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We investigated whether neurons in monkey primary visual cortex (V1) exhibit mixed selectivity for sensory input and behavioral
choice. Parallel multisite spiking activity was recorded from area V1 of awake monkeys performing a delayed match-to-sample task.
The monkeys had to make a forced choice decision of whether the test stimulus matched the preceding sample stimulus. The population
responses evoked by the test stimulus contained information about both the identity of the stimulus and with some delay but before the
onset of the motor response the forthcoming choice. The results of subspace identification analysis indicate that stimulus-specific and
decision-related information coexists in separate subspaces of the high-dimensional population activity, and latency considerations
suggest that the decision-related information is conveyed by top-down projections.
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Introduction
The primary visual cortex (V1) receives not only retinal input but
also massive recurrent connections from other cortical areas (van
den Heuvel and Sporns 2011; Markov et al. 2013) and ascending
projections from modulatory thalamic and brain stem systems
(Bear and Singer 1986; Munk et al. 1996). Accordingly, the activity
of V1 neurons does not solely depend on visual stimuli (Pinto
et al. 2019; Steinmetz et al. 2019; Zatka et al. 2021). However, it is
unclear to which extent these non-retinal projections just exert a
global modulation of excitability or convey specific information.
Evidence from higher cortical areas such as the prefrontal and
motor cortex indicates that cortical neurons can have mixed
selectivity and as a population jointly encode in parallel different
aspects of a task (Churchland et al. 2012; Mante et al. 2013; Rigotti
et al. 2013; Elsayed et al. 2016; Parthasarathy et al. 2017; Aoi
et al. 2020; Perich et al. 2020). This capacity to generate multi-
dimensional codes is attributed to complex, nonlinear interac-
tions within cortical networks that provide the high-dimensional
dynamic space required for such representations (Singer and
Lazar 2016; Singer 2021). The intrinsic connectivity of V1 and its
embedding in the cortical connectome share numerous similar-
ities with the cortical areas for which multidimensional coding
has been demonstrated. V1 also exhibits the required nonlinear,
high-dimensional dynamics due to the abundance of recurrent
interactions (Singer and Lazar 2016; Singer 2021). Therefore, we
hypothesized that V1 might also exhibit mixed selectivity and be
able to represent in population responses not only information
about visual stimuli but also specific information processed in
other cortical areas. To test this conjecture we examined whether
neuron populations in V1 could jointly encode both sensory input
and information about perceptual decisions or behavioral choices.

To this end, we performed parallel multisite electrophysio-
logical recordings in V1 of awake monkeys engaged in a forced
choice, delayed match-to-sample (DMS) task. The task required
to judge whether 2 sequentially presented stimuli, the sample
and the delayed test stimulus, are the same or different, and to
communicate the decision with a 2-way lever response. Applying
advanced decoding methods, we examined whether the popula-
tion responses to the test stimulus contained information of both
the visual stimulus and the forthcoming decision.

Materials and methods
Behavioral task
Results presented here were obtained from 2 adult rhesus mon-
keys (Macacca mulatta: monkey 1: male, 11 kg, 12 years old; monkey
2: female, 9 kg, 17 years old). All experimental procedures were in
compliance with the German and European regulations on labo-
ratory animal protection and welfare and were approved by the
local authority (Regierungspräsidium Darmstadt). The monkey
(applicable to both monkeys) was seated 60 cm in front of a screen
(Samsung SyncMaster 2233RZ; 120 Hz refresh rate) inside a dark
booth. The monkey initiated a trial by fixating at a white fixation
dot displayed at the centre of the screen and had to maintain
fixation on the fixation dot until the trial ended. The eye position
was monitored with the EyeLink tracker (SR Research Ltd., Ottawa,
Ontario, Canada).

In the DMS task, 2 stimuli were presented sequentially, and
the monkey had to report whether the 2 stimuli were the same
(match) or different (nonmatch). A trial started with a fixation
period of 500 ms, during which the screen was blank. Then the
first stimulus (sample) was presented for 500 ms, followed by a
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delay period of 1500 ms after which the second stimulus (test)
was presented. The test disappeared once the monkey responded
or kept on for maximally 500 ms in case of delayed responses.
The monkey had to respond by moving a 2-way mechanical lever:
forward in match trials and backwards in nonmatch trials. The
number of match and nonmatch trials was pseudo-randomized to
be equal. A correct response was rewarded with a drop of water or
juice. If the monkey broke fixation (1.2◦ around the fixation point),
or moved the lever before target onset, the trial was aborted.

