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Abstract: Double holography offers a profound understanding of the island formula by
describing a gravitational system on AdSd coupled to a conformal field theory on R1,d−1, dual
to an AdSd+1 spacetime with an end-of-the-world (EOW) brane. In this work, we extend
the proposal in [A. Almheiri et al. JHEP 03 (2020) 149] by considering that the dual bulk
spacetime has two EOW branes: one with a gravitational system and the other with a ther-
mal bath. We demonstrate an equivalence between this proposal and the wedge holographic
theory. We examine it in both Anti-de Sitter gravity and de Sitter gravity by calculating the
entanglement entropy of the Hawking radiation. Finally, we employ the doubly holographic
model to verify the formula for the entanglement entropy in a subregion within conformally
flat spacetime.
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1 Introduction

The black hole information paradox [1] presents a fundamental challenge in quantum
gravity, crucial for understanding the Page curve [2, 3], which characterizes black hole radia-
tion’s entanglement entropy. Within the Anti-de Sitter/Conformal Field Theory (AdS/CFT)
correspondence [4–6], the Ryu-Takayanagi (RT) formula [7, 8] and the quantum extremal
surface (QES) formula [9] enable computation of entanglement entropy for subregions on the
asymptotic boundary. Modifying these formulas for black holes leads to the remarkable island
formula [10–12]. The island formula proposes that after the Page time, an inner region I
within the black hole event horizon contributes to the radiation’s entanglement wedge. Con-
sequently, when calculating the entanglement entropy of the outer region R of the evaporating
black hole, the purification effect of I must be considered. The formula is expressed as

SRad(R) = Min
I

{
Ext
I

[
Area(∂I)

4GN
+ Smatter(R∪ I)

]}
, (1.1)
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where I (the island) is a region inside the black hole and ∂I is its spatial boundary, as
illustrated in Fig. 1. In recent years, the generalized entropy formula (1.1) has seen significant
developments in the context of algebraic quantum field theory for various curved spacetime
backgrounds, including asymptotic Anti-de Sitter (AdS) spacetimes [13–18], asymptotic de
Sitter (dS) spacetimes [19], and subregions disconnected from the asymptotic boundary in
any backgrounds [20–23].

The island formula has found significant applications in various gravitational backgrounds,
including the Reissner-Nordström black hole [24, 25], the Schwarzschild black hole [26–29], dS
spacetime [30–42], higher dimensional spacetime [43–45], among others [46–59]. Besides its
applications to the black hole information paradox, the island formula has been utilized in
various quantum information-related fields, such as reflected entropy [60–62], mutual informa-
tion [63–65], entanglement negativity [66–70], partial entanglement entropy [67, 69], quantum
phase transformation [71], and more. These diverse applications demonstrate the broad rele-
vance and usefulness of the island formula in advancing our understanding of quantum gravity
and quantum information.

To compute the entanglement entropy of Hawking radiation, one needs to first calculate
Smatter in flat spacetime using the techniques described in Refs. [72, 73], and then apply a
Weyl transformation to map the theory into the desired generic conformal flat background [74].
This method allows for obtaining the entanglement entropy for the Hawking radiation in the
given spacetime scenario

ds2 = −Ω2dUdV , S =
c

6
log[Ω(a)Ω(b)(U(a)− U(b))(V (b)− V (a))] , (1.2)

where “a” and “b” represent the two boundaries of the subregion in the background spacetime.
The doubly holographic model [12, 75] has enhanced our understanding of the island

formula, revealing that the outer region R and the inner region I are linked through a worm-
hole in a higher-dimensional spacetime. This novel approach makes the island formula more
accessible and offers valuable insights into the entanglement structure of black holes.

BHIsland

Wormhole

R

1

Figure 1. The sketch of the wormhole.

The doubly holographic model has a triple description:

(A) classical gravity of (d+ 1)-dimensional AdS spacetime with a d-dimensional AdS brane;

(B) d-dimensional gravity coupled with conformal matter fields on AdSd and stitched together
with a CFTd on Rd through transparent boundary conditions;
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(C) boundary conformal field theory (BCFT).

The duality between descriptions (A) and (B) is realized through brane-world hologra-
phy [76–78]. The equivalence between descriptions (A) and (C) is established via AdS/BCFT
duality [79, 80], and the equivalence between descriptions (B) and (C) has also been veri-
fied [81, 82]. Remarkably, these three descriptions can be interconnected by applying the
AdS/CFT duality twice.

According to the triple description of the doubly holographic model, the two-dimensional
gravitational system coupled with a conformal matter field is dual to a bulk AdS3 quantum
gravity theory. In this sense, the island formula can be further reexpressed as [12]

SRad(R) = Min
I

{
Ext
I

[
Area(∂I)
4G

(2)
N

+
Area(ΓA)

4G
(3)
N

]}
. (1.3)

In this setup, ΓA represents the extremal surface in the bulk spacetime, enabling the appli-
cability of the holographic method in any background spacetime. However, it is important to
note that the equivalence between descriptions (A) and (B) has only been verified in asymp-
totically AdS spacetime [46, 79–85]. To gain a comprehensive understanding, it is essential to
extend this examination to asymptotically dS and asymptotically flat backgrounds.

ΓA

∂I

I

R

Figure 2. Holographic image of the island formula.

Within the conventional doubly holographic model, the gravitational system resides on a
Planck brane in the bulk spacetime, while the CFT system resides on the asymptotic boundary.
The location of the Planck brane can be determined using the method from Ref. [12]. In this
paper, we generalize this framework by incorporating a thermal bath on a flat brane embedded
in the bulk spacetime. We focus on the two-dimensional AdS and dS Jackiw-Teitelboim (JT)
gravity coupled to a CFT. Through the computation of the entanglement entropy of the
Hawking radiation, we demonstrate that our framework is similar to the wedge holographic
model [86–90].

For the AdS scenario, we reproduce the results of Ref. [91] using the doubly holographic
method, demonstrating that the island formula (1.1) is equivalent to Eq. (1.3) in the AdS
background. In the dS scenario, we compute the entanglement entropy associated with the
cosmological horizon. Although our gravitational spacetime is truncated to couple it with
a flat thermal bath, Bousso and Wildenhain [92] have shown that in both open and closed
universes with positive Ricci scalar, the island configuration must cover the entire spacetime.
As a result, the island configuration also covers the entire gravitational system in our model.
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Additionally, we examine the equivalence between the holographic formula (1.3) and the island
formula (1.1) in the dS background.

The paper is organized as follows. In Section 2, we present an overview of JT gravity
with positive or negative cosmological constant and introduce the embedding of the Planck
brane in AdS spacetime. Section 3 explores the entanglement entropy of AdS JT gravity
coupled to a CFT system using the double holography method, considering three scenarios:
the extreme black hole, the one-sided black hole, and the two-sided black hole. In Section 4,
we replace the AdS brane with a dS brane and compute the entanglement entropy of Hawking
radiation associated with the cosmological horizon to investigate the equivalence of the three
descriptions in the doubly holographic model for the two-dimensional dS JT gravity system
coupled to a CFT. Our findings are summarized in Section 5. Additionally, Appendix A
reviews the calculation of the stress tensor expectation value in a two-dimensional conformal
flat spacetime.

