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A B S T R A C T

Behavioral policy often aims at influencing behavior by mitigating biases due to, e.g., imperfect information
or inattention. We study how this is affected by the simultaneous presence of multiple biases arising from
different sources, through a field experiment on resource conservation in an energy- and water-intensive
everyday activity (showering). One intervention, shower energy reports, primarily targeted knowledge about
environmental impacts; another intervention, real-time feedback, primarily targeted salience of resource use.
We find a striking complementarity. While only the latter induced significant conservation effects when
implemented in isolation, each intervention became more effective when implemented jointly. This is consistent
with predictions from a theoretical framework that highlights the importance of targeting all relevant sources
of bias to achieve behavioral change.
1. Introduction

Amidst growing concern about climate change and resource scarcity,
many individuals intend to make personal sacrifices to protect the
environment; yet they often fail to act pro-environmentally in their
everyday lives (Kollmuss and Agyeman, 2002; Frederiks et al., 2015).
This gap between intentions and actions can result from a multiplicity
of behavioral frictions and biases. For instance, consumers tend to
underestimate the impact of highly resource-intensive activities (Attari
et al., 2010; Attari, 2014; Imai et al., 2022), and they may also not be
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fully attentive to their resource use (Allcott, 2016; Tiefenbeck et al.,
2018). Importantly, when biased behavior arises from multiple differ-
ent sources at the same time, this could not only prevent individuals
from acting on their intrinsic prosocial or pro-environmental motives,
but also mute their response to policy interventions that only address
a subset of all relevant biases.

This problem that comes with multiple biases is reminiscent of the
Anna Karenina principle, which states that failure in just one factor out
vailable online 23 November 2023
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of many can lead to failure of an objective as a whole.1 For example,
providing information to correct misperceptions of environmental im-
pacts has little effect on behavior if individuals remain inattentive and
exhibit self-control problems, status quo bias, and so on.

Conversely, drawing attention to environmental impacts only has a
muted effect on behavior if agents remain unaware of the true extent
of the externalities caused by their actions. In this example, addressing
both information problems and biases due to, e.g., limited attention,
could produce synergies in the form of positive interaction effects.
More generally, combining interventions that focus on different biases
each could result in complementarities, defined as each intervention
becoming more effective when implemented in conjunction with the
other(s) than in isolation (Coe and Snower, 1997). While the use of
combined interventions is widespread in (behavioral) public policy, less
is known about when and why one may expect interventions to be
complements, which can be crucial for guiding effective policy design.
In this paper, we highlight the role of multiple biases.

We report evidence from a three-month randomized field experi-
ment in which we used two well-studied behavioral policy tools to
encourage resource conservation in an energy- and water-intensive
everyday activity, namely showering. Our interventions were designed
in such a way that they target different potential sources of biased
behavior. The first intervention, shower energy reports, inspired by
the Opower home energy reports (Allcott, 2011), were primarily aimed
at closing knowledge gaps about environmental impacts by providing
information on water use as well as on energy use and CO2 emissions
due to water heating. The second intervention, real-time feedback,
provided immediately visible and salient information on water con-
sumption – but not energy use or CO2 emissions – through a smart
meter display (Tiefenbeck et al., 2018), and could thus help individuals
focus their attention while they engaged in the activity. Crucially, we
implemented a complete 2 × 2-design to evaluate both the combined
ntervention as well as each intervention in isolation. Our main finding
s that implementing the interventions jointly seemed to result in a
uper-additive boost of resource conservation effects compared to their
ffects when implemented in isolation. This is in line with the idea that
oth information- and attention-based mechanisms might have been
ecessary to achieve behavioral change in our context.2

To formalize our arguments, we introduce a novel theoretical frame-
ork in which overconsumption can arise from multiple sources of bias

e.g., imperfect information, limited attention). Each of the biases acts
kin to a discount factor and agents are prevented from incorporating
he full marginal costs of resource use by the product of all biases. A
ey implication is that when agents suffer not just from one but from
ultiple independent biases (à la Anna Karenina), then interventions

an become complements if they each focus on a different behavioral
echanism. The intuition is simple: the more unbiased an agent is in

ne dimension, the larger is the impact of reducing bias in another
imension. For example, the more attention an agent pays to her
esource use behavior, the more likely it is that she will actually change
er behavior when learning that the environmental impact is more
egative than previously thought. Thus, in this example, mitigating
oth attention and information problems can have mutually reinforcing
ffects. This interaction mechanism is absent when two interventions

1 The Anna Karenina principle is inspired by the opening phrase of Leo
olstoy’s novel Anna Karenina: ‘‘All happy families are alike; each unhappy
amily is unhappy in its own way.’’ (Tolstoy, 2003). One might cheekily adapt
his principle to our context by stating a slightly modified version: All unbiased
gents are alike; all biased agents are biased in their own way.

2 Complementarity can also arise if our interventions do not exactly work
hrough the described mechanisms, as long as they sufficiently differ from
ach other in their targeted bias. For example, real-time feedback could be
nterpreted as facilitating learning or optimization, and this information can be
omplementary to the information on CO2 emissions provided through shower
2

nergy reports. s
operate mostly through the same behavioral channel, e.g., if they
provide the same type of information.

Resource usage in the shower offers a useful context for study-
ing complementarities in behavioral interventions, for several reasons.
First, showering is resource-intensive: an average shower in our sample
required 2.2 kWh of energy to heat up 38 L of water, which corresponds
to about 10% of the average residential energy use and 30% of the
average water consumption per capita and day in Germany, where
we conducted our study.3 Second, most individuals underestimate the
CO2 emissions caused by water heating for showering – by as much as
89% on average based on our own survey data –, which creates scope
for conservation through belief correction (Byrne et al., 2018). Third,
showering is also prone to behavioral biases like limited attention and
self-control problems, as the pleasure of a warm shower is salient
and immediate, whereas the cost of resource use seems abstract and
is hard to keep track of. Hence, individuals may not fully engage in
conservation efforts unless they are informed about the actual impact of
their behavior and keep environmental concerns on top of their minds
while showering.

We conducted our field experiment in student dormitories in the
cities of Bonn and Cologne, Germany, in the winter term 2016/17. A
total of 351 students participated in our experiment, all of them living
in single-person dorm apartments with a private bathroom. For the du-
ration of our study, from early December 2016 until early March 2017,
each participant was equipped with a smart shower meter that recorded
detailed data of each shower taken. Subjects were randomly assigned
into one of four experimental conditions: no intervention (CON group),
shower energy reports only (SER group), real-time feedback only (RTF
group), or both interventions combined (DUAL group). After an initial
baseline stage, the smart meter started displaying real-time feedback on
water use for subjects in RTF and DUAL, and about halfway into the
study, we further started sending individualized shower energy reports
via email to subjects in SER and DUAL, using data uploaded from the
smart meters. This staggered design allows us to identify treatment
effects of each intervention regime in a difference-in-differences setup.

Our empirical results show that, compared to the control group,
subjects in the RTF group reduced their energy (water) consumption
by about 0.4 kWh (6.3 L) per shower, which corresponds to 17–18%
f baseline resource use. This treatment effect remains stable over
he entire 3-month duration of the study. Energy reports in isolation
SER group) did not lead to any statistically detectable conservation
ffect. However, in line with our hypothesis, we observe a striking
omplementarity between the two interventions. Combining energy
eports with real-time feedback (DUAL group) further increased the
reatment effect of real-time feedback in isolation by an additional 0.23
Wh of energy (3.8 L of water) per shower. Thus, it seems that the
hower energy reports in our context could only start to unfold their po-
ential when subjects were in an enhanced choice environment where
heir resource usage was immediately visible. We find no evidence
f adjustments on the extensive margin, i.e., the number of showers
eople take.

The additional reduction of resource use in the DUAL group was not
riven by short-lived boosts directly after receiving a shower energy
eport, but rather seemed to unfold over time, which speaks against
awthorne or pure reminder effects as the underlying mechanism.
ata from baseline and endline questionnaires shows that both inter-
entions helped subjects form more precise beliefs about their own

3 Source: German Federal Statistical Office (https://www.destatis.de/
N/Themes/Society-Environment/Environment/Environmental-Economic-
ccounting/private-households/Tables/energy-consumption-households.html
nd https://www.destatis.de/EN/Themes/Society-Environment/Environment/
ater-Management/_node.html). About 70% of energy for room and water

eating in Germany was generated from fossil fuels at the time of our

tudy (Dena, 2016).

https://www.destatis.de/EN/Themes/Society-Environment/Environment/Environmental-Economic-Accounting/private-households/Tables/energy-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Environmental-Economic-Accounting/private-households/Tables/energy-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Environmental-Economic-Accounting/private-households/Tables/energy-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Water-Management/_node.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Water-Management/_node.html
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water use in the shower and that there is no evidence that subjects
in the DUAL group read their reports more carefully than subjects
in the SER group. Supplementary survey results from a comparable
sample further suggest that information included in shower energy
reports also induces drastic (upward) updates in beliefs about CO2
missions due to warm water consumption in the shower. Hence, the
ull result for shower energy reports in isolation was unlikely due
o lack of learning. Instead, it seems that in the absence of real-time
eedback, inattention and lack of immediate visibility have prevented
nowledge gains about environmental impacts from translating into
ffective conservation behavior.

Overall, our findings are consistent with the theoretical argument
hat in the presence of multiple biases, different behavioral interven-
ions can become complements, because targeting one source of bias
e.g., imperfect information) becomes more effective when residual
iases (e.g., inattention, present bias) are also mitigated, and vice
ersa. One implication is that lack of evidence for effectiveness of
n intervention in isolation – such as in the case of shower energy
eports in our study – does not mean that it cannot be effective in an
nhanced policy environment that also takes into consideration further
ehavioral mechanisms. Appropriate policy bundling may thus increase
he cost-effectiveness of interventions beyond what can be achieved
ith piecemeal approaches.

Our study builds on important previous contributions that have
nvestigated the effects of similar interventions on household resource
onservation.4 For example, in an influential evaluation of the Opower
ome energy reports, which provide information on aggregate elec-
ricity use to millions of U.S. households, Allcott (2011) reports an
verage household-level conservation effect of 2%, or about 0.62 kWh
er day, although effects might be smaller in countries with lower
aseline consumption (Andor et al., 2020) or when monetary incentives
o save energy are low (Myers and Souza, 2020). Our SER intervention
s inspired by the these home energy reports. One key difference is that
ur reports only provide information on one specific activity (show-
ring) instead of aggregate household consumption, as disaggregated
eedback could enable better learning and thus stronger conservation
esponses in the targeted activities (Gerster et al., 2020), in particular
hen provided in shorter time intervals or even in real time. Tiefenbeck
t al. (2018) provide real-time feedback in the shower through the
ame type of smart meter that we use in this study and document a
onservation effect of 22% (0.6 kWh less energy and 9 L less water
er shower). These results also replicate in a sample without mone-
ary incentives and without self-selection into the study (Tiefenbeck
t al., 2019). One important mechanism of real-time feedback is that
t draws immediate attention to resource consumption by making it
ore salient (Bordalo et al., 2022). This study addresses the question

s whether this can be used to complement interventions that aim to
ncourage pro-environmental action through other mechanisms, like
ore detailed information provision or social norms, and could thus

enefit from generally higher attention to relevant behaviors.
We further relate to a number of other studies that test a combina-

ion of interventions, and especially to studies on pro-environmental
ehavior that also consider the idea that policy measures might be-
ome more effective when implemented in conjunction with others

although it should be noted that some studies lack a complete

4 Pro-environmental interventions have drawn from a broad set of in-
truments such as information provision, social norms, goal-setting, etc. For
eviews, see e.g. Abrahamse et al. (2005), Fischer (2008), Delmas et al.
2013), Karlin et al. (2015), Andor and Fels (2018), Carlsson et al. (2021),
nd Khanna et al. (2021). Information provision in particular is often re-
arded as a promising policy lever, as individuals often misperceive the
nvironmental impact of everyday activities (Attari et al., 2010; Attari, 2014;
amilleri et al., 2019) and tend to engage in relatively ineffective conservation
easures (Gardner and Stern, 2008; Tonke, 2019).
3

experimental design required to identify interaction effects.5 For exam-
le, Jessoe and Rapson (2014) find that peak pricing schemes may only
educe peak electricity usage for households who have been outfitted
ith in-home-displays. Other recent studies who investigate the com-
ination of financial incentives and behavioral interventions tend to
ind that they affect behavior along different margins or for different
ubpopulations, but find no conclusive patterns with regard to interac-
ion effects (List et al., 2017; Holladay et al., 2019; Giaccherini et al.,
020; Fanghella et al., 2021). Hahn et al. (2016) test the individual
nd combined effects of social comparisons and loss framing on take-
p of water-efficient technology as well as general household water
onsumption, but the results for interaction effects are mixed. Brandon
t al. (2019) evaluate the interaction effect of two behavioral inter-
entions on household energy conservation, home energy reports and
‘peak energy reports’’, which provide feedback and social norms for
ouseholds’ peak electricity use. As both interventions are very similar
nd likely operate through similar behavioral channels, it is not clear
hether one should expect any interaction effect. Indeed, Brandon et al.

ind neither strong evidence for complementarity nor substitutability.6
hile we provide a novel case study on the interaction of two specific

ypes of behavioral interventions, our main contribution to this strand
f literature is that we attempt to make a step towards understanding
echanisms that systematically lead different policy interventions to

ecome complements, both theoretically and empirically. Specifically,
ur study highlights the role of multiple biases arising from different
ources leading to an Anna Karenina effect. These insights can be
dapted to guide hypothesis formation about policy interactions in
ther contexts as well.

