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Abstract
Mathematical models of the human heart increasingly play a vital role in under-
standing the working mechanisms of the heart, both under healthy functioning
and during disease. The ultimate aim is to aid medical practitioners diagnose
and treat the many ailments affecting the heart. Towards this, modeling car-
diac electrophysiology is crucial as the heart’s electrical activity underlies the
contraction mechanism and the resulting pumping action. Apart from mod-
eling attempts, the pursuit of efficient, reliable, and fast solution algorithms
has been of great importance in this context. The governing equations and the
constitutive laws describing the electrical activity in the heart are coupled, non-
linear, and involve a fast moving wave front, which is generally solved by the
finite element method. The numerical treatment of this complex system as part
of a virtual heart model is challenging due to the necessity of fine spatial and
temporal resolution of the domain. Therefore, efficient surrogate models are
needed to predict the electrical activity in the heart under varying parameters
and inputs much faster than the finely resolved models. In this work, we develop
an adaptive, projection-based reduced-order surrogate model for cardiac elec-
trophysiology. We introduce an a posteriori error estimator that can accurately
and efficiently quantify the accuracy of the surrogate model. Using the error esti-
mator, we systematically update our surrogate model through a greedy search
of the parameter space. Furthermore, using the error estimator, the parame-
ter search space is dynamically updated such that the most relevant samples
get chosen at every iteration. The proposed adaptive surrogate model is tested
on three benchmark models to illustrate its efficiency, accuracy, and ability of
generalization.

K E Y W O R D S

cardiac electrophysiology, error estimation, model order reduction

1 INTRODUCTION

The human cardiovascular system is highly complex, exhibiting multi-scale behavior involving multi-physics phenom-
ena [20, 56]. While for several centuries the study of the human heart was largely a clinical or empirical science, in
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recent decades there has been significant progress in developing mathematical models which are consistent with clinical
observations [1, 10, 11, 14, 28, 59]. Such physics-based models seek to be complementary to empirical models which may
be obtained via patient-specific imaging, test results or even population-wide studies.

Mathematical models of the human heart are often parametrized to account for the many physical or geometrical
variations possible in different patients. Such models allow for a detailed study of the effect that different parameters have
on the functioning of the heart. As noted in [44], there is an increasing trend towards using patient-specific diagnostic
data within a mathematical model to enable an analytical approach to diagnosis and treatment, tailored to an individual.
This philosophy encompasses the so-called cardiac digital twin approach [21, 41, 47]. The cardiac digital twin is envisaged
as a framework to not only provide a clinically-correct, physics-based surrogate of the human heart, but also to make
use of available clinical data to fit several patient-specific parameters, for example, cardiac fiber orientation, left-ventricle
volume and so forth.

Cardiac electrophysiology, that is, the reaction-diffusion problem in the heart tissue, is characterized by a set of ordi-
nary differential equations (ODEs), describing excitation phenomena (i.e., reaction) and partial differential equations
(PDEs) describing the wave propagation in the domain (i.e., diffusion), which are coupled in nature. The finite element
method (FEM) is broadly applied for the solution of the reaction-diffusion problem in the heart which requires dis-
cretization of the space and time domains [28]. The problem of cardiac electrophysiology often requires a fine spatial and
temporal discretization and, therefore, one might need to deal with a large number of equations whose solution could be
time consuming and exhaustive. Therefore, developing efficient solution techniques is of great importance and is one of
the essential goals in the virtual modeling of the heart electrical activity [15, 62, 63].

A key function of a cardiac digital twin is to address what-if scenarios, by allowing for the repeated simulation of the
model under different parameter configurations. If the digital twin has to provide results in real time, then some form
of reduced-order modeling is critical. Projection-based reduced-order models (ROMs) for the human heart has been an
active field of research in the past few years [3, 27, 42, 48, 65]. Of particular note is the recent work of Quarteroni and
collaborators [25, 26, 51, 53] which has resulted in significant advance towards using surrogate or reduced models to accel-
erate the simulations of a variety of physics involved in the heart functioning. To the best of our knowledge, in these works
and also in other works on MOR for cardiac models, the main methodology to obtain surrogate models/ROMs is through
machine learning (ML) or through an application of the projection-based parametric proper orthogonal decomposition
(POD) method [52].

Regarding ML-based approaches, while the speedup they offer is significant, a large offline computational investment
is needed to realize the fast online inference. Beyond the cost, ML-based approaches are still in their development and
a fair amount of investigation needs to be done to tune the various hyperparameters involved (such as network depth,
number of neurons, learning rate etc.). As far as the parametric POD approach is concerned, there is a need to perform
a sampling of the parameter domain to choose the samples where solution snapshots are collected. If this sampling is
not done adequately, the ROM is not guaranteed to perform well on unseen parameter samples. Moreover, if a very fine
sampling is carried out, this results in a high computational cost. In addition, both ML-based and POD-based approaches
cannot guarantee the accuracy of the solution/quantity of interest provided by the ROM.

In this work, we propose an adaptive and greedy construction of a projection-based ROM for the reaction-diffusion
problem of cardiac electrophysiology, in the spirit of the reduced basis method (RBM) [35, 52]. We make use of a recently
proposed a posteriori output error estimator [18]—which is tailored for nonlinear dynamical systems—to inform a greedy
sampling of the parameter domain to obtain solution snapshots. Using the error estimator, we iteratively update the
projection matrix to ensure it has as few basis vectors as required. Furthermore, we also make use of an adaptive parameter
sampling scheme [19] that dynamically updates the parameter training set based on the approximation error. To the best of
our knowledge, a greedy construction of the (linear) projection basis of ROMs for cardiac electrophysiology has not been
discussed in the literature so far. Our proposed error estimator is targeted towards output quantities of interest which are
clinically relevant (e.g., the electrocardiogram (ECG)). This allows for a tailored approximation space, thus ensuring the
ROMs have small dimension. Moreover, the accuracy of the ROM resulting from our proposed approach can be quantified
precisely. This is crucial in making the cardiac ROM trustworthy. We further note that the reaction-diffusion problem
describing cardiac electrophysiology is formulated by the well-known phenomenological model of Aliev-Panfilov [1] in
the monodomain setting in the sense of [28].

This manuscript is organized as follows. In Section 2, we begin with an overview of the electrophysiology of the heart
and briefly describe the mathematical model. Our focus is limited to the monodomain model in this work. Therefore, we
describe in detail its spatial discretization using the FEM, followed by its temporal discretization. Section 3 starts with a
brief introduction to (Galerkin) projection-based reduced order models for the discretized monodomain equations and the
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efficient treatment of the nonlinear quantities involved therein. This section also introduces the adaptive greedy algorithm
to construct the projection matrix. The proposed a posteriori error estimator and the parameter sampling strategies are
discussed in detail. Section 4 is devoted to the numerical implementation of the proposed method. We apply the adap-
tive algorithm to two benchmark examples of cardiac electrophysiology and illustrate its excellent performance. Finally,
Section 5 summarizes our main contributions and charts out potential extensions.

2 CARDIAC ELECTROPHYSIOLOGY

2.1 Electrical activity in the human heart

The electrical activity in the human heart originates in the sinoatrial nodes where pacemaker cells trigger an action
potential which travels through the entire heart. Upon the excitation of the sinoatrial nodes, the electrical impulses
propagate throughout the atria and are then directed to the ventricles through the atrioventricular node. The electrical
signals are rapidly transmitted to the myocardium by the fast conduction system and the whole ventricles are depolar-
ized, signifying a rise in the transmembrane potential above resting value. Afterwards, the fully depolarized ventricles
go through a slow repolarization period in which the myocardium is recovered for the next excitation. During this
depolarization-repolarization process, on the cellular level, several ions (e.g., Na−, K+, Cl−, Ca2+) are exchanged between
the intracellular and extracellular media by the voltage-gated ion channels located in the cell membrane, leading to a
significant alteration in the voltage or the so-called transmembrane potential. Moreover, the coupling between the elec-
trophysiology and mechanical activity of the myocytes is linked through the intracellular Ca2+ ion concentrations. The
intake of Ca2+ into the intracellular medium upon the myocyte depolarization triggers a series of events that results in
myocardial contraction.

