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Gravitational Physics

University of Vienna

Tomasz Smo lka

Max Planck Institute for Gravitational Physics

May 23, 2023

Abstract

We analyse the Noether charges for scalar and Maxwell fields on
light cones on a de Sitter, Minkowski, and anti-de Sitter backgrounds.
Somewhat surprisingly, under natural asymptotic conditions all charges
for the Maxwell fields on both the de Sitter and anti-de Sitter back-
grounds are finite. On the other hand, one needs to renormalise the
charges for the conformally-covariant scalar field when the cosmologi-
cal constant does not vanish. In both cases well-defined renormalised
charges, with well-defined fluxes, are obtained. Again surprisingly, a
Hamiltonian analysis of a suitably rescaled scalar field leads to finite
charges, without the need to renormalise. Last but not least, we indi-
cate natural phase spaces where the Poisson algebra of charges is well
defined.
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1 Introduction and summary

In field theory it is commonplace to identify the total energy of a field config-
uration with the Hamiltonian charge, also known as the Noether charge, as-
sociated with time translations. Consider, then, a field theory on a Minkowski,
de Sitter, or anti-de Sitter background. When the cosmological constant Λ
is negative the notion of time translation is somewhat muddled by the fact
that there are no globally timelike Killing vector fields. However, in all the
above spacetimes, given a light-cone, there exists a family of Killing vec-
tors which are timelike at its tip, generating flows which move isometrically
the whole light-cone to its future. The associated Hamiltonian provides a
good candidate for the definition of total energy contained in the light-cone;
the resulting formula coincides with the usual definition of energy when the
cosmological constant vanishes.

It should be kept in mind that the problem of real interest is the full
nonlinear theory, including the gravitational field, in the presence of a cos-
mological constant. While some progress towards the understanding of that
problem has been done [5, 7, 9, 13], there remain ambiguities which are far
from understood. Therefore a systematic analysis of the simpler problem,
of linear fields on a fixed background, appears in order.

In recent work [4] we analysed the Hamiltonian charge associated with a
timelike translation of tips of light cones for the scalar field and the linearised
gravitational field on the backgrounds just listed. Much to our surprise, we
found that the charge integrals diverge when the cosmological constant does
not vanish. We proposed a renormalisation procedure that led to finite
charges, with well defined flux integrals. The aim of this work is to analyse
similar charges associated with the flow of the remaining Killing vector fields
for the conformally-covariant scalar field and for the Maxwell field on these
backgrounds.

Somewhat surprisingly, we find that all resulting charges for the Maxwell
field are finite. On the other hand, when Λ 6= 0 the charges for the scalar
field need to be renormalised again, except for angular momentum where
the divergent terms in the integrand integrate-out to zero on spheres. After
renormalisation one obtains a well defined set of charges, with well defined
flux formulae.

As a byproduct, we find an alternative Lagrangian for the scalar field
which leads to finite charges, without need for renormalisation. The al-
ternative Lagrangian depends explicitly upon the coordinates, and leads to
different global charges. This raises the question of physical significance
and relevance of the resulting expressions, and we do not have an answer

3



for this. The point of view advocated by Kijowski [10, 11], that different
energy expressions correspond to different sets of boundary conditions, does
not seem to be helpful for radiating systems.

Given a full set of charges of the scalar field and the Maxwell field, it is
tempting to enquire about their algebra. One is then faced with the problem
of boundary terms in the variational formulae, which appear to obstruct
a meaningful definition of a Poisson bracket. One way out is to work in
phase-space sectors where the boundary terms vanish by choice of boundary
conditions. But then the charges are defined only up to a functional which
depends upon the boundary data, and there does not exist a clear principle
to single-out a preferred one. Here we propose a simple solution, to extend
the phase space to include the boundary degrees of freedom. For yet another
proposal, see [14].

We now pass to a more detailed summary of our results.

1.1 Scalar fields

On Minkowski, de Sitter and Anti-de Sitter spacetime we consider a scalar
field with Lagrangian

L = −1

2

√
|det g|

(
gµν∂µφ∂νφ+

2Λ

3
φ2

)
, (1.1)

where Λ is the cosmological constant. The mass term is chosen so that the
resulting field equation is conformally covariant. We consider fields with the
following asymptotic behaviour, for large r,

φ(u, r, xA) =

(-1)

φ (u, xA)

r
+

(-2)

φ (u, xA)

r2
+

(-3)

φ (u, xA)

r3
+ ... , (1.2)

which can be justified by an analysis of the Cauchy problem for the field
equations. Indeed, if the asymptotic expansion (1.2) is imposed on an initial
light cone, it is preserved by evolution when Λ ≥ 0. This is also the case when
Λ < 0 after requiring that the associated solutions vanish at the conformal
boundary at infinity.

Consider the Noether charge associated with a vector field X and a
hypersurface S (we follow the formalism of [12]):

H [X,S ] :=

∫

S

(
πµLXφ−Xµ

L︸ ︷︷ ︸
=:H µ[X]

)
dSµ (1.3)

=
1

2

(∫

S

ωµ(φ,LXφ) dSµ−
∫

∂S

X [σπµ]φdSσµ

)
, (1.4)
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with

πµ =
∂L

∂φ,µ
, ωµ(φ,LXφ) = πµLXφ− φLXπµ .

Here (1.3) is a definition while (1.4) is an identity for linear field theories,
compare [4, Proposition 1]; the reader is referred to the text below for no-
tation that has not been defined so far.

1.1.1 The energy

Let us denote by Cu the light cone of constant retarded time u. We use the
symbol Cu,R to denote the truncation of Cu to r ≤ R:

Cu,R = Cu ∩ {r ≤ R} .

It turns out that the Noether charge on Cu,R, associated with translations
in u, diverges as R tends to infinity. A direct analysis of the integrand gives
(cf. (4.25) below)

EH [Cu,R] :=

∫

Cu,R

H
µ[∂u]dSµ

=
1

2

∫

Cu,R

(
γ̊ABD̊AφD̊Bφ+m2r2φ2

+∂r

[(
r2 − α2r4

)
φ
(
∂rφ

)]
− φ∂r

[(
r2 − α2r4

)(
∂rφ

)])
dr dµγ̊

=
α2R

2

∫

SR

(
(-1)

φ )2 dµγ̊ +O(1) , (1.5)

where SR denotes a sphere r = R within Cu, with

α2 =
Λ

3
,

and where O(1) here denotes a volume integral which has a finite limit as
R → ∞. A finite renormalised Noether charge can then be obtained by
discarding the divergent boundary integral:

ÊH [Cu] := lim
R→∞

{∫

Cu,R

H
µ[∂u]dSµ −

α2R

2

∫

SR

(
(-1)

φ )2 dµγ̊

}
. (1.6)

The divergent term evolves on its own, so that the renormalised Noether
charge follows a well defined evolution law, as derived below in (4.43):

dÊH [Cu]

du
=

∫

SR

[
α2

(-1)

φ ∂u
(-2)

φ +

(
2α2

(-2)

φ − ∂u
(-1)

φ

)
∂u

(-1)

φ
]
dµγ̊ . (1.7)
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Now, some authors discard the divergence term in (1.4) and use directly

Eω[S ] :=
1

2

∫

S

ωµ(φ,LXφ) dSµ (1.8)

as a definition of Noether charge; this gives of course the same total energy
as the original formula (1.3) for field configurations for which the boundary
term vanishes. In [4] we observed that the integral (1.8) is finite, leading to
a rewriting (see Equation (2.64) there):1

EH [Cu,R] = Eω[Cu,R] − 1

2

∫

S2

(-1)

φ
(
∂u

(-1)

φ − α2R
(-1)

φ
)
dµγ̊ + o(1) . (1.9)

So, the divergent part of (1.5) appears directly in the boundary term in
(1.4). Equation (1.9) implies

ÊH [Cu] = Eω[Cu] − 1

2

∫

S2

(-1)

φ ∂u
(-1)

φ dµγ̊ . (1.10)

The energy Eω[Cu] satisfies a flux formula (see (4.47), p. 36 below)

dEω[Cu]

du
=

1

2

∫

S2

(
−α2

(-1)

φ ∂u
(-2)

φ +α2
(-2)

φ ∂u
(-1)

φ +
(-1)

φ ∂2u
(-1)

φ −(∂u
(-1)

φ )2
)
dµγ̊ . (1.11)

The fact that Eω[Cu,R] has a finite limit as R → ∞ suggests that the
resulting Noether charge Eω[Cu] is more fundamental than EH . But one
should keep in mind that the equality between (1.3) and (1.4) is only guar-
anteed for linear theories. In fact, (1.3) is defined for any theory, whether
linear or not, while (1.4) does not make sense for nonlinear theories, such
as Yang-Mills or metric gravity. Last but not least, Eω[Cu] is not monoton-
ically decreasing in asymptotically Minkowskian spacetimes, as it should;
see (4.47), p. 36 below. Therefore we view (1.3) as a more fundamental
equation.

To make things even more confusing, it turns out that the field equations
for the field

φ̃ = rφ ,

where r is an affine parameter along the generators of the light cone, can be
derived from the Lagrangian2

L = − 1

2r2

√
|det g| gµν∇µφ̃∇ν φ̃ , (1.12)

1References to numbering in [4] are to the arXiv version.
2Note that the singularity at r = 0 in (1.12) is integrable for fields φ which are smooth

at the origin. While the presence of an unbounded integrand might be aesthetically
unpleasant, it does not present difficulties as far as calculus of variations is concerned.
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which differs from (1.1) by a boundary term, compare (5.2) below. Some-
what surprisingly, again under the asymptotic conditions (1.2). the Noether
charge associated with translations in u turns out to be finite (cf. (5.14)
below):

ẼH [Cu] := Ẽ[∂u,Cu] =
1

2

∫

Cu

( 1

r2
γ̊ABD̊Aφ̃D̊Bφ̃+

(
1 − α2r2

)(
∂rφ̃

)2)

︸ ︷︷ ︸
O(r−2)

dr dµγ̊ .

(1.13)
So we have a third candidate for the energy of the conformally-covariant
scalar field, with flux (cf. (5.24) below)

dẼH [Cu]

du
=

∫

S

(
α2

(-1)

φ̃ − ∂u

(0)

φ̃
)
∂u

(0)

φ̃ dµγ̊ . (1.14)

The fact that the numerical value of ẼH differs from that of both ÊH and
Eω when α 6= 0 is made clear by comparing (1.14) with (1.7) and (1.11):
all three fluxes differ.

The question then arises, whether the analysis of the Poisson algebra
might give a hint, which of the energy-type expressions above have better
properties. This is addressed in Section 6. To answer this question one needs
to have a well defined Poisson algebra, which seems to be a problem when
“charges are leaky”, i.e. when the variations of functionals lead to nonvan-
ishing boundary integrals. We emphasise that in our setup such boundary
terms are unavoidable, because the fields under consideration radiate along
light cones.

Now, it was observed in [6] that the charge-leaking can be remedied, in
the case of (fully nonlinear) gravitational fields with Λ = 0, by extending
the phase space of data on the light cone by adding suitable data on the
portion of I + to the past of the intersection of the light cone Cu with
I +. In Section 7 we show how to generalise the procedure from [6] to the
conformally-covariant scalar field with Λ > 0. For this it is convenient to
introduce a coordinate system in which the de Sitter metric takes the form

g = cosh2(ατ)︸ ︷︷ ︸
=:x−2

(
− cosh−2(ατ)dτ2 + α−2

(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

))
︸ ︷︷ ︸

=:γ̌

)

= (αx)−2
(
− dx2

1 − x2
+ γ̌

)
, (1.15)

with x vanishes on I +. Under our asymptotic conditions above the field

χ :=
φ

x
(1.16)
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extends smoothly to I +, and the expansion (1.2) translates to, for small x,

φ =
(1)

φx+
(2)

φx2 + . . . ⇐⇒ χ =
(0)
χ +

(1)
χx+ . . . , (1.17)

Using the fact that H µ has vanishing divergence under the current con-
ditions, together with (7.33) and (7.36), the following equivalent equations
hold

ÊH [Cu] = α−1

∫

I +∩I+(Cu)

(1)
χ∂ψ(sinψ

(0)
χ )dµγ̌

− 1

α cosh3(αu)

∫

S0,u

(0)
χ
(

(0)
χ sinh(αu) − (1)

χ
)
dµγ̊ . (1.18)

In the phase space of Section 7.2 the dynamical system induced by trans-
lating in u the tip of the light-cone is Hamiltonian, with Hamiltonian equal
to (see (7.48) with hx given by (7.25), hu by (7.37) and ∆B0,u by (7.47)):

H =

∫

Cu

1

2r2

(
γ̊ABD̊AφD̊Bφ+m2r2φ2 − φ∂r

[(
r2 − α2r4

)(
∂rφ

)])
r2 dr dµγ̊

+
1

2α cosh3(αu)

∫

S0,u

(0)
χ
(

(1)
χ − ∂ψ

(0)
χ − (0)

χ sinh(αu)
)

sin θ dθ dϕ

+α−1

∫

I
+
u

{
(1 − x2) sinψ∂xχ∂ψχ

+
1

2
cosψ

(
(1 − x2)(2χ∂xχ+ x(∂xχ)2) + 2xχ2 + x|Ďχ|2γ̌

)}
dµγ̌ (1.19)

=: ĚH [Cu] + ĚH [I +
u ] , (1.20)

where ĚH [I +
u ] is the volume integral over I +

u ≡ I + \ I+(Cu) in (1.19),
with all integrals finite.

Our analysis of the scalar field can be summarised as follows, compare
Table 1.1:

1. The defining equation (1.5) for EH makes sense for any theory, in-
cluding non-linear ones, has the right properties when Λ = 0, but does
not lead to convergence integrals when Λ 6= 0. It needs to be “renor-
malised”, with ambiguities concerning the finite part of the renormal-
ising corrections.

