers and between regions. (e) The main axis of

laminar thickness covariance (LTC G1) was calculated by principal component analysis. (f) LTC G1 reorders the LTC

such that closer regions on this axis have similar LTC patterns. (g) LTC G1 characterized a shift of infra- to

supragranular dominance. The data and code needed to generate this figure can be found in https://zenodo.org/

record/8410965.

https://doi.org/10.1371/journal.pbio.3002365.g001
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While LTC was higher between physically proximal regions in an exponential regression

model (R2 = 0.16, pspin = 0.004), the spatial map of LTC G1 was robust to the effects of geodesic

distance (r = 0.97, pvariogram < 0.001) (S6 Fig). We also showed that LTC G1 created based on a

3-layer model with supragranular, granular, and infragranular layers was similar to the original

6-layer model (S7 Fig). Moreover, as an alternative data-driven approach of quantifying orga-

nization of laminar thickness variability, we used K-means clustering, which revealed 4 opti-

mal clusters of the regional laminar thickness profiles that were largely aligned with the LTC

G1 (F = 813.2, pspin < 0.001) (S8 Fig).

Last, we quantified intraregional homogeneity of laminar thickness patterns as the differ-

ence of intra- versus interregional vertex-level LTC across Brodmann areas. We observed

higher intraregional homogeneity of laminar thickness in areas such as BA17, BA45, and

BA47, in contrast to a higher heterogeneity in areas such as BA22 and BA23 (S9 Fig).

Laminar thickness covariation with laminar neuronal density and size

Having characterized the spatial variation of laminar thickness patterns, we next studied its

association with layer-/depth-wise measures of neuronal density and size in the BigBrain,

in addition to a map of cortical types, which is a theory-driven map of laminar structure.

By doing so, we aimed to understand how laminar thickness covaries with the other

cytoarchitectural features of laminar structure captured using data- and theory-driven

approaches.

Microstructural profile covariance (MPC) is based on the image intensity profiles in the

BigBrain cerebral cortex, reflecting variation of grey-matter density across cortical depth, and

is a data-driven model of cytoarchitecture that is explicitly agnostic to layer boundaries [10].

MPC was significantly correlated with our model of laminar thickness covariation, at the level

of matrices (r = 0.34, pspin < 0.001) and their principal axes (r = 0.55, pvariogram < 0.001) (S10

Fig). Extending this approach to the individual layers, we calculated layer-wise intensity pro-

files of the BigBrain cerebral cortex as the image intensity sampled at 10 equivolumetric sur-

faces across each layer’s depth, which we then averaged across the samples. Next, we calculated

laminar intensity covariance (LIC) and applied principal component analysis on the fused

matrices of LTC and LIC, as a model of laminar structure covariation that took both laminar

thickness and laminar grey-matter density into account. The principal axis of the laminar

thickness and intensity covariance (LTIC G1) was significantly correlated with LTC G1 and

showed a similar pattern (r = 0.84, pvariogram < 0.001) (Fig 2A). Along the LTIC G1, from ros-

tral to caudal regions, we observed significantly increased grey-matter density of all the layers

with layer IV showing the strongest effect (r = 0.75, pvariogram < 0.001) (Fig 2B). The image

intensity in the cell body–stained BigBrain atlas reflects an aggregate of neuronal size and den-

sity, and at a resolution of 20 μm, as individual neurons cannot be readily distinguished, these

components cannot be disentangled. To further explore variations of neuronal size and density

separately, we leveraged on a preliminary dataset of layer-wise neuron segmentations based on

higher-resolution (1 μm) 2D patches from selected cortical regions of the BigBrain (S11A Fig).

We observed variation of laminar neuronal features along LTIC G1, which was most promi-

nent in layer IV, showing increase of neuronal density (rho = 0.57, p< 0.001) and decrease of

neuronal size (rho = −0.62, p< 0.001) (Fig 2C). In addition, the ratio of average neuronal size

in layer III to layer V, as a proxy for externopyramidization, was increased along LTIC G1

(rho = 0.28, p = 0.01; Fig 2D). Last, we compared our data-driven model of laminar thickness

covariation with the map of cortical types, a theory-driven model of laminar structural varia-

tion [14], and observed no significant association of the maps (F = 6.41, pspin = 0.633) but sig-

nificantly higher within- than between-type average LTC in koniocortex (S12 Fig).
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Principal axis of laminar thickness covariance in association with cortical

hierarchy

We next sought to understand how the variation of laminar thickness across the isocortex

relates to the cortico-cortical directional connectivity and the resulting maps of asymmetry-

and laminar-based cortical hierarchy.

Asymmetry-based hierarchy was defined based on the group-averaged effective (directed)

connectivity of cortical regions based on resting-state fMRI. The effective connectivity matrix

(Fig 3A) shows the influence of each brain region on the activity of other regions during rest-

ing state, and was previously estimated using regression dynamical causal modelling (rDCM),

based on the data from 40 healthy adults [48–51]. Using the effective connectivity matrix, we

calculated the asymmetry-based hierarchy of each region as the difference between its

weighted out-degree (efferent strength) and in-degree (afferent strength). The asymmetry-

based hierarchy map was significantly correlated with LTC G1 (r = −0.39, pvariogram < 0.001),

indicating higher asymmetry-based hierarchy of infragranular-dominant regions (Fig 3B).

Accordingly, the asymmetry-based hierarchy map was significantly correlated with the relative

thickness of layers III and IV negatively, and layers V and VI positively (S13 Fig). Of note,

decomposing the asymmetry-based hierarchy into its components, we observed a significant

correlation of LTC G1 with the weighted in-degree (r = 0.60, pvariogram < 0.001) but not out-

degree (r = −0.01, pvariogram = 0.868) (S14 Fig). The asymmetry-based hierarchy map of a repli-

cation sample from the Human Connectome Project (HCP) dataset (N = 100) [50,52] was sim-

ilarly correlated with LTC G1 (r = −0.49, pvariogram < 0.001; S15 Fig). Note that for the above

Fig 2. Laminar thickness covariation with laminar neuronal density and size. (a) The principal axis of combined

laminar thickness and intensity covariance matrices (LTIC G1) and its correlation with LTC G1. (b) The pattern of

changes in the thickness and density of the 6 layers along the LTIC G1. (c) The correlation of laminar neuronal density

and size along the LTIC G1 among the available samples (S11 Fig). (d) The correlation of externopyramidization with

the LTIC G1. The data and code needed to generate this figure can be found in https://zenodo.org/record/8410965.

https://doi.org/10.1371/journal.pbio.3002365.g002
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analyses, we recalculated LTC and LTC G1 in the Schaefer-400 parcellation, as the effective

connectivity matrices obtained from the previous work by Paquola and colleagues [50] were

available in this parcellation.

In addition, we obtained the laminar-based hierarchy map of the macaque cerebral cortex

from a previous study [27]. Laminar-based hierarchy assumes higher hierarchical positions for

regions projecting FB and receiving FF connections, as quantified in tract-tracing studies

[28,29]. After aligning the LTC G1 map of the human cerebral cortex to the macaque’s cerebral

cortex in the left hemisphere [53], we observed that it was significantly correlated with the

map of macaque’s laminar-based hierarchy (r = −0.54, pvariogram < 0.001; Fig 3C). In addition,

the laminar-based hierarchy showed significant positive correlations with the relative thickness

of layers III and IV, and negative correlations with the relative thickness of layers V and VI

(S13 Fig). These findings indicated association of laminar thickness variation to 2 alternative

maps of cortical hierarchy based on the asymmetry of effective functional connectivity and the

laminar pattern of structural connections.

Laminar thickness covariance links to interregional connectivity

Having observed alignment of asymmetry- and laminar-based hierarchy with laminar thick-

ness variation, we next studied whether the similarity of regions in laminar thickness relates to

interregional connectivity in humans (Fig 4). We used the structural and functional connectiv-

ity (SC and FC) matrices (400 regions) averaged across a subgroup of the HCP dataset

(N = 207) [52,54], which was obtained from the ENIGMA (Enhancing NeuroImaging Genetics

through Meta-Analysis) Toolbox [55]. Using logistic regression, we observed higher LTC was

associated with the increased likelihood of SC (R2 = 0.081, pspin < 0.001). In addition, LTC

was correlated with the increased strength of FC (r = 0.16, pspin < 0.001). Neighboring regions

in the cerebral cortex are more likely to connect [56,57] and also tend to have similar structural

and functional features [58,59]. Here, we also observed this effect, with physically proximal

regions showing higher likelihood of SC (R2 = 0.400, pspin < 0.001) and strength of FC (R2 =

0.150, pspin < 0.001) on one hand, and higher LTC (R2 = 0.164, pspin = 0.004) on the other

hand. To understand whether LTC was associated with connectivity independent of distance

effects, we studied the association of LTC with long-range connectivity. We observed that LTC

Fig 3. Association of laminar thickness covariance and cortical hierarchy. (a) The group-averaged effective

connectivity matrix based on regression dynamic causal modeling. (b) Regional asymmetry-based hierarchy was

calculated as the difference between their weighted unsigned out-degree and in-degree and was significantly correlated

with the LTC G1. (c) Regional laminar-based hierarchy map of macaque (left hemisphere) was correlated with the LTC

G1 aligned to the macaque cerebral cortex. The data and code needed to generate this figure can be found in https://

zenodo.org/record/8410965.

https://doi.org/10.1371/journal.pbio.3002365.g003
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was not significantly associated with the likelihood of long-range SC (R2 = 0.006, pspin = 0.310)

or strength of long-range FC (r = 0.023, pspin = 0.331). This finding suggested interregional dis-

tance as an important covariate in the association of LTC with connectivity.