2 JT gravity and the EOW brane

2.1 JT gravity on two-dimensional AdS(dS) spacetime

This paper focuses on AdS JT gravity and dS JT gravity. The action of AdS (dS) JT
gravity is [93–96]

Igravity =
1

16πG

∫

M
d2x

√−gϕ

(
R± 2

l22

)
+

1

8πG

∫

∂M
ϕb(K − 1) , (2.1)

where ϕb is the boundary value of the dilaton field ϕ and l2 represents the radius of AdS2

(dS2) spacetime, “+” and “−” correspond to AdS and dS case, respectively. We have ignored
the topological term in Eq. (2.1). The metric of the action is always locally AdS2 or dS2 and
can be expressed in the conformal gauge as

ds2 = −e2ρdx+dx− . (2.2)

For the 2-dimensional dilaton gravity, the area of the QES is determind by the value of the
dilaton at the location of the QES. The configuration of the dilaton field is determined by the
equation

∇µ∇νϕ− gµν

(
□ϕ∓ ϕ

l22

)
= 0 . (2.3)

If we add some matter fields to the spacetime, we have to modify Eq. (2.3) to account for
the backreaction of the energy-momentum tensor. For current purpose, we will confine the
discussion to the semi-classical limit. In this limit, the solution of Eq. (2.3) remains fixed.

2.2 Embedding the Planck brane in AdS3

In this subsection, we will review the embedding of the Planck brane in AdS3. This model
was introduced in Ref. [12] and is similar to the Randall-Sundrum (RS) model [76, 77]. The
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system consists of JT gravity coupled with a conformal matter field on the AdS brane and
the thermal bath on the Minkowski brane. The total action of this system is

I = Igravity + ICFT2 . (2.4)

We assume that the CFT2 possesses a holographic dual in AdS3. The intrinsic metric of the
brane and the induced metric of the AdS3 on the brane should satisfy the relation

g
(3)
ij |bdy =

1

ϵ2
g
(2)
ij , (2.5)

where ϵ is a cut-off and satisfies ϵ ≪ 1. For the Minkowski brane, the intrinsic metric is merely
flat metric η

(2)
ij . We assume that the two-dimensional gravity solutions of the metric and the

energy-momentum tensor are

ds2 = −e2ρ(x)dx+dx− , Tx+x+(x+) and Tx−x−(x−) , (2.6)

where Tx±x±(x±) is the normal ordered energy-momentum tensor. The details are presented
in Appendix A. If we perform a local coordinate transformation w± = w±(x±) to make the
stress tensor vanish, the holographic dual of the vacuum CFT2 would be Poincaré AdS3

ds2 =
dz2 − dw+dw−

z2
, Tw+w+(w+) = Tw−w−(w−) = 0 , (2.7)

where the energy-momentum tensor Tw±w±(w±) is equal to the Brown-York tensor [97–99] on
the conformal boundary z = zw. The Brown-York tensor of 3-dimensional Einstein’s gravity
with the counterterm introduced is defined as follows

TBY
µν = − 1

8πG
(Kµν − γµνK + γµν) , (2.8)

where Kµν is the exterior curvature of the conformal boundary and K is its trace. We have
set the AdS radius to one for simplicity. By substituting the two metrics (2.6) and (2.7) into
the relation (2.5), we can obtain the boundary condition of the induced metric

−dw+dw−

z2w
= − 1

ϵ2
e2ρ(x)dx+dx− . (2.9)

To satisfy the aforementioned boundary condition, the position of the brane should be

zw = ϵe−ρ(x)

√
dw+

dx+
dw−

dx−
. (2.10)

In Eq. (2.10), the coordinate transformation relationship between w± and x± is deter-
mined by the anomalous transformation law of Tx±x±(x±) and Tw±w±(w±).

(
∂w±

∂x±

)2

Tw
±± = T x

±± +
c

24π
{w±, x±} , (2.11)
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where c = 3
2G and {w±, x±} is the Schwarzian derivative

{w±, x±} =
(w±)′′′

(w±)′
− 3

2

(
(w±)′′

(w±)′

)2

. (2.12)

After obtaining Eq. (2.10), we can verify that the Brown-York tensor of the AdS3 geometry
on the brane and the energy-momentum tensor of the brane satisfy the relation (2.11). If we
choose the Brown-York tensor on the holographic boundary of the bulk spacetime to match
the stress tensor in the given two-dimensional spacetime, i.e., Tw

±± = T x
±±, we can conclude

that {w±, x±} = 0. For simplicity, we can take w± = x±. In this case, the constraint equation
of the brane will be determined only by the Weyl factors.

In addition, the AdS/BCFT correspondence can also describe the double holography
model. In this scenario, the position of the EOW brane can be determined by the Neu-
mann boundary condition. It can be demonstrated that the embedding condition defined by
Eqs. (2.9) and (2.11) is equivalent to the Neumann boundary condition in the case of ϵ ≪ 1.

2.3 The results of AdS/BCFT

This subsection provides a brief introduction to some fundamental concepts in AdS/BCFT
correspondence. In this duality, the gravitational dual of a d-dimensional BCFT is a d + 1-
dimensional AdS spacetime featuring an EOW brane. The AdS spacetime has two boundaries:
the asymptotic boundary M at spatial infinity, satisfying the Dirichlet boundary condition,
and the EOW brane Q, satisfying the Neumann boundary condition. The action of the d+1-
dimensional gravitational system with the EOW brane is given as follows

I =
1

16πGN

∫

N

√−g(R− 2Λ) +
1

8πGN

∫

M

√−γK +
1

8πGN

∫

Q

√
−h(K − T ) , (2.13)

where N denotes the bulk manifold of AdSd+1, and ∂N = M ∪ Q represents the boundary
of N . By varying the action with respect to the boundary metric hµν and considering the
Neumann boundary condition, we obtain the equation

Kµν − (K − T )hµν = 0 , (2.14)

where T denotes the brane tension. Comparing Eq.(2.8), we find that these two equations are
equivalent when the tension term equals the unrenormalized Brown-York tensor.

For the Neumann boundary condition in Poincaré AdS3, the standard solution is given
by [100, 101]

F (t, x, z) = A(x2 + z2 − t2) +Bz + Cx+Dt+ E = 0 ,

T =
B√

B2 + C2 −D2 − 4AE
. (2.15)

In the case of Minkowski brane, we set A = 0 and |C| = |D|. The results for the AdS brane
in Refs.[79, 80] correspond to the parameters A = D = E = 0, B = 1, and C = ϵ. For these
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choices of parameters, we can verify that the explicit result of Eq.(2.15) is

z = −ϵx , with T =
1√

1 + ϵ2
≈ 1− 1

2
ϵ2 , (2.16)

where ϵ is a positive constant. Meanwhile, the Brown-York tensor on this surface is

TBY
µν = −(Kµν − hµνK + hµν) = −1

2
ϵ2hµν . (2.17)

By comparing Eqs. (2.14) and(2.17), we find that these two conditions are equivalent to each
other when ϵ ≪ 1, indicating that the EOW brane approaches the asymptotic boundary.
Note that we omit 1

8πG in our notation. To obtain the configuration of the EOW brane, we
calculate the induced metric on the brane. The contribution to the induced metric from the
gzz component is of order O(ϵ2) and can be neglected. Consequently, the induced metric on
the brane is given as

ds2 =
1

ϵ2
−dt2 + dx2

x2
. (2.18)

The above conclusions hold when we extend our discussion to the case where the bulk
spacetime is a Bañados-Teitelboim-Zanelli (BTZ) black hole. The metric of the BTZ black
hole is

ds2 = −(r2 − 1)dt2 +
1

r2 − 1
dr2 + r2dx2 . (2.19)

For this metric, the solutions of Eq. (2.14) corresponding to the AdS and dS branes [86] are,
respectively

r =
T√

1− T 2

1

sinh(x)
=

1

ϵ

1

sinh(x)
for AdS brane ,

r =
T√

T 2 − 1

1

cosh(x)
=

1

ϵ

1

cosh(x)
for dS brane .