2.2 Modeling approaches of cardiac electrophysiology

Over the past half century, a wide variety of mathematical models have been proposed to model the electrical activ-
ity in the heart, starting from the pioneering work of Hodgkin and Huxley [36]. Two essential approaches exist for the
description of cardiac electrophysiology: ionic and phenomenological models. The ionic models represent a sophisticated
representation of the cardiomyocytes by considering the local evolution of individual ion species in line with experimen-
tal observations [59, 61]. These models are useful when one needs to study the influence of a particular ion activity on
cardiac electrophysiology, for example, drug application. However, a high number of evolution equations for ion con-
centrations, ionic currents, and gating variables results in a demanding computational effort. On the other hand, for the
investigation of wave propagation in healthy and pathological cases (e.g., arrhythmia and dyssynchrony) on the tissue
or the organ level, the phenomenological models are convenient due to their ease of implementation and relatively less
computational load compared to the ionic models. In this context, the FitzHugh–Nagumo model [24, 43] provides an
excellent description of the excitable heart cells. The model is able to mimic the intrinsic characteristics of the transmem-
brane potential and lumps the influence of all ionic currents in a single slow recovery variable r. The FitzHugh–Nagumo
model is often employed for the oscillatory cardiac cells (i.e., sinoatrial node or Purkinje fibers). On the other hand, the
Aliev-Panfilov model [1], which is a modification of the FitzHugh–Nagumo model, was developed in order to model the
non-oscillatory cardiac cells, that is, myocytes, and has been extensively utilized by many researchers.

Concerning the propagation of electrical waves, the mathematical model of a single cardiac cell is furnished with a
conduction term enabling the spatial description of travelling excitation waves for simulations performed in tissue or
organ level. Then, the system consists of ODEs describing the ionic current and one PDE in case of a monodomain setting
which is often employed if an external electrical field does not need to be applied. The numerical solution of cardiac
electrophysiology problems is often handled by the FEM in the literature [28, 54, 55, 57].

2.3 Mathematical setting

In this work, the electrical activity in the non-oscillatory myocardial tissue is modeled with coupled PDEs and
ODEs describing the dynamics of the transmembrane potential, the recovery variable, and the wave propagation in a
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T A B L E 1 Aliev-Panfilov monodomain equation fixed parameters.

Quantity Value Dimension

𝛽t 12.9 [ms]

𝛽𝜙 100 [mV]

𝛿𝜙 −80 [mV]

c 8 [-]

𝛼 0.01 [-]

b 0.15 [-]

𝜇1 0.2 [-]

𝜇2 0.3 [-]

monodomain setting. The depolarization-repolarization behavior is characterized by the well-known phenomenological
model of Aliev-Panfilov [1]. The system of coupled governing equations is written as

𝜕Φ
𝜕t

= div(D ⋅ ∇Φ) + F𝜙 + is(t), (1a)

𝛽t
𝜕r
𝜕t
= Fr, (1b)

with Φ ∶= Φ(z, t;𝝁) being the transmembrane potential and r ∶= r(z, t;𝝁) being the recovery variable, where z ∈  is
the spatial variable and t ∈ [0,T] is the time variable. Further, 𝝁 ∈ Rp are the parameters of the system and D = disoI
denotes the conductivity tensor in the domain with the isotropic conductivity parameter diso and the identity matrix I.
The quantity is(t) denotes an externally applied stimulus.

For given parameters, we further endow the above system with initial conditions Φ(z, 0;𝝁) =∶ Φ0 and r(z, 0;𝝁) = 0.
is(t) denotes a time-dependent external stimulus applied to the cardiac domain. Furthermore, the governing equations
are subjected to Dirichlet and Neumann boundary conditions

Φ = Φ on 𝜕Φ, r = r on 𝜕r and (D ⋅ ∇Φ) ⋅ n = q on 𝜕q. (2)

We denote by ts the starting time of the external stimulus and with te we denote the end time of the applied stimulus. We
further define 𝛿t ∶= te − ts to be the duration of the applied stimulus.

The quantities F𝜙,Fr are obtained based on the Aliev-Panfilov model and correspond to the expressions:

𝛽t

𝛽𝜙
F𝜙 = 𝜕𝜙

𝜕𝜏
= c𝜙(𝜙 − 𝛼)(1 − 𝜙) − r𝜙, (3a)

𝛽tFr = 𝜕r
𝜕𝜏

=
[
𝛾 + 𝜇1r

𝜇2 + 𝜙

][
−r − c𝜙(𝜙 − b − 1)

]
. (3b)

In the above equations, the quantities (𝛽t, 𝛽𝜙, 𝛼, b, c, 𝛾, ts) ∶= 𝝁 are parameters of the system. Of special interest to us is
the parameter 𝛾 which controls the repolarization of the cardiac muscles and the parameter ts that defines the initiation
time of the applied input stimulus. Furthermore, the Aliev-Panfilov model makes use of the dimensionless variant of the
transmembrane potential, denoted as 𝜙 and the dimensionless time 𝜏. They bear the relation with their dimensioned
counterparts

𝜙 =
Φ + 𝛿𝜙
𝛽𝜙

, (4a)

𝜏 = t
𝛽t
. (4b)

Table 1 summarizes the values of the fixed parameters in Equations (1), (3), and (4) while 𝛾 and ts are treated as free
parameters. Therefore, for the remainder of this work, we consider either 𝝁 ∶= 𝛾 (when no external stimulus is applied)
or 𝝁 ∶= (𝛾, ts).
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Remark 1. In contrast to the innovative finite element formulation proposed by Göktepe et al. [28], where
the recovery variable r is treated as an internal variable at Gauss point level, r in this study is discretized as
an additional degree of freedom along with the transmembrane potential Φ. The motivation behind this is to
be able to construct efficient reduced-order models. Treating r locally as an internal variable, while advan-
tageous, still involves computational complexity scaling with the number of elements of the finite element
discretization. However, by having r as a global variable, it can be projected onto a reduced subspace lead-
ing to a significant reduction of the degrees of freedom involved. This will be illustrated in the numerical
results. Other works developing ROMs for cardiac electrophysiology and cardiac electromechanics have also
considered the recovery voltage as an additional degree of freedom [7, 45].

2.4 Spatial discretization of the monodomain equations

The discretization of the system Equation (1) is carried out using a Galerkin FEM. Recall that we denote the cardiac
domain of interest as . First, we obtain the weak formulation of the system Equation (1) within . To this end, we
introduce the finite element space X . The weak formulation of the problem is then to find Φ(z, t;𝝁), r(z, t;𝝁) ∈ X such
that

∫


𝜕Φ
𝜕t
𝜓dz −

∫


(D ⋅ ∇Φ)∇𝜓dz −
∫


F𝜙𝜓dz −
∫


is(t)𝜓dz −
∫
𝜕q

𝜓qdz = 0, (5)

∫


𝛽t
𝜕r
𝜕t
𝜓dz −

∫


Fr𝜓dz = 0 (6)

with 𝜓 ∈ X representing any of the trial functions, see [12] for a similar treatment. Next, consider a finite dimensional
approximation XN ⊂ X of dimension N. Based on the choice of the FEM space used, let {𝜓i}N

i=1 be a set of basis functions
such that, the following approximation holds

Φ(z, t;𝝁) ≈
N∑

j=1
xΦj (t,𝝁) 𝜓j(z) and r(z, t) ≈

N∑
j=1

xr
j (t,𝝁) 𝜓j(z).

We further define xΦ ∶=
[
xΦ1 , … , xΦN

]T ∈ RN and xr ∶=
[
xr

1, … , xr
N
]T ∈ RN as the coefficient vectors for the above ansatz.

Subsequently, Galerkin projection is applied to Equations (5) and (6) to compute xΦ, xr by solving the discretized
monodomain equations

M
dxΦ(t,𝝁)

dt
= SxΦ(t,𝝁) +Mf𝜙(xΦ, xr,𝝁) + B̆is(t), (7a)

𝛽tM
dxr(t,𝝁)

dt
= Mfr(xΦ, xr,𝝁), (7b)

xΦ(0,𝝁) = xΦ0 (𝝁) and xr(0,𝝁) = 0. (7c)

In the above equations, the mass matrix is denoted M ∈ RN×N having entries

[M]ij ∶=
∫


𝜓i𝜓jdz, i, j = 1, 2, … ,N.

Further, the stiffness matrix is denoted as S ∈ RN×N with entries

[S]ij ∶=
∫


∇𝜓iD∇𝜓jdz, i, j = 1, 2, … ,N.