Laminar thickness covariance in association to covariance and

maturational coupling of cortical thickness

Thus far, we described how the laminar structure varies across the isocortex and evaluated its

relevance to cortical hierarchy and connectivity. Lastly, we sought to study potential links of

individual-level LTC to population-level interregional covariance and maturational coupling

of cortical thickness. Structural covariance matrix reflects the pattern of covariation in cortical

morphology (e.g., cortical thickness) across a population, which provides a model of shared

maturational and genetic effects between cortical regions [60–62]. We obtained the structural

covariance matrix based on the HCP dataset (N = 1,113) from our previous work [62] and

observed that it was significantly correlated with the LTC at the level of matrices (r = 0.33, pspin

< 0.001) and their principal axes (r = -0.55, pvariogram < 0.001). This may indicate shared mat-

urational and genetic effects between regions with similar laminar thickness (S16A Fig). Next,

we studied the association of LTC with the interregional maturational coupling matrix

(MCM), obtained from a previous study by Khundrakpam and colleagues [61]. This matrix

shows the similarity of regions in longitudinal cortical thickness changes over development in

a dataset of children and adolescents (N = 140, baseline age = 11.9 ± 3.6, followed up for

approximately 2 years) and was weakly correlated with the LTC matrix (r = 0.10, pspin < 0.001)

(S17 Fig).

Discussion

In the current study, we sought to extend previous quantitative studies on cytoarchitectural

variability of the cerebral cortex [1,10], by focusing on the layered structure of the cerebral cor-

tex, and evaluated its links to cortical connectivity. We used the map of cortical layers [42]

based on the ultrahigh-resolution atlas of BigBrain [9] to identify a principal axis of laminar

Fig 4. Association of laminar thickness covariance with connectivity. (a) The binarized SC matrix showing the

existence of intrahemispheric connections (left). SC likelihood was associated with increased LTC (center left) and

decreased GD (center right). SC likelihood among long-range connections was not significantly associated with LTC.

(b) The FC matrix showing the strength of intrahemispheric connections (left). FC strength was correlated with

increased LTC (center left) and decreased exponentially with GD (center right). FC strength among long-range

connections was not significantly correlated with LTC. The data and code needed to generate this figure can be found

in https://zenodo.org/record/8410965. FC, functional connectivity; GD, geodesic distance; LTC, laminar thickness

covariance; SC, structural connectivity.

https://doi.org/10.1371/journal.pbio.3002365.g004
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thickness covariation in the isocortex. We observed an axis of LTC showing a shift from the

dominance of supragranular towards infragranular layers thickness from the occipital to lateral

frontal areas. This shift was coaligned with the cortical hierarchy, defined based on either the

asymmetry of afferent and efferent connections in the human cerebral cortex or the laminar

pattern of connections in the macaque cerebral cortex. We also found a higher likelihood of

structural and strength of functional connections between regions with similar patterns of

laminar thickness, supporting the principle of "similar prefers similar" in cortical wiring and

the structural model of connectivity [3,17,22,26]. Finally, we showed that laminar thickness

covariation was linked to the population-level interregional covariance of total-depth cortical

thickness, suggesting potential shared maturational and genetic effects between regions with

similar laminar thickness.

The principal axis of laminar thickness covariation characterized an overall increase in the

relative thickness of supragranular layers from the lateral frontal to posterior occipital regions.

This was in line with a previous animal study that illustrated relative increase in the implied

column height of the upper layers along the rostro-caudal axis of the cerebral cortex in several

rodent and nonhuman primate species [63]. The same study also reported that from rostral to

caudal regions the density of neurons increases, as had been shown in a few other studies [64–

66], but additionally reported the increase to be more prominent in layers II to IV rather than

layers V to VI (without differentiating the individual layers in each layer group). In an inte-

grated model of combined laminar thickness and intensity variations, we observed a rostral to

caudal principal axis, similar to LTC G1, characterizing increased grey-matter density in all

the layers, most prominently in layer IV. Using a preliminary dataset of laminar neuronal fea-

tures in a few cortical regions of the BigBrain and based on automated labeling of 1-μm resolu-

tion images [67], we also observed increased neuronal density and decreased soma size along

the integrated axis of laminar thickness and intensity, with the most prominent association

found in layer IV. In addition, we observed an increased ratio of layer III to layer V average

neuronal size, which may indicate externopyramidization along this axis. Of note, our cellular-

level results should be interpreted with caution as they were limited to a small number of avail-

able samples located primarily at the two ends of LTC G1. Overall, from the lateral frontal

towards parietal and occipital regions, there is an increase in the prominence of the granular

and supragranular cortical layers relative to the infragranular layers, with respect to thickness,

and potentially neuronal density and soma size.

Previous theory-based approaches based on visual inspection of histological samples have

additionally described a sensory-fugal axis of laminar structure variation transitioning from

sensory to paralimbic regions [4,14]. This sensory-fugal axis, which was mapped qualitatively,

is overall different from the quantitative axis of laminar thickness covariation that we

described. This divergence may be attributed to the different approaches and the laminar fea-

tures studied. Here, we benefited from using a data-driven approach on more extensive and

denser histological data, but in doing so, we focused on the gross laminar features including

thickness and the average grey-matter density. On the other hand, theory-driven maps of lami-

nar structure such as cortical types are determined based on a variety of different laminar fea-

tures [14], yet some of the finer features such as the properties of individual neurons were

invisible to our model. This highlights the importance of future work on higher-resolution

images of BigBrain, enabling a data-driven model of laminar structure that incorporates both

gross and fine laminar features. Nevertheless, we observed that regions belonging to the same

cortical type may have variable laminar thickness patterns. This may indicate differential pro-

cesses underlying different features of laminar structure and, more broadly, cytoarchitecture.

In fact, a previous data-driven model of MPC in the BigBrain revealed 2 main axes of cytoarch-

itectural variability: a rostro-caudal and a sensory-fugal axis [10]. Beyond cytoarchitecture,
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additional features such as myeloarchitecture and receptor architecture vary across regions

and such changes may be distinct from cytoarchitectural variation of laminar structure [68]. A

recent study on the large-scale variation of layer-wise receptor densities in the human cerebral

cortex based on autoradiography [69] reported a "natural axis" of receptor distribution [70].

This axis spanned from association areas with higher infragranular AMPA density towards

sensory areas with pronounced supragranular NMDA density as well as a higher diversity of

receptor densities, which was more prominent in infragranular layers. The different axes that

we highlighted here may reflect diverging neurobiological routes organizing the human cere-

bral cortex. Indeed, in our previous work on group-level cortical thickness covariance and

genetic correlations, we observed a rostral-caudal axis, which was suggested to reflect differen-

tiation between cortical hierarchy and maturational effect, and a ventral-dorsal axis reflecting

microstructural pattern associated with the theory of dual origin [62,71].

Over the past century, there has been a debate over the optimal approach and level of gran-

ularity to study cytoarchitectural variability of the cerebral cortex [1,72]. Previous studies have

ranged from focusing on fine cytoarchitectural details and identification of sharp borders

between regions [2,4] to classification of the cerebral cortex into broader categories with

grossly comparable cytoarchitecture [4,14]. On the other hand, some authors have argued

against cortex-wide existence of sharp boundaries and rather focused on the gradual variations

across the cerebral cortex [5,72]. We should note that, here, we refrained from making any

assumptions on the (non)existence of sharp borders or a level of granularity as we aimed to

provide a whole-cortex layer covariance organizational axis. We argue that the topology of

cytoarchitectural variability of the cerebral cortex ranges from abrupt to more gradual changes

[1,72]. Accordingly, the LTC G1 map consisted of a combination of sharp borders and gradual

transitions but was more dominated by gradual changes. We observed the LTC G1 map was

consistent regardless of whether laminar thickness data were averaged into parcels or were

analyzed at the level of vertices. This highlights that LTC G1 captures broader variations of

laminar thickness across regions, in contrast to the finer local and intraregional variations.

Focusing on the local variations, we observed a varying level of intraregional heterogeneity of

laminar thickness across regions, as quantified by the average within- versus between-regional

LTC. Specifically, primary visual area and orbital parts of inferior frontal gyrus were most

homogeneous structures, whereas regions in temporal and parietal lobes showed high hetero-

geneity of laminar thickness. Indeed, recent work is increasingly showing patterns of intrare-

gional cortical heterogeneity such as stripes of differential myelination in V2 [73], inter-

effector areas in M1 [74] or differential gene expression in V1 associated with cortical layout of

eccentricity [75]. Future work may uncover the spatial pattern and nature of such intraregional

heterogeneities in laminar structure and use data-driven approaches to study the organization

of borders and abrupt alterations of layer thickness and associated cytoarchitecture variation.