The remainder of this paper is structured as follows: Section 2
ntroduces the theoretical framework for policy interactions under
ultiple biases. Section 3 describes the experimental setup and de-

ives behavioral predictions. Section 4 presents our data as well as
escriptive statistics. Section 5 lays out our empirical approach and
ection 6 presents our main empirical results. In Section 7, we analyze
he potential mechanisms underlying the results. Section 8 concludes.

. Theoretical framework

We begin by introducing a stylized framework to formalize our
rgument of how complementarities in behavioral interventions can
rise in settings where biased behavior arises from multiple sources,
.g. imperfect information, limited attention, present bias.

5 See, for example, the review by Khanna et al. (2021). Combined inter-
entions are also used in other contexts than pro-environmental behavior.
or example, in development economics, a number of studies experimentally
est the combined effect of different interventions on financial savings (Dupas
nd Robinson, 2013; Jamison et al., 2014), education (Mbiti et al., 2019),
isky sexual behavior (Duflo et al., 2015; Dupas et al., 2018), demand for
ealth products (Ashraf et al., 2013), or immunization (Banerjee et al., 2021).
any of these studies, however, cannot explicitly test policy interactions,

s they lack a complete factorial design (Muralidharan et al., 2020), and
one of them asks more generally if or why different interventions can be
omplements if they target separate mechanisms. One notable study is by Mbiti
t al. (2019), who find complementarities between providing school grants
nd adding teacher incentives in improving children’s educational outcomes.
nother study by Banerjee et al. (2021) employs reminders, incentives,
nd information ambassador interventions on a large-scale, and then uses
data-driven approach to identify the best combination; in particular, one

bservation is that information ambassadors seem to amplify the effect of other
nterventions. Hanna et al. (2014) show in an experiment in Indonesia that
eaweed farmers may fail to optimize with regard to pod size unless their
ttention is drawn to the importance of this choice dimension.

6 One speculative interpretation is that, if the HERs reduced energy con-
umption through investments into energy-efficient technology, while the peak
nergy report reduce energy usage by increasing salience of peak load events,
hen the potential for complementarity is limited.
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2.1. Basic setup

The agent (she) engages in an resource-intensive activity, say show-
ering, and the policy objective is to reduce resource use. Her consump-
tion level is determined by a trade-off between the consumption utility
(e.g., hygiene, pleasure, opportunity costs of time) and the perceived
costs of resource use (e.g., monetary costs, environmental concern).
In the case of showering, both water and energy matter, and each is
subject to distinct costs and externalities. For national parsimony, we
focus on energy, as it captures water use as well as water heating.7

hus, the agent chooses energy use level 𝑒 ≥ 0 to maximize

(𝑒) = 𝑉 (𝑒) − 𝐵 ⋅ 𝑐𝑒 , (1)

here 𝑉 (𝑒) is the instantaneous consumption utility and 𝑐 > 0 is the
constant) marginal cost of energy consumption. We consider a more
eneral convex cost function 𝐶(𝑒) in Appendix G. In addition to stan-
ard smoothness conditions, we assume that 𝑉 is hump-shaped (locally
ncreasing at 0, strictly concave, unique maximum). For simplicity, we
bstract from uncertainty or dynamics. In the absence of monetary
otives, as in our empirical setting, 𝑐 could be interpreted as the

‘moral’’ cost the agent perceives in face of the negative externalities
rom energy use. However, the perceived cost is attenuated by an
ggregate bias factor 𝐵 ∈ [0, 1).

Multiple sources of bias. — The aggregate 𝐵 factor can be the product
f a collection of separate factors. Although this is easy to generalize,
t is sufficient to focus on a simple case with two sources of bias to
llustrate the mechanics:

= 𝑏1 ⋅ 𝑏2 . (2)

or example, the first factor 𝑏1 may indicate the degree to which the
gent underestimates energy intensity (as shown, e.g., in Attari et al.,
010), and the second factor 𝑏2 the degree to which she is inatten-
ive (e.g., Tiefenbeck et al., 2018). The multiplicative form captures
hat any single factor can independently prevent the agent from imple-
enting her conservation motive, akin to the Anna Karenina principle.

n this example, the agent will not take into account environmental cost
oth if she believes her behavior has no impact (𝑏1 = 0) and if she is
ully inattentive (𝑏2 = 0), either condition by itself is sufficient. In the
eneral case of 𝐾 biases, this would become 𝐵 =

∏𝐾
𝑘=1 𝑏𝑘 (see Appendix

G.3). Also note that, in principle, individuals can be biased towards less
consumption (i.e., 𝑏𝑘 > 1), for example if they overestimate costs (e.g.,
Wichman, 2017; d’Adda et al., 2020).

Consumption behavior. — The agent’s choice is defined by the
intersection of marginal utility and marginal costs, with the latter being
diminished by the aggregate bias:

𝑉 ′(𝑒) = 𝐵 ⋅ 𝑐 . (3)

If 𝐵 < 1, then the marginal cost is underweighted and energy use is thus
biased upwards. Correcting the bias (raising 𝐵 towards 1) thus leads the
individual to perceive the cost of consumption more fully. Thus 𝜕𝑒

𝜕𝐵 < 0,
since 𝑉 ′′(𝑒) < 0.

Behavioral interventions. — In this setup, we define behavioral
nterventions as policies that aim to change consumers’ behavior by
hanging 𝐵. In contrast, price-based policies such as Pigouvian taxes
ould be aimed at increasing the marginal costs 𝑐 that the agent faces.
s 𝐵 = 𝑏1 ⋅ 𝑏2, there are two behavioral policy levers for reducing
nergy consumption: raising 𝑏1 (e.g. providing information) and raising
2 (e.g. enhancing salience).

7 Energy for water heating is determined by the amount of water and the
emperature gradient. As we will report in Section 6, we find no evidence for
djustments in water temperature in our study.
4

2.2. Policy interaction effects

In our context, two interventions 𝑋 and 𝑌 are complements if their
combination reduces behavior by more than the sum of their individual
effects: 𝛥𝑒𝑋𝑌 ≤ 𝛥𝑒𝑋 + 𝛥𝑒𝑌 . If they are substitutes, the inequality is
reversed. Notice that even under substitutability, it can be the case
that 𝑋𝑌 is more effective than either 𝑋 or 𝑌 in isolation, i.e., 𝛥𝑒𝑋𝑌 <
𝛥𝑒𝑋 and 𝛥𝑒𝑋𝑌 < 𝛥𝑒𝑌 . Thus, to empirically identify interaction effects
etween different policy interventions, it is necessary to evaluate the
ffectiveness of each intervention in isolation.

The key mechanism we aim to highlight in this paper is that in the
resence of multiple biases, policies that target only one bias dimension
ay have a limited effect on behavior, whereas the effect of combining

everal policy levers may be superadditive. For example, correcting
erceptions of the environmental impact 𝑏1 may only have a small

impact on behavior if the attention parameter 𝑏2 is still close to zero.
There is a simple geometric interpretation to illustrate this: the overall
bias parameter 𝐵, defined in Eq. (2), can be thought of as the area of
a rectangle with sides of lengths 𝑏1 and 𝑏2 (see Fig. 1a). The larger
the rectangle the lower the resulting energy consumption will be. Now
suppose that 𝑏1 is exogenously increased by 𝛿1. The resulting increase
in 𝐵 will be 𝛿1𝑏2, as it is attenuated by 𝑏2. Analogously, an exogenous
increase of 𝛿2 in the dimension of 𝑏2 results in an aggregate change of
𝛿2𝑏1. The effect of jointly increasing 𝑏1 and 𝑏2 by the same amounts,
however, results in an overall change of

𝛥𝐵 = 𝛿1𝑏2 + 𝛿2𝑏1 + 𝛿1𝛿2 . (4)

There is an additional effect of size 𝛿1𝛿2, because a gain in one di-
mension also makes the improvement in the other dimension larger.
Geometrically, this is represented by the top right rectangle outlined in
Fig. 1b. This mechanism potentially induces complementarity between
interventions that mitigate different biases each.8

Under what conditions does this complementarity in bias reduction
𝛿1𝛿2 translate into a complementarity in behavior between interven-
tions 𝑋 and 𝑌 ? As formally derived in Appendix G.1, a second-order
Taylor approximation yields

𝛷𝑋𝑌 ∶= 𝛥𝑒𝑋𝑌 − 𝛥𝑒𝑋 − 𝛥𝑒𝑌 ≈
[

𝜕𝑒
𝜕𝐵

+ 𝜕2𝑒
𝜕𝐵2

𝑏1𝑏2

]

𝛿1𝛿2 . (5)

The term 𝜕𝑒
𝜕𝐵 in Eq. (5) is negative and scales with 𝛿1𝛿2, thus creating

scope for complementarity in behavior. The second term in brackets
reflects the change in the slope of 𝜕𝑒

𝜕𝐵 . Intuitively, one would expect a
diminishing responsiveness to bias mitigation ( 𝜕2𝑒

𝜕𝐵2 > 0), as the more the
agent already reduces her consumption the less room for further reduc-
tion she has. This corresponds to 𝑉 (𝑒) having a positive third derivative.
However, if either 𝑏1 or 𝑏2 is sufficiently close to zero, the first-order
effect dominates and complementarities in bias reduction translate into
complementarities in observable behavior. One might call this the Anna
Karenina condition: the more biased an agent is, in multiple ways, the
more effective it is to target the biases simultaneously.

2.3. Policy implications

Lastly, we explore implications for policy makers who attach a
social cost 𝛾 > 0 to every unit of 𝑒 (e.g., due to externalities), in
addition to the private cost 𝑐 to the consumer. If the only policy goal
was to reduce resource use 𝑒, then complementarities in behavior would
directly carry over to policy benefits. However, the prevailing view

8 We focus here on the case of two ‘‘pure’’ interventions that only target 𝑏1
or 𝑏2, respectively. In practice, many interventions may affect not just one but
several biases. In Appendix G, we show that imperfectly targeted interventions
can still produce complementarities if sufficiently different from another.
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Fig. 1. Depiction of example interventions.
Notes. The gray rectangle in Figure (a) illustrates the aggregate bias 𝐵 as defined in Eq. (2) without any intervention in place. Figure (b) illustrates the increase in 𝐵 through
exogenous interventions in each dimension.
is to define welfare over true consumer utility (e.g., Bernheim and
Taubinsky, 2018), so

𝑊 (𝑒) = 𝑉 (𝑒) − 𝑐𝑒 − 𝛾𝑒 . (6)

It is straightforward to show that welfare increases as 𝐵 goes
towards 1, as 𝜕𝑊

𝜕𝐵 > 0 as long as 𝐵 < 1. These welfare gains result from
both a reduction in externalities and in ‘‘internalities’’. Taking a second-
order Taylor approximation, we can examine how welfare is affected
by combining interventions 𝑋 and 𝑌 :

𝛥𝑊 𝑋𝑌 − 𝛥𝑊 𝑋 − 𝛥𝑊 𝑌 ≈ [(𝐵 − 1)𝑐 − 𝛾]𝛷𝑋𝑌 + 𝐵𝑐𝛿1𝛿2
𝜕𝑒
𝜕𝐵

⋛ 0 . (7)

Appendix G.2 contains a detailed derivation. The first term on the
right-hand side is positive if 𝛷𝑋𝑌 < 0. However, the second term is
always negative, reflecting that gains in consumer surplus decrease as 𝐵
increases. This implies that complementarity in behavior (i.e., if 𝛷𝑋𝑌 <
0) is a necessary but not sufficient condition for complementarity in
welfare. If, in addition, either 𝛥𝑒𝑋 ≈ 0 or 𝛥𝑒𝑌 ≈ 0, our model implies
that one of the 𝑏’s is equal to zero. Thus, within this framework, the
joint finding of policy complementarities in behavior and one of the
interventions being completely ineffective on its own may serve as
a sufficient condition that complementarities also exist in terms of
welfare.

Eq. (7) further suggests that policy makers with a binding budget
constraints face a trade-off between targeting a larger share of the
population or enriching the policy bundle. For example, suppose the
policy maker has a budget 𝑔, and that implementing either 𝑋 or 𝑌 in
the whole population requires social costs 𝜅𝑋 or 𝜅𝑌 greater than her
budget. Hence, she could cover 𝑔∕𝜅𝑋 of households with 𝑋, or 𝑔∕𝜅𝑌 of
households with 𝑌 . Now assume that 𝛥𝑊 𝑋

𝜅𝑋 ≥ 𝛥𝑊 𝑌

𝜅𝑌 (𝑋 generates a larger
welfare gain than 𝑌 ) and 𝛥𝑊 𝑋

𝜅𝑋 > 1 (the welfare gain for 𝑋 is positive).
In this case, intervention 𝑌 seems unattractive at first glance relative
to 𝑋. However, our model implies that combining both policies in a
bundle (𝑋, 𝑌 ) at cost 𝜅𝑋 + 𝜅𝑌 to fewer households can be preferable to
treating a larger number with 𝑋 in isolation. Formally, the condition is
𝛥𝑊 𝑋𝑌 −𝛥𝑊 𝑋

𝜅𝑌 ≥ 𝛥𝑊 𝑋

𝜅𝑋 . This last condition can only hold if 𝛥𝑊 𝑋𝑌 −𝛥𝑊 𝑋 is
substantially larger than 𝛥𝑊 𝑌 , i.e. if complementarities are sufficiently
strong.9 Thus, complementarities can create a unique rationale for
unequal policy distribution to improve cost-effectiveness.