The input matrix is denoted B̆ ∈ RN and its entries are given by

[B̆]i ∶=
∫


𝜓idz, i = 1, 2, … ,N.
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The terms f𝜙, fr ∈ RN are discretized nodal values of the Aliev-Panfilov model variables F𝜙 and Fr, respectively. To write
the discretized nonlinear terms (Mf𝜙 and Mfr), we utilize the ionic current interpolation (ICI) approach [46]. Note that
compared to the state variable interpolation (SVI) approach [46], the ICI method is less accurate. However, ICI has far
less computational cost. By defining x ∶= [xΦ xr]T ∈ R2N , we can rewrite Equation (7) as below

E
dx(t,𝝁)

dt
= Ax(t,𝝁) +Mf f(x,𝝁) + Bis(t), (8a)

x(0,𝝁) = x0(𝝁), (8b)

where

E ∶=

[
M 0
0 𝛽tM

]
∈ R

2N×2N , A ∶=

[
S 0
0 0

]
∈ R

2N×2N ,

Mf ∶=

[
M 0
0 M

]
∈ R

2N×2N , f ∶=

[
f𝜙

fr

]
∈ R

2Nand B ∶=

[
B̆
0

]
∈ R

2N .

In the sequel, we refer to Equation (8) as the full-order model or FOM.

Remark 2. The spatial discretization is implemented through FEAP (finite element analysis program) [58].
We extract the discretized matrices (M, S and B̆) from FEAP.

2.5 Quantities of clinical interest

In cardiology departments, ECG is one of the essential and indispensable tools in evaluating cardiac function. It is
non-invasive, easy, fast, and cheap, yet delivers a great deal of information regarding the electrical activity in the heart.
Basically, the electrical wave propagation, in other words, the electrical flux, is globally projected to some predefined
principal directions in the heart and for each direction a flux diagram is recorded. These diagrams are used to investi-
gate rhythm irregularities, structural changes, and infarcted zones in the heart [22]. In this work, we consider output
quantities of interest that are a linear function of the state variable. For the FOM Equation (8) this reads

y(t,𝝁) = C(𝝁)x(t,𝝁) (9)

with y(t,𝝁) ∈ R being the output quantity of interest. Furthermore, C(𝝁)T ∶= [C̆ 0]T ∈ R2N is the output matrix of the
coupled FOM Equation (8) with C̆T ∈ RN .

2.6 Time discretization of the monodomain equations

Concerning the time discretization of the monodomain (and bidomain) equations, existing literature covers (a) fully
implicit [12, 62], (b) fully explicit [49], (c) implicit-explicit [46], and (d) operator-splitting approaches [40, 50]. In this work,
we adopt a first-order implicit-explicit approach where we treat the nonlinear term explicitly and the diffusion/conduction
term implicitly [2]. This approach offers a significant reduction in the computational cost, while yielding accurate results.
We divide the time domain [0,T] into Nt nodes of fixed step size 𝛿t. The time-discrete version of Equation (8) reads

Exk(𝝁) = Axk−1(𝝁) + 𝛿t
(
Mf f(xk−1,𝝁) + Bik

s
)
, (10a)

x0(𝝁) = x0(𝝁), (10b)

with E ∶= (E − 𝛿tA) ∈ R2N×2N , A ∶= E ∈ R2N×2N and f(xk−1,𝝁) ∶=
[

f𝜙(xΦk−1
, xrk−1

,𝝁)
fr(xΦk−1

, xrk−1
,𝝁)

]
∈ R2N . The discrete time output

is given by yk(𝝁) ∶= Cxk(𝝁). Often, a very fine mesh size is required in order to accurately capture the propagation of the
action potential wavefront. This leads to the dimension of the discretized system Equation (10), N, being large (ranging
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from a few thousands to several millions in highly resolved models). As a result, solving the system repeatedly for multiple
parameters 𝝁 incurs a large computational effort. This cost can be mitigated through the use of reduced-order modeling
approaches.

3 PROJECTION-BASED MODEL ORDER REDUCTION FOR THE
MONODOMAIN EQUATIONS

3.1 Galerkin reduced-order model

Linear projection-based model order reduction (PMOR) approaches project the system equations (such as Equation (10))
to a low-dimensional (linear) subspace, denoted by n, of the true solution space N , that is, n ⊂ N . The underlying
assumption is that the dimension of n denoted n is significantly smaller than that of N , or n ≪ N. The model reduction
machinery is then aimed at identifying a suitable basis for n denoted as V. Very recently, PMOR has been extended to
cases where the system equations are projected to quadratic or nonlinear manifolds [4, 5]. The advantage here is that this
typically leads to a smaller n, at the cost of increased computational complexity. We limit our focus in this work to linear
PMOR.

Suppose the true solution of the coupled system Equation (10) at a given parameter and time instance, that is,
xΦk (𝝁), xrk (𝝁) can be approximated, respectively, in the subspacesΦn and r

n as a linear combination of the basis functions,
that is,

xΦ
k (𝝁) ≈ x̃Φ

k
∶=

nΦ∑
i=1

vΦi x̂Φ
k

i (𝝁) = VΦx̂Φ
k
(𝝁), (11a)

xrk (𝝁) ≈ x̃rk
∶=

nr∑
i=1

vr
i x̂rk

i (𝝁) = Vrx̂rk
(𝝁). (11b)

In the above ansatz, VΦ ∈ RN×nΦ is a basis for the projection subspace corresponding to the xΦ variable while Vr ∈ RN×nr

is a basis for the projection subspace corresponding to the xr variable. We define the block diagonal matrix

V ∶=

[
VΦ

Vr

]
∈ R

2N×(nΦ+nr). (12)

For a simplified notation, we let n ∶= (nΦ + nr) for the remainder of this work.
To obtain the reduced-order model corresponding to Equation (10), we insert the ansatz Equation (11) into

Equation (10) and perform a Galerkin projection with V. The resulting ROM reads

̂Ex̂k(𝝁) = ̂Ax̂k−1(𝝁) + 𝛿t
(

M̂f f̃k−1 + B̂ik
s

)
, (13a)

x̂0(𝝁) = x̂0(𝝁). (13b)

In the above ROM, ̂E ∶= VTEV ∈ Rn×n,
̂A ∶= VTAV ∈ Rn×n. Further, M̂f ∶= VTMf ∈ Rn×2N , B̂ ∶= VTB ∈ Rn, f̃k−1 ∶=

fk−1(x̃k−1,𝝁) ∈ R2N and x̂0(𝝁) ∶= VTx0(𝝁) ∈ Rn. The reduced output is denoted by ŷk(𝝁) ∶= Ĉx̂k(𝝁)with Ĉ ∶= CV ∈ Rn.
We further define x̃k(𝝁) ∶= Vx̂k(𝝁) ∈ R2N to be the approximate solution resulting from the ROM. Compared to solving
the FOM Equation (10), the solution of Equation (13) is faster since the dimension of the ROM is much smaller, that is,
n ≪ 2N.

3.2 Treating the nonlinearities efficiently

While the ROM Equation (13) is of smaller dimension, its computation is still inefficient as the quantity f̃k−1 is still of
dimension 2N. There has been a wealth of methods proposed in the last decade to remedy this issue; these methods fall
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8 of 25 CHELLAPPA et al.

under the family of hyperreduction methods with the empirical interpolation method (EIM) [6], the discrete empirical
interpolation method (DEIM) [16] being the most widely used. Both EIM and DEIM use a linear approximation for the
nonlinear term

f ≈ fEI ∶= U
(
PTU

)−1PTf.

The matrix U ∈ RN×nEI is an orthogonal matrix which is obtained from the nonlinear snapshots (in case of EIM) or from
the POD basis of the nonlinear snapshots (in case of DEIM). The matrix P ∈ RN×nEI is a selection matrix consisting of
only {0, 1} as its entries. The efficiency of hyperreduction comes from the fact that U

(
PTU

)−1 can be precomputed which
leaves only the small vector PTf ∈ RnEI to be evaluated and since, for many systems, nEI ≪ N, this leads to significant
speed up.

We approximate the two nonlinear terms f𝜙 and f r in Equation (10) separately. We define (U𝜙,P𝜙) to be the hyper-
reduction quantities to approximate f𝜙 and (Ur,Pr) to be the hyperreduction quantities to approximate f r. Further, we
define the block hyperreduction projection matrix as

U ∶=

[
U𝜙

Ur

]
∈ R

2N×
(

n𝜙EI+nr
EI

)
, (14)

and the selection matrix to be

P ∶=

[
P𝜙

Pr

]
∈ R

2N×
(

n𝜙EI+nr
EI

)
. (15)

For easy notation, we define nEI ∶=
(

n𝜙EI + nr
EI
)
. The hyperreduced ROM corresponding to Equation (13) is given by

̂Ex̂k(𝝁) = ̂Ax̂k−1(𝝁) + 𝛿t
(

M̂f f k−1
EI + B̂ik

s

)
, (16a)

x̂0(𝝁) = x̂0(𝝁) (16b)

with fk−1
EI ∶= U

(
PTU

)−1PTf
(
x̃k−1). In Equation (16), the quantity M̂f U

(
PTU

)−1 ∈ Rn×nEI can be precomputed once and
stored in memory. At each time step, the nonlinearity f

(
x̃k−1) just needs to be evaluated at nEI indices (i.e., PTf

(
x̃k−1))

which are specified through P.