Stimulus design
The stimuli were images of single isolated objects with trans-
parent background (Brodeur et al. 2010; Brodeur et al. 2014). The
visible region of the image was normalized to equal pixel intensity
(0.5) and root-mean-square contrast (0.275), and covered the clas-
sical receptive fields of the recorded multi-units. The image size
was 160 × 160 pixels (4.4◦ visual angle) for Monkey 1, and 250 × 250
pixels (6.9◦ visual angle) for Monkey 2. The images were shown at
50% transparency (alpha = 0.5) to reduce the influence of visual
adaptation. The background color of the display screen was 0.5
gray level throughout the experiment.

Electrophysiology
Both monkeys were chronically implanted in the left hemisphere
over V1 with a microdrive system (Gray Matter Research, Boze-
man, Montana, United States) which had 32 individually mov-
able microelectrodes. Data acquisition was performed using the
TDT system (Tucker-Davis Technologies, Alachua, Florida, United
States). Signals were amplified and digitalized at 25 kHz (TDT PZ5
NeuroDigitizer). This raw signal was bandpass-filtered between
300 and 4000 Hz to extract multi-unit spiking activity (MUA), and
low pass-filtered at 300 Hz and down-sampled with a decimation
factor of 24 to about 1 kHz to retrieve the local field potential.
MUA was isolated using the online detection algorithm in the
OpenEx software (Tucker-Davis Technologies). Events crossing a
threshold of 4 times the standard deviation of the filtered spiking
band activity were considered as spikes and analyzed further.

Data analysis
All decoding analyses were based on linear discriminant analysis
(LDA). Firing rates across channels were treated as independent
variables, i.e. predictors, with repeated measurements across tri-
als. To test for stimulus-specificity, image identity was used as
class label; to test for animal’s choice, match/nonmatch was used
as class label. For time-resolved decoding, independent classifiers
were trained at successive time points. In most decoding analyses,
firing rate was calculated by binning spikes in moving causal
windows of 150 ms and steps of 50 ms. For choice decoding, we
used smaller step size (10 ms) to improve temporal resolution.
Decoding accuracy for each session was measured by averaging
the cross-validated classification performance over 20 repeated
stratified sampling of the dataset (20 folds), and smoothed with
cubic-spline functions to interpolate down to < 5 ms time resolu-
tion. Decoding accuracy values were averaged over sessions.

To test whether classifiers identified the animals’ choice rather
than trivial differences in neuronal responses to match vs. non-
match targets (c.f. Fig. 3), we trained classifiers on correct trials
and tested the classifiers on incorrect trials. To this end, we took
firing rate vectors at time point t = 2900 ms and trained decoders
on correct trials (after excluding the trials with shorter reaction
times) to predict match/nonmatch decisions. The accuracy for
correct trials was obtained from 20-fold cross validation and aver-
aging over sessions. In each cross-validation step, the decoders

trained on correct trials were used to predict decision from incor-
rect trials, and the resulting decoding accuracy, averaged across
sessions, was used as test performance on incorrect trials.

To identify subspaces containing stimulus and decision-related
information, we used LDA to find low-dimensional projections
(dimension of class number minus 1) of the data that optimized
separation between classes and clustering within classes. We
obtained the projection matrix for stimulus (2d) and decision (1d)
subspaces at a particular time point (here t = 2700 ms) when both
stimulus identity and the animal’s choice were readily decodable.
We then projected firing rate vectors at each time point into
these 2 subspaces using the aforementioned projection matrices,
in order to evaluate the temporal evolution of the trajectories.