9 One implicit assumption we make here is that the costs of interventions
are additive, i.e., 𝜅𝑋𝑌 = 𝜅𝑋 + 𝜅𝑌 . Costs can in principle be super- or sub-
additive, purely for technological reasons, and hence we abstract from this
here. For example, in our study, costs of recruiting participants and setting
up the technical infrastructure are fixed, leading to economies of scope when
adding interventions.
5

3. Experimental setup

Our field experiment was conducted from early December 2016
to late February/early March 2017 in a sample of students living in
dormitory apartments. Each participant was equipped with a smart
meter that measured individual energy and water consumption in the
shower over the entire study duration. We then evaluated the effect
of two different interventions, real-time feedback and shower energy
reports, on resource conservation behavior. To test for complementar-
ity, we further implemented a combined intervention in which subjects
received both real-time feedback and shower energy reports.

3.1. Recruitment of participants

We selected six student dormitory sites in Bonn and Cologne for our
sample, and ran the study from early December 2016 to early March
2017. All dormitory residents were students at the University of Bonn,
the University of Cologne, or at various smaller universities in the cities.
We recruited our subjects from the pool of dorm tenants living in single-
person apartments with private bathroom, as this allows us to precisely
measure the resource use of each individual. One noteworthy feature
of our sample is that subjects have no direct monetary incentives to
conserve energy or water, because they pay a flat monthly rent that
includes all utility bills. Hence, any observed conservation response
would be solely driven by non-monetary motives and unconfounded
by income effects.

To participate in the study, residents had to actively agree based on
the principle of informed consent. Two additional criteria were levied:
subject should not have lengthy absences planned within the intended
study period (except during Christmas vacation), and they should own
a smartphone compatible with Bluetooth 4.0, which was necessary for
implementing the shower energy reports.

The recruiting process started around mid-October 2016. Posters
and flyers informed residents of the selected dormitories about the
upcoming study, and our local research assistant teams engaged in
door-to-door recruiting. Interested students had to complete an online
registration survey to provide required information and to give their
consent to the collection and analysis of data on their showering
behavior. It was explicitly (and truthfully) stated that we would treat
any collected data confidentially and not share it with the dormitory
administration. As remuneration, each participant received 20 Euros
after completing the study, and ten participants were randomly drawn
to receive a 300 Euro cash prize. In total, 406 students registered for the
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Fig. 2. Amphiro b1 smart shower meter.
study, out of which 361 met our participation criteria.10 Ten students
subsequently dropped out of the study, either because they moved out
of their dorm unexpectedly or because we were not able to contact them
again. This leaves us with a final sample of 351 participants.

3.2. Smart shower meters and smartphone app

At the beginning of the study, starting on 5th Dec 2016, each
participant was equipped with an Amphiro b1 smart shower meter that
measures and records data of every water extraction in the shower. The
device can be easily attached below the shower head and features a
smartphone-sized liquid crystal display, which can be programmed to
show various types of information (see Fig. 2a). The smart meter is
small, lightweight, and needs no battery; power is generated through
an integrated hydro turbine, without noticeably affecting water flow
in the process. One drawback of the lack of battery is that the device
is unaware of the absolute time of day: showers can only be recorded
in temporal order, but without time stamps. Once the water flow in
the shower starts, the smart meter is powered and begins to measure,
among others, the amount of water flowing through, water tempera-
ture, and the time passed since beginning of water flow. When water
flow stops, the device and its display initially remain switched on,
and if water is turned on again within three minutes, it will continue
its measurement seamlessly. This accounts for short breaks in water
flow when applying soap or shampoo. Once water flow stops for more
than three minutes, the device terminates measurement and stores the
recorded information to a new data point.

We programmed the shower meters to display select pieces of
information to participants in real-time, i.e., while they are taking their
showers, contingent on the study progress and assigned experimental
condition (as described below). In addition, we asked all participants to
install the Amphiro smartphone app around week 5 of the experiment,
shortly after the end of the Christmas break. The participants could
use the app to upload data from their shower meters via Bluetooth.11

We were then able to access the uploaded data and use it to create
personalized shower energy reports. The original Amphiro smartphone
app also calculates summary statistics about users’ resource use in the
shower, but we deactivated this feature for our study participants, so its
only functionality was data uploading. One ancillary benefit of the app
was that it stored time and date of each data upload, which allows us

10 The total number of all single apartments in the selected dorms was 1380
(vacancies included), thus our gross recruitment rate was about 30%. For more
than half of these apartments, we never encountered the resident, so out of
the students we actually managed to talk to, the majority registered for the
study.

11 The process was quite simple. After installing the smartphone app, sub-
jects created an account and paired it to their shower meter. After successful
pairing, the meter automatically transmitted all stored data to the app via
Bluetooth whenever it was powered on and the smartphone within range.
6

to construct approximate time windows for each shower. About three
out of four participants (72%) uploaded all data successfully, while the
remaining experienced some technical problems. The most common
sources of failure were problems with the Bluetooth connection or
unexpected incompatibility between smartphone and app. We will
come to back to this issue again later.

3.3. Implementation of real-time feedback

The live tracking of water use on the shower meter display in
feedback mode is what we refer to as real-time feedback, our first type
of intervention. We programmed half of the smart meters as control
devices and the other half as treatment devices. Control devices only
displayed the current water temperature throughout the entire study
(Fig. 2b). Treatment devices also started in control mode for the first
ten showers, which we use to measure baseline behavior, but switched
permanently to feedback mode starting from the eleventh shower.
In feedback mode, the display shows both the water temperature
and the amount of water used (in liters) at any time of the shower
(Fig. 2c). Note that the smart meters did not provide any information
on the impact of water temperature on energy consumption or on the
energy-intensity of water heating more generally.

3.4. Implementation of shower energy reports

Our second intervention consists of two personalized shower energy
reports. These reports were sent via e-mail and showed descriptive
statistics about the subject’s water and energy use in the shower, as well
as information about environmental impacts. Temperature information
was not included, as all subjects received this through their smart
meter anyway. To allow for learning about outcomes of single showers,
a graphical representation of the subject’s history of water use per
shower was included. The reports were constructed based on data that
was uploaded by subjects through the smartphone app. We sent out
additional reminders to upload data before each planned delivery, but
the reports themselves were not explicitly announced. Subjects who did
not manage to upload any data received a report template with blanks
in place of statistical figures and graphs.

Appendix Figure A1 shows the screenshot of a typical shower energy
report. After a short introductory text, subjects see a scatter plot
of their history of water use per shower since the beginning of the
study, including a fitted regression line to help recognize trends and
averages. Below the graph, average water use (in liters) and energy
use (in kWh) per shower are stated numerically. Furthermore, there is
a paragraph with information on projected CO2 emissions per year and
the number of trees required to absorb the corresponding amount of
CO2. The report is formulated concisely in neutral language, to avoid
any normative or moral suasion elements. In the second report, we
added a social comparison component in the spirit of Allcott (2011)
and Ferraro and Price (2013), see Appendix Figure A2. Specifically,
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we assigned a random anonymous peer to each subject and displayed
statistics on the peer’s energy and water use.12 At the bottom of each
report, we included personalized link to a mini-survey that we asked
subjects to fill out. The mini-survey contained three questions to elicit
subjects’ estimate of their water consumption per shower (absolute and
relative to others). The purpose of this was twofold. First, we use the
responses to verify if a subject has read the email carefully and, based
on the estimate accuracy, how closely he or she paid attention to the
information. Second, we use the time of survey response to determine
when exactly a subject read the email.

3.5. Experimental design

We implemented a complete 2 × 2 design with four experimental
conditions. Subjects in the control (CON) group received no interven-
tion at all; subjects in the RTF group only received real-time feedback
through the smart shower meters; subjects in the SER group only
received shower energy reports; and subjects in the DUAL group re-
ceived both real-time feedback and shower energy reports. Treatment
assignment was randomized and the group sizes are as follows: 82 in
CON, 88 in SER, 90 in RTF, 91 in DUAL.13

Fig. 3 illustrates the experimental design in detail. Each shower
eter went through a baseline stage of ten showers, in which it only
isplayed the current water temperature, regardless of the experimental
ondition. We use these showers to measure baseline consumption.
tarting from the eleventh shower (intervention stage), devices in
TF and DUAL additionally displayed water use in real-time, whereas
evices in CON and SER stayed in control mode. About halfway into
he study, we started sending energy reports to each subject in the
ER or DUAL group; the first report was sent on 24 January 2017
nd the second report on 8 February 2017, about two weeks later.
e distinguish between intervention (IN) stage 1, in which real-time

eedback is switched on but there were no reports yet, and intervention
IN) stage 2, which is the period that begins after subjects saw the
irst report.14 In order to hold interaction with experimenters constant,
ubjects in CON and RTF groups received placebo emails at the exact
ame time the shower energy reports to subjects in SER and DUAL were
ent out. These subjects were asked to complete the same mini-survey
hat came along with the actual reports.

This staggered experimental design allows us to exploit both
etween- and within-subject variation to cleanly identify and efficiently
stimate treatment effects of interest. The effect of real-time feedback
n isolation is identified by the comparison between the RTF and
ON groups in the (entire) intervention stage, or alternatively by
he comparison between the pooled RTF/DUAL group and the pooled
ON/SER group in IN stage 1. The effect of shower energy reports in

solation is identified by the comparison between the SER and CON
roups in IN stage 2. The additional effect of shower energy reports,
hen combined with real-time feedback is identified by the compar-

son between the DUAL and RTF groups in IN stage 2. Differences
etween the effects of shower energy reports with and without real-
ime feedback identify policy interaction effects, i.e., whether the two
nterventions are substitutes or complements. Note that behavior in
he CON group may not reflect a pure counterfactual, as subjects still
eceive a smart meter with temperature information as well as placebo
mails, to hold experimenter interaction and Hawthorne effects fixed.

12 The matching procedure was one-sided and ensured that each subject
except the most and the least efficient) was equally likely to see a peer with
ower or higher energy use per shower.
13 For the exact randomization protocol, see Appendix B.
14 In practice, the distinction between IN stage 1 and 2 is not perfect,
s we observe 23 subjects in our sample who had yet to complete all 10
aseline showers when the first report was sent out. If anything, this generates
easurement error in our treatment indicators and thus biases estimates
7

owards zero.
We would underestimate the effects of our interventions to the degree
that subjects respond to this by itself, but any relative comparison
across intervention regimes would remain valid.

3.6. Behavioral predictions

In order to derive behavioral predictions for each of our exper-
imental groups, we first briefly discuss the channels through which
each of the two interventions is likely to work. Our theoretical frame-
work shows that the effect of each regime depends on the degree to
which it succeeds in overcoming the aggregate bias, which may be the
product of multiple separate factors. Furthermore, real-time feedback
and shower energy reports could be complements if they are relatively
specialized and operate largely through different channels.

Real-time feedback visually displays live measurement of water use
in the shower. This water volume information can debias individuals’
beliefs about the amount of water they use, but there is no additional
information on energy use or CO2 emissions due to water heating, so
severe knowledge gaps about the environmental relevance of showering
may remain. In addition, the steadily upward moving liter count is
likely to significantly reduce inattention and self-control problems, as
users are constantly facing the smart meter display, and the previously
abstract and elusive notion of resource use suddenly becomes salient
and palpable, infused with a sense of immediacy. It may also facilitate
experimentation with various conservation strategies by keeping track
of progress in real-time. As the RTF condition in our experiment is
essentially a replication of the intervention by Tiefenbeck et al. (2018),
albeit more minimalistic and in a sample without monetary incentives,
we also expect to find comparable conservation effects:

Prediction 1. Providing real-time feedback through the smart shower
meter display in treatment RTF leads to a reduction in water and energy
consumption in the shower.

Shower energy reports provided personalized information about
subjects’ water use in the shower as well as additional information
about energy use and CO2 emissions. We therefore expect that the
reports can help close knowledge gaps in these areas and thereby
induce conservation behavior, since past evidence suggests that indi-
viduals tend to grossly underestimate the energy intensity associated
with water heating (Attari et al., 2010). The second report also included
a social comparison with a randomly assigned and anonymous peer,
which might further add motivation (Allcott, 2011).

Prediction 2. Providing information through shower energy reports in
treatment SER leads to a reduction in water and energy consumption in the
shower.

