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The key assumption of the predictive coding framework is that internal representations are used to generate predictions on how the
sensory input will look like in the immediate future. These predictions are tested against the actual input by the so-called prediction
error units, which encode the residuals of the predictions. What happens to prediction errors, however, if predictions drawn by
different stages of the sensory hierarchy contradict each other? To answer this question, we conducted two fMRI experiments while
female and male human participants listened to sequences of sounds: pure tones in the first experiment and frequency-modulated
sweeps in the second experiment. In both experiments, we used repetition to induce predictions based on stimulus statistics
(stats-informed predictions) and abstract rules disclosed in the task instructions to induce an orthogonal set of (task-informed) pre-
dictions. We tested three alternative scenarios: neural responses in the auditory sensory pathway encode prediction error with
respect to (1) the stats-informed predictions, (2) the task-informed predictions, or (3) a combination of both. Results showed
that neural populations in all recorded regions (bilateral inferior colliculus, medial geniculate body, and primary and secondary
auditory cortices) encode prediction error with respect to a combination of the two orthogonal sets of predictions. The findings
suggest that predictive coding exploits the non-linear architecture of the auditory pathway for the transmission of predictions.
Such non-linear transmission of predictions might be crucial for the predictive coding of complex auditory signals like speech.
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Significance Statement

Sensory systems exploit our subjective expectations to make sense of an overwhelming influx of sensory signals. It is still
unclear how expectations at each stage of the processing pipeline are used to predict the representations at the other stages.
The current view is that this transmission is hierarchical and linear. Here we measured fMRI responses in auditory cortex,
sensory thalamus, and midbrain while we induced two sets of mutually inconsistent expectations on the sensory input, each
putatively encoded at a different stage. We show that responses at all stages are concurrently shaped by both sets of expec-
tations. The results challenge the hypothesis that expectations are transmitted linearly and provide for a normative explana-
tion of the non-linear physiology of the corticofugal sensory system.

Introduction
Predictive coding (Rao and Ballard, 1999; Friston, 2003b, 2005) is
the leading theoretical framework for understanding how expec-
tations are integrated in our experience of reality (Keller and

Mrsic-Flogel, 2018). Its central assumption is that sensory pro-
cessing is mediated by the computation of prediction error: the
residual between expectations and the sensory input (Spratling,
2017; Keller and Mrsic-Flogel, 2018).

Predictive coding follows the hierarchical organization of sen-
sory systems (Keller andMrsic-Flogel, 2018). Units computing pre-
diction error at each processing stage are generally assumed to test
the predictions drawn by the level above (Spratling, 2017; Keller and
Mrsic-Flogel, 2018; e.g., a pitch processing stage tests predictions
drawn from a stage encoding melodic phrases). However, it is
unclear how prediction error at each processing stage depends on
predictions drawn at even higher levels of the hierarchy, and what
happens when predictions from different levels are inconsistent.
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One line of research suggests that predictions drawn by one
level are only tested by the level immediately below. This is the
converging conclusion of the studies using the so-called local–
global paradigm (Bekinschtein et al., 2009). In this paradigm,
participants hear successive repetitions of a melodic phrase of
tones AAAAB rarely substituted by a deviant phrase AAAAA.
Prediction error units testing (local) predictions from a stage
encoding pitch elicit prediction error to the fifth tone in the
AAAAB phrase, and no prediction error to the AAAAA phrase.
Local prediction error has been reported in primary auditory cor-
tex (AC). Conversely, prediction error units testing (so-called)
global predictions from a stage encoding melodic phrases only
show prediction error to the fifth tone in the AAAAA phrase.
This kind of global prediction error has been reported in the fron-
tal areas of the cerebral cortex (Bekinschtein et al., 2009;
Wacongne et al., 2011; Chennu et al., 2013; Recasens et al.,
2014; El Karoui et al., 2015; Dürschmid et al., 2016; Nourski et
al., 2018). Together, these results indicate that predictions do
not propagate along the processing hierarchy: otherwise, one
would have also expected AC to show prediction error responses
to the AAAAA phrase.

Another line of research, however, suggests that predictions
drawn by one level are tested by more than one lower-level pro-
cessing stage: task instructions drive the encoding of prediction
error in human AC (Stein et al., 2022) and two stages of the sub-
cortical pathway (Tabas et al., 2020, 2021): the auditory thalamus
[medial geniculate body (MGB)] and midbrain [inferior collicu-
lus (IC)]. High-resolution studies in non-human primates also
reported that the global predictions from the local–global litera-
ture are tested by prediction error units in AC (Uhrig et al.,
2014, 2016; Jiang et al., 2022) and MGB (Jiang et al., 2022).
Unlike the first line of research, these findings imply that predic-
tions are further transmitted downstream in the hierarchy, all the
way to the subcortical pathways.

How can one reconcile the results of the two lines of research?
A likely possibility is that the nature of the predictions plays a role
for determining whether or not they are further transmitted
downstream in the hierarchy. Indeed, while global predictions
are based on local statistics of the stimulus sequences, task-
induced predictions stem from a holistic understanding of the
structure of the sensory input. The brain may use the better-
informed task-induced predictions across the sensory pathway
and restrict the use of predictions based on the statistics of a rep-
resentation like the global predictions to the immediately lower
level. To understand the hierarchical interplay of predictions in
predictive coding, it is thus crucial to study scenarios beyond
the local–global paradigm and consider the interplay of predic-
tions of different natures.

In the present study, we investigate how stats-informed and
task-informed predictions are used to compute prediction error
in the human AC, MGB, and IC. We consider three alternative
scenarios: first, that prediction error is computed only with
respect to the stats-informed predictions, consistent with the
first line of research (Bekinschtein et al., 2009; Wacongne et al.,
2011; Chennu et al., 2013; Recasens et al., 2014; El Karoui et
al., 2015; Dürschmid et al., 2016; Nourski et al., 2018); second,
that prediction error is computed only with respect to the
task-informed prediction, consistent with the second line of
research (Tabas et al., 2020, 2021; Stein et al., 2022); and third,
that prediction error is computed with respect to a combination
of both sets of predictions. The third scenario is the one that best
reflects the non-linear anatomy of the descending auditory path-
way: for instance, the IC receives feedback connections from both

the AC and theMGB (Hackett and Kaas, 2004; Lee and Sherman,
2011; Schofield, 2011).

Methods
Experimental design and statistical analysis
Experimental paradigm
In this study, we reanalyze data from two previous experiments (Tabas et
al., 2020, 2021). Both experiments used the same task. A trial consisted of
a sequence of eight sounds: seven repetitions of a standard and one devi-
ant (Fig. 1A). Participants were instructed to monitor the sequences and
to report, as accurately and fast as possible, the position of the deviant
within the sequence.