We observed that cortical hierarchy, defined using laminar pattern of connections in

macaques and asymmetry of effective connections in humans, was aligned with the main axis

of LTC. This finding extends previous observations on the link between laminar-based cortical

hierarchy and microstructure [18,27]. The laminar pattern of corticocortical connections is

suggested to relate to the gradation of cortical microstructure (the "structural model")

[3,17,25,26] or the physical proximity of regions (the "distance rule model") [28,29]. These

models suggest that the laminar connections of cytoarchitecturally similar or proximal regions

are mostly lateral, but the pattern of connections become increasingly FF/FB as regions are

more dissimilar in cytoarchitecture or are more distant [3,17,25,28,29,76]. Here, we observed

that LTC G1 was aligned with the laminar-based hierarchy map in macaques, and asymmetry-

based hierarchy map of humans. Specifically, regions towards the infragranular-dominant end

of the axis were positioned higher in the cortical hierarchy than the supragranular-dominant
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regions. This observation potentially relates to the laminar patterns of FF and FB connections

along the laminar-based hierarchy, as observed in tract-tracing studies [27–29,77]. FF connec-

tions originate from the supragranular layers II and III and target layer IV of a higher-order

region, whereas FB connections originate from infragranular layers V and VI and terminate

outside layer IV of a lower-order region [28,29,36,38,41], which may reciprocate FF connec-

tions [78]. In addition, lateral connections originate from supra- and infragranular layers and

terminate across all the layers, connecting regions at a similar level [38]. Of note, more detailed

accounts of neuronal projections have revealed additional patterns of FF and FB connections

[28,29,37,39,79], such as a FB projections originating from layer II and FF projections originat-

ing from layers V and VI [28,29], or FF and lateral projections targeting layer I [37]. The FF

and FB projections are thought to have distinct physiological roles, that is, FF projections carry

high-dimensional (sensory) information up the hierarchy, whereas FB projections propagate

context and modulate the function of lower-order regions [29,30,80]. Interestingly, the FF and

FB connections are, respectively, associated with gamma and alpha/beta rhythms

[29,30,40,81–83], which, in turn, show regional and laminar specificity, with more prominent

gamma rhythms in early visual areas and superficial layers and beta rhythms in fronto-parietal

areas and infragranular layers [29]. In fact, the asymmetry of FF and FB projections inferred

based on magnetoencephalography has been previously used to map the cortical hierarchy of

visual areas in humans [40]. In our comparison of LTC G1 with the laminar-based hierarchy

map, we performed a cross-species comparison, yet we should note the limitations of this

approach given the differences of humans and nonhuman primates in cortical cytoarchitecture

[84] and connectivity [53,85]. There is some evidence based on cortical oscillations (c.f. above)

and the pattern of intralaminar connectivity estimated using layer-based functional magnetic

resonance imaging [86], which indicate increased FB dominance towards rostral regions in

humans as well. Moreover, the human map of cortical hierarchy that we defined based on the

asymmetry of effective connections showed a similar association with LTC G1 as the

macaque’s laminar-based hierarchy. However, the definitions of asymmetry-based and lami-

nar-based hierarchy are different [31] and may result in different maps, as was previously

shown in the frontal cortex of macaques [35]. Layer-wise functional imaging is a promising

approach that can be used to further investigate the association of laminar structure with the

pattern of laminar connections and their functional implications in humans [86]. For example,

recent work using layer-based functional magnetic resonance imaging could show that specific

cortical layers are involved in different aspects of memory processing in the dorsolateral pre-

frontal cortex [87]. Such differences in cognitive processing may be rooted in the connectivity

profiles associated with different layer depths that are embedded in the laminar structure.

We found that the similarity of regions in their laminar thickness patterns was associated

with an increased likelihood of structural and strength of functional connections. This finding

supports a principle of the structural model for connectivity that relates cytoarchitectural simi-

larity to connectivity [3,17,20]. Our finding was in line with studies showing higher likelihood

or strength of connections between regions with similar microstructure, based on the com-

plexity of pyramidal neurons [23], neuronal density [22,24], or cortical types [19–22]. In addi-

tion, and of particular relevance to our findings, interareal connectivity in the human cerebral

cortex has been linked to the MPC of the BigBrain [88–90]. Specifically, connected regions

were reported to have higher similarity in their microstructural profiles compared to noncon-

nected profiles, and MPC correlated with the connectivity strength [90]. Furthermore, a previ-

ous study used generative modeling of connectivity and showed that including both

microstructural profiles covariance and wiring cost in the model, as opposed to including wir-

ing cost alone, leads to a better fit [88]. In addition, a low-dimensional coordinate space of the

human cerebral cortex calculated by incorporating interregional SC, physical proximity, and
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the BigBrain’s microstructural covariance was shown to predict FC with a high accuracy [89].

In our study, we extend these findings and show that the probability and strength of connectiv-

ity additionally relates to the laminar thickness profiles in the BigBrain. Using an alternative

approach, another recent study focused on the interrelation between connectivity and the

absolute thickness of individual layers in the BigBrain and showed that regions with thicker

layer IV are less likely to connect to regions with higher thickness in layers III, V, and VI [91].

Overall, these findings are in line with the wiring principle of "similar prefers similar"

[21,22,88,91], which has been observed not only with the similarity of microstructure but also

in association to gene expression patterns [92–96], neurotransmitter receptor profiles [97],

and macroscale morphometry [91,98]. An alternative model of connectivity is the "distance

rule model," which proposes physical proximity as the main predictor of connectivity as a

result of wiring cost minimization [56,57,99–101]. It can be argued that the increased connec-

tivity of similar regions may be an epiphenomenon of the distance rule, as nearby cortical

regions tend to be similar [58,59]. However, it has been shown that the distance rule alone

does not fully account for the connectome architecture. For example, simulated connectomes

were shown to better resemble the empirical connectomes when interregional similarity was

considered in addition to the wiring cost reduction [88]. Recent studies on tract-tracing data

have shown that both similarity of cortical types and physical proximity can predict likelihood

of structural connections [25,76], though in most species, cytoarchitectonic similarity was

related to connectivity, above and beyond physical proximity [76]. Nevertheless, in our study,

long-range connections were not significantly associated with similarity of laminar thickness

profiles, suggesting distance as an important covariate. A decreased association of microstruc-

tural similarity and connectivity among long-range connections has been also observed in pre-

vious studies [90]. This raises the question of how long distance connections are encoded in

layer-based architecture of the human cerebral cortex. Possibly, the uncoupling of layer simi-

larity and long-distance connections could be in part driven by an uncoupling through activ-

ity-dependent organization, linked to the tethering hypothesis [102]. Further work integrating

connectivity with layer-based approaches may help to further understand the interrelationship

between short- and long-distance connections and cortical architecture.

Having studied the what and why questions of LTC, we also explored the question of how
the (adult) laminar structure variations may come about. A central hypothesis on the origins

of laminar structure variability proposes that different developmental trajectories across

regions may relate to the gradation of laminar structure [17,22,103]. There are regional differ-

ences in neurogenesis timing and cell cycle duration throughout fetal development [104–110],

or region- and layer-specific neuronal death in early postnatal stages [111], which may result

in the specification of regions and their cytoarchitectural variability. For example, outer sub-

ventricular zone, a germinal zone of the developing cortex that is thought to generate the

expanded primate granular and supragranular layers, is denser and deeper in area 17 com-

pared to area 18 and has an increased rate of cell cycles, leading to a marked expansion of the

upper layers in this region [104,105,109,112]. In the current study, we observed that higher

interregional LTC was linked to higher population-level interregional structural covariance,

which potentially indicates shared genetic and maturational effects among regions [60,62]. In

addition, we observed a significant but weak correlation of LTC with subject-level longitudinal

maturational coupling of cortical regions during childhood and adolescence [61] and found

distinct pre- and postnatal developmental trajectories of genes overexpressed at the two ends

of LTC G1 (S1 Text). Importantly, our current findings only indirectly suggest developmental

relevance of laminar thickness organization. For example, the transcriptomics analysis

involves mere spatial colocalization of the LTC G1 with the gene expression maps and the

developmental enrichment of those genes and, therefore, lacks mechanistic insights on the
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complex gene regulatory mechanisms underlying regional differences of laminar structure.

We refer the interested reader to the rich literature on cortical arealization and its genetic regu-

lation [113–116]. Consequently, further research will be needed to study the developmental

relevance of laminar structure variability by investigating postmortem histology or in vivo
markers of laminar structure [10,117,118] at different stages of development to shed light on

the maturation of laminar structure and its regional variability.