3.3 Computing the basis V

In past works on MOR applied to cardiac models [3, 7, 38, 42, 45, 48, 64], the predominant approach to compute the basis V
is the parametric proper orthogonal decomposition (POD). In the parametric POD approach, a sampling of the parameter
space  is first done to select ns parameter samples {𝝁1,𝝁2, … ,𝝁ns

}. The FOM Equation (10) is then computed at all
the selected parameter samples to obtain a snapshot matrix Xs(𝝁i) ∶=

[
xk(𝝁i)

]i=s,k=Nt
i=1,k=0 ∈ RN×s Nt . The projection matrix

V is obtained by performing a singular value decomposition (SVD) of Xs and setting V ∶= UX(∶, 1 ∶ n), where UX is
the matrix containing the left singular vectors of the snapshot matrix Xs. While straightforward, this approach requires
many FOM solutions at different parameter samples. For complex parameter domains, this can lead to a high offline
computational effort. Moreover, the choice of the parameter samples is rather heuristic. Different sampling approaches,
including, uniform, random, Latin hypercube sampling and so forth are possible. Nevertheless, if the parameter space
is not adequately sampled, the resulting ROM can be inaccurate. The choice of the subspace dimension n in the POD
approach is based on the decay of the singular values and the energy criterion. Typically, a “low enough” tolerance is
chosen and n is set to be the smallest value of nd for which the following expression holds

n ∶= smallest nd for which

∑nX
j=nd+1𝜎

2
j∑nX

j=1𝜎
2
j

< 𝜖SVD.
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CHELLAPPA et al. 9 of 25

Here, 𝜎1 ≥ 𝜎2 ≥ · · · 𝜎j ≥ · · · 𝜎nX > 0 are the nX non-zero singular values of the matrix Xs and 𝜖SVD is a preferred tolerance.
Such an approach to choose n is heuristic, as it has no connection to the actual error of the dynamics or that of some
desired output. For example, if there is a quantity of interest/output, then the cut-off of the singular values has no direct
relation to the actual error in the output resulting from the ROM.

In this work, we utilize the adaptive POD-Greedy algorithm [18] to determine the projection basis V. This approach
is an improvement over the standard parametric POD approach described above due to the following reasons

• The parameter sampling is done based on a greedy algorithm, driven by an a posteriori output error estimator. This
enables the sampling to be informed by the actual approximation quality of the output of interest.

• The number of FOM solves is (less that or) equal to the number of iterations ng of the adaptive POD-Greedy algorithm;
typically, ng ≪ ns, therefore, this leads to a more efficient offline stage for PMOR.

• As will be explained later, the choice of the number of basis vectors n in the projection matrix V can be determined
through an adaptively evolving criterion calculated from the error estimator. This ensures just the adequate amount of
basis vectors to guarantee the desired approximation quality with the ROM.

3.4 An adaptive POD-Greedy algorithm to compute the basis V

The POD-Greedy algorithm (PODg) was introduced in [33] as an extension of the greedy algorithm [35, 52] to
time-dependent systems. Over the years, it has evolved to be the work-horse of the reduced basis method applied
to time-dependent systems in a range of applications. In our previous works [18, 19], we proposed extensions of the
POD-Greedy algorithm, called adaptive POD-Greedy-DEIM algorithm (aPODg+EI), with several enhancements over the
state-of-the-art. In this work, we make use of aPODg+EI to compute suitable ROMs for the cardiac electrophysiology
equations Equation (10). We briefly review the main features of the algorithm and refer to [18, 19] for the details.

The adaptive POD-Greedy algorithm constructs the projection basis V through an iterative procedure, driven by an
a posteriori output error estimator. The pseudo-code is sketched in Algorithm 1. The inputs to the algorithm are the
ROM tolerance tol, a fine discretization of the parameter space  in the form of a training set Ξ = {𝝁1,𝝁2, … ,𝝁ns

}
and the FOM system matrices (see Equation (10)). The outputs of the algorithm are the projection matrix V and the
hyperreduction quantities (U,P).

At any given iteration, the FOM Equation (10) is solved at the current greedy parameter (denoted𝝁∗) and the resulting
snapshot matrix Xs(𝝁∗) ∈ RN×Nt is used to enrich the projection basis V with n new basis vectors. The solution snapshots
are used to compute the nonlinear snapshot matrix Fs(𝝁∗) ∈ RN×Nt , which is used by the chosen hyperreduction algorithm
(DEIM or EIM) to update (U,P) with nEI basis vectors and selection indices. The greedy parameter for the subsequent
iteration is chosen using the error estimator Δ(𝝁) based on the optimization problem

𝝁
∗ ∶= arg max

𝝁∈Ξ
Δ(𝝁).

The error estimator Δ(𝝁) can be evaluated once the ROM solutions Equation (16) are computed. In order to evaluate the
error estimator Δ(𝝁), a dual or adjoint system needs to be evaluated. To this end, we compute the dual projection matrix
Vdu before the start of the greedy iterations. Details of the dual system will be explained in the next section.

The greedy algorithm is said to have converged, when the maximum estimated error

𝜖 ∶= Δ(𝝁∗) = ΔRB(𝝁∗) + ΔEI(𝝁∗)

is below the desired tolerance, that is, 𝜖 < tol. Here,ΔRB(𝝁∗) is the maximum estimated error contributed by the reduced
basis approximation and ΔEI(𝝁∗) is the contribution to the estimated error due to hyperreduction. The number of basis
vectors n,nEI is based on the update rule [18] determined from the estimated error

n ∶= cRB

⌊
log10

(
ΔRB(𝝁∗)
tol

)⌋
, (17a)

nEI ∶= nEI + cEI

⌊
log10

(
ΔEI(𝝁∗)
tol

)⌋
. (17b)
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10 of 25 CHELLAPPA et al.

Algorithm 1. Adaptive POD-Greedy-(D)EIM (aPODg+EI) algorithm

Input: Training set Ξ, tolerance (tol), discretized system matrices (E,A,Mf ,B, f , x0)
Output: V, DEIM matrices (U,P)

Initialize: V = [ ], n = n0, nEI = nEI,0, U = [ ],P = [ ], F = [ ], randomly selected initial greedy parameter
𝝁
∗ ∈ Ξ, 𝜖 = 1 + tol.

1: Compute dual system projection matrix Vdu needed for the output error estimation
2: while 𝜖 > tol do

3: Obtain FOM Equation (10) snapshots Xs(𝝁∗) at greedy parameter; compute nonlinear snapshots Fs(𝝁∗)

4: Determine UX through the SVD of X̄ ∶= Xs(𝝁∗) − VVTXs(𝝁∗), where UX is the matrix of left singular vectors
of Xs(𝝁∗)

5: Update V as V ∶= orth ([V, UX(∶, 1 ∶ n)])
with orth

(
⋅
)

denoting an orthogonalization process which can be implemented using the modified
Gram-Schmidt process, or QR factorization

6: Form nonlinear snapshot matrix F ∶= [F, Fs(𝝁∗)] and apply DEIM algorithm to get updated hyperreduction
quantities (U,P) with nEI basis vectors and interpolation indices

7: Obtain reduced system matrices through Galerkin projection; solve ROM Equation (16) to compute error
estimator Δ(𝝁) ∀𝝁 ∈ Ξ

8: Select greedy parameter 𝝁∗ ∶= arg max
𝝁∈Ξ

Δ(𝝁); set 𝜖 = Δ(𝝁∗)

9: Compute the basis updates n,nEI for the next iteration based on the update rules Equation (17)

10: end while

Remark 3. Note that when the POD-Greedy algorithm is applied to coupled problems, for example, Equation
(10), the solution snapshots corresponding to each variable, namely, XΦ

s ,Xr
s ∈ RN×Nt are collected and two

separate SVDs are performed to obtain the bases VΦ,Vr. Using these, the projection basis V is formed as in
Equation (12).