As the shower energy reports are not immediately salient while
showering, the effect of knowledge gains could be stifled by remaining
barriers like limited attention or self-control problems that can be
better targeted by real-time feedback.15 Vice versa, the effect of real-
time feedback may be attenuated if subjects remain unaware of the
energy and carbon intensity of warm water use. If the two interventions
indeed work largely through these separate behavioral mechanisms,
a combined intervention should leverage all mechanisms at the same
time. As we argue in Section 2, shower energy reports and real-time
feedback could therefore become complements in the sense that one

15 In principle, it is possible that participants also become more attentive
about resource use even without visual aid through the smart meter, as would
be predicted by models of endogenous attention when updates in beliefs about
environmental impacts are sufficiently large (Hanna et al., 2014; Gabaix,
2017). However, if there is such an effect, it may prove short-lived once
reports fade out of memory and resolutions cool off (Allcott and Rogers, 2014;

Schwartz and Loewenstein, 2017).
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Fig. 3. Experimental design and timing of interventions.
intervention makes the other more effective when implemented jointly.
Thus, we derive the following prediction:

Prediction 3. Shower energy reports in IN stage 2 lead to a larger
(marginal) reduction in water and energy consumption in the shower for
subjects who also receive real-time feedback (DUAL group) than for subjects
who do not receive real-time feedback (SER group).

Note that in the communication with the participants, the study was
primarily framed as an energy conservation study, as water scarcity
was less of an issue in Germany at that time. By contrast, energy
conservation and the transformation of the energy sector ranked high
on Germany’s policy agenda. Nevertheless, in the subsequent analy-
ses, we report results for both energy and water consumption. While
greenhouse gas emissions arise mostly due to water heating, conserving
water may be an objective in itself, especially given that climate change
increases the likelihood of droughts and water stress even in parts
of the world (like Germany) that previously have not suffered from
water scarcity (European Environment Agency, 2021). As energy use
is calculated as a product of water volume, temperature gradient,
and constant factors (see 4.1 for details), the amount of energy and
water consumed in the shower are highly correlated. Any change in
water consumption (i.e., by shortening shower time or reducing the
flow rate) affects energy consumption proportionally. The only margin
of adjustment that has a different effect on these two outcomes are
changes to the water temperature.

4. Data and descriptive statistics

4.1. Measurement data on resource use behavior

For every water extraction in the shower, the smart meters mea-
sured, among others, the volume of water used, its average tempera-
ture, and the average flow rate (i.e., volume per time unit). The amount
of energy used was then calculated based on volume and temperature
data, using the standard engineering formula for heat energy.16 Every

16 The formula for energy use of water heating is 𝑄 = 𝑚× 𝑐𝑝 ×𝛥𝑇 , with heat
energy 𝑄, mass of water 𝑚, heat capacity 𝑐 , and 𝛥𝑇 the difference between
8

𝑝

subject had a shower meter installed for the whole duration of the
study, starting from early December 2016. At the end of the study,
in early March 2017, we retrieved the devices and read out the data
manually.17 In this way, we were able to extract an initial data set of
21,469 showers by 327 participants. Unfortunately, no data could be
obtained in 24 cases, either because the device was defective or because
subjects never used it, or because subjects simply disappeared without
a trace (and their shower meters with them).

A number of data cleaning steps are performed before running the
empirical analyses. We briefly describe the most important steps here;
a more detailed documentation can be found in Appendix C. First,
we drop the very first data point of each participant, as they usually
started with a test run to check if the device was working. Follow-
ing Tiefenbeck et al. (2018), we further drop any water extraction with
volume below 4.5 L (in total 2942 extractions), as these are unlikely
to be actual showers but rather minor extractions for other purposes
such as cleaning. As there are rare cases in which the device can
produce errors when storing data, we further remove 37 extreme outlier
points, defined as such by being more than 4.5 times the subject-specific
interquartile range away from the closest quartile.18 We further exclude
1 device with generally erratic data, 5 devices with fewer than 10
recorded extractions, as well as 3 devices with an abnormally large
baseline consumption of 168 L or more per shower, which is about 40
L (1.5 standard deviations) away from the rest of the field. In 8 cases,
the integrated temperature sensor became defective after some time,

the measured water temperature and cold water temperature (assumed to be
12 degrees Celsius). Following Tiefenbeck et al. (2018), we also assume boiler
efficiency losses of 35% and distribution losses of 24%.

17 We already started retrieving some devices in late February, but as the
retrieval process was drawn out over a period several days, the end of the
study was in early March for most subjects.

18 We are particularly strict in only excluding the most implausible data
points here. Conventionally, 1.5 or 3 times the interquartile range (IQR) are
used as criterion for outliers. For a normal distribution, 4.5 times the IQR away
from the nearest quartile corresponds to 6.745 standard deviations away from
the mean.
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𝑡

t

and we impute missing information with the average temperature of
showers taken while the sensor was still intact. The final data set used
for our empirical analyses includes 17,942 showers by 318 participants.

The shower meter stores the temporal order of showers, so we can
easily classify each shower into baseline or intervention stage, as real-
time feedback (in the RTF and DUAL groups) started from the eleventh
shower. Assigning showers to intervention stage 1 (pre-reports) or stage
2 (post-reports) is slightly trickier, as the device has no counter for
global time. Fortunately, the smartphone app stores the date and time
of each data upload, which allows us to construct time bounds for when
a shower took place. Specifically, we know that a shower cannot have
occurred after the time at which it was uploaded, and also not before
the time of the last previous data batch, because otherwise it would
have been uploaded then already. Combined with knowledge about the
order of observations, we can assign approximate dates to each shower,
assuming that the time that passes between one shower and the next
remains roughly constant. For example, if three shower observations
were uploaded at day 𝑡 and the last previous upload occurred at day
− 3, then we would assign the first of these showers to day 𝑡 − 2,

the second to 𝑡 − 1, and the third shower to day 𝑡. We instructed
subjects to use the app regularly starting from 11 Jan 2017 – two weeks
before the first energy report (sent out at 2:30pm on Jan, 24th) –, and
sent additional reminders before each energy report email (or placebo
email) was sent out.

Using this timing information from data uploads, we classify ob-
servations into pre-report showers (IN stage 1) or post-report showers
(IN stage 2). In particular, we know from mini-survey response data
when subjects likely read the email and use this as cutoff date. For non-
responders, we use the time at which we sent the email as cutoff date
instead; the response rate for the first email was 82.7%.19 Observations
with upper time bound before the cutoff date are assigned to IN stage
1 and observations with lower time bound after the cutoff date are
assigned to IN stage 2. For observations that fall into a range of
uncertainty around the date on which the subject read/received the
email, we intrapolate their dates based on the assumption that the
frequency of showering was constant within that time range, and then
use these intrapolated dates to assign them into the first or second
intervention stage.20

A final complication comes from subjects who did not manage to
upload any data to the app. For these non-uploaders, we impute the
timing of shower energy reports based on the assumption that it follows
the same distribution for uploaders and non-uploaders. To operational-
ize this, we use timing information from uploaders to estimate the
probability that a shower took place after receiving the first (second)
report for each shower, based on its temporal order, and then assign
the implied post-report probabilities to showers of non-uploaders. Ap-
pendix Figure A3 plots the estimated CDFs, and more details on the
imputation procedure are provided in Appendix D. We also consider
alternative definitions of intervention periods for robustness checks.

4.2. Survey data

To supplement our behavioral data on resource use in the shower,
we administered several questionnaires. In the baseline survey, we
collected information on individual characteristics (i.e., age, gender,
etc.), perceived water use in the shower, shower comfort (i.e., how
much they enjoy showering), environmental attitudes and beliefs, as

19 47% of subjects responded to the mini-survey within the same day that
he email was sent out, and 77% responded within one week.
20 For example, say we know for certain that shower 𝑠 occurred at 8am on

Jan, 22nd (pre-report), and shower 𝑠 + 3 occurred at 9am on Jan, 25th (post-
report). This leaves the stage of showers 𝑠+ 1 and 𝑠+ 2 ambiguous. To assign
these, we would assume that shower 𝑠+1 occurred in the morning of the 23rd
and shower 𝑠+2 in the morning of the 24th, thus putting both showers before
9

the first report, which was sent out at 4:30pm on the 24th.
well as a number of personality attributes (i.e., Big Five, patience, etc.).
In the post-intervention survey, we again collected self-reported data
on perceived water use, shower comfort, and environmental attitudes.
Furthermore, we administered mini-surveys with each energy report, in
which subjects were asked to estimate their resource use in the shower.

We mainly make use of information on water use perceptions,
shower comfort, and environmental attitudes, and how they change in
response to our interventions. Environmental attitude is elicited using
four items about pro-environmental behavior and identity, e.g. ‘‘I do
what is right for the environment, even when it costs more money
or takes more time’’.21 Shower comfort is elicited using five items on
how much subjects enjoy showering, e.g. ‘‘I find it relaxing to take a
shower’’.22 We create indices for shower comfort and environmental
attitude, respectively, by taking the simple average of the individual’s
responses to the relevant items (rated on a 4- or 5-point Likert scale)
and then normalizing to mean 0 and standard deviation 1. For per-
ceived water consumption, we asked subjects to estimate how many
liters of water they typically use when taking a shower. These estimates
can then be directly compared to their actual water use as measured by
the smart meter. Note that we refrained from eliciting subjects’ beliefs
about energy use and carbon emissions from water heating, because we
did not want to raise awareness about these issues and risk undermining
the shower energy report treatments.

4.3. Sample characteristics and baseline behavior

All study participants were students at universities in Bonn or
Cologne living in single-person dorm apartments, so our sample is
rather homogeneous. From the 318 participants represented in our
main dataset, 203 lived in a dorm in Bonn and 115 lived in a dorm in
Cologne. The female share was 61 percent. Average age was 23.8 years
(median 23 years), with students from all stages of their studies being
represented in our sample.

Using the nine showers (the first being excluded) in the baseline
stage, where only the current water temperature was displayed, we can
construct measures of each subject’s baseline resource use behavior.
Table 1 presents descriptive statistics about baseline energy and water
use per shower, as well as shower duration (net of breaks), water
temperature, and flow rate. On average, showers in the baseline stage
feature 7 min of water flow, which amounts to 37.77 L of water.
On average, water is heated up to a temperature of 36.14 degrees
Celsius, resulting in energy consumption of 2.21 kWh per shower.
There is substantial variation across showers, as observed from the
standard deviations and different quantiles of the distributions. Water
and energy consumption follow a right-skewed distribution, thus the
median energy use per shower (1.71 kWh) is substantially lower than
the mean. As the share of cold showers is extremely low in our sample
(only 3.7% of showers have an average temperature of 21◦𝐶 or lower),
water and energy usage is almost perfectly collinear, with a Pearson
correlation coefficient of 0.9755. The average flow rate of 5.71 L per
minute is relatively low, likely due to dorm infrastructure not being
up to modern standards — flow rates of 10–12 L per minute are more
typical for German households.

4.4. Randomization checks

Our identification strategy relies on randomization producing treat-
ment groups that are comparable with regard to observable and un-

21 The other items are ‘‘Environmental friendliness is part of my personal
identity’’, ‘‘How often do you try to conserve water?’’, and ‘‘How often do
you try to conserve energy?’’. We also include a set of questions adapted
from Nolan et al. (2008) in the baseline questionnaire.

22 The other items are ‘‘I like showering’’, ‘‘For me, taking a shower is just
a means to an end’’, ‘‘I like to let my mind wander when I shower’’, and ‘‘I

try to shower as quickly as possible’’.
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Table 1
Descriptive statistics – baseline showers.

Mean Std. dev. 10th pctile Median 90th pctile Obs.

Energy use [kWh] 2.21 1.91 0.43 1.71 4.58 2503
Volume [L] 37.77 30.40 9.30 29.60 75.70 2503
Duration [min] 6.99 5.00 1.97 5.82 13.00 2503
Temperature [Celsius] 36.14 5.23 32.00 37.00 40.00 2477
Flow rate [l/min] 5.71 2.45 2.80 5.40 9.10 2503

Includes only showers taken in the baseline stage, i.e., first 10 showers and before subjects read/received shower energy reports. For temperature
statistics, devices with broken temperature sensors are excluded. Duration is net of any breaks and calculated by dividing water volume by
flow rate.
Table 2
Randomization checks and extensive margin responses.

Panel A. Baseline averages by individual Panel B.

Energy use Volume Duration Temperature Flow rate Number
[kWh] [liter] [min] [Celsius] [l/min] of showers

RTF group −0.111 −1.253 0.284 0.086 −0.124 −2.312
(0.215) (3.427) (0.597) (0.595) (0.370) (5.183)

SER group −0.077 −2.096 0.166 0.962 −0.441 3.393
(0.218) (3.431) (0.547) (0.608) (0.319) (5.226)

DUAL group −0.071 −1.215 0.126 0.323 −0.151 3.224
(0.226) (3.571) (0.578) (0.556) (0.357) (5.861)

Constant 2.237 38.316 6.797 35.681 5.832 55.312
(0.163) (2.539) (0.411) (0.447) (0.240) (3.698)

Observations 316 316 316 314 316 318
R-squared 0.001 0.001 0.001 0.011 0.005 0.005
F-test: 𝑝-value 0.965 0.945 0.972 0.351 0.550 0.669

Robust standard errors in parentheses. The omitted category is the CON group. For two participants, the device was not able to record information
on baseline showers, but we could extract valid data on showers in later stages; hence the number of observations is only 316 in most columns.
In addition, two participants with initially defective temperature sensors are excluded in column 4.
p
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s
r
u

observable subject characteristics. Although it is naturally impossible
to test the latter, we can check balance on observable baseline char-
acteristics. Panel A of Table 2 shows results from regressing various
measures of subjects’ baseline behavior on assigned treatment groups.
The differences between groups are very small and treatment assign-
ment is insignificant for predicting any of the behavioral measures, so
randomization seems to have worked well. We also check for balance
along background characteristics and survey responses (see Table A.1
in Appendix A), and again find that treatment assignment is statis-
tically insignificant. Importantly, self-reported environmental attitude
and shower comfort are comparable across groups.