Limitations and future directions

In this study, we used the whole-brain map of cortical layers from a single individual, the Big-

Brain [9,42]. This is currently the only whole-brain and high-resolution map of cortical layers

available, and until a similar atlas becomes available, it is unclear how much our findings

would generalize to the other individuals. Of note, when we compared left and right hemi-

spheres of the same individual, we observed similar principal axes, which hints at intraindivi-

dual interhemispheric consistency of the principal axis of LTC. In addition to generalizability,

an intriguing question for the future research is the degree to which laminar structure varies

across individuals, and how it might relate to behavior and function, and its changes through

development. This highlights the importance of future studies on in vivo estimation of laminar

structure based on high-resolution imaging.

We studied LTC using a 6-layer model of the isocortex, previously created using a convolu-

tional neural network [42]. However, it is well known that some isocortical areas have fewer or

a greater number of layers, due to the individual layers being absent or being divided into sub-

layers [1,4,119]. For example, area V1 is characterized by a prominent layer IV that is divided

into 3 sublayers, and on the other hand, layer IV is unclear in agranular regions [4,14,119]. To

avoid forcing a 6-layer model in regions with fewer number of layers and less clear layer

boundaries, we excluded a- and dysgranular regions from our analyses. Exclusion of these

regions limits the generalizability of our findings to the whole extent of the isocortex, yet we

showed that the LTC G1 map was consistent when these regions are included. In addition, to

further explore the impact of a priori defined number of layers, we used a 3-layer model of

supragranular, granular, and infragranular layers and observed a similar principal axis. This

indicates that LTC G1 captures variations of thickness in the supragranular, granular, and

infragranular layer groups rather than the individual layers within each group. Future research

may account for the regional differences in the number of layers using more fine-grained mod-

els of intracortical structure where the number of layers in each location is determined based

on the data rather than being fixed. This would enable formally testing the optimal architecture

of cortical depth and enables inclusion of a-/dysgranular areas in a more comprehensive

model of laminar structure in the cerebral cortex.

Conclusions

In sum, we described an axis of laminar thickness covariation in the BigBrain, which charac-

terized a structural shift from supra- to infragranular layer thickness. This shift was coaligned

with the asymmetry- and laminar-based maps of cortical hierarchy, with infragranular-domi-

nant regions positioned higher across the hierarchy. In addition, regional variation of laminar

thickness in the isocortex was related to interregional connectivity, although not among the

long-range connections. Future work may help further understand the relevance of laminar

structural variation to human brain function across the lifespan, ultimately providing insights

into how the anatomy of the human brain supports human cognition.
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Materials and methods

The current research complies with all relevant ethical regulations as set by The Independent

Research Ethics Committee at the Medical Faculty of the Heinrich Heine University Duessel-

dorf (study number 2018–317). We used previously published data from various sources that

have received ethics approval from their respective institutions.

BigBrain maps of laminar thickness

BigBrain is a 3D histological atlas of a postmortem human brain (male, 65 years), which is cre-

ated by digital reconstruction of ultrahigh-resolution sections (20 μm) stained for cell bodies,

and is publicly available at https://ftp.bigbrainproject.org/ [9]. The cerebral cortex of the Big-

Brain was previously segmented into 6 layers, using a convolutional neural network trained on

the samples manually segmented by expert anatomists [42]. We used the BigBrain laminar

thickness data in the bigbrain surface space, which was included in the BigBrainWarp

toolbox (https://bigbrainwarp.readthedocs.io) [120]. The BigBrain surface mesh and laminar

thickness maps were downsampled from approximately 164 k to approximately 10 k points

(vertices) per hemisphere to reduce the computational cost of the analyses. The surface mesh

was downsampled by selecting a reduced number of vertices and retriangulating the surface

while preserving the cortical morphology, and the surface data (e.g., laminar thickness) were

downsampled by assigning the value of each maintained vertex to the average value of that ver-

tex and its nearest removed vertices [120].

BigBrain layer-specific distribution of neurons

Layer-specific neuronal density and size in selected tissue sections of the BigBrain isocortex at

the resolution of 1 μm was obtained from the Python package siibra (https://siibra-python.

readthedocs.io/en/latest). This dataset was created by manual annotation of cortical layers and

automatic segmentation of neuronal cell bodies (https://github.com/FZJ-INM1-BDA/

celldetection) [67]. It contains the data for 111 tissue sections, corresponding to 80 vertices on

the BigBrain downsampled surface.

Laminar thickness covariance

We first excluded regions of the brain with the agranular or dysgranular cortical type due to

the less clear definition of the layer boundaries in these regions [14]. The map of cortical types

was created by assigning each von Economo region [121] to one of the 6 cortical types, includ-

ing agranular, dysgranular, eulaminate I, eulaminate II, eulaminate III, and koniocortex, based

on manual annotations published by Garcı́a-Cabezas and colleagues [14]. Next, for each indi-

vidual layer and in each hemisphere, the thickness maps were smoothed using a moving disk

with a radius of 10 mm to reduce the local effects of curvature on laminar thickness. Specifi-

cally, the cortical surface mesh was inflated using FreeSurfer 7.1 (https://surfer.nmr.mgh.

harvard.edu/) [122], and for each vertex, a disk was created by identifying its neighbor vertices

within a Euclidean distance of 10 mm on the inflated surface, and a uniform average of the

disk was calculated as the smoothed laminar thickness at that vertex. Next, to obtain the rela-

tive laminar structure at each vertex, laminar thicknesses were divided by the total cortical

thickness. Finally, the maps of laminar thickness were parcellated using the Schaefer

1000-region atlas [123], of which 889 regions were outside a-/dysgranular cortex and were

included in the analyses. The parcellation was performed by taking the median value of the

vertices within each parcel. Alternative parcellation schemes, including the Schaefer

400-region [123], Desikan-Killiany (68 regions) [124], AAL (78 cortical regions) [125], AAL
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subdivided into 1,012 regions [126], and the HCP Multi-Modal Parcellation (360 regions)

[127], were used to show robustness of findings and to enable associations of LTC with the

data available in specific parcellations. In addition, we used a homotopic local-global parcella-

tion by Yan and colleagues for the comparison of left and right hemispheres [128]. Of note, the

parcellation maps that were originally in the fsaverage space were transformed to the bigbrain
space, based on multimodal surface matching and using BigBrainWarp [120,129]. One parcel-

lation (AAL) was originally available in the civet space and was transformed to fsaverage using

neuromaps [130] before being transformed to the bigbrain space. In addition to the different

parcellation schemes, to further evaluate robustness of our findings to the effect of parcellation,

the analyses were also repeated on unparcellated data at the level of vertices.

LTC between the cortical regions was calculated by performing pairwise partial correlation

of relative laminar thicknesses, while controlling for the average laminar thickness across the

isocortex, to identify greater-than-average covariance. The partial correlation coefficients were

subsequently Z-transformed, resulting in the LTC matrix. We also used alternative covariance

metrics including full Pearson correlation as well as Euclidean distance in the robustness

analyses.

Geodesic distance

The geodesic distance between 2 points on the cortical surface refers to the length of the short-

est path between them on the mesh-based representation of the cerebral cortex. Using the

Connectome Workbench (https://www.humanconnectome.org/software/connectome-

workbench) [131], we calculated the geodesic distance between the centroids of each pair of

parcels, where the centroid was defined as the vertex that has the lowest sum of Euclidean dis-

tance from all other vertices within the parcel. The geodesic distance calculation was adapted

from its implementation in micapipe (https://micapipe.readthedocs.io) [132]. To evaluate

whether our findings were robust to the effect of geodesic distance, in some analyses, the effect

of geodesic distance on LTC was regressed out using an exponential regression.

Cortical folding

Mean curvature was calculated at each vertex of the midcortical surface based on the Laplace–

Beltrami operator using pycortex (https://gallantlab.github.io/pycortex/) [133]. To compute

the curvature similarity matrix, for each pair of parcels, we estimated their similarity in the dis-

tribution of mean curvature across their vertices. This was achieved by calculating Jensen–

Shannon divergence of their respective probability density functions.

Microstructural profile covariance and laminar intensity covariance

The image intensity of the cell body–stained BigBrain atlas reflects neuronal density and some

size, and its variation across cortical depth at each cortical location is referred to as "cortical

profile" or "microstructural profile." We obtained the microstructural profiles sampled at 50

equivolumetric surfaces along the cortical depth from the BigBrainWarp toolbox [120] and

reproduced the histological MPC matrix as previously done by Paquola and colleagues

[10,120]. The microstructural profiles were first parcellated by taking the median. Subse-

quently, MPC matrix was calculated by performing pairwise partial correlations of regional

microstructural profiles, controlled for the average microstructural profile across the

isocortex.

In addition, we created layer-specific cortical profiles by sampling the BigBrain image

intensity at 10 equivolumetric surfaces along the depth of each layer, which were then
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averaged, creating 6 laminar intensity maps. Subsequently, an LIC matrix was created similar

to the approach described above for the LTC and MPC matrices.

Effective connectivity

We obtained the effective connectivity matrix from a prior study [50] based on the microstruc-

ture informed connectomics (MICs) cohort (N = 40; 14 females, age = 30.4 ± 6.7) [51] as well

as a replication sample from the minimally preprocessed S900 release of the HCP dataset

(N = 100; 66 females, age = 28.8 ± 3.8) [52,54]. The effective connectivity matrix between

Schaefer 400 parcels was estimated based on rs-fMRI scans using regression dynamic causal

modelling [48,49], freely available as part of the TAPAS software package [134]. This approach

is a computationally highly efficient method of estimating effective, directed connectivity

strengths between brain regions using a generative model.