(2.20)

We find that the solutions (2.20) are consistent with the results obtained through the brane
embedding method mentioned in Sec.2.2. The position of the brane is determined by the
brane tension T of Q. For the AdS case, we have T < 1, and T = 1√

1+ϵ2
. For the dS case, we

have T > 1, and T = 1√
1−ϵ2

.1

3 Two-dimensional AdS spacetime coupled to CFT

In this section, we will employ the doubly holographic method to calculate the entangle-
ment entropy of the black hole’s Hawking radiation. The system under consideration comprises

1Note that the solution of the dS2 brane in BTZ spacetime in Eq.(2.20) is different from the result in
Ref.[87] and is not compatible with the standard dS/CFT correspondence[95, 96, 102]. For the dS spacetime,
the spatial hypersurface is closed, so the holographic coordinate is t, and the conformal boundary is t = 0.
For the solution in Ref. [87], the position of the dS2 brane embedding in Poincaré AdS3 is z = ϵt, so the joint
point of the brane and the flat bath is z = t = 0, which is the conformal boundary of the dS2 spacetime.
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a black hole coupled to a thermal bath, as proposed in Ref. [91]. At the interface between
the gravitational system and the thermal bath, we impose a transparent boundary condition.
The coordinates of the gravitational region and the bath region are denoted by x± and y±,
respectively.

The transparent boundary condition implies that the energy-momentum tensors of the
two regions satisfy the following relationship

(
dy±

dx±

)2

T±±(y±) = T±±(x±) +
c

24π
{y±, x±} . (3.1)

In this context, we consider the joint point of the gravitational system and the thermal bath
at x = −δ. The gravitational region corresponds to x ≤ −δ, while the bath region is defined
by x > −δ.

3.1 Zero temperature black hole (extremal black hole)

t

x = −p x = q

x = −δ
x

(a) Gravity coupled to CFT

z

x

z = ϵ

x = −δ

(b) Holography construction

Figure 3. A zero-temperature black hole coupled to a thermal bath. (a) is the two-dimensional
description where the ranges of the island configuration and the radiation are x ≤ −p and x ≥ q,
respectively. (b) is the holographic dual of (a). The bath and gravitational regions are located at
the asymptotical boundary and the EOW brane of the AdS3 spacetime, respectively. The dotted line
represents the cut-off, and the red line represents the RT surface.

In this section, we consider the case of an extremal black hole and describe it using the
Poincaré coordinates x± = t± x with x < −δ. This model can be described by the Fig. 3(b).
In this picture, the horizontal blue line represents the Minkowski brane, and the oblique line
represents the AdS brane. We choose the interval (q,∞) as the region to collect the Hawking
radiation. The metric and dilaton field solutions are given by

ds2 = −4δ2dx+dx−

(x− − x+)2
, ϕ = ϕ0 +

2ϕr

(x− − x+)
, (3.2)

where ϕ0 represents the extremal entropy of the black hole. The event horizon is located at
x = −∞. The bath region is described by Minkowski spacetime with x > −δ

ds2 = −dy+dy− . (3.3)
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For the extremal black hole, both the energy-momentum tensor of the black hole and the
thermal bath are chosen to be in the Poincaré patch vacuum, with T

(x)
±± = 0 and T

(y)
±± = 0,

respectively. The transparent boundary condition discussed in Ref. [91] implies {x±, y±} = 0,
allowing us to simplify by choosing x± = y±.

With the expectation value of the boundary energy-momentum tensor fixed, we can search
for the holographic dual of this coupled model using the relation (2.11). As the energy-
momentum tensor of the thermal bath is zero, the bulk spacetime must be the 3-dimensional
Poincaré patch. Next, we need to determine the position of the EOW brane in the bulk. For
the Minkowski brane (3.3), the position is merely z = ϵ. For the AdS brane, the embedding
condition and the position of the brane are given by

−dw+dw−

z2w
= −δ2

ϵ2
dx+dx−

x2
, zw = −ϵx

δ

√
dw+

dx+
dw−

dx−
, (3.4)

where w± are the transverse coordinates of the bulk Poincaré patch. Since we have {w±, x±} =

0, the constraint equation of the brane becomes

z = − ϵ

δ
x . (3.5)

It is easy to verify that the induced metric on the EOW brane in the Poincaré patch is

ds2 =
(δ2 + ϵ2)dx2 − δ2dt2

ϵ2x2
≃ δ2(−dt2 + dx2)

ϵ2x2
, (3.6)

where the ϵ2 term in the numerator is small and can be neglected.
Now, we can calculate the entanglement entropy of the Hawking radiation in the subregion

(q,∞) using the RT formula [7] in AdS3. In the Poincaré patch, the RT surface takes the form
of a semicircle. Considering the presence of an island in the gravitational region, we assume
that the boundary of the island is located at the point (−p, ϵ

δp). The parameter equation of
the RT surface is given by

z2 + (x− k)2 = z2∗ , (3.7)

where z∗ ≃ (p+q)
2 and k =≃ q−p

2 . By redefining (x − k) = z∗ cos ξ and z = z∗ sin ξ, we can
easily calculate the area of the RT surface.

A =

∫
dξ

z

√(
dx

dξ

)2

+

(
dz

dξ

)2

=

∫ π
2

ϵ
z∗

1

sinξ
dξ +

∫ π
2

ϵ
δ
p

z∗

1

sinξ
dξ ≈ log

(
4z2∗δ
ϵ2p

)
, (3.8)

where ϵ is cut-off. Combining Eq. (3.8) with the area term of the island, we can get the
entanglement entropy of the Hawking radiation

S =
A

4G
+ ϕ0 +

ϕr

p
≈ ϕ0 +

ϕr

p
+

c

6
log

(p+ q)2δ

ϵ2p
. (3.9)

To determine the final result of the entanglement entropy, we need to take the partial derivative
of S with respect to p to find its extremum value

p =
1

2
(q + 6d+

√
q2 + 36qd+ 36d2) , (3.10)
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where d = ϕr

c is a length scale. We can find that “p“ is a finite value reproducing the result
of Ref. [91].

3.2 Finite temperature black hole couple to a bath

In this section, we will calculate the radiation entanglement entropy of a black hole at
finite temperatures. The boundary dual of the black hole with finite temperature corresponds
to a system in the thermofield double (TFD) state.

L R

xL = δ xR = −δ

xL < δ xR > −δ

Figure 4. The Penrose diagram of the nonzero temperature black hole coupled with two thermal
baths on the left and right boundary. For the left half of the diagram, the range of the gravitational
system is x > δ, and the thermal bath is x < δ. For the right half of the diagram, the coordinate x is
the opposite of the counterpart in the left half of the diagram.

As shown in Fig. 4, we label the two spacetime regions as L and R, respectively. We
will discuss both cases of a one-sided black hole and a two-sided black hole. In the finite
temperature scenario, we couple the black hole with a thermal bath at a specific temperature.
The energy-momentum tensor of the radiation field in the thermal bath is given by T

(x)
±± = πc

12β2 ,
where β represents the inverse of the temperature.