2. The “energy” Eω defined in (1.8) leads directly to finite integrals for
all Λ. However, it does not lead to a monotonously decreasing quantity
when Λ = 0. Moreover it does not have any obvious generalisation to
nonlinear fields.
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Λ > 0 Λ = 0 Λ < 0

EH ∞ <∞, dEH

du ≤ 0 ∞

Eω <∞ <∞, dEω

du can have any sign <∞

ÊH <∞ = EH <∞ corner term ad hoc

ĚH <∞ (already considered in [6]) - corner term ad hoc

Ẽ <∞ = EH <∞ Lagrangian explicitly

coordinate dependent

Table 1.1: Various energies for the conformally-covariant scalar field. EH

is defined in (1.5); Eω is defined in (1.8) and differs from (1.5) by a total
divergence; similarly for ÊH , with yet another boundary term; ĚH is de-
fined in (1.20) based on phase-space considerations and differs again from
EH by a further boundary term; Ẽ uses the canonical definition as in (1.3)
but with the alternative Lagrangian (1.12).

3. The “energy” ÊH [Cu] of (1.6) has several desirable properties:

(a) It is finite for all Λ.

(b) It is non-increasing when Λ = 0 (since it coincides with EH

then), and is conserved when Λ < 0 and the standard boundary

condition
(-1)

φ = 0 is imposed (cf. (1.7)).

(c) It has a reasonably natural derivation, namely one removes a
manifestly divergent term in Bondi coordinates.

However, the choice of Bondi coordinates is ad-hoc, and other similar
prescriptions using different coordinate systems will lead to different
expressions.

4. The energy Ẽ given by (1.13) has properties similar to Ê (cf. (1.14))
but arises from a coordinate-dependent Lagrangian, which does not
have any obvious generalisations to non-conformally-covariant theo-
ries.

5. The energy H of (1.19) appears naturally when extending the phase
space to include the degrees of freedom at I +, its numerical value
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is the same for all cones Cu, and thus carries only global information
about the field. It splits into a volume integral on a subset of I + and
a remainder which is determined by the fields on Cu. However, the
uniqueness of this splitting is not clear.

1.1.2 Further charges

The total angular-momentum is obtained from the following integral:

J [Cu] :=

∫

Cu

H
µ[R]dSµ ≡ RiJ

i[Cu] , (1.21)

with (cf. (4.28) below)

J i[Cu] =

∫

Cu

rεABD̊Bx
iD̊Aφ∂rφdr dµγ̊ , (1.22)

which converges because a potentially divergent terms in the asymptotics of
the integrand integrates out to zero.

The alternative Lagrangian leads to the same integral, in a form which
is manifestly convergent, as determined in (5.16) below:

J̃ i[Cu] =

∫

Cu

r−1εABD̊Bx
iD̊Aφ̃∂rφ̃︸ ︷︷ ︸

O(r−2)

dr dµγ̊ = J i[Cu] , (1.23)

Explicit expressions for the remaining charges associated with Killing
vector fields of the background, as well as their fluxes, can be found in
Sections 4 and 5.

1.2 Maxwell fields

We consider Maxwell fields on Minkowski, de Sitter and Anti-de Sitter space-
time. Each of these spacetimes has a conformal boundary at infinity, and
we consider fields which smoothly extend through that boundary; a large
class of such solutions of the sourceless Maxwell equations exists, which
can be justified by an analysis of the Maxwell equations on the conformally
rescaled manifolds. An elegant explicit family of such solutions is presented
in Appendix B, essentially due to [2].

We use the field equations to derive the asymptotic behaviour of various
components of the field along light cones in Section 2; in Bondi coordinates
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(cf. Equation (2.1), p. 15):

Fur =

(-2)

F ur

r2
− D̊A

(-2)

F Ar

r3
− D̊A

(-3)

F Ar

2r4
+ . . . , (1.24)

FAB =
(0)

F AB +
∂A

(-2)

F Br − ∂B
(-2)

F Ar

r
+
∂A

(-3)

F Br − ∂B
(-3)

F Ar

2r2
+ . . . , (1.25)

FuA =
(0)

F uA +
α2

(-3)

F Ar − D̊A

(-2)

F ur − D̊B
(0)

F BA

2r
+ . . . , (1.26)

see (2.5) and below for details.
Section 3 starts with an analysis of Noether currents and their flux

for Maxwell theory in a general background. In order to obtain a gauge-
independent Hamiltonian, following [12] we use a notion of Lie-derivatives
of the Maxwell potential arising from the U(1)-principal-bundle formula-
tion of the theory. The results are applied to the de Sitter background in
Section 3.1. Recalling that Cu denotes the light cone of constant u, a calcu-
lation leads to the following formula for the Noether charge on light cones
associated with u-translations of Cu (cf. (3.39), p. 23):

EH [Cu] =

∫

Cu

H
µ[∂u]dSµ

=
1

16π

∫

Cu

( 1

r2
γ̊AC γ̊BDFABFCD + 2F 2

ur − 2ǫN2γ̊ABFrAFrB

)
dr dµγ̊ ,

(1.27)

where the convergence of the integral follows from (1.24)-(1.26).
Likewise the components of the total angular-momentum vector are given

by convergent integrals:

J [R] :=

∫

Cu

H
µ[R]dSµ ≡ RiJ

i , (1.28)

with

J i =
1

4π

∫

Cu

εABD̊Bn
i
(
r2FurFAr + γ̊BCFBrFCA

)
dr dµγ̊ . (1.29)

Explicit formulae for the momentum and center of mass of the field can be
found in (3.42)-(3.43).

In Section 3.2 we apply the formalism to light-cones in Minkowski space-
time, while Section 3.3 is concerned with anti-de Sitter spacetime.
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In Section 3.4 we consider the time-evolution of the charges, by which we
mean the evolution of the charges when the tips of the light-cones are moved
along the Killing vector ∂u. In particular we find the following formulae for
the flux of the energy,

dEH [Cu]

du
= − 1

4π

∫

S∞

[
γ̊AB

(
α2

(-2)

F Ar

(0)

F Bu +
(0)

F Au

(0)

FBu

)]
dµγ̊ , (1.30)

and for that of angular-momentum:

dJ i

du
= − 1

4π

∫

S∞

[
εABD̊B(ni)

(
γ̊BC

(
α2

(-2)

F Br +
(0)

F Bu

)(0)
F CA

−
(-2)

F ur

(0)

F Au

)]
dµγ̊ . (1.31)

Similarly to the scalar field case, one can avoid phase-space leakage for
the Maxwell field by considering jointly fields on Cu and I + \ I+(Cu).
This leads to a Hamiltonian dynamics, with u-independent Hamiltonian
(cf. (7.57), with H u[∂u] given by (3.39) and H x[∂u] by (7.54)

H =
1

16π

∫

Cu

( 1

r2
γ̊AC γ̊BDFABFCD + 2F 2

ur − 2ǫN2γ̊ABFrAFrB

)
dr dµγ̊

− α

4π

∫

I +\I+(Cu)

{1

2
x(1 − x2) cosψFxkFxlγ̌

kl

+ (1 − x2) sinψFxkFψlγ̌
kl +

1

4
x cosψFmkFnlγ̌

mnγ̌kl
}
dµγ̌ , (1.32)

where all the integrals are finite, without the need for any corrections. Since
H is u-independent, formula (1.30) describes the flow of energy between Cu

and I + \ I+(Cu).
In absence of a clear guiding principle for adding boundary terms to the

Noether charges, we have not attempted to repeat the analysis of various
alternative energies, as done for the scalar field, in the Maxwell case.

1.3 Poisson brackets

Section 6 is devoted to an analysis of the Poisson brackets for unconstrained
fields. As already pointed-out, a direct calculation of Poisson brackets asso-
ciated to initial data on characteristic surfaces is tricky. We circumvent this
problem by using the fact that, for conserved quantities, the relevant Poisson
brackets can be calculated by evolving the field to a spacelike hypersurface
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S and calculating the brackets there, using the formula advocated in [3]:
for functionals of the form

F =

∫

S

f(φA, ∂iφ
A, πA) dS0 , G =

∫

S

g(φA, ∂iφ
A, πA) dS0 , (1.33)

one sets

{F,G}S :=

∫

S

(
δf

δφA
δg

δπA
− δf

δπA

δg

δφA

)
dS0 . (1.34)

In Proposition 6.2, p. 48, we list a series of conditions that guarantee the
equality

{HX ,HY }S
= H[X,Y ] . (1.35)

This leads to another problem, of boundary terms arising in variational iden-
tities, which might affect equations such as (1.35), and leads us to propose
alternative phase spaces for the problem at hand, already mentioned above.

We turn our attention to Poisson brackets for Maxwell field in Sec-
tion 6.3. The considerations of Section 6.2 do not apply without further due
because of gauge-invariance, and the resulting constraints. We start with an
ab-initio analysis, on a general spacelike hypersurface in a general spacetime,
using ADM notation: in adapted coordinates such that S = {x0 = 0},

γij := gij , N :=
1√
−g00

, Nk := g0k . (1.36)

We define the electric field on S as

Ek = F kµTµ , (1.37)

where T µ is the field of unit normals to S , with the orientation chosen so
that

Tµdx
µ = −Ndt ⇐⇒ T = N−1(∂t −Nk∂k) . (1.38)

The canonical momentum is defined by the usual formula,

πµ := πµ0 =
∂L

∂ (∂0Aµ)
. (1.39)

When the Lagragian depends only upon Fµν the zero-component of πµ van-
ishes, so only its space-part πk remains of interest. In the standard Maxwell
electrodynamics the field πk is the densitised equivalent of the electric field
Ek:

πk ≡ − 1

4π

√
det γijNF

0k = − 1

4π

√
det γijE

k , (1.40)
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Now, functionals which depend only upon Fµν , such as the Noether cur-
rent, can be expressed in terms of the space-part Ai of the four-potential
Aµ and of the electric field. For instance, in the standard Maxwell elec-
trodynamics we have, using the ADM notation for the metric (cf. (6.95),
p. 63)

H[S ,X] =

∫

S

H
0dS0

=
1

8π

∫

S

[
NX0

(
EkElγlk +

1

2
γkmγlnFmnFkl + 2N−1EkN lFlk

)

+2EkX lFlk

]√
det γ dS0 . (1.41)

Since π0 vanishes by antisymmetry of Fµν , we cannot define the Poisson
bracket using (1.34) with (φA) = (Aµ). Instead we set

{F,G}S :=

∫

S

(
δf

δAl

δg

δπl
− δf

δπl
δg

δAl

)
dS0 . (1.42)

In this formula A0 has become irrelevant, though it has neither been gauged
away nor discarded, being part of the U(1)-gauge potential Aµdx

µ.
When deriving the Hamilton equations for the Maxwell field, or indeed

when considering (1.42), there arises a difficulty related to the fact that
the Maxwell momenta are not arbitrary, but satisfy the Gauss constraint
equation ∂iπ

i = 0. This is addressed in Section 6.3, both in an approach
where the Lie derivative of the Maxwell potential is that of a covector field
on spacetime, and where the Maxwell potential is treated as a connection
form on a U(1)-bundle. One can implement the Gauss constraint by writing

δπk = ǫkℓmDℓδY m , (1.43)

where δY m is an arbitrary covector density, leading to the following varia-
tional identity on the set of solutions of the field equations (cf. (6.50) and
(6.61) with E µ = 0)

0 =

∫

S

[
ǫkℓmDℓ

(δH 0

δπk
− LXAk

)
δY m +

(δH 0

δAk
+ LXπk

)
δAk

]
dS0

+

∫

∂S

[(∂H 0

∂Ak,ℓ
− (Xℓπk −X0πkℓ −Xkπℓ)

)
δAk

+
(δH 0

δπk
− LXAk

)
ǫkℓmδY m

]
dS0ℓ , (1.44)
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which can be seen to reproduce the standard form of Maxwell equations in
Minkowski spacetime.

Section 6.3.2 is devoted to the Poisson algebra of Hamiltonian charges.
We prove the identity (cf. (6.82), p. 61)

{HX ,HY } = H[X,Y ]

+

∫

S

{
Y β

(
E
κLXAκ − πλκ[LX ,∇κ]Aλ −

∂L

∂gκλ
LXgκλ

)

−Xβ
(
E
κLYAκ − πλκ[LY ,∇κ]Aλ −

∂L

∂gκλ
LY gκλ

)

+
(
EkXY

µ − EkYX
µ
)
Fµk

}
dSβ

+2

∫

∂S

(
X [α

H
β]
Y − Y [α

H
β]
X +X [αY β]

L

)
dSαβ . (1.45)

This makes clear what fields have to vanish to obtain a closed subalgebra.

We now pass to the details of the above.

2 Asymptotics of Maxwell fields along light cones

In the next section we will apply the formalism developed in [4] to Maxwell
fields on Minkowski, de Sitter and anti-de Sitter spacetimes. For this it is
first necessary to derive the asymptotic behaviour of the fields under natural
conditions arising from conformal invariance of the equations.

We consider simultaneously the Minkowski space-time, the de Sitter and
the anti-de Sitter space-times in Bondi coordinates. In these the metric
takes the form

g ≡ gαβdx
αdxβ = ǫN2du2 − 2du dr + r2 (dθ2 + sin2 θ dϕ2)︸ ︷︷ ︸

=:̊γ

, (2.1)

where

N :=
√

|(1 − α2r2)| , α ∈
{

0,

√
Λ

3

}
⊂ R ∪ iR , ǫ ∈ {±1} ,

with ǫ equal to one if 1−α2r2 < 0, and minus one otherwise; note that any
Λ ∈ R, is allowed, and hence α ∈ C but α2 ∈ R.