The experimental paradigm was designed to elicit two sets of inde-
pendent predictions on the sensory input. One set of predictions
(stats-informed) would be drawn by a population xk that monitors the
stimulus statistics. Within a given trial, we assumed that this population
would expect a deviant in position n with a probability Pstats

nstd = 1/8 and a
standard in position n with a probability Pstats

n,std = 1− Pn,std = 1/8. This
probability distribution Pstats defines the stats-informed predictions on
the sensory input. Trials were arranged in blocks of 10 that kept the
same deviant and standard to ensure that the local representations had
sufficient time to infer which sound was the standard and which sound
was the deviant.

To elicit the task-informed set of predictions, we introduced two
abstract rules: (1) there will always be a deviant and (2) the deviant could
only be located at positions 4, 5, or 6. These rules were disclosed to
the participants at the beginning of the experiment, who could use it
to infer the likelihood of the position of the deviant during each trial.
The rule renders Ptask

n,devm = 0 ∀n [ {1, 2, 3, 7, 8}, independently of the
actual location of the deviant m [ {4, 5, 6}. The position of the deviant
in each trial was pseudorandomized across the experiment so that
all deviant positions were equally likely, which means that
Ptask
4,devm = 1/3 ∀m [ {4, 5, 6}. However, if participants did not find the

deviant in position 4, the deviant could only be located in positions 5
or 6; namely, Ptask

5,devm = 1/2 ∀m [ {5, 6}. If the deviant is also not present
in position 5, it necessarily occurs at position 6, and therefore Ptask

6,dev6 = 1.
This probability distribution Ptask defines the task-informed predictions
on the sensory input. Note that the stats-informed and the task-informed
predictions do not co-vary; namely, their predicted probabilities
of finding a deviant along the different locations of the trial are
weakly correlated (r(Pstats

:,dev4 P
task
:,dev4) = 0.14, r(Pstats

:,dev5 P
task
:,dev5) = 0.21, and

r(Pstats
:,dev4 P

task
:,dev4) = 0.25).

The inter-trial-interval (ITI) was jittered so that deviants were sepa-
rated by an average of 5 s, up to a maximum of 11 s, with a minimum ITI
of 1500ms. This maximized the efficiency of the response estimation of
the deviants (Friston et al., 1999) while keeping a sufficiently long ITI to
ensure that the sequences belonging to separate trials were not
confounded.

The experiment consisted in several runs of the same task. Each run
contained 6 blocks of 10 trials. The 10 trials in each block contained the
same standard–deviant combination, so that within a block only the
position of the deviant was unknown, while the identity of the deviant
was known. Each of the blocks in a run used one of the six standard–
deviant combinations. The order of the blocks within the experiment
was randomized. The position of the deviant was pseudorandomized
across all trials in each run so that each deviant position happened
60 (pure tone experiment) or 180 (sweep experiment) times per subject
but an unknown amount of times per run. This constraint allowed us to
keep the same prior probability for all deviant positions in each block
(i.e., P = 1/3). In addition, there were 23 silent gaps of 5300ms duration
(i.e., null events of the same duration as the tone sequences) randomly
located in each run (Friston et al., 1999). Each run lasted around 10
min, depending on the reaction times of the participant.

Stimuli
All stimuli were 50ms long, including 5ms ramp-in and ramp-out
Hanning windows. Stimuli were arranged in each sequence with a
fixed inter-stimulus-interval of ISI = 700ms.

2 • J. Neurosci., January 3, 2024 • 44(1):e2219222023 Tabas and von Kriegstein • Multi-Level Predictive Coding in Auditory Pathway



There were two sets of stimuli, one based on pure tones (experiment 1)
and one based on frequency-modulated (FM)-sweeps (experiment 2).
Pure tones and FM-sweeps are two of the three information-bearing-
elements (IBEs) (Suga, 2012) in which meaningful acoustic signals can
be linearly decomposed. We used these two sets to test whether the
same principles operate across different IBE types and thus generalize
to information-bearing auditory signals.

The pure tone set consisted of three pure tones of frequencies
f1 = 1455Hz, f2 = 1500Hz, and f3 = 1600Hz. With these three pure tones,
we built six standard–deviant combinations characterized by the abso-
lute frequency difference between deviant and standard D = |fdev − fstd|.
Across the experiments, participants encountered trials with three differ-
ent values of D [ {45, 100, 145}Hz (Fig. 1B).

The FM-sweep set consisted of three linear FM-sweeps, one with a
descending FM (down) and two with ascending FM (up), with modulation
rates n1 =−4 kHz/s, n2 = +2 kHz/s, and n1 = +4 kHz/s. Specifically, the fast
up sweep had a starting frequency f0 = 1000Hz and ending frequency
f1 = 1200Hz (Df = 200Hz); the slow up sweep had f0 = 1070Hz and
f1 = 1170Hz (Df = 100Hz); and the fast down sweep with f0 = 1280Hz
and f1 = 1080Hz (Df =−200Hz). The FM-sweeps were designed so that
they elicited the same pitch percept and the same average activity across
the tonotopic axis, ensuring that participants had to rely on their
perception of the modulation rate to tell them apart (see Tabas et al.,
2021 for details). Analogously to the pure tones, we used the
FM-sweeps to build six standard–deviant combinations characterized
by D = |ndev − nstd | [ {2, 4, 8}kHz/s (Fig. 1B).

Description of the data
Data for each experiment were acquired with different MRI-machines
and different participant cohorts. Here we describe shortly the key char-
acteristics of each data-set; full descriptions are detailed in Tabas et al.
(2020, experiment 1, pure tones) and Tabas et al. (2021, experiment 2,
FM-sweeps). Data collection of the pure tone data-set was approved by
Ethics Committee of the Medical Faculty of the University of Leipzig,
Germany (ethics approval number 273/14-ff). Data collection of the
FM-sweep data-set was approved by the Ethics Committee of the
Technische Universtät Dresden, Germany (ethics approval number EK
315062019). All listeners provided written informed consent and
received monetary compensation for their participation.

Data from 19 (12 female) and 18 participants (12 female) were
included in the pure tone and FM-sweeps data-sets, respectively. All par-
ticipants had normal hearing (thresholds equal of below 25 dB in the
range 250Hz and 8 kHz, as measured by pure tone audiometry) and
scores within the neurotypical range in screenings for developmental
dyslexia (rapid automatized naming test of letters, numbers, and objects;
Denckla and Rudel, 1976) and autism spectrum disorder (AQ; Baron-
Cohen et al., 2001; all screenings conducted in German).

Stimuli were presented using MATLAB (The Mathworks) with the
Psychophysics Toolbox extensions (Brainard, 1997). Loudness was
adjusted independently for each subject before starting the data acquisi-
tion to a comfortable level. In the pure tone experiment, stimuli were
delivered through an MrConfon amplifier and headphones (MrConfon
GmbH). In the FM-sweep experiment, stimuli were delivered through
an Optoacoustics (Optoacoustics or Yehuda) amplifier and headphones
equipped with active noise-cancellation.