3.2.1 One-sided black hole

First, we discuss the one-sided black hole associated with the right asymptotic region.
The corresponding solutions for this system are given by

ds2 = −4π2

β2

sinh2(2πδβ )dx+dx−

sinh2(πβ |x− − x+|) , ϕ = ϕ0 +
2πϕr

β

1

tanh(πβ |x− − x+|) . (3.11)

The event horizon is located at x− = +∞ and x+ = −∞. The bath region is described by

ds2 = −dx̃+dx̃− , (3.12)

where we also have {x̃±, x±} = 0 due to the transparent boundary condition. For the con-
tinuity of the metric at the interface, we set x̃± = 2π

β x±. So the constraint equation of the
thermal bath brane is

r =
1

ϵ

2π

β
. (3.13)
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Since the thermal bath has a non-vanishing energy-momentum tensor, we need to embed
the system into the non-rotating BTZ black hole [103, 104]. The metric of the non-rotating
BTZ black hole is

ds2 = −r2 − r20
l23

dt2 +
l23

r2 − r20
dr2 + r2dx2 , (3.14)

where β =
2πl23
r0

is the inverse temperature of the black hole, and l3 is the 3-dimensional AdS
radius. We set l3 = 1 for simplicity, and then β = 2π

r0
in this convention. It can be verified

that the Brown-York tensor of the BTZ spacetime at the asymptotic boundary equals the
energy-momentum tensor of the thermal bath. The embedding condition of the EOW brane
is

−r2dx+dx− = − 1

ϵ2
4π2

β2

sinh2(2πδβ )dx+dx−

sinh2(πβ |x− − x+|) . (3.15)

From the embedding condition, we can determine the position of the EOW brane as

r =
1

ϵ

2π

β

sinh(2πδβ )

sinh(−2πx
β )

. (3.16)

Now we can calculate the entanglement entropy of the Hawking radiation in the thermal bath.
Let’s assume that the embedding coordinates of the two endpoints of the radiation region in

the BTZ spacetime are (q, 1ϵ
2π
β ) and (−p, 1ϵ

2π
β

sinh( 2πδ
β

)

sinh( 2πp
β

)
). The position of the radiation region

is depicted in Fig. 5.

r → 0

x

r =
1

ϵ

2π

β

r =
1

ϵ

2π

β

sinh
(

2πδ
β

)

sinh
(
− 2πx

β

)

x =−δ

Figure 5. The EOW brane embedded in the BTZ spacetime. The blue line on the left represents
the EOW brane, while the right part of the diagram represents the radiation subregion. The red line
signifies the RT surface.

The entanglement entropy of the matter field in this region is conjectured to be equal to
the length of the geodesic line in the BTZ spacetime. We can describe the geodesic line in the
BTZ black hole by the parameterized curve r(y). The length of r(y) is given by

L =

∫
dx

√
1

r2 − r20

(
dr

dx

)2

+ r2 . (3.17)
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The Lagrangian in Eq. (3.17) is not an explicit function of x, so one can find a conserved
quantity denoted by r∗. Based on this conserved quantity, the generalized velocity dr

dx in
Eq. (3.17) can be expressed as

dr

dx
= r

√
(r2 − r20)

(
r2

r2∗
− 1

)
. (3.18)

By integrating x, we find r∗ = 2π
β coth(πβLA), where LA = p+ q is the length of the subregion.

Therefore, the integral of Eq. (3.17) is

L =

∫ 1
ϵ
2π
β

r∗

rdr

r∗
√

(r2 − r20)(r
2/r2∗ − 1)

+

∫ 1
ϵ
2π
β

sinh( 2πδ
β

)

sinh(
2πp
β

)

r∗

rdr

r∗
√

(r2 − r20)(r
2/r2∗ − 1)

= log
4 sinh(2πδβ ) sinh2(πβ (p+ q))

ϵ2 sinh(2πpβ )
. (3.19)

By adding the boundary area of the island to Eq. (3.19), we can obtain the total entan-
glement entropy of the Hawking radiation as

Srad = ϕ0 +
2πϕr

β

1

tanh 2pπ
β

+
L

4G3
= ϕ0 +

2πϕr

β

1

tanh 2pπ
β

+
c

6
log

4 sinh(2πδβ ) sinh2(πβ (p+ q))

sinh(2πpβ )
,

(3.20)
where G3 is the Newton constant in AdS3. In the second step, we ignored the divergent term
and used the relation c = 3/2G3. Taking the partial derivative of Srad with respect to p, we
obtain the extremal equation to determine the location of p

sinh( (p−q)π
β )

sinh( (p+q)π
β )

=
12πd

β

1

sinh(2pπβ )
. (3.21)

When considering the low-temperature limit β → ∞, we obtain Eq. (3.10). When considering
the high-temperature limit β → 0, we find

p ≃ q +
β

2π
ln

24πd

β
, (3.22)

which is consistent with the findings in Ref. [91].

It is necessary to verify that we obtain the correct induced metric using the embedding
condition in Eq. (3.15). This can be achieved by substituting the Eq. (3.16) into the BTZ
metric. The resulting induced metric is

ds2 = −sinh2(δ) + ϵ2

ϵ2
1

sinh2 u−v
2

dudv , (3.23)
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where (u, v) are related to the original coordinates (t, y) by

u = t+X , v = t−X,

X = arccoth


 coth(x)√

1 + ϵ2

sinh2(δ)


 . (3.24)

According to the discussion in Sec. 2.2, we can consider ϵ as a small quantity, and thus we
can obtain an approximate result Y ≈ y.

3.2.2 Two-sided black hole (eternal black hole)

L R

yL = δ yR = −δ

−q q

(a) t < tpage

L R

yL = δ yR = −δ

−q q

p −p

(b) t > tpage

Figure 6. The eternal black hole coupled to the bath. (a) The case of t < tpage. The blue line
represents the subregions where Hawking radiation is collected. (b) The case of t > tpage. The blue
line between “p” and “−p” represents the island configuration.

In the two-sided black hole case, we consider the entanglement entropy of the Hawking
radiation by introducing two thermal baths coupled to the left and right asymptotic bound-
aries, respectively. We focus on the subregions (−∞,−q) and (q,∞) in the left and right
thermal baths, as illustrated in Fig. 6, where the emitted Hawking particles are collected.

In Fig. 6, we observe that after the Page time tpage, the island region emerges within
the entanglement wedge of the thermal bath. This region is situated within the gravitational
spacetime and is bounded by its endpoints, labeled as “p” and “−p”. To determine the en-
tanglement entropy of the matter field in this scenario, we need to compute Smatter for the
combined interval (−∞,−q) ∪ (p,−p) ∪ (q,∞). Notably, since the matter field is in a pure
state for the entire system, evaluating the entanglement entropy in this region is equivalent
to computing Smatter for the interval (−q, p) ∪ (−p, q).

Similar to the one-sided black hole case Eq. (3.11), we can express the metric correspond-
ing to the right asymptotic region as

ds2 =




−4π2

β2

sinh2( 2πδ
β

)dy+Rdy−R
sinh2[π

β
(y−R−y+R)]

, yR < 0

−4π2

β2 dy
+
Rdy

−
R , yR > 0

, (3.25)
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and the metric corresponding to the left asymptotic region as

ds2 =




−4π2

β2

sinh2( 2πδ
β

)dy+L dy−L

sinh2
[
π
β
(y+L−y−L )

] , yL > 0

−4π2

β2 dy
+
L dy

−
L , yL < 0

. (3.26)

To compute Smatter for the two-sided black hole case without the island, we transform the
coordinates into Kruskal coordinates, combining the two asymptotic regions into a single
patch. The transformation relations are given by

w± = ± exp

(
±2π

β
y±R

)
, w± = ∓ exp

(
∓2π

β
y±L

)
. (3.27)

Based on this relation, the Schwarzian derivative of the energy-momentum tensor is
{w±, y±R} = {w±, y±L } = − πc

12β2 , and we observe that the energy-momentum tensor T±±(w±)
on the brane vanishes. Therefore, we embed the system into the AdS3 Poincaré patch. Ad-
ditionally, we consider a Weyl transformation, equivalent to a z−dependent coordinate trans-
formation in the bulk, to compensate for the conformal factor of the metric obtained from the
conformal transformation in Eq. (3.27). The boundary condition