We have

gαβ∂α∂β = −2∂u∂r − ǫN2(∂r)
2 + r−2γ̊AB∂A∂B .
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For r → ∞ we replace the coordinate r by a new coordinate

x := r−1 . (2.2)

In this coordinate system the de Sitter metric (2.1) becomes

g = −(1 − α2r2)du2 − 2du dr + r2 (dθ2 + sin2 θdϕ2)︸ ︷︷ ︸
=:̊γ

,

= x−2
(
− (x2 − α2)du2 + 2du dx + γ̊

)
. (2.3)

The volume element is equal to

√−g = x−4
√

det γ̊ . (2.4)

Conformal invariance of the Maxwell equations shows that, for solutions
that evolve out of smooth initial data on some spacelike Cauchy surface in de
Sitter spacetime, the (u, x, xA)-components of the Maxwell field are smooth
functions of (u, x, xA):

F = Fxudx ∧ du+ FxAdx ∧ dxA + FuAdu ∧ dxA +
1

2
FABdx

A ∧ dxB

= −r−2(Fxudr ∧ du+ FxAdr ∧ dxA) + FuAdu ∧ dxA

+
1

2
FABdx

A ∧ dxB , (2.5)

with Fxu, etc., having full Taylor expansions in x ≡ 1/r around x = 0. In
particular the fields FAr which are associated with a conformally smooth
Maxwell field have expansions of the form

FAr = −
(0)

F Axr
−2 + . . . =

(-2)

F Arr
−2 + . . . , (2.6)

where the expansion coefficients are functions of u and xA.
Those sourceless Maxwell equations which involve r-derivatives read

∂r(r
2
√

det γ̊F rµ) = −r2
√

det γ̊∂uF
uµ − ∂A(r2

√
det γ̊FAµ) , (2.7)

∂rFµν = −∂µFνr − ∂νFrµ . (2.8)

Using

F ru = Fur , F rA = −r−2γ̊AB(FuB + ǫN2FrB) , F uA = −r−2γ̊ABFrB ,
(2.9)
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we find

∂r(r
2Fur) = D̊AFAr , (2.10)

∂r
(
FuA + ǫN2FrA

)
= ∂uFAr + r−2D̊BFBA , (2.11)

∂rFAB = −∂AFBr + ∂BFAr , (2.12)

∂uFAr = −∂rFuA − ∂AFru , (2.13)

where (2.10) and (2.11) are special cases of (2.7) with µ = u and µ = A.
Here, and elsewhere, D̊ denotes the covariant derivative of the metric γ̊.

Inserting (2.13) in (2.11) one obtains

∂r
(
2FuA − ǫN2FAr

)
= −∂AFru + r−2D̊BFBA , (2.14)

We conclude that prescribing FArdx
A on a cone {u = const} allows one

to determine the remaining fields on this cone by successive integrations of
(2.10), (2.12) and (2.14). We will refer to these equations as the character-

istic constraint equations. One can then view (2.13) as an equation which
determines FAr “on the next cone”.

The remaining Maxwell equations have an evolution character:

∂uFru = r−2D̊A
(
FAu + ǫN2FAr

)
, (2.15)

∂uFAB = −∂AFBu + ∂BFAu . (2.16)

Another evolution equation can be obtained by subtracting (2.11) from
(2.13):

2∂uFAr = −∂r
(
ǫN2FAr

)
− ∂AFru − r−2D̊BFBA . (2.17)

Integrating (2.10) in r one obtains

Fur = r−2

∫ r

0
D̊AFArds , (2.18)

so that

Fur =

(-2)

F ur

r2
− D̊A

(-2)

F Ar

r3
− D̊A

(-3)

F Ar

2r4
+ . . . , (2.19)

where
(-2)

F ur =

∫ ∞

0
D̊AFArds . (2.20)

Integrating (2.12) we have

FAB =
(0)

F AB +
∂A

(-2)

F Br − ∂B
(-2)

F Ar

r
+
∂A

(-3)

F Br − ∂B
(-3)

F Ar

2r2
+ . . . , (2.21)
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where
(0)

F AB =

∫ ∞

0
(∂BFAr − ∂AFBr) ds . (2.22)

Substituting (2.6), (2.19), and (2.21) into (2.14), after integration one
finds

FuA =
(0)

F uA +
α2

(-3)

F Ar − D̊A

(-2)

F ur − D̊B
(0)

FBA

2r
+ . . . . (2.23)

Here the “integration constant”
(0)

F uA equals

(0)

F uA =
1

2

[
α2

(-2)

F Ar +

∫ ∞

0

(
∂AFur + s−2D̊BFBA

)
ds

]
. (2.24)

Inserting (2.6), (2.19), and (2.21) into (2.17), one obtains

∂uFAr =
α2

(-3)

F Ar + D̊A

(-2)

F ur − D̊B
(0)

F BA

2r2
+ . . . . (2.25)

Inserting (2.6) and (2.23) into (2.15) leads to

∂uFru =
D̊A

(0)

FAr + α2D̊A
(-2)

F Ar

r2
+ . . . . (2.26)

Substituting (2.23) into (2.16), one finds

∂uFAB = −2D̊[A

(0)

FB]u +
α2D[A

(-3)

F B]r + D̊[AD̊
C

(0)

F B]C

r
+ . . . . (2.27)

3 Noether charges in Maxwell theory

We are ready to pass to the analysis of Noether-type currents for Maxwell
fields in Minkowski, de Sitter and anti-de Sitter spacetimes. In our signature
the Lagrangian reads

L (Aµ, ∂Aµ) = − 1

16π

√
| − det g|gµνgαβFµαFνβ . (3.1)

The theory is linear so there is no need to make a distinction, in the
notation of [4], between the fields Fµν and F̃µν . Denoting ∂νAµ by Aµ,ν , the
canonical momentum density reads

παβ =
∂L

∂
(
Aα,β

) =
1

4π
Fαβ , (3.2)
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where Fαβ is a density of Maxwell tensor

Fαβ =
√

| − det g|Fαβ . (3.3)

The standard Noether currents, which we will denote by H
µ
c , is defined

as

H
µ
c [X] :=

∂L

∂Aβ,µ
LXAβ − LXµ

= − 1

4π

√
| − det g|

(
FµβLXAβ −

1

4
FαβFαβX

µ
)
, (3.4)

where LXA denotes Lie derivative of a covector field.
It holds that

∇µ(H µ
c [X]) = 0 , (3.5)

when A satisfies the field equations and X is a Killing field of the background
metric. This follows of course from a theorem of Noether, but a direct proof
can be given starting with the identity

∆βδ(V,A) := [∇δ,LV ]Aβ

= Aγ∇δ∇βV
γ − V γRσβδγAσ , (3.6)

where V is an arbitrary vector field and A is an arbitrary one-form. Next,
if V is a conformal Killing field of the background metric,

∇(αVβ) = λgαβ , (3.7)

we have

∇γ∇αVβ = RσγαβVσ + ∇γλgαβ + ∇αλgβγ −∇βλgαγ . (3.8)

Substituting (3.8) into (3.6), we obtain for any conformal Killing field V

∆βδ(V,A) = ∆(βδ)(V,A) = Aβ∇δλ+ ∇βλAδ − gβδA
γ∇γλ . (3.9)

Let

jµ :=
1

4π
∇νF

µν , (3.10)

which of course vanishes when A satisfies the field equations. As is well
known, a consequence of the definition (3.10) is

∇µj
µ = 0 . (3.11)
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We are ready now to calculate, for any vector field X, as follows:

− 4π√
| − det g|

∇µ(H µ
c [X]) = ∇µ(FµνLXAν) − 1

4
∇µ(XµFαβFαβ)

= −4πjνLXAν + Fµν(LX∇µAν + ∆νµ(X,A))

−1

4
[FαβFαβ∇µX

µ +Xµ∇µ(FαβFαβ)]

= −4πjνLXAν +
1

4
LX

(
FµνFµν

)
− 1

2
Fµ

βFνβ LXgµν︸ ︷︷ ︸
=−2∇(µXν)

+Fµν∆νµ(X,A) − 1

4
[FαβFαβ∇µX

µ +Xµ∇µ(FαβFαβ)]

= −4πjνLXAν + Fµν∆νµ(X,A) + Fµ
βFνβ

(
∇(µXν) − 1

4
gµν∇αX

α
)
. (3.12)

The last line of (3.12) vanishes for all sourceless field configurations if X is
a conformal Killing vector field of the background metric.

The problem with the Hamiltonian (3.4) is its gauge dependence. This
can be fixed by replacing LXA by

LXAµ := XνFνµ (3.13)

(which, by the way, is a natural definition for the Lie derivative of a connec-
tion one form on a U(1) principal bundle), and defining

H
µ[X] :=

∂L

∂Aβ,µ
LXAβ − LXµ

= − 1

4π

√
| − det g|

(
FµβLXAβ −

1

4

(
F νβFνβ

)
Xµ

)

= − 1

4π

√
| − det g|

(
FµβXαFαβ −

1

4

(
F νβFνβ

)
Xµ

)
. (3.14)

Let us set

∆H
µ[X] := H

µ[X] − H
µ
c [X]

= −
√

| − det g|jµXσAσ +
1

4π
∂β

(
FµβXσAσ

)
. (3.15)

From (3.11) and (3.15) we immediately find

∂µ(∆H
µ[X]) = −

√
| − det g|jµ∇µ(XσAσ) . (3.16)

so that we again have ∂µH
µ = 0 when the field equation jµ ≡ 0 is satisfied

and when Xµ is a Killing vector field.
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Now, H
µ
c [X] is of the form considered in [4]. There an alternative form

of Hamiltonian density has been derived [4, Proposition 1], which in our case
reads

H
µ
c [X] =

1

2
ωµ(A,LXA) + ∂σ

(
X [σπµ]νAν

)
, (3.17)

with
ωµ(A,LXA) = LXAβ πµβ − LXπµβAβ . (3.18)

and where πµβ is given by (3.2). This rewriting does not seem to very
enlightening in the case of the Maxwell field, with a gauge behaviour even
more cumbersome than that of (3.4).

In order to determine the flux of energy, we continue by calculating the
Lie derivative of the Hamiltonian density in the direction of an arbitrary
vector field Y . Recall the formula for the Lie derivative of a vector density
Zµ:

LXZµ = ∂σ(XσZµ) − Zσ∂σX
µ ≡ ∇σ(XσZµ) − Zσ∇σX

µ . (3.19)

In order to calculate LY H µ[X] we use this formula to obtain

LY H
µ[X] = ∇σ

(
Y σ

H
µ
)
− H

σ∇σY
µ

= 2∇σ

(
Y [σ

H
µ]
)

+ Y µ∇σH
σ

= 2∇σ

(
Y [σ

H
µ]
)

+ Y µ
[
∇σH

σ
c + ∇µ(∆H

µ)
]
, (3.20)

where ∆H µ has been defined in (3.15). Keeping in mind that if Zα is
a vector density then ∇αZ

α = ∂αZ
α, and substituting (3.12), (3.14) and

(3.16) into (3.20) we find

4π√
| − det g|

LY H
µ[X] = −2∇σ

[
Y [σFµ]αXκFκα − 1

4
Y [σXµ]FαβFαβ

]

−Y µ
{
− 4πjν

(
LXAν −∇ν(X

σAσ)
)

+ Fµν∆νµ(X,A)

+Fµ
βFνβ

(
∇(µXν) − 1

4
gµν∇αX

α
)}

. (3.21)

3.1 Noether charges in de Sitter spacetime

We wish to determine the Noether charges associated with the Killing fields
(A.1)-(A.4). Since the Hamiltonian density (3.4) is linear in the Hamiltonian
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vector field X, each charge is given by an integral of a linear combination of
the following four functionals

H
µ[∂u] = h

µ
I + T µ

F
2 , (3.22)

H
µ[R] = εABD̊B(Rin

i)hµA + Rµ
F
2 , (3.23)

H
µ[PdS ] = eαu

[
pin

i
h
µ
I −

(
αr + 1

)
pin

i
h
µ
II

−αr + 1

r
D̊A(pin

i)hµA

]
+ Pµ

dSF
2 , (3.24)

H
µ[LdS ] = e−αu

[
lin

i
h
µ
I +

(
αr − 1

)
lin

i
h
µ
II

+
αr − 1

r
D̊A(lin

i)hµA

]
+ LµdSF2 , (3.25)

where εAB is a two-dimensional Levi-Civita tensor (in spherical coordinates
(θ, φ) we take the sign εθφ = 1

sin θ .), and

h
µ[X] = − 1

4π

√
| − det g|FµβXαFαβ , (3.26)

h
µ
I = h

µ[∂u] , (3.27)

h
µ
II = h

µ[∂r] , (3.28)

h
µ
A = h

µ[∂A] , (3.29)

F
2 =

1

16π

√
| − det g|F νβFνβ . (3.30)

Written-out in detail, the functionals (3.27)-(3.30) read

h
u
I =

1

4π

(
r2F 2

ur + γ̊ABFuAFrB
)√

det γ̊ , (3.31)

h
r
I =

1

4π

(
ǫN2γ̊ABFrAFuB + γ̊ABFuAFuB

)√
det γ̊ , (3.32)

h
u
II =

1

4π
γ̊ABFrAFrB

√
det γ̊ , (3.33)

h
r
II =

1

4π

(
r2F 2

ur + γ̊ABFuAFrB + ǫN2γ̊ABFrAFrB

)√
det γ̊ , (3.34)

h
u
A =

1

4π

(
r2FurFAr + γ̊BCFBrFCA

)√
det γ̊ , (3.35)

h
r
A =

1

4π

(
r2FurFuA − ǫN2γ̊BCFrBFCA − γ̊BCFuBFCA

)√
det γ̊ , (3.36)

F
2 =

1

16π

( 1

r2
γ̊AC γ̊BDFABFCD − 2F 2

ur − 2ǫN2γ̊ABFrAFrB

−4̊γABFuAFrB

)√
det γ̊ . (3.37)
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As in [4] we denote by Cu the light cone of constant u. One checks that
all charge integrals over Cu are convergent. The most interesting charge is
the energy-like integral associated with the motion of the tip of the light
cone to the future along the flow of the Killing vector T ≡ ∂u; recall that
∂u is timelike at the tip of the light cone so that each subsequent cone so
obtained lies to the future of the preceding one. Letting

dSµ := ∂µ⌋dx0 ∧ · · · ∧ dxn , dSµν := ∂µ ∧ ∂ν⌋dx0 ∧ · · · ∧ dxn ≡ −∂µ⌋dSν ,
and

dµC =
√

det gAB dr ∧ dx2 ∧ dx3 , dµγ̊ =
√

det γ̊AB dx2 ∧ dx3 , (3.38)

we find

EH [Cu] :=

∫

Cu

H
µ[∂u]dSµ =

∫

Cu

H
u[∂u]dSu =

∫

Cu

(
h
u
I + F

2
)
dr dx2dx3

=
1

16π

∫

Cu

( 1

r2
γ̊AC γ̊BDFABFCD + 2F 2

ur − 2ǫN2γ̊ABFrAFrB

)
dr dµγ̊ .