Data from the pure tone data-set were collected using a 7-Tesla
Magnetom (Siemens Healthineers) with a spatial resolution of 1.5mm
isotropic and temporal resolution of TR = 1.6 s. Data from the
FM-sweep data-set were collected using a 3-Tesla Trio (Siemens
Healthineers) with a spatial resolution of 1.75mm isotropic and tempo-
ral resolution of TR = 1.9 s. In both cases, we used EPI sequences with
partial coverage. Slices were oriented in parallel to the superior temporal
gyrus such that the volumes encompassed the IC, the MGB, and the
superior temporal gyrus.

Participants from the pure tone data-set completed 4 runs in a
single session (240 trials in total, 80 per deviant position). All but one
participant from the FM-sweep data-set completed 9 runs of the
main experiment across 3 sessions (540 trials in total, 180 per deviant
position); subject 18 completed only 8 runs due to technical reasons.
Due to an undetected bug in the presentation code, the first three
runs of subjects 1, 2, 4, and 5 and the first six runs of subject 3
were discarded.

During fMRI data acquisition, we also recorded the respiration (in the
pure tone data-set) and heart rate (in both the pure tone and FM-sweep
data-sets) of the participants. We recorded structural MR-images of each
participant using eitherMP2RAGE(Marques et al., 2010; pure tonedata-set;
parameters: TE = 2.45ms, TR = 5000ms, TI1 = 900ms, TI2 = 2750ms,
flip angle 1 = 5◦, flip angle 2 = 3◦, FoV = 224mm× 224mm, GRAPPA
acceleration factor 2) or MPRAGE (Brant-Zawadzki et al., 1992; FM-
sweep data-set; parameters: TE = 1.95ms, TR = 1000ms, TI = 880ms,
flip angle 1 = 8◦, FoV = 256mm× 256mm) protocols with nominal
resolutions of 0.7mm and 1.0mm isotropic, respectively.

All data were preprocessed using Nipype (Gorgolewski et al., 2011),
and analyses were carried out using tools of the Statistical Parametric
Mapping toolbox, version 12 (SPM); Freesurfer, version 6 (Fischl et al.,
2002); the FMRIB Software Library, version 5 (FSL; Jenkinson et al.,
2012); and the Advanced Normalization Tools, version 2.2.0 (ANTs;
Avants et al., 2011). All second level analyses were performed in
Montreal Neurological Institute (MNI) MNI152 1mm isotropic asym-
metric template.

Data were first realigned and unwarped with SPM. The transformation
between the functional runs and the structural image was computed with
Freesurfer’s BBregister, which fits the boundaries between gray and white
matter of the structural data to the functional images using the whole-brain

Figure 1. Experimental design. A, Example of a trial. Each trial consisted of a sequence of seven repetitions of one standard (gray) and a single instance of a deviant (black). The deviant could
occur in positions 4, 5, or 6 of the sequence. Participants reported, in each trial, the position of the deviant immediately after they identified it. Within a sequence, stimuli were separated by
700 ms ISIs. B, The three pure tones used in the pure tone experiment are displayed in dark blue. Trials were characterized by the absolute difference between the frequency of the standard
and the deviant D. C, The three FM-sweeps used in the FM-sweep experiment are displayed in dark blue. Trials were characterized by the absolute difference between the modulation rate
of the standard and the deviant D. The stimuli schematically shown in light blue in panels B and C were not used in the experiments and are plotted here only to contextualize the used
stimuli within a family characterized by a continuously varying property (frequency in B and modulation rate in C ).
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EPI as an intermediate step. We computed the transformation between the
structural image and the MNI template fitting a concatenation of a rigid,
affine, and B-spline non-linear volume-based mappings with ANTs.
ANTs simultaneously fit the direct and inverse transform between the
two spaces: we used the direct transform to map the data to MNI space,
and the inverse transform to map the region of interests (ROIs) to the sub-
ject space to validate the registrations (see below).

Physiological (respiration or/and heart rate) data were processed by
the PhysIO Toolbox (Kasper et al., 2017) that computes the Fourier
expansion of each component along time and adds the coefficients as
covariates of no interests in the model’s design matrix. All the prepro-
cessing parameters, including the smoothing kernel size, were fixed
before we started fitting the general linear model and remained
unchanged during the subsequent steps of the data analysis.

Regions of interest
We used two atlases to identify which voxels belonged to each subcortical
and cortical ROI. For the subcortical ROIs, we used an in vivo atlas (Sitek
et al., 2019) that identified which voxels of the MNI space most likely
cover bilateral IC and MGB. To test for potential functional specializa-
tions of the subdivision of the MGB, we used masks calculated in
Mihai et al. (2019) detailing the average location of the ventral tonotopic
axis of the nucleus across 28 participants. This is, to-date, the best exist-
ing approximation of the location of primary (ventral) MGB (Mihai et
al., 2019).

For the cerebral cortex ROIs, we used theMorosan atlas (Morosan et al.,
2001), which subdivides AC in four bilateral cortical areas using cytoarch-
itectural considerations. Cortical areas are identified as Te1.0, Te1.1, Te1.2,
and Te3. Areas Te1.0, Te1.1, and Te1.2 aremostly located onHeschl’s gyrus
(Te1.1 most posterio-medial, Te1.2 most antero-lateral, and Te.1.0 in
between), and Te3 is located on the lateral surface of the superior temporal
gyrus (Morosan et al., 2001). Te1.0 includes areas analogous to the core of
the AC; i.e., primary AC (Moerel et al., 2014).

To empirically validate the registration procedure, we used the
inverse transforms provided by ANTs to project the subcortical
(Fig. 2) and cortical (Figs. 3, 4) ROIs to the native space of the structural
images. The plots confirm that our registration pipeline successfully
mapped the anatomical ROIs of each participant into the MNI space
with an orientation that resembles the orientation of the different AC
regions.

Bayesian model comparison
To evaluate whether neural responses in each of the ROIs corresponded
to prediction error with respect to the stats-, task-informed predictions,
or both (Fig. 1), we used Bayesian model comparison. Bayesian model
comparison allows to calculate the evidence for a given model of the
response profile in each voxel of the ROI.We used three models that cap-
ture three different hypotheses. Stat: neural responses encode prediction
error with respect to Pstats; task: neural responses encode prediction error
with respect to Ptask; combined: neural responses encode a linear combi-
nation of the prediction errors with respect to each, Pstats and Ptask. In
addition, we used a control model that encoded the structure of the par-
adigm and served as baseline. The numeric definitions of these models
are described below (Methods, Definition of the models).

All regressors corresponding to each of the model were normalized to
have a mean of zero and variance of one across each run before convo-
lution and model fitting. Note however that SPM orthogonalizes the
regressors before fitting them to the data. Moreover, since we applied
the same procedure to all models, preprocessing of the regressors cannot
bias model comparison.