− 1

z2bath
dw+dw− =

1

ϵ2b

1

w+w−dw+dw− . (3.28)

The right-hand side of the equation represents the metric for the thermal left bath and right
bath in Kruskal coordinates. This relation determines the position of the thermal bath as

zbath = ϵb
√
−w+w− , (3.29)

where w± = wt ± wx. One can check that this solution is compatible with the general
solution (2.15) in the asymptotic limit. Specifically, the coordinate transformation (3.27)
with z → z

√
−w+w− is an asymptotic symmetry in AdS3 and maps the solution z = ϵb

of (2.15) to z = ϵb
√
−w+w−. The two endpoints of the radiation subregions are denoted

as “1” and “2”, with positions in the y coordinate system as (tq, q) and (tq,−q). In Kruskal
coordinates, their positions are expressed as follows

w+
1 = exp

2π

β
(tq + q) , w−

1 = − exp
2π

β
(q − tq) ,

w+
2 = − exp

2π

β
(q − tq) , w−

2 = exp
2π

β
(tq + q) , (3.30)

or

(w1)t = (w2)t = exp
2πq

β
sinh

2πtq
β

,

(w1)x = −(w2)x = exp
2πq

β
cosh

2πtq
β

, (3.31)
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where (wi)t = (w+
i + w−

i )/2 and (wi)x = (−1)i(w−
i − w+

i )/2. Substituting Eq. (3.30) into
Eq. (3.29), we can get the same value for these two endpoints

zbath = ϵb exp
2πq

β
. (3.32)

Having fixed the position of the endpoints of the subsystems, we can calculate the entan-
glement entropy using the RT formula. The subregion is ((w2)x, (w1)x), as shown in Figs. 7(a)
and 7(b). Since (w1)t = (w2)t and the bulk spacetime is static, the geodesic line lies in a con-
stant wt hypersurface. The equation of the geodesic line is

z2 + w2
x = z2∗ . (3.33)

wx = −exp2πq
β

wx = exp2πq
β

12

zbath = ϵbwx

z

wx

z = ϵbexp−2πδ

β

zbath = −ϵbwx

(a) tq = 0

z

wx

wx = −exp2πq
β

cosh2πtq
β

12

zbath = −ϵb
wx

cosh2πtq
β

z = ϵbexp−2πδ

β

wx = exp2πq
β

cosh2πtq
β

zbath = ϵb
wx

cosh2πtq
β

(b) tq ̸= 0

Figure 7. The bath region is embedded into the Poincaré patch. For the bath region, we have
wx < − exp −2πδ

β cosh
2πtq
β (left) and wx > exp −2πδ

β cosh
2πtq
β (right). (a) In the case of tq = 0, the

blue line represents the radiation region, the red line represents the RT surface, and the dotted line
represents the cut-off. Points “1” and “2” denote the endpoints of the radiation subregion. (b) The
case of tq ̸= 0. Due to the coordinate transformation relation given in Eq. (3.31), we are depicting a
graph projected onto the z − wx plane.

Substituting the coordinate of one endpoint into this equation, we obtain

z∗ =

√(
exp

2πq

β
cosh

2πtq
β

)2

+ ϵ2b exp

(
4πq

β

)

≈ exp
2πq

β
cosh

(
2πtq
β

)
, (3.34)

where we have neglected the ϵ2b term in the second line. Finally, we can get the length of the
geodesic line

L1 = 2

∫ π
2

zbath
z∗

1

sin ξ
dξ = 2 log

2z∗
zbath

≈ 2 log

[
2

ϵb
cosh

(
2πtq
β

)]
. (3.35)

Therefore, the entanglement entropy of the Hawking radiation without the island configuration
is given by

S =
L1

4G
=

c

3
log

[
2 cosh

(
2πtq
β

)]
→ 2πc

3β
tq , (3.36)
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where we have renormalized the divergent terms. The absence of the island configuration
leads to a linear increase in the entanglement entropy of the Hawking radiation. This result
contradicts the Page theorem [2] and indicates the presence of the information paradox. In
the next step, we must account for the contribution of the island configuration.

To calculate Smatter in the island, as described in the previous paragraph, we first deter-
mine the position of the island boundary in the bulk spacetime. We label these two points as
point “3” and point “4”, assuming their positions on the EOW brane as (tp,−p) and (tp, p), re-
spectively, as depicted in Fig. 9. The intrinsic metric of the EOW brane in Kruskal coordinates
is given by

ds2 = −4π2

β2

sinh2(2πδβ )dy+dy−

sinh2[πβ (y
− − y+)]

= −
4 sinh2(2πδβ )

(1 + w+w−)2
dw+dw− . (3.37)

Based on the embedding condition in Eq. (2.5), we can determine the position of the EOW
brane as follows

zgravity =
ϵg

2 sinh(2πδβ )
|1 + w+w−| = ϵg

2 sinh(2πδβ )
|1 + w2

t − w2
x| , (3.38)

which is also consistent with the Newman boundary condition. In the general solution (2.15),
we set A =

ϵg
2 sinh( 2πδ

β
)
, B = 1, E = − ϵg

2 sinh( 2πδ
β

)
to obtain the same solution (3.38) up to O(ϵ2g).

After obtaining the equations of the gravitational brane and the thermal bath, we can observe
the shapes of both branes in the bulk spacetime, as depicted in Fig. 8.

Figure 8. The embedding of the two-dimensional system in the Poincaré patch. The range of the
gravitational region is − exp(−2πδ

β ) cosh
2πtp
β < wx < exp(−2πδ

β ) cosh
2πtp
β . When we set tp = tq = t,

the two asymptotic boundaries cannot intersect at wx = exp(−2πδ
β ) cosh 2πt

β . In this case, to ensure
that the two boundaries intersect at wx = ± exp(−2πδ

β ) cosh 2πt
β , the cut-offs satisfy ϵb = ϵg.

The positions of points “3” and “4” in Kruskal coordinates are given by

w+
3 = exp

2π

β
(tp − p) , w−

3 = − exp
2π

β
(−p− tp),

w+
4 = − exp

2π

β
(−p− tp) , w−

4 = exp
2π

β
(tp − p) , (3.39)
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or

(w3)t = (w4)t = exp
−2πp

β
sinh

2πtp
β

,

(w3)x = −(w4)x = exp
−2πp

β
cosh

2πtp
β

. (3.40)

Comparing Eqs. (3.31) and (3.40), it is apparent that (w1(2))t ̸= (w3(4))t. Consequently, the
geodesic lines cannot reside in a constant-time slice. This discrepancy poses a challenge that
we will address in the subsequent calculations. By substituting the coordinates of point “3”
and point “4” into Eq. (3.38), we can determine the position of the EOW brane in the Poincaré
patch

zgravity =
ϵg

2 sinh(2πδβ )

[
1− exp

(−4πp

β

)]
. (3.41)

12

zbath = −ϵbwx zbath = ϵbwx

z

wx

z = ϵb exp
−2πδ

β
34

zgravity =
ϵg

2 sinh 2πδ
β

(
1− w2

x

)

(a) tp = 0

z

wx

34

zgravity =
ϵg

2 sinh 2πδ
β


1− w2

x

cosh2
(

2πtp
β

)




(b) wt = exp −2πp
β

sinh 2πt
β

z

wx

12

zbath = −ϵb
wx

cosh2πtq
β

zbath = ϵb
wx

cosh2πtq
β

(c) wt = exp 2πq
β

sinh 2πt
β

Figure 9. The first type of geodesic line configuration. The red lines represent the RT surfaces,
while the orange lines represent the EOW branes. (a) The case of tp = tq = 0. In this scenario,
(w1(2))t = (w3(4))t = 0, so we choose the time slice with wt = 0. (b) and (c) The case of tp = tq = t.
It is worth noting that in this case, (w1(2))t ̸= (w3(4))t; the two geodesic lines exist in two different
time slices. However, this feature does not affect the result due to the time translation symmetry of
the bulk spacetime.