The effective connectivity matrix was used to estimate asymmetry-based hierarchy, which

assumes that hierarchically higher regions tend to drive the activity in other regions rather

than their activity being influenced by them. Therefore, given the effective connectivity matrix,

after converting it to an unsigned matrix, we calculated the regional asymmetry-based hierar-

chy as the difference of the weighted out-degree and in-degree of each region, assuming higher

hierarchical position for regions with higher efferent than afferent strength.

Macaque map of cortical hierarchy

The macaque map of laminar-based hierarchy was obtained from a previous work by Burt and

colleagues [27]. Briefly, this map was created by applying a generalized linear model to the laminar

projection data, based on the publicly available retrograde tract-tracing data (http://core-nets.org)

[28,77], resulting in hierarchy values in 89 cortical regions of macaque’s M132 parcellation [135–

137]. To compare the macaque cortical map of laminar-based hierarchy to the human maps of

LTC G1 and thickness of individual layers, we aligned these maps to the macaque cerebral cortex

using the approach developed by Xu and colleagues [53]. Specifically, we first transformed the

unparcellated human maps from the bigbrain space to the human fs_LR space using BigBrain-

Warp [120], mapped it to macaque fs_LR space using the Connectome Workbench, and, finally,

parcellated the transformed map in macaque fs_LR space using M132 parcellation.

Structural and functional connectivity

The group-averaged FC and SC matrices based on a selected group of unrelated healthy adults

(N = 207; 124 females, age = 28.7 ± 3.7) from the HCP dataset [52,54] were obtained from the

publicly available ENIGMA Toolbox (https://github.com/MICA-MNI/ENIGMA) [55]. We

fetched the connectivity matrices created in the Schaefer 400 parcellation. We refer the reader

to the ENIGMA Toolbox publication and online documentations for the details on image

acquisition and processing. Briefly, the FC matrix for each subject was generated by computing

pairwise correlations between the time series of all cortical regions in a resting-state fMRI

scan, which, after setting negative correlations to zero and Z-transformation, were aggregated

across the participants. The SC matrices were generated from preprocessed diffusion MRI data

using tractography performed with MRtrix3 [138] and were group-averaged using a distance-

dependent thresholding procedure.

Structural covariance, genetic correlation, and environmental correlation

We obtained the structural covariance matrix, as well as the interregional genetic and environ-

mental correlation matrices from our previous work [62]. The structural covariance was based
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on the cortical thickness values of the Schaefer-400 parcels in each individual and was com-

puted by correlating the cortical thickness values between regions and across HCP participants

(N = 1,113; 606 females, age = 28.8 ± 3.7) [52,54], while controlling for age, sex, and global

thickness. Twin-based bivariate polygenic analyses were then performed to decompose the

phenotypic correlation between cortical thickness samples to genetic and environmental

correlations.

Maturational coupling

We obtained the group-averaged matrix of maturational coupling from previous work by

Khundrakpam and colleagues based on a sample of children and adolescents (N = 141; 57

females, age at baseline = 11.9 ± 3.6) who were scanned 3 times during a 2-year follow-up [61].

In this study, subject-based maturational coupling was calculated between 78 cortical regions

of the AAL parcellation as their similarity in the slope of longitudinal changes in cortical thick-

ness across 3 time points. Subject-based maturational coupling matrices were subsequently

pooled into a group-averaged matrix.

Dimensionality reduction of matrices

We applied the gradients approach implemented in the BrainSpace toolbox to identify the

main axes (gradients) along which cortical regions can be ordered with regard to their similar-

ity in the input matrix [47]. In this approach, to reduce the influence of noise on the embed-

ding, the matrix is first sparsified according to the parameter p (default: 0.9), by zeroing out

the p lowest-ranking cells in each row of the matrix. Next, the normalized angle similarity ker-

nel function is used to compute the affinity matrix. Subsequently, principal component analy-

sis, a linear dimensionality reduction technique, is applied to the affinity matrix to estimate the

macroscale gradients. Of note, to evaluate the robustness of our findings to analytical choices,

we repeated this approach with alternative values of sparsity, as well as other, nonlinear

dimensionality reduction techniques including Laplacian eigenmaps and diffusion map

embedding. As the signs of gradient values are arbitrary and for consistency in interpretation,

the gradients in these alternative configurations were flipped if needed to match the sign of the

original gradient values. The gradients approach was performed on the matrices of LTC, MPC,

and structural covariance. In addition, the gradients approach was applied to the fused matri-

ces of LTC and LIC. Following a previous work [89], the matrix fusion was performed by

rank-normalizing both matrices, followed by rescaling LIC ranks to that of LTC, and then hor-

izontally concatenating the matrices.

K-means clustering

We additionally used K-means clustering on the relative laminar thickness data to create a dis-

crete map of laminar structure variability, as an alternative to the continuous map created

using the gradients approach. The optimal number of clusters was identified using the yellow-
brick package [139], by iteratively increasing the number of clusters, measuring the distortion

score for each number of clusters, and identifying the elbow, after which adding more clusters

does not considerably improve the model performance. The K-means clustering was per-

formed using the scikit-learn package [140].

Intraregional heterogeneity

The vertex-level LTC matrix was calculated in the downsampled bigbrain surface by using ver-

tex-level smoothed laminar thickness patterns. Next, for every region, defined using the
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Brodmann map, we calculated the average LTC of all vertex pairs within the same region, as

well as pairs with other regions. We quantified intraregional heterogeneity of laminar thick-

ness as the difference of average within- versus between-region LTC.

Matrix associations

Matrix correlations. The Pearson correlation of any 2 given matrices was calculated after

realigning the matrices to each other and removing the edges that were undefined in either

matrix, across the edges in the lower triangle of the matrices. The null hypothesis testing for

matrix correlations were performed nonparametrically, by creating a null distribution of cor-

relation values calculated after random spinning of the parcels in one of the matrices for 1,000

permutations. The spinning of parcels was performed using the ENIGMA

Toolbox [55,141,142].

Association to geodesic distance. The effect of geodesic distance on continuous matrices

was evaluated using an exponential fit, and its statistical significance was assessed based on

pseudo R2 and using spin tests, similar to the approach used for matrix correlations.

Association of LTC to the cortical types. The average LTC for pairs of parcels within the

same cortical type was calculated and compared to the average LTC for pairs of parcels that

belonged to different cortical types using permutation testing. In each permutation

(n = 1,000), we spun the parcels in the LTC matrix, as described above, and calculated the dif-

ference of average LTC for the edges in the same versus different cortical types (for each corti-

cal type, as well as across all cortical types), resulting in the null distribution of LTC differences

within/between cortical types, which was used to calculate the p-values.

Association of LTC and geodesic distance to the connectivity probability. The SC

matrix was binarized and logistic regressions were used to evaluate how connectivity probabil-

ity relates to LTC and geodesic distance. The logistic regressions were performed using stats-
models package (https://www.statsmodels.org/stable/index.html) [143]. In each model, pseudo

R2 was reported and its statistical significance was assessed nonparametrically, using 1,000

spin permutations of the LTC or geodesic distance matrix, as described above. The continuous

changes in probability of connectivity as a function of LTC and geodesic distance were visual-

ized by segmenting all the edges into 200 nonoverlapping windows, sorted by the value of pre-

dictor, and plotting the probability of connectivity within each window, which was calculated

by dividing the number of connected edges by the total number of edges within the window.

Surface associations

Correlation of continuous maps. Brain regions that are closer tend to be more similar in

their features compared to spatially distant regions, due to the spatial autocorrelation [58,59].

In null-hypothesis testing of surface data correlations, it is important to take the spatial auto-

correlation into account and evaluate the correlation coefficients against a null model in which

the spatial autocorrelation is preserved [59]. Therefore, we assessed the statistical significance

for the correlation of surface maps using BrainSMASH (Brain Surrogate Maps with Autocor-

related Spatial Heterogeneity) (https://brainsmash.readthedocs.io/en/latest/) [59,144]. In this

approach, surrogate surface maps are simulated with spatial autocorrelation that is matched to

spatial autocorrelation in the original surface map, through creating random maps whose var-

iograms are approximately matched to that of the original map. Of note, a few number of the

reported correlations were performed between unparcellated data and at the level of vertices,

and for these cases, we used an alternative approach of creating surrogates that preserve spatial

autocorrelation, namely, by randomly spinning the sphere representation of the cortical mesh

using the BrainSpace toolbox [47,141]. Subsequently, for the statistical testing of the
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correlation between surface maps X and Y, we generated 1,000 surrogates of X and created a

null distribution by calculating the correlation coefficient of each X surrogate with the original

Y and compared the original correlation coefficient against this null distribution to calculate

the p-value. Furthermore, for correlation of LTC G1 with cellular laminar features, given the

sparsity of samples in the latter (N = 80 vertices), we used Spearman correlation.