Remark 4. The rough intuition behind the update rule Equation (17) is that we add one basis vector per order
of magnitude difference from the desired tolerance; for example, suppose ΔRB(𝝁∗) = 10−1 and tol = 10−6,
n = 5 implying that, potentially, if five new basis vectors are added in the next iteration to the basis V, the
estimated error Δ(𝝁∗) is expected to decrease below the tolerance. But, based on the application, it is not
necessary that one basis vector leads to one order of magnitude reduction of the estimated error. In the original
version of the above update rule in [18], cRB, cEI were set to 1. In this work, we have generalized this, such that
cRB, cEI ∈ Z+ can be any positive integer. This is especially desirable for problems whose singular value decays
slowly, for example, convection-dominated problems and problems with travelling shocks such as in cardiac
electrophysiology. cRB and cEI are hyperparameters; they can either be fixed or determined heuristically based
on the singular value decay of the current greedy snapshot matrix Xs(𝝁∗).

3.5 A posteriori output error estimation

Accurate estimation of the error incurred by the ROM is critical for the success of the aPODg+EI algorithm. For the car-
diac electrophysiology model, the quality of approximation of the output quantities (ECG or flux) is of particular interest,
as these are the ones of medical consequence. A posteriori error estimation for output quantities has received considerable
attention in the reduced basis community [18, 23, 31, 34, 66]. We use the residual-based primal-dual a posteriori output
error estimator proposed in [18]. So far, error estimation for cardiac electrophysiology has not been widely discussed in the
literature. Using the output error estimator, we are interested in approximating the error at a given time instance tk and
parameter sample 𝝁 between the true output quantity of interest corresponding to the FOM Equation (10) yk(𝝁) and the
reduced/approximate output ŷk(𝝁) obtained by evaluating the hyperreduced ROM Equation (16). Following the approach
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CHELLAPPA et al. 11 of 25

considered in [18], we consider the output error estimator for the modified output quantity yk(𝝁) ∶= ŷk(𝝁) − x̃T
durk with

x̃du referring to the approximate solution of the dual system and rk denoting the residual due to the ROM Equation (13).
Using a modified output for the output error estimator has been shown to improve the convergence of the error in a
number of works [32, 34].

The output error estimator Δk(𝝁) at a given parameter 𝝁 and at a given time instance tk has the form

||yk(𝝁) − yk(𝝁)|| ⪅ (
𝜌 𝛽 ||rdu|| + |1 − 𝜌| ||x̃du||) ||rk|| =∶ Δk(𝝁) (18)

with 𝜌 being a constant that is estimated at every greedy iteration based on the available snapshots in Xs(𝝁∗). The details of
its estimation may be found in [18]. The quantity 𝛽 corresponds to the inf-sup-constant and in case of the matrix spectral
norm, it corresponds to the inverse of the smallest singular value of the matrix E, that is, 𝛽 ∶= 1

𝜎min(E)
.

In the above equation, the residual resulting from the ROM Equation (13) with respect to the FOM Equation (10) at
the time instance tk is

rk ∶= Ax̃k−1(𝝁) + 𝛿t
(

Mf f(x̃k−1
,𝝁) + Bik

s

)
− Ex̃k(𝝁). (19)

In practice, when hyperreduction is enforced, the ROM Equation (16) is solved. The residual can be additively decomposed
into two parts: one relating to the error due to the reduced basis approximation and the other relating to the error resulting
from hyperreduction

rk = Ax̃k−1(𝝁) + 𝛿t
(

Mf f(x̃k−1
,𝝁) + Bik

s

)
− Ex̃k(𝝁),

= Ax̃k−1(𝝁) + 𝛿t
(

Mf f(x̃k−1
,𝝁) +Mf fEI(x̃k−1

,𝝁) −Mf fEI(x̃k−1
,𝝁) + Bik

s

)
− Ex̃k(𝝁),

= Ax̃k−1(𝝁) + 𝛿t
(

Mf fEI(x̃k−1
,𝝁) + Bik

s

)
− Ex̃k(𝝁)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rk
RB

+ 𝛿tMf

(
f(x̃k−1

,𝝁) − fEI(x̃k−1
,𝝁)

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

rk
EI

.

A dual system is involved in obtaining the error estimator and it is given by

Eduxdu = Cdu, (20)

where Edu ∶= E
T
∈ R2N×2N ,Cdu ∶= −CT ∈ R2N . The ROM corresponding to the dual system is

Êdux̂du = Ĉdu, (21)

where Êdu ∶= VT
duEduVdu ∈ R2N×ndu , Ĉdu ∶= VT

duCdu ∈ Rndu . The dual projection matrix is Vdu ∈ R2N×ndu . As the dual sys-
tem is not parameter-dependent, the dual basis Vdu is obtained by applying a Krylov subspace method to the dual FOM
Equation (20) as done in [18]. We define the approximate dual solution to be x̃du ∶= Vdux̂du ∈ R2N .

Based on the dual FOM and ROM (Equations 20 and 21), the dual residual has the form

rdu ∶= Cdu − Edux̃du. (22)

3.5.1 Mean estimated error

The mean value of the estimated error over time, at a given parameter sample 𝝁 is

Δ(𝝁) ∶= 1
Nt

K∑
k=0
Δk(𝝁).

3.6 Adaptive choice of the training set

So far, we have seen how to derive a projection-based ROM for the discretized monodomain equations for car-
diac electrophysiology Equation (8) and discussed an adaptive algorithm aPODg+EI (Algorithm 1) to obtain the
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12 of 25 CHELLAPPA et al.

Algorithm 2. Adaptive POD-Greedy-(D)EIM with adaptive training set sampling (aPODg+EI+adaptTS) algorithm

Input: Coarse training set Ξc, fine training set Ξf , tolerance (tol), discretized system matrices (E,A,Mf ,B, f , x0)
Output: V, DEIM matrices (U,P)Initialize: V = [ ], n = n0, nEI = nEI,0, U = [ ],P = [ ], F = [ ], randomly selected

initial greedy parameter 𝝁∗ ∈ Ξc, 𝜖 = 1 + tol.

1: Compute dual system projection matrix Vdu needed for the output error estimation
2: while 𝜖 > tol do

3: Obtain FOM Equation (10) snapshots Xs(𝝁∗) at greedy parameter; compute nonlinear snapshots Fs(𝝁∗)

4: Determine UX through the SVD of X̄ ∶= Xs(𝝁∗) − VVTXs(𝝁∗), where UX is the matrix of left singular vectors
of Xs(𝝁∗)

5: Update V as V ∶= orth ([V, UX(∶, 1 ∶ n)])
with orth

(
⋅
)

denoting an orthogonalization process which can be implemented using the modified
Gram-Schmidt process, or QR factorization

6: Form nonlinear snapshot matrix F ∶= [F, Fs(𝝁∗)] and apply DEIM algorithm to get updated hyperreduction
quantities (U,P) with nEI basis vectors and interpolation indices

7: Obtain reduced system matrices through Galerkin projection; solve ROM Equation (16) to compute error
estimator Δ(𝝁) ∀𝝁 ∈ Ξc

8: Obtain the radial basis interpolant weights by solving Equation (24) and evaluate the (interpolated) error
Δ̃(𝝁) ∀𝝁 ∈ Ξf using Equation (23)

9: Remove parameter samples �̊� ∈ Ξc for which Δ(𝝁)<tol ∀𝝁 ∈ Ξc

10: Update Ξc with nadd new parameter samples taken from Ξf with the highest evaluated error Δ̃(𝝁)

11: Select greedy parameter 𝝁∗ ∶= arg max
𝝁∈Ξ

Δ(𝝁); set 𝜖 = Δ(𝝁∗)

12: Compute the basis updates n,nEI for the next iteration based on the update rules Equation (17)

13: end while

projection basis for the ROM V. The aPODg+EI algorithm calls for an efficient error estimator to drive the greedy
parameter sampling; such an error estimator for the output quantity is discussed in the previous section. However,
the choice of the training set to be used in Algorithm 1 is still unclear. In this section, we show how adaptivity
can be used to systematically update the training set by adding (or removing) parameter samples to (from) it. Our
approach for the adaptive sampling of the training set is based on the method proposed in [19]. We briefly review
this method next and refer the reader to [19] for the finer aspects and implementation details. The adaptive greedy
algorithm implementing the adaptive training set sampling is sketched in Algorithm 2. Note that it is a generalization
of Algorithm 1.