We first computed the log-evidence for each of the three models in
each voxel of the ROIs per each participant using SPM via nipype.
Given the model amplitude(s) an and the timecourse of a voxel y, SPM
calculates the log-evidence of the linear model y = b0 +

∑
n bnan + 1,

where bn are the linear coefficients of each regressor and 1 are noise
terms. To avoid inspecting the data more than once (and thus incur
into multiple-comparison problems), we used the default uninformed
priors (unweighted graph Laplacian, which impose a soft constraint
that values for the coefficients change smoothly across nearby voxels)

and default hyperparameters of the implementation of the method in
SPM for the computation of the first level Bayesian analysis (Penny et
al., 2003).

Log-evidence maps were then combined across participants for each
stimulus set using custom scripts (see Data and code availability) follow-
ing a two-step procedure: first, we combined the log-evidences across
sessions for each individual subject assuming fixed-effects (i.e., summing
across the log-evidences for each subject) and then computed a posterior
distribution at the group level using the random-effects procedure
described in Rosa et al. (2010) and Stephan et al. (2009). Uninformed pri-
ors (i.e., uniform distribution across models) were used for the second
level Bayesian analysis. This procedure resulted in an estimation of the
log-evidence of each model for each voxel. Group-level log-evidence
maps were then subtracted to compute the Bayes factor of the compar-
ison of any two models m1 and m2: Km1/m2 = elogEvm2−logEvm1 . Since
K-maps are only used for the computation of possible correlations
between the relative posteriors of the models with the temporal
signal-to-noise ratio (tSNR), we did not threshold the resulting
k-maps. The predictive power of each of the main three models m is
quantified as the K factor given m and the control model. We consider
that there is substantial evidence that a voxel is better explained by m
than by the control model when K .

���
10

√
.

Definition of the models
Modeling prediction error
In all models, we assume that neural responses encode prediction error
with respect to a set of predictions. The models disregard contributions
of other factors (e.g., neural habituation) that, although are expected to
influence the signal, would not differ same across sets of predictions.

We defined prediction error as the mismatch between the expected
stimulus and the actual stimulus weighted by the likelihood of encoun-
tering the stimulus in each position P = Pstats/task

n,std/devm
. We assumed that

the mismatch between the expected and actual stimulus would be a
monotonically increasing function of the absolute difference between
the deviant and standard D; we approximated this function to be locally
linear in a neighborhood of the set of values ofD considered in our exper-
iments and to be zero if the expected and the presented stimuli were the
same. As such, prediction error j is defined as follows:

j =
∑

s[stimuli

Psf (D, s, input)

f (D, s, input) =
0 if s = input

b0 + b1D if s = input

{ (1)

where s [ stimuli are all the stimuli that could plausibly beheard in the next
location: the standard and the deviant. For instance, if the prediction for a
given tone is Pstd = 2/3 Pdev = 1/3 and the tone is actually a standard, the
prediction error would be j = Pstd × 0 + Pdev(b0 + b1D) = 1/3(b0 + b1D).

We modeled the prediction error responses using two regressors:

aj1 =
∑
s

Psds,input, (2)

aj2 =
∑
s

Psds,inputDs, (3)

where dsinput is the Kronecker delta. While the regressor a1 represents a
constant response to unexpected stimuli (b0 in Eq. 1), a2 captures the
dependence between prediction error and the mismatch between the
expected and presented stimuli (b1 in Eq. 1). Although a2 is not strictly
necessary to differentiate between the stats, task, combinedmodels, these
additional regressors allow the models to fit different amounts of predic-
tion error in trials that have different standard–deviant combinations.
Moreover, using these two regressors yields the linear model y = b0 +
b1

∑
s ds,inputPs + b2

∑
s ds,inputPsDs / b0 + 1 (compare with Eq. 1),

where b0 accounts for the baseline constant BOLD response of the voxel
(i.e., independently of the stimulation and predictions).
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Regressors in Equations 2 and 3 can capture the prediction error to
stimuli in positions 2–8; however, they cannot capture the responses to
the first standard in each sequence. The first standard elicits prediction
error with respect to the task-informed predictions not because its

identity is unknown, but because its onset time is unknown. It also elicits
prediction error with respect to the stats-informed predictions because it
interrupts the silence that precedes it in the local stimulus history. To
take into account the contributions of the first standard without tweaking

Figure 2. Anatomical location of the subcortical ROIs in each participant. Each panel plots the location of each ROI projected from MNI to the structural space of the participant using the
coregistration inverse transform.
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the definition of j from Equation 1, we added another regressor aj3 = dn,1;
namely, aj3 = 1 for the first standard of each sequence and aj3 = 0 for the
remaining of the sounds in each sequence. Conversely, aj1 and a

j
2 are non-

zero only for positions 2–8 within each sequence.

While models corresponding to the stats- and task-informed predic-
tions had three regressors, the model that incorporates both sets of pre-
dictions had five regressors. Bayesian log-evidences penalizes the
addition of extra regressors, meaning that the evidence for any model

Figure 3. Anatomical location of the cortical ROIs in each participant (pure tone experiment). Each panel plots the location of each ROI projected from MNI to the structural space of the
participant using the coregistration inverse transform.
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of a higher complexity would only be greater than the evidence for a
model of lower complexity if the additional regressors explain the data
better beyond what would have been expected due to overfitting of the
extra free parameters.

Prediction error with respect to the stats-informed predictions
The stats-informed predictions were Pstats

std = 7/8 Pstats
dev = 1/8 for all tones

in the sequence (Fig. 5A). Exact values for the regressors are detailed in
Table 1.

Figure 4. Anatomical location of the cortical ROIs in each participant (FM-sweeps experiment). Each panel plots the location of each ROI projected from MNI to the structural space of the
participant using the coregistration inverse transform.
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Prediction error with respect to the task-informed predictions
Task-informed predictions depended on the position of the incoming
sound n (Fig. 5B). For positions n [ [2, 3, 7, 8], Ptask

n,std = 1, Ptask
n,dev = 0;

for position n = 4, Ptask
4,dev = 1/3, ptask4,std = 2/3. Predictions for positions n [

{5 6} depended on the actual position of the deviantm. If the deviant was
at position m = 4, participants would not expect any other deviant in
positions 5 and 6, and thus the predictions would be
Ptask
n,dev = 0, Ptask

n,std = 1 ∀n [ {5, 6}. If the deviant was not in position

m = 4, the predictions on n = 5 would be Ptask
5,dev = Ptask

5,std = 1/2. If the devi-
ant was in position m = 5, predictions for n = 6 would be
Ptask
6,dev = 0, Ptask

6,std = 1. Last, if the deviant was neither in position m = 5,
the predictions on n = 6 would be Ptask

6,dev = 1, Ptask
6,std = 0. Exact values for

the regressors are detailed in Table 1.
With the exception of the expected responses to the first standard, the

regressor a2 of this model is identical to the predictive coding hypothesis
in Tabas et al. (2020, 2021) and Stein et al. (2022).