4.5. Number of showers

On average, we observe 56.8 showers per individual over roughly
12 weeks of our study, which corresponds to a frequency of about two
showers every three days. However, the net frequency (i.e., adjusting
for absences) might be closer to one shower per day, as our study
period included a two weeks Christmas break. In Panel B of Table 2,
we check whether the number of showers per individual differs across
experimental conditions, but we find that treatments have no effect on
the number of showers (𝑝 = 0.669). Hence, our interventions do not
eem to induce adjustments along the extensive margin, and we do not
eed to worry about subjects compensating shorter showers with more
howers, substituting behavior to other facilities (e.g. wash basin, gym
howers), or about them compromising on basic hygiene needs. This
eans that we can make use of the full panel structure of our data and

nalyze (intensive-margin) water and energy conservation effects at the
evel of individual shower observations.

.6. Presence of imperfect information and behavioral biases

Before moving on to the analysis of our experimental interventions,
e provide suggestive evidence that individuals’ resource consump-

ion in our setting may indeed be subject to biases due to imperfect
nformation and limited attention.
10
First, we make use of the pre-intervention questionnaire and com-
are subject’s perceptions of their own water use per shower to their
ctual baseline water use as measured by the smart meter. Fig. 4
hows that subjects’ estimates are all over the place; we cannot even
eject the null hypothesis that estimated and measured water use are
ncorrelated (Pearson’s 𝜌 = 0.0925, 𝑝 = 0.1308). This demonstrates that

subjects lack information about their own behavioral outcomes prior
to any intervention.23 Interestingly, the mean estimate (43.4 L) and
median estimate (30 L) across subjects were not too far from the typical
baseline water usage per shower in our sample. This is reminiscent of
a ‘‘wisdom of crowds’’ phenomenon and suggests that, on average, our
interventions should not work through debiasing beliefs about water
use.

However, people may be particularly unaware about the link be-
tween water heating for showering and energy consumption, and hence
CO2 emissions. For example, (Attari et al., 2010) show that consumers
are in general highly prone to underestimating the amount of energy
required for heating up water (e.g., water boilers, dishwashers). We
did not elicit beliefs about energy intensity or carbon emissions in the
original experimental sample, to avoid the risk of undermining our
shower energy report treatments. We did, however, elicit beliefs about
carbon emissions in a different sample of students living in the same
dormitories three years after the original study (𝑛 = 329). For more
details on this supplementary study, see Appendix E. Without addi-
tional information, these students underestimated the carbon impact
of warm water use in the shower by a factor of 8 to 9 on average, even
though the average guess for the amount of water used per shower
was fairly unbiased. On average, students estimated that a typical
shower causes emissions of 91.3 grams of CO2 (median 35 grams),

23 We excluded 35 subjects who responded to the baseline survey more than
2 weeks after we distributed shower meters, as they have likely reached the
intervention stage by then. We also exclude 3 outliers with estimates above
200 L. The corresponding regression results are presented in Appendix Table
A13.
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Fig. 4. Pre-intervention awareness about water use per shower.
Notes. This figure compares estimated water use from the baseline survey with actual

ater use in the baseline stage (showers 2 to 10), excluding late survey responders.
outliers with estimates between 200 and 600 L are excluded. Point clouds consist

f individual observations (hollow diamonds for CON and RTF, solid circles for SER
nd DUAL) and lines represent separate regression fits for each treatment group. The
ashed line starting from the origin is the 45 degree line.

hereas the actual emissions amount based on the data from our main
xperiment is about 800 grams.24 Thus, there might be a large potential

for encouraging energy conservation through the information provided
in shower energy reports (Byrne et al., 2018).

Although anecdotally compelling, finding direct evidence for inat-
tention or self-control problems in the shower is trickier. The closest
proxy we have is a baseline survey item on how much subjects agree
with the statement ‘‘I like to let my mind wander when I shower.’’.
59% of our sample agreed or strongly agreed to the statement (25%
strongly agree), whereas only 18% of subjects disagreed (13% weakly
disagree, 5% strongly disagree). Moreover, subjects’ response to this
item is significantly correlated with their average baseline energy use in
the shower (Pearson’s 𝜌 = 0.1645, 𝑝 = 0.004). In fact, it is the single most
predictive item for baseline consumption in the entire survey based
on simple linear regressions. Our interventions could thus help reduce
energy use by reminding subjects to stay focused and not lose track of
time completely under the shower.

5. Estimation approach

Next, we describe our strategy for estimating the effects of our
interventions on resource use in the shower. The empirical results will
be presented in the following section.

5.1. Basic identification and estimation strategy

To formally estimate the effects of different intervention regimes,
we exploit the randomized assignment of subjects into experimental
conditions as well as the staggered introduction of real-time feedback
and shower energy reports, which gives us a double-layered difference-
in-differences setup. The differential changes in consumption behavior
across conditions from baseline stage to intervention stage 1 identify
the causal effect of real-time feedback (RTF/DUAL versus CON/SER),
and the additional changes from intervention stage 1 to stage 2 identify
the causal effect of shower energy reports, both in isolation (SER versus

24 The average guess for amount of water used per shower was 40.4 liters.
he survey was conducted in Nov/Dec 2019 among 329 residents of the exact
ame student dorms in which the original study took place in 2016/17. Only
surveyees had already participated in the original study.
11
CON) and in conjunction with real-time feedback (DUAL versus RTF).
In this setup, interaction effects between the two interventions can
be identified by comparing the incremental effects of shower energy
reports with real-time feedback (DUAL) and without real-time feedback
(SER).

If one was only interested in estimating the effect of real-time
feedback in isolation, the most straightforward approach would be
to simply compare how subjects in the RTF and CON groups change
their behavior from the baseline stage to the entire intervention stage,
without any need to consider shower energy reports or stage 2. To
jointly estimate the effects of each intervention regime, using data from
all experimental condition, we instead consider the following regression
equation:

𝑦𝑖𝑡 = 𝛼𝑖 + 𝐼𝑁𝑖𝑡 ×
(

𝛽0 + 𝛽1𝑇
𝑅∕𝐷
𝑖 + 𝛽2𝑇

𝑆
𝑖 + 𝛽3𝑇

𝐷
𝑖

)

+ 𝐼𝑁 𝑠2
𝑖𝑡 ×

(

𝛾0 + 𝛾1𝑇
𝑅∕𝐷
𝑖 + 𝛾2𝑇

𝑆
𝑖 + 𝛾3𝑇

𝐷
𝑖

)

+ 𝜀𝑖𝑡 , (8)

where the outcome variable 𝑦𝑖𝑡 is energy (water) usage by individual
𝑖 for shower number 𝑡, and 𝛼𝑖 is the individual fixed effect. 𝑇𝑅∕𝐷

𝑖 ,
𝐷
𝑖 and 𝑇 𝑆

𝑖 are treatment group indicators, where superscript 𝑅∕𝐷
enotes the combined real-time feedback groups RTF and DUAL, 𝐷
enotes the DUAL group only, and 𝑆 denotes the SER group only.

Finally, 𝐼𝑁𝑖𝑡 is an indicator that takes the value 1 if observation 𝑖𝑡
alls into the intervention stage (𝑡 > 10), and 𝐼𝑁 𝑠2

𝑖𝑡 is an indicator
for showers that fall into intervention stage 2. As 𝐼𝑁𝑖𝑡 applies to
the entire intervention period, 𝐼𝑁 𝑠2

𝑖𝑡 captures incremental changes in
consumption from intervention stage 1 (pre-report) to stage 2 (post-
report). Note that the stage 2 coefficients combine the effects of two
distinct reports, the second containing also social comparison.

Given our formulation of the statistical model, we can interpret 𝛽1
as treatment effect of real-time feedback on energy (water) use per
shower in the first stage of the study, and 𝛾1 is its change in the second
stage. This allows us to test Prediction 1. The relevant comparison
for Prediction 2 on the effect of shower energy reports in isolation
is between SER and CON after the reports, which is captured by 𝛾2.
Finally, 𝛾3 captures the marginal effect of adding shower energy reports
to real-time feedback, by comparing DUAL and RTF in intervention
stage 2. Finally, the comparison between 𝛾2 and 𝛾3 nails down the
interaction effect between the two interventions and thus allows us to
test for any potential complementarities (Prediction 3). As each test is
associated with a separate hypothesis, we do not adjust our inference
for multiple hypothesis testing (Rubin, 2021).

5.2. Estimating treatment effects on the treated

One complication in estimating the effect of shower energy reports
is that 28% of subjects did not succeed in uploading any data to the
Amphiro smartphone app before we sent out the reports, mostly due
to technical problems (e.g., Bluetooth connection failure).25 For these
‘‘non-uploaders’’, we were unable to provide informative shower energy
reports. As the emails were generated automatically, non-uploaders in
SER and DUAL groups received report templates with blanks where
it was supposed to show statistics on resource use and environmen-
tal impacts. Effectively, this leads to imperfect treatment take-up of
shower energy reports, although being less the result of deliberate
non-compliance than unfortunate circumstances. For participants in the
CON and RTF groups, it is inconsequential whether they successfully
uploaded data.

To test Predictions 2 and 3 from Section 3.6, one possible approach
to estimate treatment effects under imperfect treatment take-up would
be simply to run an intention-to-treat (ITT) analysis, which only uses
treatment assignment information and ignores that some subjects did

25 Out of the 90 non-uploaders in our estimation sample, 63 have explicitly
contacted us for technical problems encountered during their upload attempts.
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not actually receive informative shower energy reports. While this
would be the relevant parameter in many policy evaluation contexts,
one of our main aims is to test whether the effect of receiving in-
formation on the energy use and carbon emissions due to hot water
consumption interacts with the effect of receiving real-time feedback
in the shower (Prediction 3). This would shed light on the potential
importance of multiple biases for complementarites between behavioral
interventions that we identify theoretically in Section 2. However, a
stringent empirical test of this requires that subjects indeed have the
opportunity to gain knowledge through shower energy reports. Thus,
the more policy-relevant parameters in our case are the treatment
effects on the treated (TOT) in the DUAL and SER groups, i.e., the
effects of shower energy reports on subjects who managed to upload
data prior to the report and thus received actual information on the
environmental impact of their hot water consumption in the shower.

The first way in which we estimate the TOT is by simply com-
paring only the uploaders in SER and DUAL groups with subjects in
the CON and RTF groups. The usual concern at this point would be
that treatment take-up is not random. Fortunately, our setting limits
potential endogeneity concerns for three reasons. First, we include
individual fixed effects, so our estimates would still be unbiased if
differences between uploaders and non-uploaders do not interact with
the treatment effect. Second, subjects only knew that they should use
the smartphone app to upload data, but we did not announce that
we would use this data to construct shower energy reports. Thirdly,
the main cause for non-compliance is not the lack of willingness to
use the smartphone app, but unexpected technical failure, which is
unlikely to be selected on the trend. To alleviate the most blatant
endogeneity issue, we also exclude non-uploaders in the CON and RTF
groups who did not report any technical problems. Appendix Tables
A2 and A3 present additional balance checks for the TOT subsample
and show that the experimental groups remain balanced along baseline
characteristics.

The second way in which we estimate the TOT is by using random
treatment assignment as instrument for actual take-up.26 This can be
hown to identify the so-called local average treatment effect (LATE),
.e., the average treatment effect for the sub-population of compliers,
n our case the uploaders (Imbens and Angrist, 1994).27 Compared to
he ‘‘uploaders-only’’-approach, the instrumental variables approach is
onsistent under weaker assumptions, but potentially inefficient. We
ill report the results from both TOT-approaches, but the estimates
re very similar, suggesting that non-compliance due to technical issues
as likely uncorrelated with conservation intentions in our sample.

. Main empirical results

.1. Average treatment effects

We start by presenting descriptive evidence on the resource conser-
ation effects of our interventions in Fig. 5 by plotting subjects’ average
hanges in energy and water consumption per shower in intervention
tage 1 (pre-report) and intervention stage 2 (post-report) compared
o the baseline period. The differences-in-differences across treatment

26 To do this, we create new treatment indicators for the DUAL and SER
roups that took the value 1 for showers in IN stage 2 by subjects who

were assigned to the respective group and who uploaded data through the
smartphone app that we could use to construct their shower energy reports.
The previously defined ITT indicators are then used as instruments for these
new indicators for receiving actual shower energy reports.

27 This identification result holds under the condition that there are no
‘‘defiers’’, subjects who always do the opposite of what they are prescribed.
This monotonicity condition holds by design in our study, because we control
the eligibility of shower energy report treatment, so any participant in the
sample can be classified either as complier or as never taker in the LATE
12

framework.
groups then correspond to the average treatment effects. Note that
the stage 2 averages need to interpreted as combining effects of two
distinct reports, one without and one with social comparison. In order
to show the treatment effects on the treated (TOT), i.e., the effect of
informative shower energy reports, we use the uploaders-only approach
of excluding non-compliers in SER and DUAL as well as non-compliers
without technical problems in CON and RTF.