Association of continuous and categorical surface maps. The association of categorical

surface maps with the continuous maps was assessed using one-way ANOVA, combined with

post hoc independent t tests, which were corrected for multiple comparisons using Bonferroni

correction. These tests were performed using spin permutation, by spinning the parcels of the

continuous map and creating null distributions based on 1,000 spun surrogates. The spinning

of parcels was performed using the ENIGMA Toolbox [55,141,142]. To visualize continuous-

categorical associations, we either plotted the proportion of each category within each bin of

the continuous variable, or used raincloud plots [145].

Supporting information

S1 Fig. Effect of curvature on laminar thickness and laminar thickness covariance before

and after smoothing. (a) The relative thickness of superficial layers decreases from sulci (neg-

ative curvature) to gyri (positive curvature) (left). After smoothing of the laminar thickness

maps, the effect of curvature on laminar thickness was reduced remarkably, and the correla-

tion of curvature with the relative thickness of superficial layers decreased (right). (b) The

matrix shows the similarity of parcels in their distribution of curvature values based on Jen-

sen–Shannon divergence (left). The correlation of curvature similarity matrix with the laminar

thickness covariance (LTC) matrix decreased after smoothing (right). (c) The curvature map

(left) was significantly correlated with the principal axis of LTC (LTC G1), but the effect

decreased after smoothing (right). The data and code needed to generate this figure can be

found in https://zenodo.org/record/8410965.

(TIF)

S2 Fig. Laminar thickness covariance for regions of interest. The laminar thickness covari-

ance maps (left hemisphere) are shown for the centroid vertex of selected regions including

the left primary visual cortex (V1), primary auditory cortex (A1), primary somatosensory cor-

tex (S1), Broca’s area, frontal pole, and primary motor cortex (M1). The data and code needed

to generate this figure can be found in https://zenodo.org/record/8410965.

(TIF)

S3 Fig. The first 3 axes of laminar thickness covariation. Left top: The first 3 gradients collec-

tively explained 63.7% of the variance in laminar thickness covariance (LTC). Left bottom: The

scatter plot shows the position of brain regions in the gradient space of G1, G2, and G3. Cen-

ter: LTC G1, G2, and G3 projected on cortical surface show regional variation of laminar

thickness across different axes. Right: The pattern of relative laminar thickness variation along

the 3 main axes. The data and code needed to generate this figure can be found in https://

zenodo.org/record/8410965.

(TIF)

S4 Fig. Robustness of the principal axis of laminar thickness covariance to analytical

choices. The principal axis of laminar thickness covariance (LTC G1) spatial map was robust

to the analytical choices. (a-d) The maps of LTC G1 (left hemisphere) created using alternative

analytical choices and their correlation with the original gradient are shown. (e) The correla-

tion of gradients created using different degrees of sparsity applied to the laminar thickness

covariance matrix, from 0 to 0.9. The data and code needed to generate this figure can be
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found in https://zenodo.org/record/8410965.

(TIF)

S5 Fig. Hemisphere-specific axes of laminar thickness covariance. Laminar thickness covari-

ance (LTC) and its principal axis was calculated separately on the left and right hemispheres.

The principal axes of left and right hemispheres were significantly correlated. The data and

code needed to generate this figure can be found in https://zenodo.org/record/8410965.

(TIF)

S6 Fig. Association of laminar thickness covariance with geodesic distance. Geodesic dis-

tance (left) showed an inverse exponential relationship with the laminar thickness covariance,

indicating similar laminar thickness patterns between neighbor regions (center). The principal

axis of LTC (LTC G1) after regressing out the effects of geodesic distance (right) was signifi-

cantly correlated with the original LTC G1 (r = 0.97, pvariogram < 0.001), indicating robustness

of LTC G1 to geodesic distance. The data and code needed to generate this figure can be found

in https://zenodo.org/record/8410965.

(TIF)

S7 Fig. Principal axis of laminar thickness covariance using the 3-layer model. The princi-

pal axis of laminar thickness covariance (LTC G1) created using a 3-layer model including

supragranular (I-III), granular (IV), and infragranular (V-VI) layers was correlated with the

original 6-layer model LTC G1 and similarly described a shift from the dominance of infragra-

nular to granular and supragranular layers. The data and code needed to generate this figure

can be found in https://zenodo.org/record/8410965.

(TIF)

S8 Fig. K-means clustering of cortical regions based on relative laminar thickness. (a) The

distortion score of K-means clustering for the different number of clusters. The optimal num-

ber of clusters based on the elbow method was selected as 4. (b) Cluster of regions based on rel-

ative laminar thickness. (c) Laminar thickness profiles of brain regions in each cluster. (d) The

principal axis of laminar thickness covariance (LTC G1) values were significantly different

between the clusters (F = 813.1, pspin < 0.001). Post hoc spin tests (Bonferroni corrected)

showed significantly different LTC G1 values between all pairs of clusters except 2 and 3. The

data and code needed to generate this figure can be found in https://zenodo.org/record/

8410965.

(TIF)

S9 Fig. Intraregional homogeneity of laminar thickness covariance. Laminar thickness

covariance (LTC) homogeneity was calculated as the difference of average LTC between verti-

ces that belong to the same region (LTCintra) versus other regions (LTCinter). Here, we used

Brodmann areas as the map of cortical regions. The data and code needed to generate this fig-

ure can be found in https://zenodo.org/record/8410965.

(TIF)

S10 Fig. Microstructural profile covariance in association with laminar thickness covari-

ance. (a) The average regional microstructural profiles show variations of BigBrain image

intensity across cortical depth (50 samples). Microstructural profile covariance (MPC) matrix

was created by the pairwise partial correlation of intensity profiles between the parcels. (b) The

principal axis of MPC created using principal component analysis. (c) The correlation between

MPC and laminar thickness covariance (LTC) matrices. (d) The correlation between main

axes of LTC and MPC. The data and code needed to generate this figure can be found in
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https://zenodo.org/record/8410965.

(TIF)

S11 Fig. Laminar cellular features across the principal axis of laminar thickness covariance.

(a) Locations of cortical samples for which laminar cellular data were available. (b) Neuronal

segmentation across cortical layers in an example sample. (c) Variation of laminar neuronal

density and size along the principal axis of laminar thickness covariation among the available

samples. The data and code needed to generate this figure can be found in https://zenodo.org/

record/8410965.

(TIF)

S12 Fig. Association of cortical types with laminar thickness covariance. (a) The map of

cortical types (left hemisphere) shows increasing laminar differentiation from agranular

(green) to koniocortical (red) regions. (b) The average laminar thickness covariance (LTC)

among pairs of parcels with the same or different cortical types, excluding agranular and dys-

granular regions. Koniocortical regions showed significantly higher within-, compared to

between-type average LTC. (c) Distribution of the principal axis of LTC (LTC G1) across the

cortical types are shown in a raincloud plot. No significant difference in LTC G1 values was

observed between the cortical types (F = 6.41, pspin = 0.633). The data and code needed to gen-

erate this figure can be found in https://zenodo.org/record/8410965.

(TIF)

S13 Fig. Association of asymmetry- and laminar-based hierarchy with the relative thick-

ness of individual layers. Bar length shows the correlation coefficient and its color represents

the level of statistical significance from white (pvariogram, FDR > 0.05) to black (pvariogram, FDR <

0.001). The data and code needed to generate this figure can be found in https://zenodo.org/

record/8410965.

(TIF)

S14 Fig. Afferent and efferent connectivity strength in association with the principal axis

of laminar thickness covariance. The principal axis of laminar thickness covariance (LTC

G1) was significantly correlated with regional weighted in-degree (afferent strength) (top) but

not weighted out-degree (efferent strength) (bottom). The data and code needed to generate

this figure can be found in https://zenodo.org/record/8410965.

(TIF)

S15 Fig. Association of LTC G1 with asymmetry-based hierarchy in the replication dataset.

(a) The group-averaged effective connectivity matrix of the replication sample (N = 100) based

on regression dynamic causal modeling. (b) Regional asymmetry-based hierarchy was calcu-

lated as the difference between their weighted unsigned out-degree and in-degree and was sig-

nificantly correlated with principal axis of laminar thickness covariance (LTC G1). The data

and code needed to generate this figure can be found in https://zenodo.org/record/8410965.

(TIF)

S16 Fig. Laminar thickness covariance in association to structural covariance. (a) The

structural covariance matrix based on cortical thickness (left) in association with the laminar

thickness covariance (LTC; center left). Main axes of structural covariance (center right) and

LTC were correlated (right). (b) Interregional genetic and environmental correlation matrices

based on cortical thickness in the HCP sample and their correlation with laminar thickness

covariance. The data and code needed to generate this figure can be found in https://zenodo.

org/record/8410965.

(TIF)
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S17 Fig. Laminar thickness covariance in association to maturation coupling. Maturational

coupling matrix (MCM) was weakly associated with the laminar thickness covariance matrix

(LTC). The data and code needed to generate this figure can be found in https://zenodo.org/

record/8410965.

(TIF)

S1 Text. Transcriptomics analyses of laminar thickness covariance.