As depicted in Figs. 9(a) and 10(a), two types of geodesic line configurations minimize
Smatter. One configuration connects points “1”, “3” and “2”, “4”, respectively, while the other
configuration connects points “1”, “3” and “2”, “4”, respectively.
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For the first case, the length of the geodesic line connecting the points “1” and “2” is only
L1 in Eq. (3.35). So we only need to consider the length of the geodesic line connecting points
“3” and “4“. The calculation process is similar to the case without the island configuration
and the result is

L2 ≈ 2 log

[
2 sinh(2πδβ )

ϵg
csch

(
2πp

β

)
cosh

(
2πtp
β

)]
. (3.42)

And then, the total length of the two geodesic lines is

S =
L1 + L2

4G
=

c

3
log

[
4csch

(
2πp

β

)]
+

2c

3
log

[
cosh

(
2πt

β

)]
, (3.43)

where we have ignored the divergent term and set tp = tq = t. Although (w1(2))t ̸= (w3(4))t
in this case, it does not affect the result of the first kind of saddle point. Eq. (3.43) shows
that the entanglement entropy still increases linearly, similar to the case without the island
configuration in Eq. (3.36).

12

z

wx

34

zgravity =
ϵg

2 sinh 2πδ
β

(
1− w2

x

)

z = ϵb exp
−2πδ

β

zbath = ϵbwxzbath = −ϵbwx

(a) tp = tq = 0

1

zbath = ϵbw
′
x

z

w′
x

3

zgravity =
ϵg

2 sinh 2πδ
β

(
1− w′

x
2
)

(b) tp = tq = t (2d slice)

1

2

z

wx

34

zgravity =
ϵg

2 sinh 2πδ
β

(
1− w′

x
2
)

zbath = ϵbw
′
x

wt

(c) tp = tq = t (3d)

Figure 10. The second type of geodesic line configuration. (a) The case of wt = 0. The geodesic line
connecting points “2” and “4” and connecting points “1” and “3” reside in the same time slice. (b) The
case of tp = tq = t. (c) A three-dimensional picture for the case of tp = tq = t.

For the second case, where the left and right parts are symmetric, we only need to consider
one part. Let us assume that tp ̸= tq for generality. Since (w1)t ̸= (w3)t, to calculate Smatter,
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we need to take into account the covariant holographic entanglement entropy proposal [8]. At
late times t > tpage, the extremal surface is chosen as a maximin surface, meaning we take
the maximum time and the minimum in space. Therefore, the extremal surface can only lie
on the plane defined by w′

x and z, where w′
x = 1

cosh 2πt
β

wx, refer to Fig. 10(c). The equation of

the RT surface is given by
z2 + (w′

x − wk)
2 = z2∗ , (3.44)

where wk is a parameter calculated from the coordinates of two points on the semicircular
geodesic line. So we have

4z2∗ ≈ −[(w1)t − (w3)t]
2 + [(w1)x − (w3)x]

2 = (w+
1 − w+

3 )(w
−
3 − w−

1 ) . (3.45)

Substituting the values of w±
1 and w±

3 into the equation, we can obtain the expression for z∗
as follows

z2∗ ≈ 1

2
exp

2(−p+ q)π

β

[
cosh

(
2π(p+ q)

β

)
− cosh

(
2π(tp − tq)

β

)]
. (3.46)

So the contribution of the entanglement entropy from the matter field is

A

4G
=

c

6
log

(
4z2∗

zbathzgravity

)

=
c

6
log

2 sinh(2πδβ )
[
cosh

(
2π(p+q)

β

)
− cosh

(
2π(tp−tq)

β

)]
csch

(
2πp
β

)

ϵ2
.

(3.47)

This equation shows that it takes the maximum value in the time direction when tp = tq. So
according to the HRT formula, the entanglement entropy of the matter field is

A

4G
=

c

6
log



sinh2

(
(p+q)π

β

)

sinh
(
2πp
β

)


+ constant , (3.48)

and the total entanglement entropy of Hawking radiation is

S = 2

(
ϕ0 +

2πϕr

β

1

tanh 2πp
β

)
+

c

3
log

sinh2
(
(p+q)π

β

)

sinh
(
2πp
β

) . (3.49)

This result is twice as large as Eq. (3.20). In the high-temperature limit β → 0, we can get
an approximate expression of the radiation entanglement entropy for the two-sided black hole

S ≃ 2

(
ϕ0 +

2πϕr

β

)
= 2SBH . (3.50)

This result shows that for an eternal black hole, at the late time, the radiation entanglement
entropy remains constant at twice the entropy of the black hole.
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tpage
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Figure 11. The entanglement entropy of the Hawking radiation from the eternal black hole.

4 Two-dimensional dS gravity coupled to CFT

In this section, we will compute the entanglement entropy of Hawking radiation in dS
spacetime. To achieve this, we consider a holographic scenario where we embed a dS brane
in an AdS3 spacetime. The entanglement entropy will be calculated using both the doubly
holographic method and the standard procedure in CFT. Our particular focus will be on the
scenario of a static dS background.

4.1 Calculation by the holographic method

The solution for the dS spacetime in static coordinates is given by [105, 106]

ds2 = −
(
1− ρ2

ρ20

)
dt2 +

(
1− ρ2

ρ20

)−1

dρ2 = −4π2

β2

dy+dy−

cosh2
(
π
β |y+ − y−|

) ,

Φ =
2πϕr

β

1

coth π
β |y+ − y−| ,

(4.1)

where y± = t ± y, β = 2πρ0, y = ±ρ0arctanh
ρ
ρ0

represents the space coordinates of the left
and right planes. The Penrose diagram of the dS spacetime is depicted in Fig. 12. The dS
universe is closed, and for the higher dimensional case, ρ = 0 corresponds to the origin of
the corresponding static patch. Therefore, it is not possible to couple this system with a flat
thermal bath at this point. However, for the two-dimensional dS spacetime, it is possible to
cut the spacetime manifold along ρ = 0 and then attach a flat bath to it along this line.2

2As mentioned in the footnote 2.3, our model is different from the setup in Refs. [30–33] and the standard
dS/CFT correspondence [95, 96, 102]. Our model pairs the gravitational system with the flat bath at ρ = 0

instead of its conformal boundary.
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RL

1

Figure 12. Penrose diagram of dS spacetime.

In the holographic scenario, the flat thermal bath is located at the asymptotic boundary
of the AdS3 spacetime, and the gravitational system resides on the EOW brane in the bulk, as
before. For the dS spacetime, we label its two static patches and the corresponding thermal
baths as “L” and “R”, respectively. One can transform the static coordinates (t, ρ) to the (t, y)

coordinates, in which the left static patch can be described. In the latter coordinate, the
Brown-York tensor at the asymptotic boundary is given by T

(y)
±± = πc

12β2 . Therefore, we need
to embed our system into the BTZ spacetime.

L R

yL = 0

t t

yR = 0

−q q

1

(a) t < tpage

L R

yL = 0

t t

yR = 0

−q q

p −p

1

(b) t > tpage

Figure 13. The Penrose diagram of the dS spacetime coupled to the bath. The orange line represents
the cosmological horizon. (a) t < tpage. The blue lines represent the radiation regions, with endpoints
at (tq,−q) and (tq, q). (b) t > tpage. The blue lines in the middle of the diagram represent the island
configuration, with endpoints at (tp,−p) and (tp, p).