Results
We trained 2 monkeys to perform a DMS task that required
stimulus encoding, working memory, and a forced choice response
(Fig. 1). During the task, the monkey fixated a spot at the centre
of the screen. A sample stimulus was presented in the lower
right visual field for 500 ms, which the animal had to remember
over a delay of 1500 ms. After the delay a test stimulus was
presented in the same location. The animal had to report whether
the test stimulus was the same (match) or different (nonmatch)
from the sample stimulus, by moving a mechanical lever forward
or backward, respectively. The test stimulus was displayed for
a maximum of 500 ms, or until the animal responded. Stimuli
were standardized images (Brodeur et al. 2010; Brodeur et al.
2014) of simple objects displayed on a gray screen. A set of 3
stimuli were used in each session, and the stimuli varied between
sessions. The size (4.4◦ and 7.84◦ of visual angle for Monkeys
1 and 2, respectively) and position (Monkey 1: 2.36◦ lateral of
and 1.34◦ below the fixation spot; Monkey 2: 4.05◦ lateral of and
2.70◦ below the fixation spot) of the stimuli were tailored for
each monkey to cover the ensemble of the receptive fields of the
respective recording sites. Monkey 1 performed 6 sessions in total
and 925.3 ± 181.8 (s.t.d.) trials per session (723.3 ± 147.9 correct
trials; accuracy 78.1 ± 1.7% s.e.m., n = 6). Monkey 2 performed
10 sessions in total and 895.7 ± 210.5 (s.t.d.) trials per session
(601.7 ± 157.8 correct trials; accuracy 66.8 ± 1.2% s.e.m., n = 10).
Unless otherwise stated, only correct trials were analyzed. Data
were analyzed separately for each animal; the results obtained
from one animal are presented in the main text and the results of
the second animal in the supplementary material.

MUA was recorded from 32 recording sites in parallel with a
chronically implanted microdrive system (Gray Matter Research,
Bozeman, Montana, United States) while the animal performed
the DMS task. To examine the amount of test stimulus-specific
information contained in the response vectors, we trained
decoders (linear discriminate analysis, LDA) at successive
intervals (window size 150 ms, step size 50 ms) to predict test
stimulus identity (Fig. 2a-b). The decoding accuracy (interpolated
at finer timescale) increased quickly after response onset, peaked
at about 2692 ms, and maintained a high level as long as the
stimulus was present (Fig. 2c for Monkey 1. Supplementary fig. 1b
for Monkey 2). For example, at 2700 ms, which is 200 ms after
test stimulus onset, decoding accuracy for the test stimulus was
93.25 ± 1.46% (s.e.m.), significantly above chance level (33.3% for
3 stimuli; t = 37.36, P < 0.01, n = 6; one sample t-test).

To investigate whether the activity of V1 neurons contained
information about the forthcoming choice (match/nonmatch), we
trained decoders on firing rate vectors to predict whether the
animal would move the lever forward or backward. The decoding
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Fig. 1. DMS paradigm. Inlet: positions of fixation point, stimulus, and receptive fields.

Fig. 2. Decodability of stimulus identity and decision from neuronal population activity. (a) Raster plot of multi-unit activity in a single trial. The vertical
lines mark sample and test stimulus time (same below). (b) Firing rate vectors in moving time window are used to train decoders to classify stimulus
identity and behavioral choice. (c) Time-resolved accuracy of decoding test stimulus identity. (d) Time-resolved accuracy of decoding behavioral choice.
The orange histogram shows the reaction time distribution. (e) Same as in (d) but trials were aligned to the time of behavioral response. The horizontal
dotted lines denote chance level. The shaded areas indicate 95% confidence interval. The traces show results from individual sessions.

accuracy for the forthcoming choice initially crossed the chance
level (50% for 2 choices) at 157 ms after test stimulus onset, and
increased monotonically afterwards (Fig. 2d for Monkey 1; t = 3.14,
P = 0.0039, n = 6, at 2700 ms. Supplementary Fig. 1c for Monkey 2).
The average reaction time was 632.0 ± 174.7 ms (s.t.d.) for Monkey
1 and 503.1 ± 201.5 ms for Monkey 2. Thus, it was possible to
decode the monkey’s forthcoming choice well before the monkey
responded. Aligning the trials to response times revealed that

the forthcoming choice was decodable already 500 ms before
response onset (Fig. 2e for Monkey 1; t = 12.23, P < 0.01, n = 6. Sup-
plementary Fig. 1d for Monkey 2). Even though the firing rates of
responses to a given test stimulus were identical irrespective of
whether the stimuli were matching or nonmatching (Supplemen-
tary Fig. 2), the decoders may have picked up some differences
in the responses to matching and nonmatching stimuli (stimulus
type-related cues) rather than decision-related cues. In order to