Figure 5. Schematics of t.eps models used for Bayesian model comparison. Each panel plots a possible linear combination of the regressors used in each of the three models for each of the
nine trial types (three deviant positions × three values of D) of the experiments. Plots in panel A show the stats model, and in panel B, the task model, and in C, the combined model. Each
colored line corresponds to oneD value (red corresponds to the largest delta, yellow to the lowest). The apparent delay between colored lines is a visualization device: there was no such delay in
the model. Note that the relative height of the first standard (in comparison to the deviant) and the relative weight thatD has in the responses to the deviants are free parameters of the model.

Table 1. Amplitudes of the models used for Bayesian model comparison

.eps2lstats 1 2 3 4 5 6 7 8

a1 Deviant at 4 0 1/8 1/8 7/8 1/8 1/8 1/8 1/8
Deviant at 5 0 1/8 1/8 1/8 7/8 1/8 1/8 1/8
Deviant at 6 0 1/8 1/8 1/8 1/8 7/8 1/8 1/8

a2 Deviant at 4 0 1/8D 1/8D 7/8D 1/8D 1/8D 1/8D 1/8D
Deviant at 5 0 1/8D 1/8D 1/8D 7/8D 1/8D 1/8D 1/8D
Deviant at 6 0 1/8D 1/8D 1/8D 1/8D 7/8D 1/8D 1/8D

a3 All deviants 1 0 0 0 0 0 0 0

task 1 2 3 4 5 6 7 8

a1 Deviant at 4 0 0 0 2/3 0 0 0 0
Deviant at 5 0 0 0 1/3 1/2 0 0 0
Deviant at 6 0 0 0 1/3 1/2 0 0 0

a2 Deviant at 4 0 0 0 2/3D 0 0 0 0
Deviant at 5 0 0 0 1/3D 1/2D 0 0 0
Deviant at 6 0 0 0 1/3D 1/2D 0 0 0

a3 All deviants 1 0 0 0 0 0 0 0

combined 1 2 3 4 5 6 7 8

a1 Deviant at 4 0 1/8 1/8 7/8 1/8 1/8 1/8 1/8
Deviant at 5 0 1/8 1/8 1/8 7/8 1/8 1/8 1/8
Deviant at 6 0 1/8 1/8 1/8 1/8 7/8 1/8 1/8

a2 Deviant at 4 0 1/8D 1/8D 7/8D 1/8D 1/8D 1/8D 1/8D
Deviant at 5 0 1/8D 1/8D 1/8D 7/8D 1/8D 1/8D 1/8D

a3 Deviant at 4 0 0 0 2/3 0 0 0 0
Deviant at 5 0 0 0 1/3 1/2 0 0 0
Deviant at 6 0 0 0 1/3 1/2 0 0 0

a4 Deviant at 4 0 0 0 2/3D 0 0 0 0
Deviant at 5 0 0 0 1/3D 1/2D 0 0 0
Deviant at 6 0 0 0 1/3D 1/2D 0 0 0

a5 All deviants 1 0 0 0 0 0 0 0

Notes: Amplitudes of the linear models used for Bayesian model comparison. For each of the three models, we computed the log-evidence that each responses in each voxel y � ∑
n bnan , where bn are the free parameters of the

model. Stats assumes that responses encode prediction error with respect to a set of predictions that are informed by local stimulus history and statistics. Task assumes that responses encode prediction error with respect to predictions
drawn by the internal representation of the task instructions. Combined assumes that responses encode a linear combination of prediction error with respect to the stats-informed and task-informed predictions. All regressors were
normalized (mean of zero and variance of one) prior fitting.
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Prediction error with respect to a combination of both predictions
To test whether both, stats- and task-informed predictions, contribute to
the computation of prediction error,we assumed that predictionswouldbe
a linear combination of the predictions of both models (Fig. 5C); or, sim-
ilarly, that the neural responses would be a linear combination of the pre-
diction error expected by each set of predictions (note that the dependence
of j onP in Eq. 1 is linear).Wemodeled this scenario by adding the regres-
sors aj1 a

j
2 corresponding to each of the two sets of predictions. Since the

responses to the first standard co-vary in both, stats- and task-informed
models,we addedonly one regressor for thefirst standardof each sequence.

Control model
The control model includes three regressors, one per stimulus identity.
Before normalization, a regressor corresponding to, for example, the
pure tone with the highest pitch had a value of 1 when the tone was
played and zero otherwise.

Measuring the tSNR
To test whether the results were influenced by the tSNR of the data, we
used nipype’s native confound toolbox. We computed the tSNR in the
exact same preprocessed data we used as input for the Bayesian model
comparison analysis. A limitation of measuring the tSNR on raw data
is that the analysis effectively interprets task-induced fluctuations, which
are part of the signal, as noise. A popular alternative is to use the
contrast-to-noise ratio (CNR) (Welvaert and Rosseel, 2013); however,
the CNR is only defined with respect to a model of the data and cannot
be used to measure the relative noise across different models. Moreover,
given that fMRI is characterized by a low signal changes in high noise
regimes (Welvaert and Rosseel, 2013), that we only use the tSNR estima-
tions to compare model performances, and that both data-sets included
in this study used the same task, the tSNR is a reasonable and unbiased
estimation of the relative levels of noise of the data. Nevertheless, the
results of the control analysis involving the estimations of the tSNR
should be considered with caution.

Correlational analyses
To measure whether results were consistent across the two experiments
and whether spatial variations in the winning models could be explained
by tSNR heterogeneities, we computed Pearson’s correlations between
statistical maps across the voxels in each ROI. This means that the num-
ber of samples in each correlation is the number of voxel in the ROI. All
p-values were Holm–Bonferroni corrected for the number of ROIs
(N = 4 in the analyses on subcortical regions, N = 10 in the analyses of
cerebral cortex). Results were deemed statistically significant when the
corrected p , 0.05.

Data and code availability
All code and derivatives needed to reproduce the analyses and figures are
openly available in osf.io/f5tsy.

Results
Multiple predictions are combined to compute prediction
error in the subcortical auditory pathway
Large sections of the IC and MGB displayed responses that were
best explained by the task and the combined models, both for
pure tones (Fig. 6A) and FM-sweeps (Fig. 6C ). To rigorously
establish the prevalence of each model in each ROI, we computed
the Bayes factors between each target and the control model
(Fig. 6B,D). The prevalence of a model in a ROI was determined
as the fraction of the voxels for which the model provides for a
substantially better explanation of the data than the control
model (i.e., K(model/control) .

���
10

√
). The combined model

was the most prevalent model in the four subcortical ROIs of
the pure tone experiment (Table 2). Although the task model
was the most prevalent model in the FM-sweep experiment, pop-
ulations best explained by the combinedmodel were also substan-
tially present. The stats and control models were the best

explanation of the data only in a few voxels scattered across
the ROIs for both stimulus families.