(PDF)
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50. Paquola C, Garber M, Frässle S, Royer J, Tavakol S, Cruces R, et al. The Unique Cytoarchitecture

and Wiring of the Human Default Mode Network. 2021 Nov. p. 2021.11.22.469533. https://doi.org/10.

1101/2021.11.22.469533

51. Royer J, Rodrı́guez-Cruces R, Tavakol S, Larivière S, Herholz P, Li Q, et al. An Open MRI Dataset For

Multiscale Neuroscience. Sci Data. 2022; 9:569. https://doi.org/10.1038/s41597-022-01682-y PMID:

36109562

52. Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, et al. The minimal pre-

processing pipelines for the Human Connectome Project. Neuroimage. 2013; 80:105–124. https://doi.

org/10.1016/j.neuroimage.2013.04.127 PMID: 23668970

53. Xu T, Nenning K-H, Schwartz E, Hong S-J, Vogelstein JT, Goulas A, et al. Cross-species functional

alignment reveals evolutionary hierarchy within the connectome. Neuroimage. 2020; 223:117346.

https://doi.org/10.1016/j.neuroimage.2020.117346 PMID: 32916286

54. Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, et al. The WU-Minn Human

Connectome Project: an overview. Neuroimage. 2013; 80:62–79. https://doi.org/10.1016/j.

neuroimage.2013.05.041 PMID: 23684880

55. Larivière S, Paquola C, Park B, Royer J, Wang Y, Benkarim O, et al. The ENIGMA Toolbox: multiscale

neural contextualization of multisite neuroimaging datasets. Nat Methods. 2021; 18:698–700. https://

doi.org/10.1038/s41592-021-01186-4 PMID: 34194050

56. Ercsey-Ravasz M, Markov NT, Lamy C, Van Essen DC, Knoblauch K, Toroczkai Z, et al. A Predictive

Network Model of Cerebral Cortical Connectivity Based on a Distance Rule. Neuron. 2013; 80:184–

197. https://doi.org/10.1016/j.neuron.2013.07.036 PMID: 24094111

57. Young MP. Objective analysis of the topological organization of the primate cortical visual system.

Nature. 1992; 358:152–155. https://doi.org/10.1038/358152a0 PMID: 1614547

58. Arnatkevičiūtė A, Fulcher BD, Fornito A.. A practical guide to linking brain-wide gene expression and

neuroimaging data. Neuroimage. 2019; 189:353–367. https://doi.org/10.1016/j.neuroimage.2019.01.

011 PMID: 30648605

59. Burt JB, Helmer M, Shinn M, Anticevic A, Murray JD. Generative modeling of brain maps with spatial

autocorrelation. Neuroimage. 2020; 220:117038. https://doi.org/10.1016/j.neuroimage.2020.117038

PMID: 32585343

60. Alexander-Bloch A, Giedd JN, Bullmore E. Imaging structural co-variance between human brain

regions. Nat Rev Neurosci. 2013; 14:322–336. https://doi.org/10.1038/nrn3465 PMID: 23531697

61. Khundrakpam BS, Lewis JD, Jeon S, Kostopoulos P, Itturia Medina Y, Chouinard-Decorte F, et al.

Exploring Individual Brain Variability during Development based on Patterns of Maturational Coupling

of Cortical Thickness: A Longitudinal MRI Study. Cereb Cortex N Y N. 1991; 2019(29):178–188.

https://doi.org/10.1093/cercor/bhx317 PMID: 29228120

62. Valk SL, Xu T, Margulies DS, Masouleh SK, Paquola C, Goulas A, et al. Shaping brain structure:

Genetic and phylogenetic axes of macroscale organization of cortical thickness. Sci Adv. 2020; 6:

eabb3417. https://doi.org/10.1126/sciadv.abb3417 PMID: 32978162

63. Charvet CJ, Cahalane DJ, Finlay BL. Systematic, Cross-Cortex Variation in Neuron Numbers in

Rodents and Primates. Cereb Cortex. 2015; 25:147–160. https://doi.org/10.1093/cercor/bht214

PMID: 23960207

64. Cahalane DJ, Charvet CJ, Finlay BL. Systematic, balancing gradients in neuron density and number

across the primate isocortex. Front Neuroanat. 2012; 6:28. https://doi.org/10.3389/fnana.2012.00028

PMID: 22826696

65. Charvet CJ, Finlay BL. Evo-devo and the primate isocortex: the central organizing role of intrinsic gra-

dients of neurogenesis. Brain Behav Evol. 2014; 84:81–92. https://doi.org/10.1159/000365181 PMID:

25247448

66. Finlay BL, Uchiyama R. Developmental mechanisms channeling cortical evolution. Trends Neurosci.

2015; 38:69–76. https://doi.org/10.1016/j.tins.2014.11.004 PMID: 25497421

67. Upschulte E, Harmeling S, Amunts K, Dickscheid T. Contour proposal networks for biomedical

instance segmentation. Med Image Anal. 2022; 77:102371. https://doi.org/10.1016/j.media.2022.

102371 PMID: 35180674

PLOS BIOLOGY Laminar thickness covariance in BigBrain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002365 November 9, 2023 25 / 29

https://doi.org/10.1002/hbm.25357
https://doi.org/10.1002/hbm.25357
http://www.ncbi.nlm.nih.gov/pubmed/33539625
https://doi.org/10.1016/j.neuroimage.2018.05.058
https://doi.org/10.1016/j.neuroimage.2018.05.058
http://www.ncbi.nlm.nih.gov/pubmed/29807151
https://doi.org/10.1101/2021.11.22.469533
https://doi.org/10.1101/2021.11.22.469533
https://doi.org/10.1038/s41597-022-01682-y
http://www.ncbi.nlm.nih.gov/pubmed/36109562
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.04.127
http://www.ncbi.nlm.nih.gov/pubmed/23668970
https://doi.org/10.1016/j.neuroimage.2020.117346
http://www.ncbi.nlm.nih.gov/pubmed/32916286
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1016/j.neuroimage.2013.05.041
http://www.ncbi.nlm.nih.gov/pubmed/23684880
https://doi.org/10.1038/s41592-021-01186-4
https://doi.org/10.1038/s41592-021-01186-4
http://www.ncbi.nlm.nih.gov/pubmed/34194050
https://doi.org/10.1016/j.neuron.2013.07.036
http://www.ncbi.nlm.nih.gov/pubmed/24094111
https://doi.org/10.1038/358152a0
http://www.ncbi.nlm.nih.gov/pubmed/1614547
https://doi.org/10.1016/j.neuroimage.2019.01.011
https://doi.org/10.1016/j.neuroimage.2019.01.011
http://www.ncbi.nlm.nih.gov/pubmed/30648605
https://doi.org/10.1016/j.neuroimage.2020.117038
http://www.ncbi.nlm.nih.gov/pubmed/32585343
https://doi.org/10.1038/nrn3465
http://www.ncbi.nlm.nih.gov/pubmed/23531697
https://doi.org/10.1093/cercor/bhx317
http://www.ncbi.nlm.nih.gov/pubmed/29228120
https://doi.org/10.1126/sciadv.abb3417
http://www.ncbi.nlm.nih.gov/pubmed/32978162
https://doi.org/10.1093/cercor/bht214
http://www.ncbi.nlm.nih.gov/pubmed/23960207
https://doi.org/10.3389/fnana.2012.00028
http://www.ncbi.nlm.nih.gov/pubmed/22826696
https://doi.org/10.1159/000365181
http://www.ncbi.nlm.nih.gov/pubmed/25247448
https://doi.org/10.1016/j.tins.2014.11.004
http://www.ncbi.nlm.nih.gov/pubmed/25497421
https://doi.org/10.1016/j.media.2022.102371
https://doi.org/10.1016/j.media.2022.102371
http://www.ncbi.nlm.nih.gov/pubmed/35180674
https://doi.org/10.1371/journal.pbio.3002365


68. Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in

human cortical areas. Neuroimage. 2019; 197:716–741. https://doi.org/10.1016/j.neuroimage.2017.

08.035 PMID: 28811255

69. Zilles K, Palomero-Gallagher N. Multiple Transmitter Receptors in Regions and Layers of the Human

Cerebral Cortex. Front Neuroanat. 2017; 11:78. https://doi.org/10.3389/fnana.2017.00078 PMID:

28970785

70. Goulas A, Changeux J-P, Wagstyl K, Amunts K, Palomero-Gallagher N, Hilgetag CC. The natural axis

of transmitter receptor distribution in the human cerebral cortex. Proc Natl Acad Sci U S A. 2021:118.

https://doi.org/10.1073/pnas.2020574118 PMID: 33452137

71. Sanides F. Die Archtektonik des Menschlichen Stirnhirns. Springer; 1962.

72. Bajada CJ, Campos LQC, Caspers S, Muscat R, Parker GJM, Ralph MAL, et al. A tutorial and tool for

exploring feature similarity gradients with MRI data. Neuroimage 2020; 221:117140. https://doi.org/10.