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/advance-article/doi/10.1093/cercor/bhad420/7413206 by Ernst-Struengm

ann-Institut gG
m

bH
 user on 14 N

ovem
ber 2023

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad420#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad420#supplementary-data
https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhad420#supplementary-data


4 | Cerebral Cortex, 2023

exclude the former we trained decoders to distinguish between
match and nonmatch outcome in correct trials and tested the
decoders in error trials, in which the relationship between test
stimulus type and the animal’s choice was inversed. In this case
the performance of the decoders was significantly below chance
(Supplementary Fig. 3; 43.69 ± 1.64%, t = −3.84, P = 0.012, n = 6 for
Monkey 1, 46.12 ± 1.24%, t = −3.14, P = 0.012, n = 10 for Monkey 2),
indicating that the decoders systematically misidentified match
vs. nonmatch test stimulus types while predicting correctly the
forthcoming choice.

These results indicate that the responses to the test stimulus
contain information on both stimulus identity and the pending
decision, raising the question how this information is encoded.
Since population activity is high-dimensional, various codes
could coexist in subspaces without interference (Fig. 3a). To
test this possibility, we examined the subspaces obtained
from the previous decoding analysis using LDA. LDA performs
simultaneously a supervised classification and dimensionality
reduction (linear subspace identification) by finding the low-
dimensional projection of data that maximizes separation
between classes and minimizes dispersion within classes. This
optimized projection thus represents the subspace that is most
informative for discriminating different classes. Here, we used
the firing rate vectors at a particular time point (t = 2700 ms) in
the trial, when both stimulus and choice-related information was
decodable, to obtain an optimal 2-dimensional stimulus space
and a 1-dimensional decision subspace. In the stimulus subspace,
there was clear clustering of data points according to stimulus
identity (Fig. 3b), but complete overlap of the match/nonmatch
decision conditions (Fig. 3c). To obtain an intuition about the
dynamics of population activity, we projected the neural activity
over time (from test stimulus onset) into the space spanned by
the stimulus subspace and decision subspace. The trajectories
of population activity separated for the 3 stimuli, but were
also systematically deflected along the decision axis (Fig. 3d for
Monkey 1 and Supplementary fig. 4 for Monkey 2).

Discussion
The results of this study show that the responses of the same
neuronal population in monkey V1 can simultaneously represent
information about the identity of visual stimuli and about the
forthcoming choice of a particular motor response. The stimulus-
specific and decision-related information existed without
apparent overlap in different subspaces of the high-dimensional
population activity.

The finding that choices can be decoded from V1 responses
agrees with previous studies reporting choice-related signals in
primary sensory areas (Nienborg and Cumming 2009, 2014; Siegel
et al. 2015; Kwon et al. 2016) and it also agrees with the evi-
dence from large-scale recordings that responses associated with
sensory stimulation, behavioral choice, and motor actions are
widely distributed across multiple brain areas (Pinto et al. 2019;
Steinmetz et al. 2019). The choice-related information is with
all likelihood not generated within V1 but conveyed by projec-
tions from higher cortical areas (Markov et al. 2013; Markov
and Kennedy 2013). In rodents performing a sensory discrimina-
tion task, choice-related activity first emerges in premotor and
motor cortical areas before spreading to primary sensory cortex
(Orsolic et al. 2021; Zatka et al. 2021). Accordingly, precisely timed
optogenetic inactivation of sensory cortex after stimulus encod-
ing does not impair the animals’ discrimination performance
(Guo et al. 2014; Zatka et al. 2021), supporting the notion that

choice-related information originated from higher order areas.
Therefore, decodability of choice-related information from V1 or
any other cortical area does not imply that the information is
actually encoded in the same way by the brain, nor does it imply
that this decodable information is used by the brain, although it
can probably be exploited when required.