We also computed the minimum K factor between each
model and the remaining models (Table 3) to determine whether
the responses in each voxel of each ROI were substantially better
explained by any of the four models. The combined model pro-
vided for a substantially better explanation for the data than in
36%, 25%, 49%, and 60% of voxels of the IC-L, IC-R, MGB-L,
and MGB-R, respectively. Results were less clear in the
FM-sweep data, where the combined and task models seem to
perform similarly well. The control and statsmodels had no sub-
stantial explanatory power in any of the ROIs.

In summary, both combined and task models were extremely
prevalent in all ROIs for both experiments. While the combined
model dominated the responses in the pure tone experiment,
both combined and task models dominated the responses in
the FM-sweep experiment.

Prediction error in the MGB is consistent across physiological
subdivisions
The auditory pathway is subdivided into primary (central section
of the IC and ventral MGB) and secondary (cortex of the IC, and
medial and dorsal MGB) subdivisions (Hu, 2003). Neurons in
primary subdivisions have narrowly tuned frequency responses
and are responsible for the transmission of information between
the periphery and the cerebral cortex; neurons in secondary sub-
divisions present wider tuned frequency responses and are thought
to be involved in multisensory integration (Hu, 2003). One possi-
bility is that the functional parcellations described in Figure 6 cor-
respond to this physiological arrangement. Neural populations
responding according to the combined model do indeed seem to
be located toward the cortex of the ICs, although lower tSNRs
are generally expected in the borders of the nuclei, whose signal
has contributions from the adjacent cerebrospinal fluid.

Imaging subdivisions of the IC and MGB in humans are
remarkably challenging (Moerel et al., 2015; Mihai et al., 2019).
To-date, there is no available parcellation of the human IC into
primary and secondary subdivisions; however, Mihai et al.
(2019) managed to identify a ventral tonotopic gradient in the
MGB that putatively corresponds to its primary subdivision.
Here, we used this parcellation to assess whether neural popula-
tions in primary and secondary subdivisions of the MGB are sig-
naling prediction errors related to the task or the combinedmodel
(Fig. 7). Results show that both models are similarly prevalent in
both subdivisions, indicating that, at least in the MGB, the func-
tional parcellation described in Figure 6 does not correspond to
the physiological parcellations of the nuclei.

tSNR heterogeneity correlates with model performance
The prevalence of stats and combinedmodels in different sections
of the MGB and IC may indicate that there is not a unique strat-
egy to propagate predictions on the sensory input downstream,
but that different strategies are used in different neural popula-
tions. However, Figure 7 indicates that these neural populations
do not correspond to specific subdivisions of the nuclei. Another
possibility is that voxels best explained by the task model are
those voxels in which the BOLD responses are noisier in compar-
ison to those in other regions. Since the combinedmodel has two
free parameters more than the task model, the former needs to
provide a better explanation of the data than the latter to yield
a similar log-evidence. Voxels with poorer tSNR would present
higher mean-square-errors with respect to the model fits, which
might result in the winning of the task model.
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To test whether that was the case, we computed the
correlation between the tSNR and the posterior density of the
combined model across the ROIs. We found a significantly
positive correlation in three of the four ROIs for the pure
tone data (r [ [0.53, 0.71], p , 10−20 in IC-L, IC-R, and
MGB-R; r =−0.07, p = 0.2 in MGB-L) and in all four
ROIs for the FM-sweep data (r [ [0.36, 0.71] p , 10−9).
These results suggest that the lower tSNRs may be one of the
reasons why the combine.eps model was not the best explana-
tion for the data across the entire nuclei of the subcortical
pathway.

Similar distribution of model performances for pure tones
and FM-sweeps
Although the general prevalence of the task and combined mod-
els was different for the responses elicited by pure tones and
FM-sweeps, they seem to follow a similar topographic organiza-
tion on visual inspection: populations best explained by the com-
bined model are located more centrally in the ICs and more
dorsally in the MBGs. To quantify if the occurrence of the task
model was consistent across the two stimulus families, we com-
pared the distribution of the Kcombined/task associated to the
responses to pure tones and FM-sweeps. Distribution of K

Figure 6. Bayesian model comparison in IC and MGB. A, Experiment 1 (pure tones). Maps detailing which model best explained the responses to pure tones in each of the voxels of the IC and
MGB ROIs. Colors indicate the model with the highest posterior density at each voxel of the IC and MGB ROIs. Blue voxels are best explained by the stats model, green voxels by the task model,
purple voxels by the combined model, and yellow voxels by the control model, taken here as baseline. B, Distributions (kernel-density estimations) of the K factors comparing the performance of
each of the first three models again the control model across voxels of the IC and MGB rois. C, The same as in A, but for Experiment 2 (FM-sweeps). D, The same as in B, but for Experiment 2
(FM-sweeps).
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factors was significantly correlated in the left IC (r = 0.2,
p = 6× 10−4), right IC (r = 0.31, p = 5× 10−8), and right
MGB (r = 0.21, p = 2.4× 10−3), but not in the left MGB
(r =−0.08, p = 0.16). However, the tSNR distributions across
both experiments were highly correlated in the four ROIs
(r [ [0.63, 0.89] p , 10−32), indicating that the correlation
between Kcombined/task in the pure tone and FM-sweep data could
have also been driven by a similar distribution of the tSNR in
both data-sets.

Multiple predictions are combined to compute prediction
error in AC
Most of the AC responses (Te1.0, Te1.1, Te1.2, and Te3; Morosan
et al., 2001) were best explained by the combinedmodel (Table 2,
Fig. 10): it was the best explanation of the data in more than half
of the voxels across fields for pure tones (Fig. 8) and FM-sweeps
(Fig. 9). The task model explained the responses of most of the
remaining voxels, while the stats and controlmodels were present
only minimally.

To study whether the presence of the task model could also
be related to the variations of the tSNR across the ROIs, we
again computed the correlation between the tSNR and the
posterior density of the combined model across the cerebral
cortex ROIs. In the pure tone data, the posterior density was
positively correlated with the tSNR in Te1.0-R, Te1.1-R,
Te1.2-L, and bilateral Te3 (r [ [0.13, 0.45] p , 10−7), but not
in the remaining ROIs (r [ [−0.24, 0.07]); in the FM-sweep
data, correlations were significant in all cerebral cortex ROIs
(r [ [0.09, 0.70] p , 0.02). This indicates a partial contribution
of tSNR heterogeneities to the prevalence of the task model.