According to the boundary condition in Eq. (2.5), we can determine the position of the
brane in the BTZ spacetime as follows

r =
1

ϵ

2π

β

1

cosh π
β (y

− − y+)
. (4.2)

Next, we calculate the induced metric of the BTZ spacetime on the EOW brane, resulting in

ds2 = −1− ϵ2

ϵ2
1

cosh2 u−v
2

dudv , (4.3)

where u = t + Y , v = t − Y , and Y = arctanh
[
tanh(y)√

1−ϵ2

]
. It is evident that the induced

metric (4.3) reduces to Eq. (4.1) in the small ϵ approximation.
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After obtaining the configuration of the EOW brane in the BTZ spacetime, our goal is
to holographically calculate the entanglement entropy of the matter field. To achieve this, we
need a coordinate system that describes the “L” and “R” static patches and their correspond-
ing thermal baths. Hence, we transform the (t, y) or (y+, y−) coordinates into the Kruskal
coordinates (w+, w−) with the following relationship

w± = ± exp

(
±2π

β
y±L

)
, w± = ∓ exp

(
∓2π

β
y±R

)
. (4.4)

In the (wt, wx) coordinate system, the metric of the right static patch and the thermal bath
is given by

ds2 =




−4π2

β2

dy+Rdy−R
cosh2[π

β
(y−R−y+R)]

= − 4
(1−w+w−)2

dw+dw− , yR < 0 ,

−dy+Rdy
−
R = β2

4π2
1

w+w−dw
+dw− , yR > 0 .

(4.5)

The energy-momentum tensor vanishes in Kruskal coordinates, so we need to embed the EOW
brane into the Poincaré AdS3.

z

wx

12

zbath = −ϵb
2π

β

wx

cosh 2πtq
β

z =
2π

β
ϵb

zbath = ϵb
2π

β

wx

cosh 2πtq
β

Figure 14. The positioning of the thermal bath in Poincaré AdS3. The blue line represents the
thermal bath, and the red line represents the RT surface.

Since the energy-momentum tensor vanishes in Kruskal coordinates, we need to embed
the EOW brane into the Poincar’e AdS3. Denoting the endpoints of the regions used to collect
the Hawking radiation as “1” and “2” as before, and assuming that their positions in the two-
dimensional system are (tq, q) and (tq,−q), respectively. At the early time t < tpage, the
island does not appear, so we only need to calculate Smatter in the interval (−q, q), as shown
in Fig. 14. In Kruskal coordinates, the positions of points “1” and “2” are expressed as

w+
1 = − exp

[
−2π

β
(tq + q)

]
, w−

1 = exp

[
2π

β
(tq − q)

]
,

w+
2 = exp

[
2π

β
(tq − q)

]
, w−

2 = − exp

[
−2π

β
(tq + q)

]
, (4.6)
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or

(w1)t = (w2)t = exp
−2πq

β
sinh

2πtq
β

,

(w1)x = −(w2)x = − exp
−2πq

β
cosh

2πtq
β

. (4.7)

Notice that the time coordinate of points “1” and “2” in Eq.(4.7) is the same, allowing us to
restrict the geodesic line connecting “1” and “2” to a constant time hypersurface. To calculate
the geodesic length, similar to the AdS case in Eq.(3.29), we should determine the positions
of these endpoints in the bulk spacetime. The position of the thermal bath in AdS3 is given
by

zbath = ϵb
2π

β

√
−w+w− = ϵb

2π

β
exp

−2πq

β
. (4.8)

The parameterized equation of the geodesic line in Poincaré space is a Euclidean semicircle.
By substituting the coordinates (4.7) into the parameterized equation (3.7), we can obtain
the radius of the semicircle

z∗ ≃ cosh
2πtq
β

exp
−2πq

β
. (4.9)

The length of the geodesic is

A = 2 log
2z∗
zbath

= 2 log

(
β

π
cosh

2πtq
β

)
. (4.10)

The final result of the entanglement entropy of the Hawking radiation without the island
configuration is given by

S =
A

4G
=

c

3
log

(
β

π
cosh

2πtq
β

)
. (4.11)

From Eq. (4.11), we can easily see that in the dS case, the entanglement entropy of
the radiation without the island configuration also increases linearly. Now, let’s consider the
entanglement entropy at late times t > tpage, where the island configuration emerges. We label
the endpoints of the island configuration as “3” and “4” as before and assume their positions as
(tp,−p) and (tp, p). With the island configuration, there is an additional contribution to the
entanglement entropy from the interval I ∪R. Similar to what we have done in the previous
section, we need to determine the positions of the endpoints of the island in the bulk. First,
we express the positions of points “3” and “4” in Kruskal coordinates as

w+
3 = − exp

[
−2π

β
(tp − p)

]
, w−

3 = exp

[
2π

β
(tp + p)

]
,

w+
4 = exp

[
2π

β
(tp + p)

]
, w−

4 = − exp

[
−2π

β
(tp − p)

]
, (4.12)

or

(w3)t = (w4)t = exp
2πp

β
sinh

2πtp
β

,

(w3)x = −(w4)x = − exp
2πp

β
cosh

2πtp
β

. (4.13)
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The position of the gravity region is given by

zgravity =
ϵg
2
|1− w+w−| = ϵg

2
|1− w2

t + w2
x| =

ϵg
2
(1 + exp

4πp

β
) . (4.14)

Similar to the AdS scenario, we can assign A =
ϵg
2 , B = −1, and E =

ϵg
2 to the general

solution (2.15) in order to obtain the identical solution (4.14). According to Eq. (4.13), the
time coordinates of points “3” and “4” are the same, making the calculation in the following
step straightforward.

Figure 15. The embedding of the gravitational brane and thermal bath in Poincaré AdS3. The range
of the bath region is − cosh

2πtq
β < wx < cosh

2πtq
β . When we take tp = tq = t, the gravity region and

the right thermal bath meet at wx = cosh 2πt
β . We only need the cut-offs to satisfy ϵb

2π
β = ϵg to obtain

this result.

In the next step, we solve the equations of the geodesic lines connecting points “1” and
“3”, as well as points “2” and “4”, to obtain an expression for Smatter that depends on the
positions of points “3” and “4“. Since the calculation follows the same procedure as before, we
will omit the details and present the results directly. The length of the geodesic line in the
interval I ∪R is given by

A

4G
=

c

6
log

(
4z2∗

zbathzgravity

)

=
c

3
log

β

π

cosh 2π
β (p+ q)− cosh 2π

β (tp − tq)

cosh 2pπ
β

,

(4.15)

where 4z2∗ ≃ (w+
1 −w+

3 )(w
−
3 −w−

1 ) = 2 exp(2π(p−q)
β )[cosh 2π

β (p+ q)− cosh 2π
β (tp− tq)]. We can

observe that this result reaches its maximum value in the time direction when tp = tq. By
considering this condition, the entanglement entropy of Hawking radiation becomes

SRad =
A

4G
+

4π

β

ϕr

coth 2πp
β

=
c

3
log

2β

π

sinh2 (p+q)π
β

cosh 2pπ
β

+
4π

β

ϕr

coth 2πp
β

. (4.16)
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From the derivative of SRad with respect to p

dSRad

dp
=

2πc

3β cosh 2πp
β


12πd

β

1

cosh 2pπ
β

+
cosh

[
π
β (p− q)

]

sinh
[
π
β (p+ q)

]


 , (4.17)

we find that it is positive since both p and q are positive. Therefore, the minimum SRad is
at p = 0. Substituting this value into Eq. (4.16), we obtain the final result for the radiation
entropy

SRad =
c

3
log

(
2β

π
sinh2

πq

β

)
. (4.18)

From the expression (4.17), the island configuration occupies the entire dS spacetime. This
result is reasonable as the dS universe is closed, allowing for the expansion of the island
region while simultaneously reducing its boundary area to zero. This characteristic of the
island configuration in dS spacetime has been proposed in Refs. [12, 31, 107]. In the following
subsection, we will validate our findings through conformal field theory calculations.