(3.39)

Likewise the total angular-momentum is obtained from the following inte-
gral:

J [R] :=

∫

Cu

H
µ[R]dSµ ≡ RiJ

i , (3.40)

where

J i :=

∫

Cu

εABD̊Bn
i
h
u
A dr dx

2dx3

=
1

4π

∫

Cu

εABD̊Bn
i
(
r2FurFAr + γ̊BCFBrFCA

)
dr dµγ̊ . (3.41)

For completeness we give the formulae for the remaining charges

P [PdS ] :=

∫

Cu

H
µ[PdS ]dSµ

= pi

∫

Cu

(
eαu

[
nihuI −

(
αr + 1

)
nihuII −

αr + 1

r
D̊A(ni)huA + niF2

])
dr dx2dx3

=
1

16π
pi

∫

Cu

eαu
[
ni

(
1

r2
γ̊AC γ̊BDFABFCD + 2F 2

ur

−2(αr + 1)2γ̊ABFArFBr
)
−4

αr + 1

r
D̊Ani

(
r2FurFAr + γ̊BCFBrFCA

)]
dr dµγ̊ ,

(3.42)
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and

C[LdS ] :=

∫

Cu

H
µ[LdS ]dSµ

= li

∫

Cu

(
e−αu

[
nihuI +

(
αr − 1

)
nihuII +

αr − 1

r
D̊A(ni)huA + niF2

])
dr dx2dx3 . (3.43)

A more detailed formula for C[LdS ] can be obtained from (3.42) by replacing
α by −α and pi by li.

3.2 Noether charges in Minkowski spacetime

All the equations in Section 3.1 apply in Minkowski spacetime by taking
the limit α → 0. Indeed, the Killing fields for Minkowski spacetime can
be obtained as a limit of those for de Sitter spacetime. In the notation of
Appendix A, the equations (A.3), (A.4) and (A.36) give

P = −1

2
lim
α→0

(
PdS + LdS

)
, (3.44)

where in (A.36)-(A.37) we set Pi = pi = li . Similarly, (A.3), (A.4) and
(A.37) leads to

L =
1

2
lim
α→0

(LdS − PdS
α

)
, (3.45)

where in (A.36)-(A.37) we set Li = pi = li. This shows that for Minkowski
spacetime, the linear momentum is given by

PM = −1

2
lim
α→0

(
P [PdS ] + C[LdS ]

)
, (3.46)

while the center of mass

CM =
1

2
lim
α→0

(
C[LdS ] − P [PdS ]

)

α
. (3.47)

Finally the equations for angular momentum and energy are obvious. One
checks that all the limits exist.

3.3 Noether charges in anti-de Sitter spacetime

All the equations in Section 3.1 apply in anti-de Sitter spacetime under the
resplacement α 7→

√
−1α. We note that under this replacement both the
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energy and the angular momentum remain real, while P and C become
linear combinations of two linearly independent real-valued charges:

P [PadS ] :=

∫

Cu

H
µ[PadS ]dSµ

= p̃i

∫

Cu

[
nicos(α̃u)huI + ni(α̃rsin(α̃u) − cos(α̃u))huII

+
(α̃rsin(α̃u) − cos(α̃u))

r
D̊AnihuA + nicos(α̃u)F2

]
dr dx2dx3 , (3.48)

and

C[LadS ] :=

∫

Cu

H
µ[LadS ]dSµ

= l̃i

∫

Cu

[
nisin(α̃u)huI − ni(sin(α̃u) + α̃rcos(α̃u))huII

−(sin(α̃u) + α̃rcos(α̃u))

r
D̊AnihuA + nisin(α̃u)F2

]
dr dx2dx3 . (3.49)

3.4 The evolution of Noether charges

In this section we address the question of the rate of change of the charge
integrals as the tip of the light cone is moved to the future along the flow of
the Killing vector ∂u ≡ T :

dH[X,Cu]

du
≡ d

du

∫

Cu

H
µ[X]dSµ =

∫

Cu

L∂uH
µ[X]dSµ . (3.50)

Assuming sourceless Maxwell fields, (3.21) with two Killing vector fields X
and Y reads

LY H
µ[X] = −

√
| − det g|

2π
∇σ

[
Y [σFµ]αXκFκα − 1

4
Y [σXµ]FαβFαβ

]
.

(3.51)
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Using the fields (3.26)-(3.30) one finds

L∂uH
µ[∂u] = 2∇σ

[
T [σ

h
µ]
I

]
, (3.52)

L∂uH
µ[R] = 2∇σ

{
T [σ

[
εABD̊B(Rin

i)h
µ]
A + Rµ]

F
2
]}
, (3.53)

L∂uH
µ[PdS ] = 2∇σ

{
eαuT [σ

[
pin

i
h
µ]
I −

(
αr + 1

)
pin

i
h
µ]
II

−αr + 1

r
D̊A(pin

i)h
µ]
A + Pµ]

dSF
2
]}

, (3.54)

L∂uH
µ[LdS ] = 2∇σ

{
e−αuT [σ

[
lin

i
h
µ]
II +

(
αr − 1

)
lin

i
h
µ]
II

+
αr − 1

r
D̊A(lin

i)h
µ]
A + Lµ]dSF2

]}
. (3.55)

In particular we obtain a formula for the flux of energy:

dEH [Cu]

du
= −2

∫

∂Sτ

T [σ
h
µ]
I dSσµ

= − lim
R→∞

∫

SR

h
r
I

∣∣∣
r=R

dx2dx3

= − lim
R→∞

1

4π

∫

SR

[
r2F 2

ur + γ̊ABFuAFrB + ǫN2γ̊ABFrAFrB

]
r=R

dµγ̊

= − 1

4π

∫

S∞

[
γ̊AB

(
α2

(-2)

F Ar

(0)

F Bu +
(0)

F Au

(0)

F Bu

)]
dµγ̊ . (3.56)

The u-derivative of angular momentum is given by

dJ [Cu,R]

du
= −2

∫

∂Sτ

[
T [σ

(
h
µ]
A ε

ABD̊B(Rin
i) + Rµ]

F
2
)]
dSσµ

= −Ri lim
R→∞

∫

SR

[
h
r
Aε

ABD̊Bn
i
]
r=R

dx2dx3 =: Ri
dJ i

du
, (3.57)

where

dJ i

du
= − 1

4π
lim
R→∞

∫

SR

εABD̊Bn
i
[
r2FurFuA − ǫN2γ̊BCFrBFCA

−γ̊BCFuBFCA
]
r=R

dµγ̊

= − 1

4π

∫

S∞

[
εABD̊B(ni)

(
γ̊BC

(
α2

(-2)

F Br +
(0)

F Bu

)(0)
F CA

−
(-2)

F ur

(0)

F Au

)]
dµγ̊ . (3.58)
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Finally

dP [PdS ,Cu]

du
= −2

∫

∂Sτ

[
eαuT [σ

(
pin

i
h
µ]
I −

(
αr + 1

)
pin

i
h
µ]
II

−αr + 1

r
D̊A(pin

i)h
µ]
A + Pµ]

dSF
2
)]
dSσµ

= − lim
R→∞

∫

SR

eαu
[(
pin

i
h
r
I −

(
αr + 1

)
pin

i
h
r
II

−αr + 1

r
D̊A(pin

i)hrA + Pr
dSF

2
)]

r=R
dx2dx3

= − 1

16π
lim
R→∞

∫

SR

eαu
[
pin

i
(

4ǫN2γ̊ABFuAFrB + 4̊γABFuAFuB

−(αr + 1)
( 1

r2
γ̊AC γ̊BDFABFCD + 2r2F 2

ur + 2εN2γ̊ABFrAFrB
))

+4piD̊
Ani

(
r2FurFuA − ǫN2γ̊BCFrBFCA − γ̊BCFuBFCA

)]
r=R

dµγ̊

= − 1

4π

∫

S∞

{
eαu

[
pin

iγ̊AB
((0)
F Au

(0)

FBu + α2
(-2)

F Ar

(0)

FBu

)

+αD̊A(pin
i)
((-2)

F ur

(0)

F Au +
(0)

F ABγ̊
BC

(
α2

(-2)

F Cr +
(0)

F Cu

))]}
dµγ̊ , (3.59)

and

dC[LdS ,Cu]

du
= −2

∫

∂Sτ

{
e−αuT [σ

[
lin

i
h
µ]
I +

(
αr − 1

)
lin

i
h
µ]
II

+
αr − 1

r
D̊A(lin

i)h
µ]
A + Lµ]dSF2

]}
dSσµ

= − lim
R→∞

∫

SR

e−αu
[
lin

i
h
r
I +

(
αr − 1

)
lin

i
h
r
II

+
αr − 1

r
D̊A(lin

i)hrA +
(
αr − 1

)
lin

i
F
2
]
r=R

dx2dx3

= − 1

4π

∫

S∞

e−αu
{
lin

iγ̊AB
((0)
F Au

(0)

F Bu + α2
(-2)

F Ar

(0)

F Bu

)

−αD̊A(lin
i)
[(-2)

F ur

(0)

F Au +
(0)

F AB γ̊
BC

(
α2

(-2)

F Cr +
(0)

F Cu

)]}
dµγ̊ . (3.60)

4 Noether charges for scalar fields

In [4] we found that the canonical energy on light cones for a natural class
of linear scalar fields in de Sitter spacetime was generically infinite, and had
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to be renormalised. The aim of this section is to address this question for
the remaining canonical charges.

In our signature the Lagrangian reads

L = −1

2

√
|det g|

(
gµν∂µφ∂νφ+m2φ2

)
, (4.1)

for a constant m.
The theory coincides with its linearisation and we will therefore not make

a distinction between the fields ϕ and its linearised counterpart ϕ̃, as done
in [4].

The canonical energy-momentum current H µ equals

H
µ[X] = −

√
|det g|

(
∇µφLXφ− 1

2

(
∇αφ∇αφ+m2φ2

)
Xµ

)
. (4.2)

Analogously to our analysis of the Maxwell field, we start by considering
simultaneously the Minkowski space-time and the de Sitter space-time in
coordinates as in (2.1).

The Lie derivative of the Hamiltonian (4.2) reads:

−LY H µ[X]√
|det g|

= ∇σ

(
Y σ∇µφLXφ

)
−∇σY

µ∇σφLXφ

−1

2
∇σ

[
Y σ

(
∇αφ∇αφ+m2φ2

)
Xµ

]

+
1

2
∇σY

µXσ
(
∇αφ∇αφ+m2φ2

)

= 2∇σ

(
Y [σ∇µ]φLXφ

)
+ Y µ∇σ

(
∇σφLXφ

)

−1

2
XµY σ∇σ

(
∇αφ∇αφ+m2φ2

)

+
1

2
[X,Y ]µ

(
∇αφ∇αφ+m2φ2

)

−1

2
∇σY

σXµ
(
∇αφ∇αφ+m2φ2

)
. (4.3)

We combine the second and third terms with the equation of motion:

Y µ∇σ

(
∇σφLXφ

)
− 1

2
XµY σ∇σ

(
∇αφ∇αφ+m2φ2

)

=
1

2
Y µXσ∇σ

(
∇αφ∇αφ+m2φ2

)
+ Y µ∇αφ∇αX

σ∇σφ

−1

2
XµY σ∇σ

(
∇αφ∇αφ+m2φ2

)

= ∇σ

[
Y [µXσ]

(
∇αφ∇αφ+m2φ2

)]
+ Y µ∇αφ∇αX

σ∇σφ

−1

2

(
[X,Y ]µ + Y µ∇σX

σ −Xµ∇σY
σ
)(

∇αφ∇αφ+m2φ2
)
. (4.4)
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Equations (4.3) and (4.4) lead to

−LY H µ[X]√
|det g|

= 2∇σ

(
Y [σ∇µ]φXα∇αφ− 1

2
Y [σXµ]

(
∇αφ∇αφ+m2φ2

))

+Y µ∇αX
σ∇αφ∇σφ− 1

2
Y µ∇σX

σ
(
∇αφ∇αφ+m2φ2

)

= 2∇σ

(
Y [σ∇µ]φXα∇αφ− 1

2
Y [σXµ]

(
∇αφ∇αφ+m2φ2

))

+Y µ
(
∇αXσ −

1

2
∇κX

κgασ

)
∇αφ∇σφ

−1

2
Y µ∇σX

σm2φ2 . (4.5)