The proposed adaptive training set sampling method makes use of two training sets—a coarse training set denoted
Ξc, consisting of nc parameter samples and a fine training set Ξf , having nf ≫ nc parameter samples. The error estimator
Δ(𝝁) is evaluated only for the samples present in Ξc. We use only this information to obtain an estimate of the errors
incurred at the samples in the fine training set Ξf . To achieve this, we rely on radial basis functions [8]. We learn a radial
basis interpolant of the mapping Δ ∶ 𝝁 −→ Δ(𝝁) ∀𝝁 ∈ Ξc. To this end, let

𝜒(𝝁) =
nc∑

j=1
wjΨ(||𝝁 − 𝝁j||) (23)

be the radial basis interpolant with wj, j = 1, 2, … ,nc, denoting the weights and Ψ(|| ⋅ ||) being a radial basis function.
Examples of this include the Gaussian kernel, inverse multi-quadric functions, thin-plate splines and so forth [8, 60]. We
further note that 𝝁j, j = 1, 2, … ,nc, are the parameter samples in the coarse set and are often referred to as centers in the
radial basis functions literature. The weights are computed by enforcing an interpolation condition at the centers, that is,
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CHELLAPPA et al. 13 of 25

F I G U R E 1 Discretization of (Left) The myocardial tissue slice and (Right) The left ventricle model of a healthy person. All lengths are
in millimeters.

Δ(𝝁j) = 𝜒(𝝁j), j = 1, 2, … ,nc. This boils down to the solution of the following linear system of equations

⎡⎢⎢⎢⎢⎢⎣

Ψ(||𝝁1 − 𝝁1||) Ψ(||𝝁1 − 𝝁2||) · · · Ψ(||𝝁1 − 𝝁nc
||)

Ψ(||𝝁2 − 𝝁1||) Ψ(||𝝁2 − 𝝁2||) · · · Ψ(||𝝁2 − 𝝁nc
||)

⋮ ⋮ ⋱ ⋮

Ψ(||𝝁nc
− 𝝁1||) Ψ(||𝝁nc

− 𝝁2||) · · · Ψ(||𝝁nc
− 𝝁nc

||)

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

w1

w2

⋮

wnc

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

Δ(𝝁1)
Δ(𝝁2)
⋮

Δ(𝝁nc
)

⎤⎥⎥⎥⎥⎥⎦
. (24)

Once the weights are known, the interpolant Equation (23) is queried to evaluate the error at the parameter samples
in Ξf , that is, Δ̃(𝝁) = 𝜒(𝝁) ∀𝝁 ∈ Ξf (Step 8 in Algorithm 2). Computational efficiency comes from the fact that, at every
greedy iteration, the ROM needs to be evaluated only at the parameter samples in the coarse training set. As illustrated
in [17], constructing and evaluating the radial basis interpolant over the fine training set has comparatively less cost than
solving the ROM at all parameter samples in the fine training set.

At the end of each greedy iteration, the coarse training set Ξc is updated with new parameter samples taken from
Ξf . We add nadd new parameter samples that have the largest error evaluated by the interpolant ∀𝝁 ∈ Ξf . In addition to
this, we also examine the coarse training set to identify and remove samples �̊� ∈ Ξc for which Δ(�̊�) < tol. Doing this
two-pronged approach of adding and removing samples from Ξc ensures that the training set remains as compact as
possible.

4 NUMERICAL EXPERIMENTS

We apply two adaptive algorithms (Algorithms 1 and 2) to two different benchmark examples which are

1. 3-D cardiac tissue block, see Figure 1 (left),
2. Personalized left ventricle (LV) model, see Figure 1 (right).

In both cases, the quantity of interest is the summation of electrical flux over the domain computed as q = ∫


q ⋅ n dz
with n denoting the projection direction of the flux vector q ∈ R3. The projection direction n coincides with the x-axis
in the tissue block examples while for the LV model, the longitudinal axis is considered as the projection direction. Note
that the plot of q versus time in the LV model corresponds to ECG. To verify the quality of the ROMs resulting from the
application of our proposed adaptive algorithms, we use the following metrics

• The scaled maximal estimated error at each greedy iteration is denoted by 𝜖max which is defined as

𝜖max ∶= max
𝝁∈Ξtrain

Δ(𝝁)
scaling

,
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14 of 25 CHELLAPPA et al.

F I G U R E 2 Algorithm 1 applied to 3-D block of cardiac tissue: (Left) Convergence of the greedy algorithm; (Right) Performance of
ROM on test set.

where scaling is a scaling factor pre-defined by the user. Different options for the scaling are possible. One can
use a maximal scaling where at each iteration (of Algorithm 1 or 2), the scaling factor is the maximum of the output
evaluated at the current greedy parameter, that is, max(Y(𝝁∗)). Another potential option would be to use scaling =
||Y(𝝁∗)||2. A further approach would be to use the average of ||Y(𝝁∗i )||2 where 𝝁∗i are the already selected parameters
during the greedy iterations. We use the maximum norm scaling, namely, max(Y(𝝁∗)) in the presented numerical
results.

• The relative true error at a given parameter 𝝁 as denoted by 𝜖rel is

𝜖rel(𝝁) ∶=
||Y(𝝁) − Ŷ(𝝁)||2

||Y(𝝁)||2 ,

where Y ∶=
[
y0, y1, … , yK]T ∈ RNt and Ŷ ∶=

[
ŷ0
, ŷ1

, … , ŷK
]T
∈ RNt .

We refer by Test A the application of Algorithm 1 to an example and by Test B the application of Algorithm 2 to
an example.

4.1 3-D cardiac tissue block

In this example, we consider the domain of interest to be a 3-D block possessing the material properties of the cardiac
tissue. The domain is discretized by 31 × 31 × 2 brick elements over 3072 nodes. We are interested in the variation of
ECG-like diagrams as a function of the parameter 𝛾 (appearing in the Aliev-Panfilov model (see Equation (3b))) and time,
that is, q ∶= D ⋅ ∇Φ(t, 𝛾). To this end, the range of parameter variations is𝝁 ∶= 𝛾 ∈  ∶= [0.0005, 0.01]. In the following,
two scenarios are considered: a regular planar wave propagation and scroll wave propagation. For the case of scroll wave
generation, a second parameter will be considered.

4.1.1 3-D cardiac tissue block with planar wave

For the first example, where a regular wave propagation is considered, we model the conduction of the cardiac action
potential initiated through an initial condition x0 =

[
xΦ0 xr

0
]T ∈ R2⋅3072 applied to the left boundary of the 3-D block. In

order to initiate the planar wave propagation, the initial conditions of the nodes on the left edge are set to Φ0 = −10 mV
and for the remaining nodes Φ0 = −80 mV. The initial condition for the recovery variable is set to zero at all nodes, that
is, r0 = 0. The time step is set to 𝛿t = 2 ms.
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CHELLAPPA et al. 15 of 25

F I G U R E 3 Algorithm 1 applied to 3-D block of cardiac tissue: Comparison of flux obtained from the FOM (solid line) and the ROM
(dashed line) at five different values of the parameter 𝛾 .

Test A: Application of Algorithm 1
We apply Algorithm 1 to the discretized monodomain equation in the 3-D block. To obtain a parameter set Ξ, we dis-
cretize the parameter domain to collect 100 parameter samples. We divide this set randomly in the ratio 80:20 to obtain,
respectively, a training set Ξtrain and a test set Ξtest. The tolerance tol = 10−2 is used. We set cRB = cEI = 1. To determine
the initial values of the reduced basis dimension, that is, n0, we make use of the singular value decay of the snapshots
matrices XΦ

s ,Xr
s in the first iteration (see Remark 3). The tolerances for the singular value decay in both cases are set to

0.5. This results in nΦ0 = 1,nr
0 = 2. Further, we let n𝜙EI,0 = nr

EI,0 = 8. The greedy algorithm converges to the desired toler-
ance in five iterations and requires 71 s. The dimension of the resulting ROM is n = 57 with nΦ = 28,nr = 29. The DEIM
basis has dimension nEI = 64 with n𝜙EI = nr

EI = 32. In terms of speedup achieved, while a single FOM solution requires
0.484 s, a single ROM solution needs 0.016 s, a 30-fold acceleration. In Figure 2, in the left figure, we plot the convergence
of the maximum estimated error. On the right, the performance of the ROM obtained from Algorithm 1 is plotted. We
evaluate the ROM for the 20 parameter samples inΞtest. It is evident that the relative true error 𝜖rel is below the desired tol-
erance for every sample. The flux waveform obtained from the FOM and the ROM for five different values of 𝛾 are shown
in Figure 3. Both waveforms are visually indistinguishable, showing their excellent agreement. We have thus reduced the
dimension of the coupled system Equation (10) from N = 2 × 3072 to n = 59, while ensuring that the ROM is accurate
up to a desired tolerance. In fact, the ROM displays excellent performance over unseen parameter samples, showing its
ability to generalize well.