The coexistence of decision- and stimulus-related signals in
V1 raises the question how these different types of information
are encoded in the activity of the same population of neurons. In
the prefrontal cortex neurons typically exhibit mixed selectivity
and respond to heterogeneous task parameters (Rigotti et al.
2013). This mixed selectivity allows for the flexible association
of task-related information and is considered a hallmark of dis-
tributed coding in the high-dimensional dynamic space exploited
by computations in recurrent networks (Rigotti et al. 2013; Singer
and Lazar 2016; Parthasarathy et al. 2017). Our analyses showed
that the stimulus- and choice-related information is encoded in
different subspaces spanned by the activity of the same neural
population (Mante et al. 2013; Elsayed et al. 2016; Rademaker
et al. 2019; Aoi et al. 2020; Libby and Buschman 2021), and that
these subspaces are likely orthogonal to each other (Semedo et al.
2019; Perich et al. 2020). This permits superposition of stimulus-
specific information or different motor programs in the same
network without leading to catastrophic interference (Zeng et al.
2019). Studies on fading memory, a hallmark of the dynamics
of recurrent networks have shown that such superposition is
possible in the V1 (Nikolić et al. 2009). In the present experiment
the subspace initially filled with stimulus information was subse-
quently complemented with another subspace occupied with the
choice-related signal, supporting the notion that subspaces can
be flexibly deployed depending on task demand.

These results raise the question, why decision- or choice-
related information should be back-propagated to V1 (Singer
and Lazar 2016). One interpretation is that top-down signals
reset the dynamics in V1 once the perceptual discrimination
task is accomplished in order to prepare V1 for the processing of
novel input. However, this would not require to inform V1 about
the outcome of the perceptual process, match or nonmatch. A
more likely interpretation is suggested by the complex recurrent
interactions among cortical areas that result from abundant
reciprocal coupling (van den Heuvel and Sporns 2011; Markov
et al. 2013; Markov et al. 2014). Recurrently coupled networks
process signals in a highly parallel manner and represent
computational results in complex dynamical landscapes to which
all nodes of the network contribute continuously. Any local signal
spreads immediately over the whole network (Effenberger et al.
2022). One out of many signatures of these dynamics are traveling
waves that are considered hall marks of cortical networks (Muller
et al. 2018; Keller and Welling 2023).

Thus, we propose that any cortical area involved in the present
experiment comes to represent the various results of the dis-
tributed computations as soon as these become available. Ini-
tially, the only information available is provided by the retina.
After comparison with information stored in working memory,
the match/nonmatch information becomes available and spreads
across the interconnected areas. In V1 this information must
fill a dynamic subspace that is separate from the subspace rep-
resenting stimulus-related information in order to avoid inter-
ference. In this scenario, the different delays with which the
dynamic coding space of V1 is filled with retinal and later with
choice-related activity do not reflect the conduction delays of
a serial process that relays signals from V1 all the way up to
the decision-making areas and then propagates the result back
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Fig. 3. High-dimensional coding of stimulus and decision information. (a) Schematic representation of the joint presence of stimulus and decision
information in 2 subspaces. (b) Projection of data in the stimulus subspace, where points were colored based on stimulus identity. (c) Same projection
as in (b), but points were colored based on match/nonmatch decision. (d) Projection of test stimulus-evoked firing rate trajectories into the 3D space
spanned by stimulus and decision axes. The colors indicate test stimulus identity. The solid and dashed lines denote conditions of moving lever forward
and backward, respectively.

to V1 in reverse order across the processing hierarchy. Rather,
the sequential filling of the representational space would reflect
the sequential convergence of the whole interconnected network
towards the solution of the task. Support for this interpretation
comes from considerations of conduction delays. These are in the
range of maximally a few tens of milliseconds, c.f. synfire chains
(Abeles et al. 1993; Ikegaya et al. 2004) and thus negligibly short
compared with processing times. A testable prediction of this
scenario is that choice-related signals should become available
at about the same time, allowing for a few milliseconds for
conduction delays, in all interconnected areas. This parallelized
processing strategy is faster than serial processing and allows
task-related information to be simultaneously available in various
dynamic subspaces of the engaged processing area.
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