4.1 Charges in (anti)-de Sitter spacetime

We only consider here a massive scalar field, with the mass chosen so that
the equation is conformally covariant,

�gφ− (d− 2)R(g)

4(d− 1)︸ ︷︷ ︸
=:m2

φ = 0 , (4.6)

where d is the dimension of spacetime and R(g) is the scalar curvature of g.
In the four-dimensional case, it leads to

m2 = 2α2 (4.7)

After a conformal transformation g 7→ Ω2g the field Ωd/2−1φ satisfies
again (4.6), with g there replaced by Ω2g. This is useful in that solutions
of (4.6) with smooth initial data on a Cauchy surface in de Sitter space-
time extend smoothly, afer the rescaling above, in local coordinates on the
conformally completed manifold, across the conformal boundary at infinity.
This translates to the following asymptotic behaviour of φ, for large r, in
spacetime dimension four:

φ(u, r, xA) =

(-1)

φ (u, xA)

r
+

(-2)

φ (u, xA)

r2
+

(-3)

φ (u, xA)

r3
+ ... . (4.8)

See [4, Section 2.2.1] for a discussion. Here we simply note that the functions
(-1)

φ and
(-2)

φ are freely prescribable, with all remaining expansion coefficients
determined uniquely by these two.
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We wish to construct the Noether charges associated with the Killing
fields (A.1)-(A.4). For this let

h
µ[X] = −

√
|det g|∇µφXα∇αφ , (4.9)

hL =
1

2

√
|det g|

(
∇αφ∇αφ+m2φ2

)
, (4.10)

and

h
µ
I = h

µ[∂u] , (4.11)

h
µ
II = h

µ[∂r] , (4.12)

h
µ
A = h

µ[∂A] . (4.13)

Since the Hamiltonian density (4.2) is linear in the Hamiltonian vector field
X, each charge is given by an integral of a linear combination of the following
four functionals

H
µ[∂u] = h

µ
I + T µ

hL , (4.14)

H
µ[R] = εABD̊B(Rin

i)hµA + Rµ
hL , (4.15)

H
µ[PdS ] = eαu

[
pin

i
h
µ
I −

(
αr + 1

)
pin

i
h
µ
II

−αr + 1

r
D̊A(pin

i)hµA

]
+ Pµ

dShL , (4.16)

H
µ[LdS ] = e−αu

[
lin

i
h
µ
I +

(
αr − 1

)
lin

i
h
µ
II

+
αr − 1

r
D̊A(lin

i)hµA

]
+ LµdShL , (4.17)

Written-out in detail, the functionals (4.11)-(4.13) read

h
u
I =

(
r2∂rφ∂uφ

)√
det γ̊ , (4.18)

h
r
I = r2

(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
∂uφ

√
det γ̊ , (4.19)

h
u
II = r2

(
∂rφ

)2√
det γ̊ , (4.20)

h
r
II = r2

(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
∂rφ

√
det γ̊ , (4.21)

h
u
A = r2∂rφD̊Aφ

√
det γ̊ , (4.22)

h
r
A = r2

(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
D̊Aφ

√
det γ̊ , (4.23)

hL =
1

2

(
γ̊ABD̊AφD̊Bφ+m2r2φ2

−2r2∂rφ∂uφ+
(
1 − α2r2

)
r2
(
∂rφ

)2)√
det γ̊ . (4.24)
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Recall that we denote by Cu the light cone of constant u, and Cu,R =
Cu ∩ {r ≤ R} its truncation to r = R. It turns out that, generically, all
charge integrals over Cu diverge as R tends to infinity, and therefore need to
be renormalised. Therefore we first calculate the charges on Cu,R and exhibit
their divergent parts, for large r. We use the asymptotics (4.8) which applies
both to the α = 0 case with m = 0 and to the case α2 = m2/2 with m 6= 0:

EH [Cu,R] :=

∫

Cu,R

H
µ[∂u]dSµ =

∫

Cu,R

H
u[∂u]dSu

=

∫

Cu,R

(
h
u
I + hL

)
dr dx2dx3

=
1

2

∫

Cu,R

(
γ̊ABD̊AφD̊Bφ+m2r2φ2 +

(
r2 − α2r4

)(
∂rφ

)2)
dr dµγ̊

=
1

2

∫

Cu,R

(
γ̊ABD̊AφD̊Bφ+m2r2φ2

+∂r

[(
r2 − α2r4

)
φ
(
∂rφ

)]
− φ∂r

[(
r2 − α2r4

)(
∂rφ

)])
dr dµγ̊

=
α2R

2

∫

SR

(
(-1)

φ )2 dµγ̊ +

∫

Cu,R

O(r−2) dr dµγ̊ , (4.25)

where we have used

(
r2 − α2r4

)
φ
(
∂rφ

)
=
r

2
α2(

(-1)

φ )2 +O(r−1) (4.26)

As before, the total angular-momentum is obtained from the following
integral:

J [Cu,R] :=

∫

Cu,R

H
µ[R]dSµ ≡ RiJ

i[Cu,R] , (4.27)

where now

J i[Cu,R] :=

∫

Cu,R

εABD̊Bn
i
h
u
A dr dx

2dx3

=

∫

Cu,R

r2εABD̊Bn
iD̊Aφ∂rφdr dµγ̊

=

∫

Cu,R

(
−

(-1)

φ εABD̊Bn
iD̊A

(-1)

φ

r
+O(r−2)

)
dr dµγ̊

=

∫

Cu,R

O(r−2) dr dµγ̊ , (4.28)
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where we have used
∫

S2

(-1)

φ εABD̊Bn
iD̊A

(-1)

φ dµγ̊ =
1

2

∫

S2

D̊A

(
εABD̊Bn

i(
(-1)

φ )2
)
dµγ̊ = 0 . (4.29)

We further have

P [PdS ,Cu,R] :=

∫

Cu,R

H
µ[PdS ]dSµ

= pi

∫

Cu,R

eαu
[
nihuI −

(
αr + 1

)
nihuII −

αr + 1

r
D̊A(ni)huA + nihL

]
dr dx2dx3

= pi

∫

Cu,R

eαu
[1

2
ni
(
γ̊ABD̊AφD̊Bφ+m2φ2r2

−
(
α2r4 + 2αr3 + r2

)(
∂rφ

)2)− (αr + 1)rD̊Ani (∂rφ) D̊Aφ
]
dr dµγ̊

= pi

∫

Cu,R

eαu
[1

2
α2ni

(-1)

φ
2

+
1

r

(-1)

φ

(
αγ̊ABD̊An

iD̊B

(-1)

φ − niα
(-1)

φ

)
+O(r−2)

]
dr dµγ̊

= pi

[Rα2eαu

2

∫

SR

ni
(-1)

φ
2

dµγ̊ +

∫

Cu,R

O(r−2) dr dµγ̊

]
, (4.30)

and note that the second and third terms in the before-last line integrate
out to zero. Finally,

C[LdS ,Cu,R] :=

∫

Cu,R

H
µ[LdS ]dSµ

= li

∫

Cu,R

(
e−αu

[
nihuI +

(
αr − 1

)
nihuII +

αr − 1

r
D̊A(ni)huA + nihL

])
dr dx2dx3 .

(4.31)

Similarly to the case of the Maxwell field, a more detailed formula version
of (4.31) can be obtained from (4.30) by replacing there α by −α and pi by
li.

4.2 Noether charges in Minkowski spacetime

All the equations in Section 4.1 apply to the massless scalar field in Minkowski
spacetime by passing to the limit m = α = 0. In that case we clearly have
a finite energy. This is also clear for the total momentum, which we denote
by PM , using (4.30)-(4.31) with Pi replaced by pi for consistency of notation
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with (A.27) (see (A.36)), compare (A.38)):

PM [P,Cu,R] = −1

2
lim
α→0

(
P [PdS ,Cu,r] + C[LdS ,Cu,r]li:=Pi

)
,

= Pi

∫

Cu,R

(
ni (huII − h

u
I ) +

1

r
D̊AnihuA − nihL

)∣∣∣
α=0

dr dµγ̊

=

∫

Cu,R

O(r−2) dr dµγ̊ . (4.32)

Consider, next, the formula for the center of mass, which can be similarly
obtained from (A.39) and (4.30)-(4.31): in the notation of (A.30),

CM [L,Cu,R] =
1

2
lim
α→0

(
C[LdS,Cu,r] − P [PdS ,Cu,r]pi:=Li

)

α

= Li

∫

Cu,R

(
− unihuI + (u+ r)nihuII +

(
1 +

u

r

)
D̊AnihuA − unihL

)
dr dµγ̊

=

∫

Cu,R

O(r−2) dr dµγ̊ , (4.33)

Finally, the total angular momentum is finite,

Ĵ i[Cu] := lim
R→∞

[ ∫

Cu,R

r2εABD̊Bn
iD̊Aφ∂rφdr dµγ̊

+ lnR

∫

S2

εABD̊Bn
i
(-1)

φ D̊A

(-1)

φ dµγ̊
︸ ︷︷ ︸

0

]
, (4.34)

as the boundary integral in (4.34) is a total divergence.

4.3 Noether charges in anti-de Sitter spacetime

All the equations in Section 4.1 apply in anti-de Sitter spacetime under the
replacement α 7→

√
−1α. Then both the energy and the angular momentum

remain real, while P and C become linear combinations of two linearly
independent real-valued charges. Indeed, using (A.25)-(A.26) one finds

P [PadS ,Cu,R] :=

∫

Cu,R

H
µ[PadS ]dSµ

= p̃i

∫

Cu,R

[
nicos(α̃u)huI + ni(α̃rsin(α̃u) − cos(α̃u))huII

+
(α̃rsin(α̃u) − cos(α̃u))

r
D̊AnihuA + nicos(α̃u)hL

]
dr dx2dx3 , (4.35)
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and

C[LadS ,Cu,R] :=

∫

Cu,R

H
µ[LadS ]dSµ

= l̃i

∫

Cu,R

[
nisin(α̃u)huI − ni(sin(α̃u) + α̃rcos(α̃u))huII

−(sin(α̃u) + α̃rcos(α̃u))

r
D̊AnihuA + nisin(α̃u)hL

]
dr dx2dx3 . (4.36)

4.4 The time-evolution of Noether charges

A question of interest is the rate of change of the charge integrals as the tip
of the light cone is moved to the future along the flow of the Killing vector
∂u ≡ T :

dH[X,Cu,R]

du
≡ d

du

∫

Cu,R

H
µ[X]dSµ =

∫

Cu,R

L∂uH
µ[X]dSµ . (4.37)

Assuming two Killing vector fields X and Y , we have

LY H
µ[X] = −2

√
|det g|∇σ

(
Y [σ∇µ]φXα∇αφ

−1

2
Y [σXµ]

(
∇αφ∇αφ+m2φ2

))
. (4.38)

Using the fields (4.9)-(4.13) one finds

L∂uH µ[∂u] = 2∇σ

[
T [σ

h
µ]
I

]
, (4.39)

L∂uH
µ[R] = 2∇σ

{
T [σ

[
εABD̊B(Rin

i)h
µ]
A + Rµ]

hL

]}
, (4.40)

L∂uH
µ[PdS ] = 2∇σ

{
eαuT [σ

[
pin

i
h
µ]
I −

(
αr + 1

)
pin

i
h
µ]
II

−αr + 1

r
D̊A(pin

i)h
µ]
A + Pµ]

dShL

]}
, (4.41)

L∂uH
µ[LdS ] = 2∇σ

{
e−αuT [σ

[
lin

i
h
µ]
I +

(
αr − 1

)
lin

i
h
µ]
II

+
αr − 1

r
D̊A(lin

i)h
µ]
A + Lµ]dShL

]}
. (4.42)
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In particular we obtain the energy-flux: 3

dEH [Cu,R]

du
= −

∫

∂Cu,R

T [σ
h
µ]
I dSσµ

= −
∫

SR

h
r
I

∣∣∣
r=R

dx2dx3

= −
∫

SR

[
r2

(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
∂uφ

]
r=R

dµγ̊

=

∫

SR

[
α2

(-1)

φ ∂u
(-1)

φ R

+α2
(-1)

φ ∂u
(-2)

φ +

(
2α2

(-2)

φ − ∂u
(-1)

φ

)
∂u

(-1)

φ
]
dµγ̊ + o(1) , (4.43)

where o(1) tends to zero as R tends to infinity.
We turn now our attention to the rate of change of the functional Eω[S ]

of (1.8), when the tip of the light cone is moved to the future along the flow
of the Killing vector ∂u:

dEω[Cu,R]

du
≡ 1

2

d

du

∫

Cu,R

ωµ(φ,L∂uφ)dSµ =
1

2

∫

Cu,R

L∂uωµ(φ,L∂uφ)dSµ .

(4.44)
We find

LY ωµ(φ,L∂uφ) = ∂σ
(
Y σωµ

)
− ωσ∂σY

µ

= 2∂σ
(
Y [σωµ]

)
+ Y µ∂σω

σ . (4.45)

Assuming that the field equations hold, we have ∂σ
(
ωσ(φ,L∂uφ)

)
= 0. The

flux of Eω[Cu,R] reads

dEω[Cu,R]

du
=

1

2

∫

Cu,R

2∂σ
(
T [σωµ]

)
dSµ

= −1

2

∫

SR

T [σωµ]dSσµ

=
1

2

∫

SR

r2
(
φ(α2r2 − 1)∂u∂rφ+ φ∂2uφ

−
(
∂uφ+ (α2r2 − 1)∂rφ

)
∂uφ

)
r=R

dµγ̊ , (4.46)

3We take this opportunity to correct a misprint in [4, Equation (2.68)], where the terms

involving
(-2)

φ are missing.
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with asymptotic expansion

dEω[Cu,R]

du
=

1

2

∫

SR

(
− α2

(-1)

φ ∂u
(-2)

φ + α2
(-2)

φ ∂u
(-1)

φ +
(-1)

φ ∂2u
(-1)

φ − (∂u
(-1)

φ )2
)
dµγ̊

+O(
1

R
) . (4.47)

Note that when α = 0 the limit of dEω/du as R tends to infinity is not

negative, which makes questionable the interpretation of Eω as the right
functional for a physically significant definition of energy.