Test B: Application of Algorithm 2
Next, we apply Algorithm 2. The training set and test set, Ξtrain,Ξtest are obtained in the same fashion as above. The coarse
training set Ξc and the fine training set Ξf are obtained, respectively, by dividing the training set Ξtrain in a 30:70 ratio,
resulting in the coarse training set with nc = 24 samples and the fine training set with nf = 56 samples. The choice of
n0 and nEI,0 are the same as in the previous case. We set nadd = 1. The greedy algorithm converges in 34.5 s to the set
tolerance, taking five iterations. Note that the time taken in this case is roughly half that taken in case of Test A. The
dimension of the projection basis V is n = 57 (nΦ = 28,nr = 29). Furthermore, the dimension of U is nEI = 64, as for the
previous case. Since the dimension of the ROM is same as for Test A, the same speedup of 30× is achieved also for
this case. Figure 4 illustrates the results of applying Algorithm 2 to the 3-D cardiac block. In the left figure, we see the
convergence of the estimated error while the right figure shows the relative true error 𝜖rel on the samples in Ξtest. Once
again, we see that the error is well below the desired tolerance, as in the previous case with the fixed training set. We
also see from Figure 5 an excellent agreement of the flux plotted as a function of time obtained using the FOM and the
ROM at different values of 𝛾 . It is thus reliably demonstrated that iteratively building the training set leads to halving the
time required to obtain the ROM; at the same time, the resulting ROM also meets the accuracy defined by the user. The
evolution of the coarse training set Ξc is shown in Figure 6. In the first iteration it contains 24 parameter samples (blue
crosses). At the final iteration, we observe that there are now 29 parameter samples (brown squares). Note that several
new values of the parameter 𝛾 are added in the leftmost region where 𝛾 attains smaller magnitude.
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16 of 25 CHELLAPPA et al.

F I G U R E 4 Algorithm 2 applied to 3-D block of cardiac tissue: (Left) Convergence of the greedy algorithm; (Right) Performance of
ROM on test set.

F I G U R E 5 Algorithm 2 applied to 3-D block of cardiac tissue: Comparison of flux obtained from the FOM (solid line) and the ROM
(dashed line) at five different values of the parameter 𝛾 .

F I G U R E 6 Algorithm 2 applied to 3-D block of cardiac tissue: Comparison of the coarse training set in the first and last iteration.

4.1.2 3-D cardiac tissue block with scroll wave

In this part, a scroll wave or, in other words, a reentrant wave is considered which is one of the fundamental benchmark
problems in cardiac electrophysiology [29]. The reentrant wave propagation leads to a chaotic electrical activity in the
heart and is often named as arrhythmia, where the pumping function of the heart is diminished or even stops [37].

One can simulate the generation of scroll waves by applying an appropriately timed stimulus to the monodomain
equation. The initial condition, namely, x0 is slightly different when compared to the previous example where no scroll
wave generation is considered. We define the initial condition for the transmembrane potential xΦ0 to be uniformly −80
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CHELLAPPA et al. 17 of 25

F I G U R E 7 Algorithm 1 applied to 3-D block of cardiac tissue with scroll wave generation: (Left) Convergence of the greedy algorithm;
(Right) Performance of ROM on test set.

F I G U R E 8 Algorithm 1 applied to 3-D block of cardiac tissue with scroll wave generation: Comparison of flux obtained from the FOM
(solid line) and the ROM (dashed line) at two different parameter samples 𝝁 ∶= (𝛾, ts) from the test set (Left) Flux at 𝝁 = (0.0017,488); (Right)
Flux at 𝝁 = (0.0020,484).

mV at all nodes. The initial condition for the recovery variable xr
0 is the same and set to xr

0 = 0. To trigger the propagation
of the planar wave, we apply a stimulus for the first 5 time steps (i.e., 10 ms duration). For the scroll wave generation, we
consider the parameter 𝝁 = (𝛾, ts) belonging to a two-dimensional parameter space  ∶= [0.0015, 0.002] × [480, 500].
Here, 𝛾 is the conductivity as before and the new parameter ts denotes the initiation time of the stimulus to trigger the scroll
wave. The stimulus is applied for a span of 20 ms, or 10 time steps. We note that this example is particularly challenging
due to the variety of (stiff) dynamics exhibited by the system as a result of the scroll wave formation. The slow propagation
of the action potential wavefront across the domain results in a rather slow decay of the singular values. Therefore, the
ROM (and hyperreduction) basis needs many basis vectors to accurately capture the true dynamics.

Test A: Application of Algorithm 1
The tolerance of Algorithm 1 is set to be tol = 1.0 due to the fact that this example is challenging. The training set Ξ is
obtained by choosing 6 × 6 uniformly-spaced samples from the domain  . This training set is divided in the ratio 80:20
to get Ξtrain and Ξtest. To select nΦ0 ,n

r
0, the SVD tolerance is set to 10−5 and 10−3 in the first iteration, respectively, for

the transmembrane potential snapshots XΦ
s and the recovery voltage snapshots Xr

s . Owing to the fast changing dynamics
of the nonlinearity, we determined the best setting for nEI,0 = (680 + 740) = 1420. We further set cRB = 11, cEI = 6 as the
factors to update the basis adaptively (see Equation (17)). As seen from Figure 7 (left), the greedy algorithm converges to
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18 of 25 CHELLAPPA et al.

F I G U R E 9 Algorithm 2 applied to 3-D block of cardiac tissue with scroll wave generation: (Left) Convergence of the greedy algorithm;
(Right) Performance of ROM on test set.

the tolerance in four iterations. The time taken is 1303 s. The dimension of the basis V, that is, n = (572 + 264) = 836 while
the hyperreduction basis nEI = (778 + 830) = 1608. Evidently, this is a significantly high number of basis vectors and the
reason for this is the slow decay of the singular values of the snapshot matrix. As a fallout of the large ROM dimension,
no speedup is achieved for this test case. The FOM evaluation time is 1.298 s, whereas the ROM evaluation time is slightly
larger at 1.503 s. Despite the larger ROM dimension, the performance on the test set Ξtest is satisfactory (see Figure 7
right figure). The relative error 𝜖rel is below the desired tolerance for all the test parameters. To illustrate the quality of the
ROM approximation, we plot in Figure 8 the flux waveform for two different parameters in the test set. These are chosen
such that the resulting flux exhibits different physical behavior. For the first parameter 𝝁 = (0.0017,488), it can be seen
that the scroll wave is not initiated. This is owing to the stimuli being applied late. The ROM is able to accurately capture
this behavior. In case of the second parameter 𝝁 = (0.0020,484), since the timing of the external stimuli is good, the scroll
wave behavior occurs. Once again, the ROM is also able to express this behavior accurately.

Test B: Application of Algorithm 2
Now we combine the adaptive greedy algorithm with the adaptive parameter sampling for the scroll wave example. The
set Ξ is same as before. We divide Ξ in the ratio 40:60 to form the coarse training set and fine training set, respectively.
The settings for n0 and nEI,0 are retained as previously done. On the left figure of Figure 9, the convergence of the greedy
algorithm is plotted. We see that, in comparison to Test A we need only three iterations. Correspondingly, Algorithm 2
takes only 492 s to achieve convergence. The dimension of the ROM basis is smaller with n = (517 + 209) = 726 basis
vectors in V; while the basis U consists of nEI = (752 + 806) = 1558 basis vectors. Observe that the ROM dimension in this
test is smaller. As a result, we obtain a modest speedup. One FOM simulation takes 1.35 s whereas the ROM needs 1.235
s, a speedup of 1.1×. The training set at the first and final iterations are shown in Figure 10. The ROM obtained from this
test also performs well on the test set Ξtest. However, it is worth noting that the maximum error incurred on the test set is
slightly higher for the current test (0.0797) while it is a little less forTest A (0.0465). This can be explained by the smaller
ROM dimension in case of Test B. Nevertheless, as seen from Figure 11, the ROM obtained from Test B faithfully
approximates the flux behavior for two different parameter choices from the test set (𝝁 = (0.0017,488) and 𝝁 =(0.0020,
484)) which exhibit different flux waveform patterns. We further plot the evolution of the transmembrane potential Φ at
time instances tk ∈ {40,100, 200,440, 500,560, 640,700, 800,900, 1000, 1200, 1600, 2000} milliseconds in Figure 12. The Φ
snapshots coming from the FOM and the ROM obtained with Test B show excellent agreement, both qualitatively and
quantitatively.