4.2 Checks in conformal field theory

In this subsection, we will verify our result in Eq. (4.18) through conformal field theory
calculations. We begin by rewriting the dS2 metric in conformal gauge

ds2 = −
(
1− ρ2

ρ20

)
dt2 +

(
1− ρ2

ρ20

)−1

dρ2

= Ω2(ρ)(dτ2 + dρ2∗)

= Ω2(ρ)dzdz̄ , (4.19)

where Ω(ρ) =
√
1− ρ2/ρ20, ρ∗ = ρ0arctanh (ρ/ρ0), and τ = it with a period τ ∼ τ + β,

where β = 2πρ0. So the metric (4.19) describes a cylinder: z = ρ∗ + iτ, z̄ = ρ∗ − iτ . The
replica trick [73] is commonly employed in conformal field theory to compute the entanglement
entropy of a single interval. It can be expressed as follows

SA = − lim
n→1

1

n− 1
lnTr(ρnA) , (4.20)

where ρA is the density matrix of the subregion A, and Tr(ρnA) can be calculated using the
two-point function of the twist operators

Tr(ρnA) = ⟨Φn(z1, z̄1)Φn(z2, z̄2)⟩Ω2g . (4.21)

We map the cylinder to a disk using the coordinate transformation

v = ρ0 exp

(
z

ρ0

)
, v̄ = ρ0 exp

(
z̄

ρ0

)
, (4.22)
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with the constraint vv̄ > ρ20, as shown in Fig. 16. In this coordinate, the metric can be
expressed as

ds2 = Ω2dzdz̄ = Ω2 exp

(
−2ρ∗

ρ0

)
dvdv̄ . (4.23)

ρ∗ τ

1

Figure 16. The mapping of a cylinder to a disk, where ρ∗ ∈ (0,∞).

So the two-point function of the twist operators is

⟨Φn(z1, z̄1)Φn(z2, z̄2)⟩Ω2g = Ω−2∆n exp

(
2ρ∗
ρ0

∆n

)
⟨Φn(v1, v̄1)Φn(v2, v̄2)⟩g

= Ω−2∆n exp

(
2ρ∗
ρ0

∆n

)
1

|v1 − v2|2∆n
, (4.24)

where ∆n = c
12(n− 1

n) is the conformal weight of the twist operators. Then we can obtain a
general expression for the entanglement entropy of a conformal field living in a two-dimensional
conformally flat spacetime

S =
c

6
log [Ω1Ω2(U1 − U2)(V2 − V1)] , (4.25)

where the subscripts “1” and “2” represent the endpoints of the subregion. For the metric
given in Eq. (4.5), the entanglement entropy of the Hawking radiation without the island
configuration is given by

Sno island =
c

6
log

[
β2

4π2
exp

(−4πq

β

)(
exp

[
2π

β
(tq + q)

]
+ exp

[
−2π

β
(tq − q)

])2
]

=
c

3
log

[
β

π
cosh

2πtq
β

]
. (4.26)

We can see that this result agrees with Eq. (4.11). We can perform the same calculation when
the island is present. After the Page time, the island emerges, so we need to calculate the
entanglement entropy of the subregion in (−∞,−q) ∪ (q,∞) ∪ (−p, p) or its complementary
set (−q, p) ∪ (−p, q). At late times, the distance between the two intervals is large. In this
case, we can approximate the entanglement entropy of the two intervals as the sum of the
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entanglement entropy of the individual interval. Therefore, the entanglement entropy with
the island configuration is given by

Sisland =
c

3
log[Ω1Ω3(w

+
1 − w+

3 )(w
−
3 − w−

1 )]

=
c

3
log

2β

π

sinh2 2(p+q)π
β

cosh 2pπ
β

. (4.27)

This expression agrees with the result in Eq. (4.16).

5 Conclusion and discussion

In this paper, we propose a holographic model involving a gravitational system coupled to
a CFT in AdSd+1 spacetime with a gravitational brane. Unlike traditional methods [12], our
approach treats the gravitational system and the thermal bath on equal footing, incorporating
the thermal bath on a Minkowski brane within the bulk spacetime. We determine the posi-
tions of both the gravitational system and thermal bath branes by matching the boundary
conditions of the induced metric and the Brown-York tensor with the intrinsic metric and
energy-momentum tensor on the brane. Remarkably, when the branes are close to the asymp-
totic boundary, we show the consistency of the embedding conditions for our model with the
AdS/BCFT correspondence. As a self-consistency test, we calculate the entanglement entropy
of Hawking radiation in the AdS-JT brane, considering three models: the extreme black hole,
the one-sided black hole, and the eternal black hole. For the first two cases, the Minkowski
branes serve as the conformal boundary with an IR cut-off. In the last case, the Minkowski
brane is positioned within the interior of AdS3, different from the setting in Ref. [12]. For all
three cases, we successfully reproduce the entanglement entropy results from Refs. [81, 91].

Subsequently, we extend our framework to the dS-JT brane case, where we find that the
location of the Minkowski brane is also situated within the interior of AdS3. Interestingly, our
findings reveal that the island configuration occupies the entire dS brane, consistent with the
statements in [92]. Based on these calculations, we conjecture that our model is equivalent to
the wedge holography model [86, 87]. Finally, we examine the equivalence between the entan-
glement entropy calculated via the field theoretical method on the brane and the holographic
method in AdS3, further validating the effectiveness of our proposed holographic model.

Note Added: In Ref. [108], we noticed that this article constructs a model similar to ours.
The main distinction between our approach and theirs is that we specifically chose the dS
brane as the gravitational brane in the bulk spacetime. In contrast, Ref. [108] suggests that
the dS-JT gravity on the brane can be attained by considering a fluctuating dS wedge.
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A The expectation value of the stress tensor in two-dimensional spacetime

In the appendix, we will review some basic notions of the energy-momentum tensor in
the semi-classical limit. The semi-classical Einstein equation is

Gµν = 8πG⟨Φ|Tµν |Φ⟩ . (A.1)

Because ∇µG
µν = 0, we have ∇µ⟨Tµν⟩ = 0. In two-dimensional gravitational system with

ds2 = −e2ρdx+dx−, we can solve the conservation equation:

⟨Φ|T±±|Φ⟩ = − c

12π
(∂±ρ∂±ρ− ∂2

±ρ) + ⟨Φ| : T±± : |Φ⟩ , (A.2)

⟨Φ|T+−|Φ⟩ = − c

12π
∂+∂−ρ , (A.3)

where ⟨Φ| : T±± : |Φ⟩ is the normal ordered energy-momentum tensor. The stress tensor
satisfies the anomalous transformation law

(
∂w±

∂x±

)2

: T±±(w±) :=: T±±(x±) : +
c

24π
{w±, x±} . (A.4)

Finally, we can get the trace of the energy-momentum tensor

⟨T ⟩ = c

24π
R , (A.5)

where the Ricci scalar is given by R = 8e−2ρ∂+∂−ρ. This is the trace anomaly at the quantum
level.
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