We continue with the u-derivative of angular momentum, given by

dJ [Cu,R]

du
= −

∫

Cu,R

[
T [σ

(
h
µ]
A ε

ABD̊B(Rin
i) + Rµ]

hL

)]
dSσµ

= −Ri
∫

SR

[
h
r
Aε

ABD̊Bn
i
]
r=R

dx2dx3 =: Ri
dJ i

du
, (4.48)

with

dJ i

du
= −

∫

SR

√
det γ̊εABD̊Bn

i
[
r2
(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
D̊Aφ

]
r=R

dµγ̊

=

∫

SR

[
εABD̊Bn

i
(
α2

(-1)

φ D̊A

(-1)

φ R

+α2
(-1)

φ D̊A

(-2)

φ +

(
2α2

(-2)

φ − ∂u
(-1)

φ

)
D̊A

(-1)

φ
)]
dµγ̊ + o(1)

= −
∫

SR

[
α2

(-1)

φ D̊A

(-2)

φ + ∂u
(-1)

φ D̊A

(-1)

φ
)]
dµγ̊ + o(1) , (4.49)
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where the terms proportional to R integrated-out to zero. Finally

dP [PdS ,Cu,R]

du
= −2

∫

Cu,R

[
eαuT [σ

(
pin

i
h
µ]
I −

(
αr + 1

)
pin

i
h
µ]
II

−αr + 1

r
D̊A(pin

i)h
µ]
A + Pµ]

dShL

)]
dSσµ

= −
∫

Cu,R

[
eαu

(
pin

i
h
r
I −

(
αr + 1

)
pin

i
h
r
II

−αr + 1

r
D̊A(pin

i)hrA −
(
αr + 1

)
hL

)]
dx2dx3

= −
∫

SR

eαupi

{
ni
[
r2
(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
∂uφ

−(αr + 1)r2
(
∂uφ+

(
α2r2 − 1

)
∂rφ

)
∂rφ

−1

2
(αr + 1)

(
γ̊ABD̊AφD̊Bφ− 2r2 (∂rφ) (∂uφ)

+m2r2φ2 −
(
α2r2 − 1

)
r2 (∂rφ)2

)]

−(αr + 1)rD̊Ani∂rφD̊Aφ
}
r=R

dµγ̊

=

∫

SR

eαupin
i
{
α

(-1)

φ
[
α2

(-1)

φ +m2
(-1)

φ + 2α∂u
(-1)

φ
]
R

+
[
4α3

(-2)

φ + 2αm2
(-2)

φ + 2α2∂u
(-2)

φ + α2
(-1)

φ +m2
(-1)

φ
](-1)

φ

+4α2∂u
(-1)

φ
(-2)

φ − 2

(
∂u

(-1)

φ

)2 }
dµγ̊ + o(1) . (4.50)

Comparing (A.3) with (A.4), we see that an analogous formula for dC[LdS ,Cu,R]/du
can be obtained from (4.50) by replacing α by −α and pi by li:

dC[LdS ,Cu,R]

du
= −2

∫

Cu,R

{
e−αuT [σ

[
lin

i
h
µ]
I +

(
αr − 1

)
lin

i
h
µ]
II

+
αr − 1

r
D̊A(lin

i)h
µ]
A + Lµ]dShL

]}
dSσµ

=

∫

SR

e−αulin
i
{
− α

(-1)

φ
[
α2

(-1)

φ +m2
(-1)

φ − 2α∂u
(-1)

φ
]
R

+
[
2α2∂u

(-2)

φ + α2
(-1)

φ +m2
(-1)

φ − 4α3
(-2)

φ − 2αm2
(-2)

φ
](-1)

φ

+4α2∂u
(-1)

φ
(-2)

φ − 2

(
∂u

(-1)

φ

)2 }
dµγ̊ + o(1) . (4.51)
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5 An alternative Lagrangian for the scalar field

The Lagrangian for a conformally-covariant scalar field theory on the de
Sitter background reads

L = −1

2

√
|det g|

(
gµν∇µφ∇νφ+ 2α2φ2

)
, (5.1)

which coincides with (4.1) with m2 = 2α2. With some work this can be
rewritten as

L√
|det g|

= − 1

2r2

(
gµν∇µ

(
rφ

)
∇ν

(
rφ

))
− 1

4
∇ν

((
rφ

)2∇νr−2
)
. (5.2)

Since boundary terms in a Lagrangian do not change the Euler–Lagrange
equations, after neglecting the boundary term in (5.2) we obtain a La-
grangian which leads us to an equivalent theory

L̃ = − 1

2r2

√
|det g|gµν∇µφ̃∇ν φ̃ , (5.3)

where
φ̃ = rφ .

As already announced, all Noether charges turn out to be finite, no renor-
malisation is required. The price is that the time-derivatives of some charges
are not boundary integrals anymore, because both the Lagrangian and the
Hamiltonian depend explicitly on the coordinate r now.

The canonical momentum for (5.3) reads

π̃α =
∂L̃

∂(∇αφ̃)
= −

√
|det g| 1

r2
∇αφ̃ . (5.4)

The canonical energy-momentum current equals

H̃
µ[X] = −

√
|det g|

( 1

r2
∇µφ̃LX φ̃− 1

2r2
(
∇αφ̃∇αφ̃

)
Xµ

)
. (5.5)

The large-r asymptotic behaviour of φ of (4.8) translates into the follow-
ing asymptotics for φ̃:

φ̃(u, r, xA) =
(0)

φ̃ (u, xA) +

(-1)

φ̃ (u, xA)

r
+

(-2)

φ̃ (u, xA)

r2
+ ... . (5.6)
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5.1 Noether charges

The analysis of the Noether charges associated with the Killing fields (A.1)-
(A.4) proceeds now in a way completely analogous to that for φ. The charges
are again of the form (4.14)-(4.17), where now

h
u
I =

(
∂rφ̃∂uφ̃

)√
det γ̊ , (5.7)

h
r
I =

(
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
∂uφ̃

√
det γ̊ , (5.8)

h
u
II =

(
∂rφ̃

)2√
det γ̊ , (5.9)

h
r
II =

(
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
∂rφ̃

√
det γ̊ , (5.10)

h
u
A = ∂rφ̃D̊Aφ̃

√
det γ̊ , (5.11)

h
r
A =

(
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
D̊Aφ̃

√
det γ̊ , (5.12)

hL =
1

2

( 1

r2
γ̊ABD̊Aφ̃D̊Bφ̃− 2∂rφ̃∂uφ̃

+
(
1 − α2r2

)(
∂rφ̃

)2)√
det γ̊ . (5.13)

The asymptotic behaviour (5.6) leads to

ẼH [Cu,R] :=

∫

Cu,R

H̃
µ[∂u]dSµ =

∫

Cu,R

H̃
u[∂u]dSu

=

∫

Cu,R

(
h
u
I + hL

)
dr dx2dx3

=
1

2

∫

Cu,R

( 1

r2
γ̊ABD̊Aφ̃D̊Bφ̃+

(
1 − α2r2

)(
∂rφ̃

)2)

︸ ︷︷ ︸
O(r−2)

dr dµγ̊ , (5.14)

hence the volume integral has a finite limit as R tends to infinity, resulting
in a finite total energy.

As before, the total angular-momentum is obtained from the following
integral:

J̃ [Cu,R] :=

∫

Cu,R

H̃
µ[R]dSµ ≡ RiJ̃

i[Cu,R] , (5.15)

where now

J̃ i[Cu,R] :=

∫

Cu,R

εABD̊Bn
i
h
u
A dr dx

2dx3

=

∫

Cu,R

εABD̊Bn
iD̊Aφ̃∂rφ̃︸ ︷︷ ︸

O(r−2)

dr dµγ̊ , (5.16)

39



again an integral which converges to a finite value as R tends to infinity.
We further have

P̃ [PdS ,Cu,R] :=

∫

Cu,R

H̃
µ[PdS ]dSµ

= pi

∫

Cu,R

eαu
[
nihuI −

(
αr + 1

)
nihuII −

αr + 1

r
D̊A(ni)huA + nihL

]
dr dx2dx3

= pi

∫

Cu,R

eαu
[1

2
ni
( 1

r2
γ̊ABD̊Aφ̃D̊Bφ̃−

(
α2r2 + 2α+ 1

)(
∂rφ̃

)2)

−(αr + 1)

r
D̊Ani

(
∂rφ̃

)
D̊Aφ̃

]
dr dµγ̊

=

∫

Cu,R

O(r−2) dr dµγ̊ . (5.17)

Finally,

C̃[LdS ,Cu,R] :=

∫

Cu,R

H̃
µ[LdS ]dSµ

= li

∫

Cu,R

(
e−αu

[
nihuI +

(
αr − 1

)
nihuII +

αr − 1

r
D̊A(ni)huA + nihL

])
dr dx2dx3 .

(5.18)

A more detailed version of the integral (5.18), which is again finite in the
limit R→ ∞, can be obtained from (5.17) by replacing there α by −α and
pi by li.

5.2 Time derivatives

Recall that the Lie derivatives of the Noether current read

LY H̃
µ = ∇α

(
Y α

H̃
µ
)
− H̃

α∇αY
µ

= 2∇α

(
Y [α

H̃
µ]
)

+ Y µ∇αH̃
α . (5.19)

We associate Hamiltonian density with the canonical energy-momentum ten-
sor through the formula

H̃
µ[X] = T̃ µαX

α , (5.20)

where
T̃ µα = π̃µ∇αφ̃− δµαL̃ . (5.21)

40



Since the alternative Lagrangian (5.2) depends explicitly upon the coordi-
nate r, for solutions of the field equations we find

∇µH̃
µ = ∇µ

(
T̃ µαX

α
)

= T̃ µα∇µX
α − ∂L̃

∂r
Xα∂αr . (5.22)

Using (5.19), (5.22), and assuming that X is Killing vector field, the Lie
derivative of the Noether current reads

LY H̃
µ = 2∇α

[
Y [α

H̃
µ]
]
− Y µ∂L̃

∂r
Xα∂αr .

Using (5.3) and (5.5) one obtains

LY H̃
µ = −2

√
|det g|∇α

[
Y [α

( 1

r2
∇µ]φ̃LX φ̃− 1

2r2
∇βφ̃∇βφ̃X

µ]
)]

−Y µ 1

r3

√
|det g|gνρ∇ν φ̃∇ρφ̃X

α∂αr . (5.23)

The “non-divergence term” (...)Y µXα∂αr in this equation implies that
some charges might have volume terms in their evolution formulae. No such
terms will certainly occur when either Y is tangent to S (which will be the
case for rotations), or when r is invariant under the flow of X (which will
be the case for u-translations and rotations).

For instance, consider (5.23) with X = Y = ∂u ≡ T . In this case (4.39)
applies, with the relevant component given by (5.8). Passing to the limit
R→ ∞ in (4.37) with (4.39) and (5.8) one obtains

dẼH [Cu]

du
= −2

∫

∂Sτ

T [σ
h
µ]
I dSσµ

= − lim
R→∞

∫

SR

h
r
I

∣∣∣
r=R

dx2dx3

= − lim
R→∞

∫

SR

[ (
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
∂uφ̃

]
r=R

dµγ̊

=

∫

S

(
α2

(-1)

φ̃ − ∂u

(0)

φ̃
)
∂u

(0)

φ̃ dµγ̊ . (5.24)

As another example, the u-derivative of angular momentum is obtained
from (4.37), and (4.40) with X = R and Y = ∂u ≡ T :

dJ̃ [Cu]

du
= −2

∫

∂Sτ

T [σ
(
h
µ]
A ε

ABD̊B(Rin
i) + Rµ]

hL

)
dSσµ

= −Ri lim
R→∞

∫

SR

[
h
r
Aε

ABD̊Bn
i
]
r=R

dx2dx3 =: Ri
dJ̃ i

du
. (5.25)
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Using (5.12) we find

dJ̃ i

du
= − lim

R→∞

∫

SR

√
det γ̊εABD̊Bn

i
[(
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
D̊Aφ̃

]
r=R

dµγ̊

=

∫

S
εABD̊Bn

i
(

2α2
(-1)

φ̃ − ∂u

(0)

φ̃
)
D̊A

(0)

φ̃ dµγ̊ , (5.26)

which does not coincide with (4.49).
The remaining u-derivatives have both fluxes and volume integrals. For

instance, calculating similarly to (4.50) and taking into account the volume
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term in (5.23),

dP̃ [PdS ,Cu]

du
= −2

∫

∂Sτ

[
eαuT [σ

(
pin

i
h
µ]
I −

(
αr + 1

)
pin

i
h
µ]
II

−αr + 1

r
D̊A(pin

i)h
µ]
A + Pµ]

dShL

)]
dSσµ

−
∫

Sτ

2

r

[
T µ

hLPr
dS

]
dSµ

= −
∫

∂Sτ

[
eαu

(
pin

i
h
r
I −

(
αr + 1

)
pin

i
h
r
II

−αr + 1

r
D̊A(pin

i)hrA −
(
αr + 1

)
hL

)]
dSσµ

+

∫

Sτ

2

r

[
hL

(
αr + 1

)
pin

i
]
dr dx2dx3

= −
∫

SR

eαupi

{
ni
[(
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
∂uφ̃

−(αr + 1)
(
∂uφ̃+

(
α2r2 − 1

)
∂rφ̃

)
∂rφ̃

−1

2
(αr + 1)

( 1

r2
γ̊ABD̊Aφ̃D̊Bφ̃− 2

(
∂rφ̃

)(
∂uφ̃

)

−
(
α2r2 − 1

) (
∂rφ̃

)2 )]

−(αr + 1)

r
D̊Ani∂rφ̃D̊Aφ̃

}
r=R

dµγ̊

+

∫

Sτ

1

r

[( 1

r2
γ̊ABD̊Aφ̃D̊Bφ̃− 2∂rφ̃∂uφ̃

+
(
1 − α2r2

)(
∂rφ̃

)2)√
det γ̊

(
αr + 1

)
pin

i
]
dSµ

=

∫

∂Sτ

eαupin
i
[
α2

(-1)

φ̃ − ∂u

(0)

φ̃
]
∂u

(0)

φ̃ dµγ̊

+

∫

Sτ

O(r−2) dr dµγ̊ . (5.27)

It is not clear whether a meaningful comparison to (4.50) is possible because
of the volume term appearing here.