Fig. 5 essentially summarizes our main results in eight bars. The
patterns are very similar for energy and water consumption. The four
bars to the left of the dashed vertical line represent the change in
resource use per shower in intervention stage 1 compared to the
baseline stage. We can see that relative to subjects in the CON and SER
groups, subjects in the RTF and DUAL groups with real-time feedback
reduced their consumption drastically, by almost 0.4 kWh of energy
and 6 L of water per shower. Recall that there were no shower energy
reports yet at this point. The four bars to the right of the dashed vertical
line represent the change in energy use per shower from baseline stage
to intervention stage 2, after shower energy reports were sent out.
The first observation is that average resource use in the control group
further increased, which could be driven by weather effects, by pending
exams leaving students stressed and in need for a long and warm
shower, or by Hawthorne effects that decrease over time (Tiefenbeck,
2016).28 The second observation is that the RTF group and the CON
roup followed a more or less parallel trend from intervention stage 1
o stage 2, hence the effect of real-time feedback in isolation remains
early constant. The third observation is that providing shower energy
eports in isolation does not seem to result in effective behavioral
hange: consumption of subjects in the SER group followed the CON
roup in close synchronization. In light of this, the fourth and final
bservation is particularly striking: shower energy reports are highly
ffective when combined with real-time feedback. In fact, subjects in
he DUAL group are the only ones to defy the general upward trend
nd reduce their consumption considerably compared to subjects in the
TF group.

The descriptive evidence presented in Fig. 5 is confirmed by formal
mpirical estimates based on the empirical strategy outlined in the
revious section. Table 3 presents the regression results from esti-
ating Eq. (8), with columns 1–2 using the uploaders-only approach,

nd columns 3–4 using the alternative LATE approach. To ensure
hat our statistical inference procedure is robust to arbitrary temporal
nterdependence of showers taken by the same person, we cluster
ll standard errors at the individual level. Appendix Figures A4–A5
how that all statistical test results are virtually identical when using
andomization-based inference methods (Young, 2019).

Focusing first on the effects of real-time feedback in isolation, LATE
s preferable as it utilizes the full sample. We document a conservation
ffect of around 0.37kWh energy and 5.5 L of water per shower
rom intervention stage 1 onwards (coefficient 𝛽1). The effect does not
hange significantly in intervention stage 2 (coefficient 𝛾1); if anything,
t becomes slightly stronger. Another direct way to estimate the effect
f real-time feedback that is easier to interpret is to only compare
ubjects in the RTF and CON groups, since there is no need to take
nto account effects of shower energy reports. Appendix Table A4 shows
hat real-time feedback in isolation reduces resource use by 0.4 kWh of
nergy and 6.3 L of water per shower compared to the CON group over
he entire intervention period, which corresponds to about 17-18% of
verage baseline consumption.

esult 1. Real-time feedback (in isolation) through the smart meter display
ed to a reduction in energy (water) consumption by about 0.4 kWh (6.3
) or 17%–18% per shower.

28 While the baseline phase fell mainly into an unusually warm and dry
December, the main intervention months of January and February saw much
higher precipitation. Exam periods at the universities began in mid-February.
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Fig. 5. Descriptive evidence on resource conservation effects.
Notes. The bars represent changes in average energy use and water use per shower compared to the baseline period. The error whiskers represent 90% confidence intervals.
Non-uploaders in SER and DUAL as well as non-uploaders without technical problems in CON and RTF are excluded.
Table 3
Treatment on the treated (TOT) estimates.

Uploaders-only LATE

(1) (2) (3) (4)
Energy [kWh] Water [liter] Energy [kWh] Water [liter]

(𝛽0) Intervention 0.207∗ 3.067∗ 0.200∗∗ 2.961∗

(0.108) (1.663) (0.099) (1.530)
(𝛽1) Intervention × RTF/DUAL −0.388∗∗∗ −5.762∗∗∗ −0.368∗∗∗ −5.514∗∗∗

(0.130) (2.071) (0.122) (1.932)

(𝛽2) Intervention × SER 0.013 0.543 0.003 0.476
(0.151) (2.361) (0.132) (2.051)

(𝛽3) Intervention × DUAL 0.031 0.524 0.109 2.140
(0.111) (1.808) (0.106) (1.719)

(𝛾0) IN stage 2 0.110 2.191∗ 0.152∗ 2.756∗∗

(0.085) (1.319) (0.090) (1.360)

(𝛾1) IN stage 2 × RTF/DUAL −0.023 −1.234 −0.054 −1.550
(0.109) (1.805) (0.113) (1.806)

(𝛾2) IN stage 2 × SER 0.124 1.336 0.079 0.573
(0.124) (1.993) (0.149) (2.326)

(𝛾3) IN stage 2 × DUAL −0.230∗∗ −3.836∗∗ −0.226 ∗ −4.013 ∗

(0.109) (1.908) (0.122) (2.152)

(𝛼𝑖) Individual fixed effects yes yes yes yes

𝑝-value: 𝛾2 = 𝛽1 0.007 0.018 0.026 0.053
𝑝-value: 𝛾2 = 𝛾3 0.033 0.062 0.114 0.149

Clusters 261 261 318 318
Observations 14 712 14 712 17 942 17 942
𝑅2 0.412 0.415 0.004 0.004

In columns (1) and (2), we exclude all non-uploaders in SER and DUAL as well as all non-uploaders in RTF and CON who did not report a
technical problem. In columns (3) and (4), we use treatment assignment to SER and DUAL, respectively, interacted with the IN stage 2 indicator
as instrument for receiving informative shower energy reports. The reported 𝑅2 in columns (3) and (4) is the within 𝑅2. Standard errors in
parentheses are clustered at the individual level. Permutation-based inference procedures are presented in Figures A4 and A5. ∗ 𝑝 < 0.1, ∗∗

𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.
v
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For the shower energy reports, we need to focus instead on in-
ervention stage 2 and account for imperfect compliance, to estimate
he effects of actually receiving information on resource use and envi-
onmental impacts (see Appendix Table A4 for the intention-to-treat
stimates). Recall that while the LATE approach is consistent even
nder strong endogeneity of treatment take-up, the uploaders-only
pproach is potentially more efficient and still consistent if technical
ssues in uploading data are as good as random.
13
Table 3 shows that the point estimates obtained both approaches are
ery similar, implying that endogeneity of treatment take-up is likely
ot a major issue in our sample, whereas the standard errors are smaller
n the uploaders-only approach. Contrary to prediction 1, shower en-
rgy reports in isolation had no significant conservation effect in the
ER group (coefficient 𝛾2), and the point estimates even go in the

opposite direction. While the null effect is not very tightly estimated,
we can rule out reductions of greater than 4%–5% (0.08 kWh and 1.95
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L per shower) with 90% confidence in our preferred uploaders-only
specification. This would be consistent with effect sizes in the order
of magnitude found in previous studies (e.g., Allcott, 2011). Note that
lower statistical power due to non-compliance does not explain the
insignificant coefficient for SER compared to the significant coefficient
for RTF, since the standard errors for 𝛽1 and 𝛾2 are similar. We can also
reject the hypothesis that shower energy reports in isolation were as
effective as real-time feedback in isolation (𝑝 = 0.009).

Result 2. Shower energy reports in isolation did not induce any significant
reduction in energy and water consumption per shower.

In stark contrast, we find that adding shower energy reports in the
DUAL group induced subjects to further reduce their consumption by
around 0.23 kWh of energy and 3.8 L of water per shower in interven-
tion stage 2 (coefficient 𝛾3), corresponding to another 10%p reduction
rom baseline consumption and about 60% of the effect of real-time
eedback in isolation. Thus, information on environmental impacts of
ot water consumption was not ineffective per se in our setting, but
n fact boosted conservation efforts considerably when administered
n combination with real-time feedback on water usage via the smart
eter displays. This contrast between individuals’ responses to shower

nergy reports with and without real-time feedback is all the more
emarkable given that in the former case they had already cut their
onsumption significantly in intervention stage 1, thus leaving less
oom for further behavioral adjustments. The exact hypothesis for com-
lementarity further requires to test not only whether the incremental
onsumption reduction in the DUAL group was different from zero,
ut also from the effect in the SER group (i.e., whether 𝛾3 = 𝛾2). This
ifference is statistically significant in the uploaders-only specification
𝑝 = 0.033), although in the less efficient LATE-specification it would
e weakly significant only when using a one-sided test.

esult 3. Combining real-time feedback with shower energy reports further
educed energy (water) use by around 0.23 kWh (3.8 L) per shower, in
ddition to the conservation effect of real-time feedback in isolation.

Overall, we observe a sizable complementarity between the two
nterventions in our setting. This is consistent with our theoretical
ramework, which shows that in the presence of multiple biases, behav-
oral interventions may need to address all significant sources of bias
imultaneously in order to unfold their full effect. While shower energy
eports provide information about resource use and associated environ-
ental impacts, conservation efforts may be hindered by residual biases

uch as lack of salience. Real-time feedback through smart meters could
hus turn environmental considerations into action by keeping them on
op of people’s mind in the heat of the moment. We will analyze the
nderlying mechanisms more closely in Section 7.

.2. Robustness checks on timing

As the timing of observations with regard to intervention stage
involves a degree of fuzziness for subjects who did not use the

pp frequently, we conduct a number of robustness checks. First, we
se a donut hole approach that excludes the around 10% of shower
bservations with the highest uncertainty about whether they occurred
efore or after the first shower energy report; Appendix Table A5
hows that our results remain nearly unchanged.29 Second, our results

29 To be more precise, we calculate for each shower a probability that it
ccurred after reading the first shower energy report (or placebo email). Notice
hat for many showers, these probabilities are either 0 or 1, because they were
ploaded before the report or after the first post-report upload, respectively.
or observations within the range of uncertainty, we calculate approximate
robabilities assuming that the frequency of showering is constant. We then
xclude all observations with probability between 10% and 90%, i.e., those
ith significant uncertainty about whether they occurred before or after the

eport. For non-uploaders, we use the same cutoffs of 10% and 90%, but based
14

n the CDF for uploaders (see Figure A3).
are also robust to using an alternative definition of report timing for
non-uploaders that deterministically assigns non-uploaders into inter-
vention stage 2 based on the median study completion value among
uploaders rather than the full cumulative distribution (see Appendix
Table A6). Finally, we estimate a specification in which we assign all
subjects into intervention stage 2 based on when we sent out the first
shower energy report email, rather than based on when they actually
read the reports (proxied by mini-survey response date). Appendix
Table A7 shows that our results are robust to using this alternative
timing indicator.

6.3. Margins of behavioral adjustment

Subjects could conserve energy by reducing the temperature to
which water is heated to and the overall amount of water that needs
to be heated up. Appendix Table A8 shows that reductions in water
temperature seem to be at most a minor factor in our sample, perhaps
for hedonic reasons.30 Hence, water and energy usage tend to be very
losely aligned with each other, and energy conservation effects are
lmost equivalent to water conservation effects, in relative terms. Water
onservation, in turn, can be achieved by adjusting time spent under
he shower, water flow rate (i.e., liters of water per minute), and the
ovariance structure. The data suggests that subjects respond to the
nterventions mostly by taking shorter showers and reducing the flow
ate during long showers.

.4. Treatment effect dynamics

In a next step, we investigate how resource conservation outcomes
hanged over time, with a focus on the last 5–6 weeks period of
ur study, after the first energy reports were sent out (IN stage 2).
his allows us to test whether effects declined over time or remained
table and whether the second shower energy report (containing social
omparison) may have induced behavioral responses. To estimate effect
ynamics, we extend the empirical model from Eq. (8) by interactions
ith a time variable 𝑍𝑖:

𝑖𝑡 = 𝛼𝑖 + 𝐼𝑁𝑖𝑡 ×
(

𝛽0 + 𝛽1𝑇
𝑅∕𝐷
𝑖 + 𝛽2𝑇

𝑆
𝑖 + 𝛽3𝑇

𝐷
𝑖

)

+ 𝐼𝑁 𝑠2
𝑖𝑡 ×

(

𝛾0 + 𝛾1𝑇
𝑅∕𝐷
𝑖 + 𝛾2𝑇

𝑆
𝑖 + 𝛾3𝑇

𝐷
𝑖

)

+ 𝐼𝑁 𝑠2
𝑖𝑡 ×𝑍𝑖 ×

(

𝛿0 + 𝛿1𝑇
𝑅∕𝐷
𝑖 + 𝛿2𝑇

𝑆
𝑖 + 𝛿3𝑇

𝐷
𝑖

)

+ 𝜀𝑖𝑡 . (9)

e explore two variants of 𝑍𝑖. In the first variant, we look additionally
t energy use per shower after the second shower energy report,
hich was sent about two weeks after the first report. In the second
ariant, we interact each treatment group indicator with a linear time
rend, so the 𝛿 coefficients can be interpreted as weekly depreciation
or appreciation) rate of energy conservation effects by intervention
egime.