To quantify if, as in the subcortical nuclei, the cortical organi-
zation of the combined and task models was consistent for both
stimulus families across cortical fields, we computed the correla-
tion between the Bayes’ factor Kcombined/task associated with the
responses to pure tones and FM-sweeps. We found significantly
positive correlations in four of the cortical fields (Te1.0-R, bilat-
eral Te1.1, and Te3-L; r [ [0.04, 0.32] p , 0.002). However, the
tSNR of the pure tone and FM-sweep data-sets was also positively
correlated (r [ [0.31, 0.73] p , 10−25) across all cortical fields
but Te1.1-R (r =−0.07), indicating that the correlations of

Table 2. Prevalence of each model as providing a substantially better explanation
for the data than the control model

Stats-informed Task-informed Combined

Pure tones FM-sweeps Pure tones FM-sweeps Pure tones FM-sweeps

IC-L 0.12 0.01 0.47 0.33 0.84 0.14
IC-R 0.08 0.06 0.48 0.28 0.76 0.26
MGB-L 0.11 0.01 0.44 0.62 0.99 0.30
MGB-R 0.15 0.00 0.23 0.62 0.90 0.17
Te10-L 0.07 0.00 0.76 0.38 0.81 0.54
Te10-R 0.02 0.00 0.61 0.39 0.98 0.50
Te11-L 0.04 0.00 0.73 0.55 0.90 0.53
Te11-R 0.06 0.00 0.70 0.55 0.89 0.37
Te12-L 0.06 0.00 0.59 0.09 0.89 0.53
Te12-R 0.09 0.00 0.45 0.14 0.99 0.69
Te3-L 0.11 0.00 0.39 0.18 0.90 0.51
Te3-R 0.13 0.01 0.37 0.17 0.74 0.49

Notes: Each entry specifies the ratio of the voxels for which K (model/control) .
��
10

√
in each of the ROIs and for

each of the set of stimuli. Entries in BOLD signal the model that provided for the substantially best explanation for
the data in the largest amount of voxels in each ROI and stimulus set.

Table 3. Prevalence of each model as providing a substantially better explanation
for the data than the remaining models

Stats-informed Task-informed Combined

Pure tones FM-sweeps Pure tones FM-sweeps Pure tones FM-sweeps

IC-L 0.00 0.00 0.00 0.09 0.36 0.04
IC-R 0.00 0.00 0.02 0.01 0.25 0.09
MGB-L 0.00 0.00 0.01 0.11 0.49 0.03
MGB-R 0.00 0.00 0.00 0.16 0.60 0.03
Te10-L 0.07 0.00 0.76 0.38 0.81 0.54
Te10-R 0.02 0.00 0.61 0.39 0.98 0.50
Te11-L 0.04 0.00 0.73 0.55 0.90 0.53
Te11-R 0.06 0.00 0.70 0.55 0.89 0.37
Te12-L 0.06 0.00 0.59 0.09 0.89 0.53
Te12-R 0.09 0.00 0.45 0.14 0.99 0.69
Te3-L 0.11 0.00 0.39 0.18 0.90 0.51
Te3-R 0.13 0.01 0.37 0.17 0.74 0.49

Notes: Each entry specifies the ratio of the voxels for which minm=model (K (model/m) .
��
10

√
in each of the ROIs

and for each of the set of stimuli. Entries in BOLD signal the model that provided for the substantially best
explanation for the data in the largest amount of voxels in each ROI and stimulus set. The prevalence of the
control model, not listed in the table, was 0 for all ROIs and stimuli.
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Figure 7. Bayesian model comparison in the primary and secondary subdivisions of the MGB. Distributions (kernel-density estimations) of the K factors comparing the performance of each of
the first three models again the control model across voxels of the MGB subdivisions from Mihai et al. (2019) for the pure tone and FM-sweep stimuli. Distributions are qualitatively comparable in
the primary MGB and the rest of the nucleus (secondary MBG) for both experiments.
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Kcombined/task might, as the prevalence of the task model, be par-
tially driven by tSNR heterogeneity in some of the ROIs.

Discussion
Hierarchical processing is the cornerstone of predictive coding
(Friston, 2003a). Here we addressed the question whether incon-
sistent predictions derived from the task instructions and from
the stimulus statistics are combined to compute prediction error.
The main result is the robust presence of regions of the IC, MGB,
and the AC that compute prediction error with respect to both
sets of predictions. This result was consistent for pure tones
and frequency sweeps. The relative size of these regions varied
between the two families of stimuli: most voxels of bilateral IC,
MGB, and AC encoded prediction error with respect to both
sets of predictions in the pure tone experiment; this was also
the case for the AC, but not for IC and MGB in the FM-sweeps
experiment, where a majority of voxels in bilateral IC and
MGB seemed to compute prediction error only with respect to

the task-informed predictions. The different results in IC and
MGB with the two sets of stimuli are however possibly driven
by difference on the tSNR across studies. Independently of these
differences, the presence of regions computing prediction error
with respect to both sets of predictions in both experiments dem-
onstrates that, at least in the auditory modality, predictive pro-
cessing is powered by a complex system of transmission of
predictions that escapes the linearity often assumed in the predic-
tive coding literature (Spratling, 2017; Keller and Mrsic-Flogel,
2018). The corticofugal bundles that directly connect the AC
with the MGB, IC, and superior olivary complex (Hackett and
Kaas, 2004; Lee and Sherman, 2011; Schofield, 2011) might be
responsible for the non-linear transmission of the task-informed
predictions to nuclei of the subcortical pathways.

Our previous (Tabas et al., 2020, 2021; Stein et al., 2022) and
the present results contradict conclusions drawn by studies using
the local–global paradigm in humans, which assume that predic-
tions are only communicated to the immediately lower process-
ing level (Bekinschtein et al., 2009). In these paradigms, local

Figure 8. Prevalence of each model in AC for pure tones. A, Map detailing which model best explains the responses to pure tones in each of the voxels of the AC. Colors indicate the model with
the highest posterior density at each voxel. Blue voxels are best explained by the stats model, green voxels by the task model, and purple voxels by the combined model. B, Distributions
(kernel-density estimations) of the posterior densities of each model across voxels of each of the cortical fields for the pure tone stimuli.

12 • J. Neurosci., January 3, 2024 • 44(1):e2219222023 Tabas and von Kriegstein • Multi-Level Predictive Coding in Auditory Pathway



predictions are based on the repetition of the tone A, while pre-
diction referred as to global are based on the repetition of the
melodic phrase AAAAB. Human E/MEG studies reported that
prediction error to local predictions were present in primary sen-
sory cortex whereas prediction error to global predictions were

found in frontal cortex (Bekinschtein et al., 2009; Wacongne et
al., 2011; Chennu et al., 2013; Recasens et al., 2014; El Karoui
et al., 2015; Dürschmid et al., 2016; Nourski et al., 2018).
Similar results have been shown using the same paradigm in pri-
mates (Chao et al., 2018) and in variations of the paradigm in