A formula for
dC[LdS ,Cu,R]

du can be obtained from (5.27) by replacing there
α by −α and pi by li.
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6 Poisson algebras

Having obtained a set of global charges, either directly or after renormalisa-
tion, the question arises whether the charges satisfy a well-defined Poisson
algebra. As we will see, the question is far from clear, because of the bound-
ary integrals arising when varying the charges.

Quite generally, we consider two Hamiltonian functionals, H[S ,X] and
H[S , Y ], defined as integrals on a hypersurface S with boundary ∂S , with
two vector field X and Y . Here the boundary might be at finite distance,
before a limit to infinity is taken, or it can be a boundary at infinity in the
conformally compactified spacetime. We take an approach similar to that
of [3] to define the Poisson algebra of charges through the Poisson algebra
of fields on S . When there are no constraints, as is the case of the scalar
field, and when there are no boundary terms in the variations, and when S

is spacelike, the algebra is straightforward. When the hypersurface is null
the algebra of the fields is more demanding. We avoid the work associated
with the last problem by deforming S to a hypersurface which is spacelike,
and calculating the Poisson brackets on the deformed hypersurface. We
expect this to give a correct answer in situations where the charges are
independent of the hypersurface, within the family of hypersurfaces sharing
the same boundary.

The problem of boundary integrals that remain after a variation of the
charges has been carried-out, which arises in the situations of interest in this
work, will be addressed in Section 7.

Let us pass now to an analysis of the Poisson algebra of Noether charges
associated with diffeomorphisms generated by two vector fields X and Y .
We consider first order Lagrangian densities depending upon the fields, the
metric, and possibly upon coordinates: L = L (φA, ∂µφ

A, gαβ , x
σ). The

key assumption in this section is that there are no Hamiltonian constraints;
thus some of the calculations that follow do not apply to Maxwell fields,
which will be discussed elsewhere.

As elsewhere in this work, the Noether current associated with a vector
field X reads

H
µ =

∂L

∂(∂µφA)
LXφA −Xµ

L . (6.1)

Given a hypersurface S = {x0 = 0}, one thus obtains a charge integral

H[S ,X] =

∫

S

H
0dS0 . (6.2)
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The canonical momentum on S is defined as

πA ≡ πA
0 :=

∂L

∂ (∂0φA)
. (6.3)

6.1 Hamilton equations

To avoid ambiguities, variations of fields are defined as follows: given a one
parameter family of fields λ 7→ φA(λ) one sets

δφA :=
dφA

dλ
, δπA

k :=
dπA

k

dλ
,

etc.
The calculations that follow are standard. We carry them out in detail

in order to keep track of the boundary terms that arise in the process. We
assume that δX vanishes, in particular [LX , δ]φA = 0. The variation of the
functional (6.2) is defined as

δH :=
d

dλ

∫

S

H
0dS0 =

∫

S

dH 0

dλ
dS0 ≡

∫

S

δH 0dS0 , (6.4)

assuming that differentiation under the integral is justified, with

δH 0 = δ
(
πALXφA −X0

L
)

= LXφAδπA + πALXδφA −X0

(
∂L

∂φA
δφA +

∂L

∂ (∂µφA)
∂µδφ

A

)

= LXφAδπA −LXπAδφA + LX
(
πAδφ

A
)

−X0
{[ ∂L

∂φA
− ∂µ

( ∂L

∂(∂µφA)

)]

︸ ︷︷ ︸
EA

δφA + ∂µ

( ∂L

∂(∂µφA)
δφA

)}
, (6.5)

where the vanishing of EA is the contents of the Euler–Lagrange equations.
If we assume additionally that πAδφ

A ≡ πA
0δφA is the 0-component of a

vector density, using the definition of the Lie derivative of a vector density
we find

LX(πAδφ
A) = LX(πA

0δφA) = ∂α(XαπA
0δφA) − δφAπA

α∂αX
0 . (6.6)

Inserting (6.6) into (6.5) we obtain

δH 0 = LXφAδπA −LXπAδφA + ∂α(XαπA
0δφA) − δφAπA

α∂αX
0

−X0
{
EAδφA + ∂µ

(
πA

µδφA
)}

= LXφAδπA −
[
LXπA +X0EA

]
δφA

+∂µ

[
(XµπA −X0πA

µ)δφA
]
. (6.7)
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Here LXπA is understood as the α = 0-component of the field LXπAα.
Recall that by assumption the Lagrangian, and therefore also H , is a

functional of the fields and their first derivatives. Let us suppose that the
equation defining πA can be inverted to express the x0-derivative of φA as a
function of πA, φA, and of the derivatives of fields φA in directions tangential
to S (which we denote by ∂kφ

A); we emphasise that (6.7) holds regardless
of whether or not this assumption is true. Reexpressing H 0 as a functional
of πA and φA we can then calculate as

δH 0 =
∂H 0

∂πA︸ ︷︷ ︸
=: δH 0

δπA

δπA +
∂H 0

∂φA
δφA +

∂H 0

∂ (∂kφA)
δ∂kφ

A

=
δH 0

δπA
δπA +

(
∂H 0

∂φA
− ∂k

(
∂H 0

∂ (∂kφA)

))

︸ ︷︷ ︸
=: δH 0

δφA

δφA + ∂k

(
∂H 0

∂ (∂kφA)
δφA

)
. (6.8)

In this equation the notation δH 0

δπA
is somewhat of an overkill: by assumption

L depends only on the first derivatives of φA, thus H 0 does not depend on
the derivatives of ∂0φ

A, and δH 0

δπA
is simply a partial derivative with respect

to πA.
Comparing (6.5) with (6.8), for variations δπA and δφA of compact sup-

port, and supported away from the boundaries of S if any, we find

∫

S

(
(LXφA − δH 0

δπA
)δπA +

(δH 0

δφA
− [LXπA +X0EA]

)
δφA

)
dS0 . (6.9)

If all the variations δπA and δφA are independent and arbitrary we can
conclude that

δH 0

δπA
= LXφA , (6.10)

δH 0

δφA
= −LXπA −X0EA . (6.11)

We emphasise that the assumptions above are satisfied for a scalar field, but
are not for a Maxwell field.

It further holds that, for variations that do not necessarily vanish on
∂S , ∫

∂S

( ∂H 0

∂φA,k
−

(
XkπA −X0πA

k
))
δφAdS0k = 0 , (6.12)
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where the integration over ∂S , when not compact, is understood by ex-
hausting S with a family of compact domains with smooth boundary, and
passing to the limit. In situations where both ∂S and the variations of the
fields on ∂S are arbitrary, we conclude that

∂H 0

∂φA,k
= XkπA −X0πA

k . (6.13)

6.2 Algebra of charges

Consider two functionals F and G depending upon the fields πA, φA and
the tangential derivatives ∂kφ

A, which in the adapted coordinates as above
take the form

F =

∫

S

f(φA, ∂iφ
A, πA) dS0 , G =

∫

S

g(φA, ∂iφ
A, πA) dS0 . (6.14)

Following [3] we set

{F,G}S :=

∫

S

(
δf

δφA
δg

δπA
− δf

δπA

δg

δφA

)
dS0 , (6.15)

with
δf

δφA
:=

∂f

∂φA
− ∂i

(
∂f

∂φA,i

)
,

δf

δπA
≡ ∂f

∂πA
,

similarly for g.
We note that there is no reason for {F,G}S to be independent of S ,

e.g. when the original functionals F or G depend upon S . We will, however,
see shortly that {HX ,HY }S will be independent of S , within its homology
class, in situations of interest.

We note that the question of boundary terms in the variations of Noether
charges arising from flows in spacetime can be shuffled under the carpet by
defining instead

{HX ,HY }S
:= −ΩS (LXφ,LY φ) , (6.16)

where

ΩS :=

∫

S

ωµdSµ ≡
∫

S

δπA ∧ δφA dSµ . (6.17)

Equation 6.16 is a special case of (6.15) whenever no boundary terms arise in
the variations of HX and HY . We will, however, use the more fundamental
equation (6.15) in our calculation of the left-hand side of (6.16).
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Using (6.10) and (6.11), the Poisson bracket of two Hamiltonian func-
tionals HX and HY thus equals

{HX ,HY }S
=

∫

S

[
δH 0

X

δφA
δH 0

Y

δπA
− δH 0

X

δπA

δH 0
Y

δφA

]
dS0

= −
∫

S

[
LY φA

(
LXπA +X0EA

)
−LXφA

(
LY πA + Y 0EA

) ]
dS0

= −
∫

S

{
LX

(
πALY φA

)
− LY

(
πALXφA

)
+ πA

(
LY LXφA − LXLY φA

)

+EA
(
X0LY φA − Y 0LXφA

)}
dS0

= −
∫

S

{
LXH

0
Y − LY H

0
X + LX

(
Y 0

L

)
− LY

(
X0

L

)
+ πAL[Y,X]φ

A

+EA
(
X0LY φA − Y 0LXφA

) }
dS0 . (6.18)

The following relations hold

LXH
β
Y − LY H

β
X = 2∂α

(
X [α

H
β]
Y − Y [α

H
β]
X

)

+Xβ∂αH
α
Y − Y β∂αH

α
X , (6.19)

LX
(
Y β

L

)
− LY

(
Xβ

L

)
= 2∂α

(
X [αY β]

L

)
+ [X,Y ]βL . (6.20)

Inserting (6.20) and (6.19) into (6.18) results in

{HX ,HY }S
=

∫

S

{
H

β
[X,Y ] − EA

(
XβLY φA − Y βLXφA

)

+Y β∂αH
α
X −Xβ∂αH

α
Y

−2∂α

(
X [α

H
β]
Y − Y [α

H
β]
X +X [αY β]

L

)}
dSβ . (6.21)

We conclude that:

Proposition 6.1 If ∂αH α
Y = ∂αH

α
Y = ∂αH α

[X,Y ] = 0, if the field equations

are satisfied, and if ∂S1 = ∂S2, then

{HX ,HY }S1
= {HX ,HY }S2

. (6.22)

Proof: Under the conditions listed the right-hand side of (6.21) does not
depend upon S . �

Another immediate consequence of (6.21) is:

Proposition 6.2 If
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1.
∫

∂S

(
X [αY β]

L +
(
X [αLY φA − Y [αLXφA

)
πA

β]
)
dSαβ = 0 , (6.23)

and if

2. X is tangent to S or the field equations are satisfied and ∂αH
α
Y van-

ishes, and if

3. Y is tangent to S or the field equations are satisfied and ∂αH α
X van-

ishes,

then it holds that

{HX ,HY }S
= H[X,Y ] . (6.24)

�

A comment on the vanishing of ∂αH α is in order. For this, we recall
that in [4] theories satisfying the following were considered:

H1. L is a scalar density.

H2. There exists a notion of derivation with respect to a family of vector
fields X, which we will denote by LX , which coincides with the usual
Lie derivative on vector densities, and which we will call Lie derivative

regardless of whether or not this is the usual Lie derivative on the
remaining fields, such that the following holds:

a) LX preserves the type of a field, thus LX of a scalar density is a
scalar density, etc.;

b) the field πA
µLXφA is a vector density;

c) in a coordinate system in which X = ∂0 we have LX = ∂0;

d) LX satisfies the Leibniz rule.

In our case the Lagrangian also depends on a background structure,
namely the background metric. Let us collectively denote background fields
by ψI , with the understanding that if the Lagrangian depends upon both
a background field χ and its derivatives, then these derivatives appear as a
separate entry in ψI = (χ, ∂µχ, . . .). As will be seen shortly, under H1-H2
one then has the identity

∂µH
µ
X = EALXφA − ∂L

∂ψI
LXψI . (6.25)

49



Hence the divergence of H µ vanishes when the field equations are satisfied
and the background quantities are invariant under L . For the scalar field,
or for linearised gravity, this requires X to be a Killing vector field of the
background. In the Maxwell case, the divergence of H also vanishes for
conformal Killing vector fields of the background metric.

The proof of (6.25) is simplest in adapted coordinates as in [4]. An
“explicitly covariant” proof can be given for tensor fields, in which case we
can write

∇µφ
A = ∂µφ

A + ΓABµφ
B ,

where ∇ is the covariant derivative operator of gµν . Let us assume, for
simplicity, that the Lagrangian L

(
φA, ∂µφ

A, gµν , ∂σgµν
)

depends upon the
derivatives of the metric through the connection coefficients only:

L
(
φA, ∂µφ

A, gµν , ∂σgµν
)

= L
(
φA,∇µφ

A, gµν
)
.