Remark 5. We emphasize that the scroll wave propagation is a particularly challenging example. While both
ROMs (from Test A and Test B) exhibit good performance over the test set, they do not offer significant
speed up. This is owing to the larger ROM size. Linear projection-based MOR methods such as the ones used
in this work are not very efficient for convection-dominated problems or problems with travelling waves [9,
30]. Such problems typically require many basis vectors in the projection basis V owing to the slow decay of the
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CHELLAPPA et al. 19 of 25

F I G U R E 10 Algorithm 2 applied to 3-D block of cardiac tissue with scroll wave generation: Comparison of the coarse training set in
the first and last iteration.

F I G U R E 11 Algorithm 2 applied to 3-D block of cardiac tissue with scroll wave generation: Comparison of flux obtained from the
FOM (solid line) and the ROM (dashed line) at two different parameter samples 𝝁 ∶= (𝛾, ts) from the test set (Left) Flux at 𝝁 = (0.0017,488);
(Right) Flux at 𝝁 = (0.0020,484).

singular values. In case of cardiac electrophysiology, the nonlinearity and the coupled nature of the problem
adds to the difficulty faced by linear MOR methods. Recent works have sought to address this using quadratic
or even nonlinear manifolds. In addition, machine learning approaches have also been used. Incorporating
these within our adaptive greedy framework to improve the speed up offered by ROMs will be a subject for
future investigation.

4.2 Left ventricle of the human heart

Next, the introduced algorithms are tested on a personalized LV geometry that is generated from 4D echocardiography
data of a healthy subject, see [13] for the procedure of model generation. The LV geometry is created at enddiastole and
discretized by 19 096 four-node tetrahedral elements over 4129 nodes. The total number of degrees of freedom in the
large-scale FOM Equation (10) is N = 2 ⋅ 4129. The parameter of interest is 𝝁 ∶= 𝛾 ∈  ∶= [0.0002, 0.01]. Moreover, the
scaling factor 𝛽t is scaled down in terms of the activation time tact thereby early excited regions have longer action potential
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20 of 25 CHELLAPPA et al.

(A)

(B)

F I G U R E 12 Transmembrane potential Φ of the 3D block at different time instances: (A) FOM, (B) ROM from Test B.

duration to the later activated regions as suggested in [39]. The activation time tact is determined as the elapsed time from
the atrioventricular node stimulation until the transmembrane potential value of a particular point reaches −40 mV.

Similar to our previous works [11, 13], before the final results are obtained, three cycles are performed in order to
achieve saturated values of the primary field variables over the subsequent cycles. Each cardiac cycle, which has a duration
of 800 ms, is initiated by applying a small amount of stimulus (I = 10 [-]) for 10 ms to the upper part of the septum
corresponding to the atrioventricular node (see the snapshots at time t = 20 ms in Figure 17).

4.2.1 Test A: Application of Algorithm 1

For the LV geometry, we start by applying Algorithm 1 to obtain a ROM. The training set Ξ consists of 54 samples of the
parameter 𝛾 obtained by selecting a pool of 60 uniformly-spaced samples in the range [0.0002, 0.01]. It is further divided
in the ratio 90:10 to form the training setΞtrain and the test setΞtest. In this example, we choose nΦ0 and nr

0 based on the SVD
tolerances of 10−2; further, we set n𝜙EI,0 = 30, nr

EI,0 = 10. The convergence of the greedy algorithm is shown in the left figure
in Figure 13. The estimated error reaches the desired tolerance of tol = 0.1 in four iterations and the time taken is 987 s.
The ROM dimension is n = (40 + 36) = 76 while the hyperreduction basis has size nEI = (113 + 74) = 187. The accuracy
of the obtained ROM is tested by predicting the flux values at the test parameter samples. It is clear from Figure 13 (right
figure) that for all the samples, the relative error is less than 0.2% showing the good quality of approximation offered by
the reduced model. In Figure 14, the flux resulting from the FOM and ROM simulations are plotted at two different values
of 𝛾 (0.0004, 0.0057). The two waveforms display a good match. The time taken to solve the FOM is 6.646 s. The ROM
offers a speedup of around 49×, taking only 0.135 s to compute.
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CHELLAPPA et al. 21 of 25

F I G U R E 13 Algorithm 1 applied to the left ventricle model: (Left) Convergence of the greedy algorithm; (Right) Performance of ROM
on test set.

F I G U R E 14 Algorithm 1 applied to the left ventricle model: Comparison of flux obtained from the FOM (solid line) and the ROM
(dashed line) at two different values of the parameter 𝛾 .

F I G U R E 15 Algorithm 2 applied to to the left ventricle: (Left) Convergence of the greedy algorithm; (Right) Performance of ROM on
test set.

4.2.2 Test B: Application of Algorithm 2

Next, we show the benefits of the adaptive sampling of the training set for the LV model using Algorithm 2. The training
setΞtrain, the test setΞtest, the initialization for n0 and nEI,0 follow the same values as those forTest A. The coarse training
set Ξc is obtained by choosing 30% of the samples from Ξtrain with Ξf containing the remaining 70%. We take nadd = 1.
The tolerance is the same as before with tol = 0.1. The results are illustrated in Figure 15. As seen in the left figure, the
greedy algorithm converges in four iterations. However, the time taken is only 507 s, which is roughly half the time used
in Test A. The ROM dimension and the dimension of the hyperreduction basis are the same as for Test A; therefore,
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22 of 25 CHELLAPPA et al.

F I G U R E 16 Algorithm 2 applied to left ventricle model: Comparison of flux obtained from the FOM (solid line) and the ROM (dashed
line) at two different values of the parameter 𝛾 .

(A)

(B)

F I G U R E 17 Transmembrane potential Φ of the left ventricle at different time instances: (A) FOM, (B) ROM from Test B.

the performance on the test set of parameters (see right figure) is similar, with around 0.2% relative error. The FOM flux
waveform is compared with that obtained using the ROM in Figure 16. The ROM is able to accurately capture the behavior
at both the test samples 𝛾 = 0.0004 and 𝛾 = 0.0057. Furthermore, the speedup is similar as in Test A, that is, 49×.

Figure 17 shows the solution snapshots of the transmembrane potentialΦ (for both the FOM and the ROM) evaluated
at the time steps tk ∈ {20,120, 200,280, 400,480, 520} milliseconds for the parameter 𝛾 = 0.00617 taken from the test set.
An excellent agreement can be seen between the transmembrane potential of the FOM and that of the ROM.

5 CONCLUSIONS AND FUTURE PERSPECTIVES

Without doubt, any particular disease progression in the heart does not occur in just a few cardiac cycles. In fact, certain
abnormal conditions, for example, high blood pressure or artery disease, cause an observable pathology after a long period
of time, for example, several months or even years. Therefore, if one is interested in modeling the disease progression
from its early to severe stages, an extremely high computational load must be faced. In this context, ROMs have enor-
mous potential to enable fast and reliable computer simulations of continuously beating heart over a long time period
for variations of the input or parameter values, a key requirement for cardiac digital twins. Our work has introduced an
adaptive algorithm to obtain ROMs. The adaptive algorithm is driven by an a posteriori error estimator which iteratively
samples the best parameter to update the ROM basis. Furthermore, we also make use of a radial basis surrogate to deter-
mine the best parameter regions to focus on, in a problem-specific manner. The results on three examples have shown
that the ROMs obtained from our adaptive algorithm generalize very well to unseen test cases. Moreover, they yield good
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approximation quality and capture the entire range of physical behavior caused by input/parameter variations. For the
scroll-wave phenomenon, we note that while the approximation quality of the ROM is sufficient, the acceleration in the
simulation time is modest. This is mainly due to the comparatively larger ROM size for this example. This outcome is a
limitation of linear ROM approaches applied to problems where the dynamics is dominated by convection or wave-like
phenomena. To address this, our future work will investigate nonlinear projection-based approaches and machine learn-
ing approaches to obtain ROMs of smaller dimension. As an additional follow-up work, we plan to extend the introduced
ROM methodology to excitation-contraction problems in the heart tissue where one often has large computational loads.
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