Figure 9. Prevalence of each model in AC for FM-sweeps. A, Map detailing which model best explains the responses to FM-sweeps in each of the voxels of the AC. Colors indicate the model
with the highest posterior density at each voxel. Blue voxels are best explained by the stats model, green voxels by the task model, and purple voxels by the combined model. B, Distributions
(kernel-density estimations) of the posterior densities of each model across voxels of each of the cortical fields for the FM-sweep stimuli.
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Figure 10. Prevalence of each model in each cortical field. Bars show the prevalence of each of the models across cortical fields for the pure tone A and FM-sweep B data. Blue bars correspond
to voxels that are best explained by the stats model, green bars to voxels best explained by the task model, and purple bars to voxels best explained by the combined model.
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humans on the auditory (Uhrig et al., 2014, 2016; Maheu et al.,
2019; Jiang et al., 2022), somatosensory (Naeije et al., 2016),
and (auditory-cued) visual (Kouider et al., 2015) modalities. It
is unclear why these previous studies did not find combined local
and global prediction error in human AC. One possibility is that
the global predictions from the local–global paradigm are func-
tionally different from the task-based predictions elicited by
our paradigm. This is likely the case, since global predictions
are elicited by the local statistics of melodic phrases, whereas
the task-based predictions are elicited by an inferential process
that requires abstract reasoning. Another possibility is that pre-
diction error to the global prediction was assigned only to frontal
areas due to limitations of E/MEG (e.g., low spatial resolution). In
non-human primates, three fMRI studies using the local–global
paradigm have reported combined prediction error in AC
(Uhrig et al., 2014, 2016; Jiang et al., 2022). Although two of
the studies found only local prediction error in the MGB
(Uhrig et al., 2014, 2016), one study found combined prediction
error in MGB and only local prediction error in IC (Jiang et al.,
2022). fMRI studies using the local–global paradigm in humans
might be necessary to fully understand whether these divergences
are species-specific differences or methods-related.

It is tempting to hypothesize that the stats model reflects
habituation: if the receptive fields of deviant and standard would
overlap significantly, then a model assuming habituation to the
standard would show similar properties than the stats model,
which assumes that the responses to the deviant will be stronger
the larger the mismatch between deviant and standard D.
However, in the pure tone experiment, with frequencies around
‖f | � 1.5 kHz, the expected equivalent rectangular bandwidth is
ERB ≃ 37.7Hz (Glasberg and Moore, 1990). Therefore,
although the receptive fields might overlap subtly for deviant-
standard combinations at the smallest D = 45Hz, habituation
to the standard is unlikely to affect the responses to the deviant
for D = 100Hz or D = 145Hz. This is also unlikely for the
FM-sweep data, where deviant–standard combinations included
FM-sweeps with opposite FM-modulation direction. Moreover,
since habituation is a passive ubiquitous phenomenon in neural
systems (Friauf et al., 2015), a model encoding habituation would
affect all voxels in auditory ROIs. However, the taskmodel is the
best explanation for the data in some segments of the ROIs, even
in regions for which there was no apparent correlation between
the posterior density of the combined model and the tSNR
(e.g., Te1.1-R, where this correlation was r , 0, but the task
model was the best explanation of the data for around a third
of the voxels; Fig. 10).

It could also be hypothesized that the task-informed and com-
bined models could provide for good explanation for the data if
the responses were modulated by attention-driven gain modula-
tion (e.g., by mediation of the pulvinar; Kanai et al., 2015). Tones
in positions 4 and 5 are indeed the most relevant for the task: if
the responses were simply modulated by attention, the task
model, where responses to positions 4 and 5 are higher than to
the remaining tones, would explain the data better than the stats
model, where all deviants 4–6 elicit the same response. However,
previous analyses (Tabas et al., 2020, 2021) showed that (1)
responses to deviants in positions 4 and 5, where participants
were expected to show the same attention engagement, were
significantly different and scaled by predictability (Tabas et al.,
2020, 2021) and (2) the magnitude of the responses to deviants
in position 6 and standards in positions 7 and 8 were statistically
indistinguishable, even though, under non-attended listening,
responses to deviants are always higher than to standards

(Cacciaglia et al., 2015). The only explanation compatible with
the different responses observed to the different deviant positions
is that the activity encodes prediction error with respect to the
task-informed predictions.

Our results show a generally higher prevalence of the com-
bined model in pure tones than in FM-sweeps. One possibility
is that these differences are driven by our decision of encoding
D for FM-sweeps as differences in modulation rate only. Both
FM-direction and rate are typically studied as independent fea-
tures (Lui and Mendelson, 2003; Hsieh et al., 2012; Geis and
Borst, 2013; Altmann and Gaese, 2014; Issa et al., 2016), and sin-
gle neurons in the auditory pathway are usually either selective to
FM-direction or to FM-rate. Therefore, FM might be encoded in
a two-dimensional feature space in the brain. We could incorpo-
rate a contribution of FM-direction to D as an extra parameter in
the models used to analyze the FM-sweep data, but adding
another regressor would have increased the dependence of the
log-evidence of the combined model on the tSNR even further.

Our study did not address whether subcortical pathways can
adaptively track changes in the local statistics of the stimuli: in
our paradigm, stimulus regularity is kept constant across the
experiment, which arguably hampers the interpretability of the
stats model. Future work could address whether the auditory
pathway dynamically adapts to the local statistics using para-
digms with varying stimulus regularities.

Another possible limitation of our study is the potential ana-
tomical imprecision of the location subdivisions of the AC and
the MGB. Due to the macroanatomical variability of the superior
temporal plane in human subjects, it is possible that the map-
pings reported in Figures 3 and 4 do not exactly correspond to
the microstructure boundaries of the auditory regions.
Similarly, our 1.5mm and 1.75mm isotropic voxels might have
been too coarse to precisely differentiate between primary and
secondary subdivisions of the MGB. Therefore, the relatively
homogeneous results we reported across subdivisions of the
MGB (Fig. 7) and fields of AC (e.g., Fig. 10) should be considered
with caution.

Predictive coding has gone a long way since it was first
explicitly theorized in the 1990s (Mumford, 1992), evolving
from a theory explaining extra-classical receptive field properties
in visual cortex (Rao and Ballard, 1999) to a full hierarchical the-
ory of sensory processing (Friston and Kiebel, 2009; Keller and
Mrsic-Flogel, 2018). Here we have taken a step forward by ques-
tioning the assumed linearity (Friston, 2003b; Friston and Kiebel,
2009; Spratling, 2017; Keller and Mrsic-Flogel, 2018) of its hier-
archical architecture. Understanding the interplay between
multi-level predictions is crucial to understand how natural sen-
sory processing occurs. For instance, predictive speech process-
ing involves contextual, semantic, grammatical, phonetic, and
vocal predictions (Kuperberg and Jaeger, 2016; Heilbron et al.,
2020; Choi et al., 2021). To extract meaningful messages from
noisy and ambiguous speech signals, the human brain should
be able to compute independent prediction errors to all those
independent predictions. Our findings suggest that, at sensory
stages of the processing hierarchy, prediction error units are
indeed capable of testing multiple predictions. The auditory
pathway might exploit the corticofugal lines directly connecting
the AC with the MGB, IC, and superior olivary nucleus for the
direct transmission of predictions, bypassing the linear hierarchy
often assumed in the literature (Keller and Mrsic-Flogel, 2018).
This intricate system of descending connections might be
responsible for our exquisite capacity to decode predictable
information from noisy sensory inputs.
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