Table 4 suggests that the effect of shower energy reports in the
UAL group seemed to gradually unfold over time. The point estimates

n columns (1) and (2) indicate that the average conservation effect
s driven largely by the final 3–4 weeks of the study, after the second
eports were sent out. However, this does not seem stem from a discrete
ump, but rather from a continuous trend. In columns (3) and (4),
e estimate that the conservation effect per shower in the DUAL
roup increases by a rate of around 0.08–0.09 kWh every week. These
escriptive results need to be interpreted with caution, as the relevant
oefficients are statistically insignificant. However, we note that the
oint estimates for shower energy reports in isolation (SER group)
how no signs of any quantitatively significant dynamic pattern. The

30 At 40 L and a base temperature of 37◦C, reducing energy conservation by
0.1 kWh would require lowering the temperature by more than 1◦C, ceteris
paribus.
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Table 4
Treatment effect dynamics.

𝑍𝑖 = I{after report 2} 𝑍𝑖 = # weeks after report 1

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

… … … … …
(𝛾0) IN stage 2 0.091 0.135 0.016 0.066

(0.095) (0.103) (0.108) (0.115)

(𝛾1) IN stage 2 × RTF/DUAL −0.038 −0.059 0.037 0.016
(0.120) (0.127) (0.149) (0.154)

(𝛾2) IN stage 2 × SER 0.149 0.102 0.210 0.163
(0.135) (0.156) (0.151) (0.178)

(𝛾3) IN stage 2 × DUAL −0.086 −0.068 0.009 0.049
(0.109) (0.120) (0.154) (0.169)

(𝛿0) IN stage 2 ×𝑍_𝑖 0.032 0.029 0.032 0.029
(0.090) (0.087) (0.023) (0.022)

(𝛿1) IN stage 2 × RTF/DUAL ×𝑍_𝑖 0.025 0.009 −0.021 −0.024
(0.128) (0.125) (0.035) (0.034)

(𝛿2) IN stage 2 × SER ×𝑍_𝑖 −0.043 −0.040 −0.030 −0.028
(0.123) (0.133) (0.036) (0.041)

(𝛿3) IN stage 2 × DUAL ×𝑍_𝑖 −0.245 −0.273 −0.082 −0.095
(0.201) (0.207) (0.055) (0.058)

(𝛽𝑗 ) Intervention indicators yes yes yes yes
(𝛼𝑖) Individual fixed effects yes yes yes yes

Clusters 261 318 261 318
Observations 14 712 17 942 14 712 17 942
𝑅2 0.413 0.004 0.413 0.005

The results are obtained by estimating equation (9). The full table with all the coefficients is presented in Table A9. In columns
(1) and (3), we exclude all non-uploaders in SER and DUAL, as well as all non-uploaders in RTF and CON who did not report
a technical problem. In columns (2) and (4), we use treatment assignment to SER and DUAL, respectively, interacted with
the IN stage 2 indicator as instrument for receiving informative shower energy reports. The reported 𝑅2 in Columns (2) and
(4) is the within 𝑅2. Standard errors in parentheses are clustered at the individual level. ∗ 𝑝 < 0.1, ∗∗ 𝑝 < 0.05, ∗∗∗ 𝑝 < 0.01.
ffect of real-time feedback in isolation also appears to stay constant in
ntervention stage 2, overall showing no signs of weakening within the

months of our experiment.31

There are several potential behavioral explanations for this de-
criptive pattern of increasing responses over time that we observe
n the DUAL group.32 The first explanation is that the peer com-
arison element in the second report provided important additional
ocial motivation to conserve energy, which then interacted with real-
ime feedback; this would be in line with our theoretical framework
s well as previous literature. A second explanation is that subjects
ay have required some time to discover new strategies for further

educing resource use. This experimentation channel is consistent with
ppendix Table A8, which suggests that subjects in the DUAL group
onserved resources in the second intervention stage by reducing the
low rate overproportionately during longer showers. To further in-
estigate this channel, Appendix Table A10 reports a specification
hat allows for discontinuities as well as differential trends after each
eport; although admittedly noisy, the estimates suggest a more or less
onstant and continuous (downward) slope of resource consumption
n the DUAL condition that already begins starting from the first
eport. This suggests that the effects are unlikely to be driven by
ocial comparison alone, although it may have played a role in rein-
orcing them. Importantly, the results speak against pure Hawthorne
ffects or short-lived attention boosts, as these would rather predict an

31 This is consistent with other interventions using smart shower me-
ers (Agarwal et al., 2020; Byrne et al., 2022). Energy conservation studies in
ther settings show some degree of backsliding over time after being exposed
o non-monetary interventions (e.g. Allcott and Rogers, 2014; Ito et al., 2018),
lthough investments into physical capital may alleviate this issue in the long
erm (Brandon et al., 2017).
32 Another potential explanation is that the apparent increase in estimated
ffects over time is a statistical mirage driven by decreasing measurement error
15

bout when subjects were treated with shower energy reports.
‘‘action-and-backsliding’’ pattern (Allcott and Rogers, 2014; Schwartz
and Loewenstein, 2017).

6.5. Heterogeneity by baseline consumption

A frequent finding in the literature is that households or individuals
with high baseline consumption tend to respond more strongly to inter-
ventions that foster conservation behavior (e.g., Allcott 2011, Ferraro
and Price 2013, Tiefenbeck et al. 2018). Policy makers could therefore
improve cost-effectiveness by targeting high-baseline consumers. To
estimate heterogeneity by baseline energy use, we extend the statistical
model in Eq. (8) by adding interactions with baseline consumption,
measured using subject’s average energy usage per shower in the
baseline stage. Alternatively, we estimate a specification where we
interact with an above-median indicator. Appendix Table A11 shows
that, consistent with previous studies, the effect of real-time feedback
increases with baseline usage. In intervention stage 2, subjects with 1
kWh higher baseline in the RTF group reduced their energy use by
an additional 0.25 kWh (𝑝 = 0.083) on average, and above-median
baseline users (mean 3.30 kWh) saved 0.63 kWh (𝑝 = 0.043) of energy
more per shower compared to subjects with below-median baseline use
(mean 1.17 kWh). It also appears that providing information through
shower energy reports in the DUAL condition was about twice as
effective for above-median users compared to below-median baseline
users, although the difference is not statistically significant, whereas
shower energy reports in isolation (SER) had no significant effects in
either subpopulation.

7. Underlying mechanisms

The empirical results show that, in our setting, shower energy re-
ports appeared to be ineffective in isolation, but induced large and sig-
nificant conservation effects when combined with real-time feedback,

which suggests that our interventions were complements. Through the
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lens of the theoretical framework in Section 2, our proposed explana-
tion for this finding is that the two interventions targeted separated
behavioral biases. Shower energy reports may have increased knowl-
edge about environmental impacts of warm water use in the shower,
but this in itself may not achieve reductions in energy consumption
if subjects still suffer from limited attention or self-control problems.
Real-time feedback could help mitigating these problems and thus
enable knowledge gains to translate into conservation behavior. If,
on the other hand, shower energy reports and real-time feedback
both operated through the same mechanisms, we would generally not
expect complementarities unless through some type of crowding in
effect, e.g., if the combined intervention leads to positive attention or
motivation spillovers. In this section, we conduct a number of analyses
to explore the mechanisms underlying our results.

7.1. Awareness about resource intensity and environmental impacts

A crucial element of both interventions in our study is that they
can enable learning about the outcomes of one’s behavior. Real-time
feedback through the smart meter provides immediate display of water
use (and temperature) for the current shower. Shower energy reports
also contain information of individuals’ entire history of water (and
energy) use per shower since the start of the study, with the difference
that it comes in retrospect. Hence, a first manipulation check for our
interventions is to analyze their effect on subjects’ awareness about
their own water use per shower.

In the post-intervention survey at the end of the study, we asked
subjects to again estimate the amount of water they typically use per
shower. Recall that prior to the interventions, subjects’ assessments
were virtually uncorrelated with their actual water use (see Fig. 4).
This picture changes after the interventions. Fig. 6 plots individuals’
post-intervention estimates as a function of their average water use per
shower as measured by the smart meter. The corresponding regression
Table A13 is presented in Appendix A. Whereas subjects in the CON
group remained as ignorant as before, the estimates by subjects who
received real-time feedback (RTF and DUAL group) were much more
aligned with their actual consumption patterns, as indicated by the
fitted regression lines moving closer to the identity line. Importantly,
shower energy reports in isolation (SER group) also induced significant
learning effects about water use compared to the control group (𝑝 =
0.039). Moreover, we cannot reject that the learning slopes among
uploaders are different between SER and DUAL (𝑝 = 0.522). We obtain
similar results when we focus instead on the magnitude of estimation
errors as outcome variable. Table A14 in Appendix A shows that
subjects estimation errors in the three treated groups are on average
about 20–30 percentage points closer to their actual water use than
subjects in the CON group, and notably, the effect is virtually the same
for SER, RTF, and DUAL groups.

Taken together, the results show that subjects in our study became
better informed about their own consumption behavior in the shower
through our feedback interventions. However, belief updating about
water usage alone cannot explain our main results. First, subjects’ prior
beliefs about water use were by and large unbiased even in the control
group: on average, low-baseline users overestimated and high-baseline
users underestimated. Second, we observe significant belief updating in
the SER group that does not translate into resource conservation effects.
This points to the importance of the immediacy and salience of the real-
time feedback intervention, which can help subjects track their water
use while showering and overcome inattention problems.

In contrast to real-time feedback, shower energy reports did not
only contain information about water, but also on energy usage due to
water heating and environmental impacts in terms of CO2 emissions.
This can explain why subjects in the DUAL group reduced their energy
consumption even further after receiving the reports. As a manipulation
check for whether subjects responded to this information, we conducted
16

a supplementary survey in a new sample of 329 students at the end
of 2019 (see also Section 4.6). After eliciting prior beliefs about water
consumption and CO2 emissions per shower, we randomly presented
one fact sheet (out of three) to each surveyee, mimicking the basic
informational content of our original interventions. The ‘‘CON sheet’’
only reported the average water temperature in the shower, the ‘‘RTF
sheet’’ also included the average amount of water used, and the ‘‘SER
sheet’’ further added information on energy use and CO2 emissions.

fter presenting the fact sheets, we elicited posterior beliefs as well
s conservation intentions. We find that, relative to RTF sheet, sur-
eyees that received the SER sheet information drastically adjusted
heir beliefs about CO2 emissions upwards (𝑝 < 0.001), and their self-
eported intention to take shorter showers in the future increased by
ith a 0.24 standard deviations (𝑝 = 0.003). For further details on the

upplementary survey, see Appendix E.
Thus, the shower energy reports increased knowledge about the

nvironmental impact of hot water usage in the shower as well as
onservation intentions, yet they were only associated with significant
onservation effects when combined with real-time feedback. A key
nsights of our theoretical framework is that if biased behavior arises
rom multiple different sources, a narrowly-targeted intervention can
e undermined by residual biases (Anna Karenina effect). Hence, a
ikely explanation of our results is that, when shower energy reports
ere implemented in isolation, additional biases due to, e.g., limited
ttention or self-control problems have prevented knowledge gains and
ood intentions from translating into actual behavior.

.2. Engagement with shower energy reports

One potential alternative channel is differential treatment engage-
ent, in the sense that subjects across experimental conditions may
ave paid more or less attention to the interventions per se. For exam-
le, if previous exposure to real-time feedback induced subjects in the
UAL group to read shower energy reports more carefully than subjects

n the SER group, this might lead to complementarity between the
wo interventions through some type of crowding in or foot-in-the-door
ffect.33

While the previous analyses show that shower energy reports in-
uced significant learning effects also in the absence of real-time feed-
ack, we can also compare engagement with the reports between SER
nd the DUAL groups more directly by making use of the mini-surveys
hat were attached to the reports. As described before, each email
ncluded a link to a survey in which we asked subjects to estimate
heir water usage per shower. The survey link was at the bottom of the
mail, so subjects had to scroll through all the statistics on resource
se and CO2 emissions before clicking on it. We therefore use survey
esponses as proxy for the level of engagement with the feedback email.
ppendix Table A15 shows response rates by treatment group in the
ploaders-only sample. The overall response rate among uploaders was
7% for the first email and 71% for the second email. While the share of
espondents in the SER group was 8.4%𝑝 lower than in the DUAL group
or the first email (𝑝 = 0.203) and 9.4%𝑝 higher for the second mail
𝑝 = 0.308), both differences are statistically insignificant. Furthermore,
e find no evidence that uploaders in the DUAL group studied the

eports more carefully than uploaders in SER group.
Table A15 also compares estimation error across treatment group,

efined as percent deviation of the water use estimate in the mini-
urvey from the exact number that we showed in the same personalized

33 An opposite effect is also conceivable, in which paying attention to one
intervention decreases engagement with the other, for example due to cogni-
tive capacity constraints (see, e.g., Altmann et al., 2022; Trachtmann, 2022)
or lower perceived marginal benefits of information when subjects already
receive real-time feedback. This would work against our complementarity

argument.
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Fig. 6. Post-intervention awareness about water use per shower.
Notes. Both graphs compare subject’s estimates in the final questionnaire with their measured average water use for the last third of shower observations. Graph (b) only uses
the subsample defined for the uploaders-only approach. 7 outliers with estimates between 200 and 500 L are excluded. Point clouds consist of individual observations (hollow
diamonds for CON and RTF, solid circles for SER and DUAL) and lines represent separate regression fits for each treatment group. The dashed line starting at the origin is the 45
degree line.
report that contained the survey link.34 Smaller estimation errors are
thus a direct indication of subjects paying closer attention while read-
ing. Unsurprisingly, all treated groups outperformed the control group,
but we observe no significant difference between uploaders in the SER
and the DUAL group.