1016/j.neuroimage.2020.117140 PMID: 32650053

73. Haenelt D, Trampel R, Nasr S, Polimeni JR, Tootell RB, Sereno MI, et al. High-resolution quantitative

and functional MRI indicate lower myelination of thin and thick stripes in human secondary visual cor-

tex. Krug K, de Lange FP, Van Duffel W, editors. Elife. 2023; 12:e78756. https://doi.org/10.7554/eLife.

78756 PMID: 36888685

74. Gordon EM, Chauvin RJ, Van AN, Rajesh A, Nielsen A, Newbold DJ, et al. A somato-cognitive action

network alternates with effector regions in motor cortex. Nature. 2023; 617:351–359. https://doi.org/

10.1038/s41586-023-05964-2 PMID: 37076628

75. Gomez J, Zhen Z, Weiner KS. The relationship between transcription and eccentricity in human V1.

Brain Struct Funct. 2021; 226:2807–2818. https://doi.org/10.1007/s00429-021-02387-5 PMID:

34618233

76. Goulas A, Majka P, Rosa MGP, Hilgetag CC. A blueprint of mammalian cortical connectomes. PLoS

Biol. 2019; 17:e2005346. https://doi.org/10.1371/journal.pbio.2005346 PMID: 30901324

77. Markov NT, Ercsey-Ravasz MM, Ribeiro Gomes AR, Lamy C, Magrou L, Vezoli J, et al. A weighted

and directed interareal connectivity matrix for macaque cerebral cortex. Cereb Cortex N Y N. 1991;

2014(24):17–36. https://doi.org/10.1093/cercor/bhs270 PMID: 23010748

78. Rockland KS. Notes on Visual Cortical Feedback and Feedforward Connections. Front Syst Neurosci

2022; 16. Available from: https://www.frontiersin.org/articles/10.3389/fnsys.2022.784310 PMID:

35153685

79. Harris JA, Mihalas S, Hirokawa KE, Whitesell JD, Choi H, Bernard A, et al. Hierarchical organization of

cortical and thalamic connectivity. Nature. 2019; 575:195–202. https://doi.org/10.1038/s41586-019-

1716-z PMID: 31666704

80. Zagha E. Shaping the Cortical Landscape: Functions and Mechanisms of Top-Down Cortical Feed-

back Pathways. Front Syst Neurosci 2020; 14. Available from: https://www.frontiersin.org/articles/10.

3389/fnsys.2020.00033

81. Buffalo EA, Fries P, Landman R, Buschman TJ, Desimone R. Laminar differences in gamma and

alpha coherence in the ventral stream. Proc Natl Acad Sci. 2011; 108:11262–11267. https://doi.org/

10.1073/pnas.1011284108 PMID: 21690410

82. Xing D, Yeh C-I, Burns S, Shapley RM. Laminar analysis of visually evoked activity in the primary

visual cortex. Proc Natl Acad Sci. 2012; 109:13871–13876. https://doi.org/10.1073/pnas.1201478109

PMID: 22872866

83. Bastos AM, Vezoli J, Bosman CA, Schoffelen J-M, Oostenveld R, Dowdall JR, et al. Visual Areas

Exert Feedforward and Feedback Influences through Distinct Frequency Channels. Neuron. 2015;

85:390–401. https://doi.org/10.1016/j.neuron.2014.12.018 PMID: 25556836
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tivity methods. Prog Neurobiol. 2020:101835. https://doi.org/10.1016/j.pneurobio.2020.101835 PMID:

32512115

87. Finn ES, Huber L, Jangraw DC, Molfese PJ, Bandettini PA. Layer-dependent activity in human pre-

frontal cortex during working memory. Nat Neurosci. 2019; 22:1687–1695. https://doi.org/10.1038/

s41593-019-0487-z PMID: 31551596

PLOS BIOLOGY Laminar thickness covariance in BigBrain

PLOS Biology | https://doi.org/10.1371/journal.pbio.3002365 November 9, 2023 26 / 29

https://doi.org/10.1016/j.neuroimage.2017.08.035
https://doi.org/10.1016/j.neuroimage.2017.08.035
http://www.ncbi.nlm.nih.gov/pubmed/28811255
https://doi.org/10.3389/fnana.2017.00078
http://www.ncbi.nlm.nih.gov/pubmed/28970785
https://doi.org/10.1073/pnas.2020574118
http://www.ncbi.nlm.nih.gov/pubmed/33452137
https://doi.org/10.1016/j.neuroimage.2020.117140
https://doi.org/10.1016/j.neuroimage.2020.117140
http://www.ncbi.nlm.nih.gov/pubmed/32650053
https://doi.org/10.7554/eLife.78756
https://doi.org/10.7554/eLife.78756
http://www.ncbi.nlm.nih.gov/pubmed/36888685
https://doi.org/10.1038/s41586-023-05964-2
https://doi.org/10.1038/s41586-023-05964-2
http://www.ncbi.nlm.nih.gov/pubmed/37076628
https://doi.org/10.1007/s00429-021-02387-5
http://www.ncbi.nlm.nih.gov/pubmed/34618233
https://doi.org/10.1371/journal.pbio.2005346
http://www.ncbi.nlm.nih.gov/pubmed/30901324
https://doi.org/10.1093/cercor/bhs270
http://www.ncbi.nlm.nih.gov/pubmed/23010748
https://www.frontiersin.org/articles/10.3389/fnsys.2022.784310
http://www.ncbi.nlm.nih.gov/pubmed/35153685
https://doi.org/10.1038/s41586-019-1716-z
https://doi.org/10.1038/s41586-019-1716-z
http://www.ncbi.nlm.nih.gov/pubmed/31666704
https://www.frontiersin.org/articles/10.3389/fnsys.2020.00033
https://www.frontiersin.org/articles/10.3389/fnsys.2020.00033
https://doi.org/10.1073/pnas.1011284108
https://doi.org/10.1073/pnas.1011284108
http://www.ncbi.nlm.nih.gov/pubmed/21690410
https://doi.org/10.1073/pnas.1201478109
http://www.ncbi.nlm.nih.gov/pubmed/22872866
https://doi.org/10.1016/j.neuron.2014.12.018
http://www.ncbi.nlm.nih.gov/pubmed/25556836
https://doi.org/10.1007/s00429-022-02548-0
http://www.ncbi.nlm.nih.gov/pubmed/35962240
https://doi.org/10.1016/j.celrep.2022.110669
http://www.ncbi.nlm.nih.gov/pubmed/35417698
https://doi.org/10.1016/j.pneurobio.2020.101835
http://www.ncbi.nlm.nih.gov/pubmed/32512115
https://doi.org/10.1038/s41593-019-0487-z
https://doi.org/10.1038/s41593-019-0487-z
http://www.ncbi.nlm.nih.gov/pubmed/31551596
https://doi.org/10.1371/journal.pbio.3002365


88. Oldham S, Fulcher BD, Aquino K, Arnatkevičiūtė A, Paquola C, Shishegar R, et al. Modeling spatial,

developmental, physiological, and topological constraints on human brain connectivity. Sci Adv. 2022;

8:eabm6127. https://doi.org/10.1126/sciadv.abm6127 PMID: 35658036

89. Paquola C, Seidlitz J, Benkarim O, Royer J, Klimes P, Bethlehem RAI, et al. A multi-scale cortical wir-

ing space links cellular architecture and functional dynamics in the human brain. PLoS Biol. 2020; 18:

e3000979. https://doi.org/10.1371/journal.pbio.3000979 PMID: 33253185

90. Wei Y, Scholtens LH, Turk E, van den Heuvel MP. Multiscale examination of cytoarchitectonic similar-

ity and human brain connectivity. Netw Neurosci. 2018; 3:124–137. https://doi.org/10.1162/netn_a_

00057 PMID: 30793077

91. Bazinet V, Hansen JY, Wael RV de, Bernhardt BC, van den Heuvel MP, Misic B. Assortative mixing in

micro-architecturally annotated brain connectomes. bioRxiv; 2022. p. 2022.05.31.494070. https://doi.

org/10.1101/2022.05.31.494070

92. Arnatkevičiūtė A, Fulcher BD, Pocock R, Fornito A.. Hub connectivity, neuronal diversity, and gene

expression in the Caenorhabditis elegans connectome. PLoS Comput Biol. 2018; 14:e1005989.

https://doi.org/10.1371/journal.pcbi.1005989 PMID: 29432412

93. French L, Pavlidis P. Relationships between Gene Expression and Brain Wiring in the Adult Rodent

Brain. PLoS Comput Biol. 2011; 7:e1001049. https://doi.org/10.1371/journal.pcbi.1001049 PMID:

21253556

94. Fulcher BD, Fornito A. A transcriptional signature of hub connectivity in the mouse connectome. Proc

Natl Acad Sci U S A. 2016; 113:1435–1440. https://doi.org/10.1073/pnas.1513302113 PMID:

26772314

95. Richiardi J, Altmann A, Milazzo A-C, Chang C, Chakravarty MM, Banaschewski T, et al. Correlated

gene expression supports synchronous activity in brain networks. Science. 2015; 348:1241–1244.

https://doi.org/10.1126/science.1255905
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