As a final plausibility check that differences between SER and DUAL
are not driven by differential level of engagement with the shower
energy reports, we look at whether subjects who studied the reports
more closely also engaged more strongly in conservation actions. To do
so, we create new treatment compliance indicators that also consider
subject’s level of engagement with the reports, to varying degrees of
strictness. Specifically, we define an indicator for whether subjects
uploaded data and clicked on the mini-survey in their report, and
additional indicators for whether a subjects’ estimation precision in
the mini-surveys (as defined above) was above the 25th, 50th, or
75th percentile, respectively, of their treatment group. To avoid the
endogeneity issue at hand, we instrument each of these treatment
compliance indicators with the randomized assignment. Fig. 7 plots
results for the effect of shower energy reports in SER and DUAL group,
respectively, when using these new set of indicators. The estimated
conservation effect in the DUAL group increases monotonically with the
strictness of our compliance definition, reaching more than 0.5 kWh per
shower for the strictest 75th percentile indicator. In contrast, even the
most studious subjects in the SER group did not reduce their energy use
on average. Overall, it is therefore unlikely that our empirical results
can be explained by differential level of engagement with the shower
energy reports.

7.3. Other potential mechanisms

There are a number of alternative channels through which our
interventions could affect conservation behavior. Hawthorne effects
are one possibility, but recall that also subjects in the control group

34 For the CON and RTF group, we calculate this using the number that we
ould have shown, were the subjects assigned to one of the shower energy

eport groups instead. Similarly, for non-uploaders, we use the ex post analog
f the same statistic, based on data was uploaded after the report or manually
ead out by our research team.
17
Fig. 7. Effects for different levels of engagement with shower energy reports.
Notes. The squares represent estimated regression coefficients for the effects of shower
energy reports in intervention stage 2, where treatment engagement status is in-
strumented with treatment assignment (with the exception of ITT). Lines represent
90% confidence intervals. LATE, survey all includes all subjects who uploaded data
and clicked on at least one mini-survey. The labels p25+/p25+/p75+ denote the
groups of subjects whose estimate precision, defined as distance between estimated
and measured water use per shower calculated for the shower energy reports, was
above the 25th, 50th, or 75th percentile of all subjects, respectively. Responses from
the two mini-surveys are combined by using the minimum estimate precision to define
indicators.

received a smart meter and emails reminding them to upload their data.
Another potential channel may be that we accidentally killed the joy
of showering. Reassuringly, our endline survey results suggest that the
interventions had no effects on self-reported shower comfort, thus also
alleviating concerns about unintended negative welfare effects (e.g.,
Damgaard and Gravert, 2018; Allcott and Kessler, 2019). Furthermore,
we find no evidence for positive effects on general pro-environmental
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attitudes. If anything, we observe a decrease in self-perceived envi-
ronmentalism in the treated groups compared to the control group,
potentially due to feedback provision curbing the capacity for distorted
self-image formation. See Appendix F and Table A17 for all results and
a more detailed discussion of alternative mechanisms.

8. Discussion

In this paper, we argued that when multiple biases arising from dif-
ferent sources (e.g., imperfect information, limited attention) simulta-
neously prevent individuals from acting on their values and intentions,
then combining interventions that each target a different source of bias
can result in complementarity, meaning that each intervention becomes
more effective when implemented in conjunction with the other(s)
than in isolation. We first introduced a novel theoretical framework
that explores the implications of multiple biases and defines conditions
for complementary in behavioral interventions in such a setting. We
then presented results from a three-month field experiment on resource
conservation behavior in an energy- and water-intensive everyday ac-
tivity (showering), in which we tested the effects of two types of
interventions: shower energy reports, which provided information on
resource use and carbon emissions via email, and real-time feedback,
which made resource use in the shower immediately salient through
a smart meter display. While only the latter induced a significant
conservation effect when implemented in isolation, combining both
interventions resulted in a striking complementarity that is in line
with theoretical predictions. Specifically, it seems that knowledge gains
about environmental impacts of water heating only translated into
behavioral change when resource use was additionally made salient
through real-time feedback.

8.1. Relevance of effect sizes

Although our interventions were targeted towards one specific
resource-intensive activity, showering, the effect sizes are also quan-
titatively meaningful on the aggregate household level, which is all the
more remarkable given that our subjects had no monetary incentives
to conserve resources. In our study, real-time feedback in isolation
lowered consumption by 0.4 kWh (6.3 L) per shower; adding shower
energy reports further lowered consumption by 0.23 kWh (3.8 L). For
comparison, total daily energy use for lighting in German households
was less than 0.35 kWh per person on average at that time35. In his
influential evaluation of the Opower home energy reports, which target
aggregate electricity use in U.S. households, Allcott (2011) finds an
average household-level conservation effect of 0.62 kWh per day.

For a simple cost-benefit calculation of the Amphiro smart shower
meters, we refer to Tiefenbeck et al. (2018). For the shower energy
reports, while it would not be credible to state a generally applicable
estimate for the cost of intervention, we note that given we had already
set up the technical infrastructure for real-time feedback in our study,
the marginal costs of adding information on environmental impacts
through emails were close to zero. Although we find no evidence
that the email interventions were (cost-)effective in isolation, they
produced significant additional conservation effect when combined
with real-time feedback, so the bundled intervention should be the
most cost-effective regime. This possibility was proposed theoretically
in Section 2.3.

35 Source: German Federal Statistical Office (https://www.destatis.de/
N/Themes/Society-Environment/Environment/Environmental-Economic-
ccounting/private-households/Tables/energy-consumption-households.html)
18
8.2. Data limitations

Our data has a number of limitations. One issue is that the Amphiro
devices had no global time counter, so our only source of information
on timing comes from data uploads through a smartphone app. As most
subjects tended to upload data in batches, some uncertainty remains
about when exactly a shower took place, implying that we cannot easily
control for date or time of day fixed effects and that there is some
fuzziness around which observations took place before or after a shower
energy report — to address this, we conducted a number of robustness
checks. Moreover, a subset of participants could not upload any data
due to technical issues with the Bluetooth connection, and thus could
not receive any informative report. In principle, such problems that
happen in early stages in the life cycle of new applications can be ironed
out in the future.

Another limitation is that we cannot measure behavior outside of
the shower. Hence, we cannot directly rule out, for example, whether
subjects substitute part of their hygiene behavior to other facilities
such as gym showers or wash basins. However, we find no evidence
of extensive margin effects (i.e., on the number of observed showers)
across experimental conditions, and a related study on water conver-
sation in dorm showers finds no evidence of students moving between
different communal shower facilities within the same building (Goette
et al., 2021). Relatedly, we cannot account for potential spillover effects
on other resource consumption activities, e.g., kitchen water usage or
room heating. It is unclear whether this leads to an overstatement
or an understatement of the overall impact of our interventions, and
the general evidence for spillover effects of pro-environmental inter-
ventions is mixed (e.g., Tiefenbeck et al., 2013; Jessoe et al., 2021;
Goetz et al., 2021; Sherif, 2021). Exploring the direction and magnitude
of spillover effects thus constitutes an important avenue for future
behavioral research.

8.3. Generalizability

Our study on hot water conservation in student dorm showers
constitutes a very specific setting. First, students may generally not
be representative of the general population. As our subjects also self-
selected into participating in the study, they may on average be more
intrinsically motivated to protect the environment, although note that
about two-thirds of all dorm residents that we could reach through
door-to-door recruitment participated in our study. Another notewor-
thy feature is that students in our sample did not have to pay utility bills
and thus had no monetary incentives to conserve water and energy,
which is unusual but not unheard of in other settings (e.g., office
energy use).36 The theoretical predictions for how these factors would
affect the potential for complementarity are ambiguous. On the one
hand, stronger marginal (monetary or non-monetary) incentives gives
more leverage to alleviating informational and behavioral barriers; on
the other hand, ceiling effects may limit the conservation potential
if individuals already put in more effort in baseline. Our study was
also conducted during winter in Germany, where demand for long and
hot showers may have been higher due to cold weather. This could
have limited conservation effects due to lower willingness to reduce
warm water use, but also increased conservation potential due to a
higher baseline. Another characteristic of our sample is that all subjects
lived in single-person flats in relatively large and anonymous dorm
buildings. This has advantages for the empirical study design, but limits
the extent of information sharing and social influence that could be

36 Ito et al. (2018) find that monetary incentives lead to stronger and more
persistent reductions in peak electricity use than to moral appeals. Also note
that some surveys in Germany find that young people were less likely to
behave sustainable in their daily lives than older generations (e.g., Ipsos,
2019).

https://www.destatis.de/EN/Themes/Society-Environment/Environment/Environmental-Economic-Accounting/private-households/Tables/energy-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Environmental-Economic-Accounting/private-households/Tables/energy-consumption-households.html
https://www.destatis.de/EN/Themes/Society-Environment/Environment/Environmental-Economic-Accounting/private-households/Tables/energy-consumption-households.html


Journal of Public Economics 228 (2023) 105028X. Fang et al.

c
r
t

8

i
v
w
u
c
c
(
n
o
e
c
o
f
i

v
i
n
m
t
p
b
b
b
t
s
b
m
p
b
n

d
m
i
S
i
2
p
c

relevant in multi-person households. Interestingly, Tiefenbeck et al.
(2018) found no difference in effects of real-time feedback between
one- and two-person households.

Finally, whether and to which extent similar results would arise in
other behavioral contexts is an open question. Our theoretical frame-
work predicts that complementarities should become more likely if –
following the Anna Karenina principle – multiple different mechanisms
play a role in preventing behavioral change, including information
frictions and behavioral biases like limited attention and self-control
problems, but also more standard economic barriers such as lack of
incentives or constraints on time, money, or technology. We suspect
that such complexity of behavioral mechanisms is a pervasive feature
of many social and economic domains of our lives, e.g., decisions
affecting environmental, financial, or health outcomes. If true, the Anna
Karenina effect we highlight in this study could imply the existence
of numerous untapped opportunities for more targeted intervention
designs and help organize empirical research on interaction effects of
behavioral policy.37 Obviously, our study cannot offer any definitive
onclusion and should be viewed more as a proof of concept. More
esearch is needed to understand how our findings would extrapolate
o other settings and samples.

.4. Implications for policy and research

Policy evaluation typically requires to test whether an intervention
n isolation leads to the desired outcomes, to avoid that other inter-
entions confound the effect. Similarly, behavioral researchers who
ish to investigate specific determinants of behavior need to manip-
late these determinants of interest while holding all other factors
onstant. However, our study highlights a particular generalizability
hallenge. Lack of observable impacts in response to an intervention
or manipulation) in isolation may be insufficient to rule out that it is
ot relevant or effective even within the same sample. For example,
ne may have concluded from the lack of effectiveness of our shower
nergy reports in isolation that improving knowledge about energy- and
arbon-intensity of water heating does not matter in our context, but
ur findings suggest that knowledge gains may have been prevented
rom inducing observable behavioral change by residual biases like
nattention or present bias.

The reason for this is that any singular evaluation of an inter-
ention is inevitably confined to the particular choice environment it
s introduced into, which is shaped by existing policies, institutions,
orms, and individual circumstances. This environment itself can be
alleable, so interventions that seem feeble at first glance may be able

o unfold their full potential only once combined with complementary
olicies. We focused specifically on the role of multiple behavioral
iases in decision-making creating potential for complementarities,
ecause mitigating one specific bias (e.g., due to knowledge gaps)
ecomes more effective when also mitigating residual biases (e.g., due
o inattention, self-control problems). This implies that policy designers
hould not focus only narrowly on one specific behavioral mechanism,
ut also attempt to identify other behavioral factors and how they
ight interact or interfere. For example, our results suggest that giving
eople tools that allow them to track their resource use may also make
ehavior more sensitive to other policies such as informational and
orm-based interventions; the same may also apply to conventional

37 For example, Dupas and Robinson (2013) study financial behavior in a
evelopment context and find that simply providing a safe box for storing
oney is effective for encouraging higher savings, except for the subgroup of

ndividuals with severe present bias, who need additional social commitment.
imilarly, prompting deliberation about food choice to help resist temptations
ncreases the effectiveness of healthy purchasing subsidies (Brownback et al.,
019). Cortes et al. (2023) find that text-message interventions on parenting
ractices work less well when in time periods where parents face high
ognitive load.
19
policies like price incentives (Jessoe and Rapson, 2014). An interesting
approach for future research could be to first identify and elicit the
existence and strength of different behavioral motives and biases at the
individual level, and then implement and test tailored combinations
of interventions in a second step — akin to personalized medical
diagnoses and prescriptions.

The potential for complementarities creates a trade-off for policy
makers with a binding budget constraint. They could either target
more people with a single intervention or fewer people with a bun-
dled intervention. We show in our theoretical framework that when
complementarities between interventions are sufficiently strong, it can
be preferable to implement a bundled approach at the cost of cov-
ering fewer households. As social scientists are beginning to pioneer
the process from small-scale proof-of-concept studies to large-scale
interventions (Banerjee et al., 2017), future research should therefore
synchronously advance our knowledge on the interplay of different
policy instruments.
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