Then

∂L

∂(∇µφA)
=

∂L

∂(∂µφA)
≡ πA

µ , (6.26)

∂L

∂φA
=

∂L

∂φA
− ∂L

∂(∂µφB)
ΓBAµ =

∂L

∂φA
− πB

µΓBAµ , (6.27)

∂L

∂(∂σgαβ)
=

∂L

∂(∂µφA)

∂ΓABµ
∂(∂σgαβ)

φB ≡ πA
µ ∂ΓABµ
∂(∂σgαβ)

φB . (6.28)

Assuming that L is a scalar density, it follows from (6.27) that the Euler-
Lagrange equations

∂µπA
µ =

∂L

∂φA
=
∂L

∂φA
+ πB

µΓBAµ

can be equivalently written as

∇µπA
µ =

∂L

∂φA
,

since πA
αLXφA∂α is a vector density. Further:

LXL
(
φA,∇µφ

A, gµν , ∂σgµν
)

=
∂L

∂φA
LXφA + πA

αLX∇αφ
A +

∂L

∂gµν
LXgµν + πA

µφBLXΓABµ ; (6.29)
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recall that
LXΓαβγ = ∇β∇γX

α +RαβσγX
σ , (6.30)

which carries over to LXΓABγ according to the rank of the tensor field φA.
The divergence of the Noether currents reads

∂αH
α = ∂α

(
πA

αLXφA −Xα
L

)
= ∂α

(
πA

αLXφA −Xα
L

)

= ∂α
(
πA

αLXφA
)
− LXL , (6.31)

where we used the fact that the Lagrangian is a scalar density:

LXL = ∂α
(
Xα

L
)
. (6.32)

Using again the fact that the vector field πA
αLXφA∂α is a vector density,

we note that
∂α

(
πA

αLXφA
)

= ∇α

(
πA

αLXφA
)
.

From (6.31) and (6.29) we conclude that

∂αH
α = ∇α

(
πA

αLXφA
)

−
( ∂L

∂φA
LXφA + πA

αLX∇αφ
A +

∂L

∂gµν
LXgµν +

∂L

∂φA,µ
φBLXΓABµ

)

= EALXφA − πA
α[LX ,∇α]φA − ∂L

∂gµν
LXgµν −

∂L

∂φA,µ
φBLXΓABµ ,

(6.33)

which provides an explicitly covariant derivation of (6.25).
The above treatment applies to any theories of tensor fields with a

coordinate-invariant Lagrangian and without constraints, e.g. for a scalar
field. This does, however, fail for theories where constraints are present,
which require further considerations.

6.3 The Maxwell field

We turn now our attention to Maxwell fields. Unless explicitly indicated
otherwise we consider a general Lagrangian

L (Aµ, ∂αAβ , gρσ) ≡ L (∂[αAβ], gρσ) , (6.34)

thus L neither involves the undifferentiated potential Aµ nor derivatives of
the metric, and the canonical momentum is antisymmetric:

πµν = π[µν] .

We start by noting that there are several ways to proceed:
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1. We view Aµ as a covector field on spacetime, with the Noether currents
Hc of (3.4) providing a starting point of further analysis; or

2. we view Aµ as a U(1)-gauge field, using the Noether currents H in-
stead; and

3. in either case we may, or we may not, gauge fix, to address issues
arising from the vanishing of the momentum conjugate to A0.

4. Yet another approach is presented in [1, Chapter 3].

We continue by noting that the Lagrangian (3.1) is a scalar density, so
that the condition H1, p. 49 is satisfied in all cases.

Next, while the replacement of LXA in the Noether currents by LXAµ
as given by (3.13) renders the current H µ given by (3.14) manifestly gauge
invariant, it leads to problems with point c) of H2. For instance, if X = ∂0
the partial derivative ∂0Aβ ≡ L∂0Aβ will be equal to

L∂0Aβ = F0β = ∂0Aβ − ∂βA0 (6.35)

only in a gauge where
∂βA0 ≡ 0 . (6.36)

But we do not wish to gauge-fix, and therefore we need to revisit the scheme.

6.3.1 Hamilton’s equations

For future reference we calculate on a general hypersurface S , in a general
metric, for a general vector field X, but using adapted coordinates in which
S = {x0 = 0}.

Choosing the covector-field approach leads to the Noether charge integral

Hc[S ,X] =

∫

S

H
0
c dS0 , (6.37)

cf. (3.4), while the U(1)-gauge field approach leads instead to

H[S ,X] =

∫

S

H
0dS0 , (6.38)

where H 0 is defined by (3.13).
The variation of Hc[S ,X] is obtained immediately by setting (φA) =

(Aα) in (6.7):

δH 0
c = LXAαδπα0 −

[
LXπα0 +X0Eα

]
δAα

+∂µ

[
(Xµπα0 −X0παµ)δAα

]
, (6.39)
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where LXπα0 is understood as the α = 0-component of the field LXπαµ,
and where E α denotes the field equations operator,

Eα ≡ δL

δAα
:=

∂L

∂Aα
− ∂µ

( ∂L

∂(∂µAα)

)
≡ −∂µπαµ . (6.40)

Integration gives

∫

S

δH 0
c =

∫

S

[
LXAiδπi0 −

[
LXπi0 +X0E i

]
δAi −X0E0δA0

]
dS0

+

∫

∂S

[
(Xiπj0 −X0πji)δAj −X0π0iδA0

]
dS0i . (6.41)

For the variations of H[S ,X], one can recycle the calculations leading
to (6.39) by rewriting H µ[X] as

H
µ[X] = πβµLXAβ − LXµ

= πβµ
(
LXAβ +XαFαβ −LXAβ︸ ︷︷ ︸

−∂β(XαAα)

)
− LXµ

= πβµLXAβ − LXµ

︸ ︷︷ ︸
H

µ
c [X]

−∂β
(
πβµXαAα

)
+XαAα ∂βπ

βµ

︸ ︷︷ ︸
E µ

. (6.42)

(Setting µ = 0, we observe the well known fact that H 0 and H 0
c differ by

a divergence when the constraint equation E 0 = 0 holds.) We can apply
(6.39) to the first two terms in the right-hand side of (6.42), obtaining thus

δH 0 = LXAα︸ ︷︷ ︸
LXAα+∂α(XβAβ)

δπα0 −
[
LXπα0 +X0Eα

]
δAα

+∂α

[
(Xαπβ0 −X0πβα)δAβ

]
− δ∂α

(
πα0XβAβ

)
− δ

(
XαAα E

0
)

= LXAαδπ
α0 −

[
LXπα0 +X0Eα −XαE0

]
δAα

+∂α

[
(Xαπβ0 −X0πβα −Xβπα0)δAβ

]

= LXAiδπ
i0 −

[
LXπi0 +X0E i −XiE0

]
δAi

+∂i

[
(Xiπj0 −X0πji −Xjπi0)δAj

]
, (6.43)

where we use lower-case latin indices for coordinates on S . Note that
δA0 vanished from this formula. Equation (6.43) is the U(1)-gauge-field-
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equivalent of (6.39), and leads to

∫

S

δH 0 =

∫

S

[
LXAiδπ

i0 −
[
LXπi0 +X0E i −XiE0

]
δAi

]
dS0

+

∫

∂S

(
Xiπj0 −X0πji −Xjπi0

)
δAj dS0i , (6.44)

where the integration over ∂S might be understood by exhausting S with
a family of compact domains with smooth boundary, and passing to the
limit.

To continue we set
πµ := πµ0 (6.45)

Anti-symmetry of πµν leads to

π0 ≡ π00 = 0 , (6.46)

and so the variations of the momenta are not arbitrary. Further, the field
equations give in particular

∂kπ
k = 0 (6.47)

which gives a constraint on the πk’s when the field equations are assumed.
In view of (6.46), and keeping in mind that δA0 does not appear in

(6.43), one could be tempted to drop the field A0 from the Hamiltonian
formalism altogether. But then treating Aµ as a vector field on spacetime, or
a gauge-field on a U(1)-principal bundle over spacetime, will not make sense.
Likewise neither (6.35) would not make sense, nor the usual expression for
the Lie derivative

Xµ∂µAν + ∂νX
µAµ ,

should one wish to use this expression instead of (6.35) in the definition
of the Noether charge. So it is natural to keep the field A0 as part of the
variables, even though it does not appear in some equations below.

To continue, recall that the variation δH is defined as follows: given any
one parameter family of fields λ 7→ Aµ(λ) one sets

δAk :=
dAk
dλ

, δπk :=
dπk

dλ
,

etc. Now, in the U(1)-bundle Hamiltonian picture both the time derivatives
of Ak and the space derivatives of A0 are eliminated in terms of πk. We can

54



therefore calculate as follows

δH[S ,X] :=

∫

S

dH 0

dλ
dS0 ≡

∫

S

δH 0dS0

=

∫

S

[∂H 0

∂πk
δπk +

∂H 0

∂Ak
δAk +

∂H 0

∂Ak,ℓ
δ∂ℓAk

]
dS0

=

∫

S

[∂H 0

∂πk
δπk +

(∂H 0

∂Ak
− ∂ℓ

(∂H 0

∂Ak,ℓ

))
δAk

]
dS0

+

∫

∂S

∂H 0

∂Ak,ℓ
δAk dS0k

≡
∫

S

[δH 0

δπk
δπk +

δH 0

δAk
δAk

]
dS0 +

∫

∂S

∂H 0

∂Ak,ℓ
δAk dS0ℓ . (6.48)

On the other hand, in the covector-field Hamiltonian approach we find

δHc[S ,X] :=

∫

S

dH 0
c

dλ
dS0 ≡

∫

S

δH 0
c dS0

=

∫

S

[δH 0
c

δπk
δπk +

δH 0
c

δAµ
δAµ

]
dS0 +

∫

∂S

∂H 0
c

∂Aµ,ℓ
δAµ dS0ℓ . (6.49)

Hamilton’s equations of motion will be obtained after comparing (6.44)
with (6.48), or (6.41) with (6.49).

Now, comparison of (6.44) with (6.48) leads to

0 =

∫

S

[(δH 0

δπk
− LXAk

)
δπk +

(δH 0

δAk
+ LXπk +X0Ek −XkE0

)
δAk

]
dS0

+

∫

∂S

[∂H 0

∂Ak,ℓ
− (Xℓπk −X0πkℓ −Xkπℓ)

]
δAk dS0ℓ . (6.50)

The question then arises whether or not, and if so how, to take into account
the Gauss constraint (6.47). (Strictly speaking, this is the Gauss constraint
when the Lagrangian for the standard Maxwell electrodynamics is consid-
ered, but we will keep using this terminology for the more general theories
considered here.) We emphasise that (6.50), as well as (6.64) below, are
identities which hold for all variations, whether or not the constraints are
satisfied. So we have now at least two options:

1. We allow any variations, perhaps but not necessarily assuming that
the Gauss constraint is satisfied at the field configuration at which the
variation is carried-out; or
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2. we assume that the Gauss constraint is satisfied, and we restrict our-
selves to variations which satisfy this constraint.

Consider, then, Equation (6.50). In the first case, both δAi and δπk are
arbitrary. Restricting to variations which vanish at ∂S we obtain

LXAk =
δH 0

δπk
, (6.51)

LXπk = −δH
0

δAk
−X0Ek +XkE0 . (6.52)

It then also follows that
∫

∂S

[∂H 0

∂Ak,ℓ
− (Xℓπk −X0πkℓ −Xkπℓ)

]
δAk dS0ℓ = 0 , (6.53)

(If δAk is arbitrary on ∂S we can further conclude that

(∂H 0

∂Ak,ℓ
− (Xℓπk −X0πkℓ −Xkπℓ)

)∣∣
∂S

nℓ = 0 ,

where nℓ is the field of conormals to ∂S , but in some situations it might
be appropriate to restrict the class of field variations allowed at ∂S . If
moreover δAk is arbitrary on ∂S and we allow ∂S to vary we further find

∂H 0

∂Ak,ℓ
= Xℓπk −X0πkℓ −Xkπℓ .) (6.54)

Next, we return to (6.50) in the second case where the variations of Ak
remain arbitrary but those of πk are subject to the constraint

δE 0 ≡ ∂kδπ
k = 0 . (6.55)

Now, the vanishing of the divergence of δπk implies that for any function λ
we have

∫

S

δπi∂iλdS0 = −
∫

S

δ∂iπ
iλdS0

︸ ︷︷ ︸
0

+

∫

∂S

δπiλdS0i . (6.56)

The right-hand side vanishes when λ or when the normal component of πi

vanish on ∂S . We expect therefore that (6.51) should be replaced by

Xµ(Ak,µ −Aµ,k) ≡ LXAk =
δH 0

δπk
+ ∂kλ , (6.57)

56



and it is conceivable that this equation can be justified for classes of fields
with restricted boundary conditions, but we have not attempted to do this.

The apparent discrepancy between the last equation and (6.51) is easiest
to understand in Minkowski spacetime, on the standard slices t = const, with
X = ∂t. Then (6.57) reads

∂tAk − ∂kA0 = πk + ∂kλ , (6.58)

so that in this case the function λ can be absorbed in a redefinition of A0.
More generally, (6.57) can be rewritten as

LXAk − ∂k(XµAµ) =
δH 0

δπk
+ ∂kλ , (6.59)

which makes it clear that the freedom in the choice of λ is closely related to
the gauge freedom of the theory.

Regardless of whether or not (6.57) provides the correct way to proceed
in whole generality, one can take into account the constraint (6.55) by using
variations of the form

δπk = ǫkℓmDℓδY m , (6.60)

which have vanishing divergence for all vector fields δY . For such variations,
and after taking into account (6.51)-(6.53), Equation (6.50) becomes

0 =

∫

S

(δH 0

δπk
− LXAk

)
ǫkℓmDℓδY mdS0

=

∫

S

ǫkℓmDℓ

(δH 0

δπk
− LXAk

)
δY mdS0

+

∫

∂S

(δH 0

δπk
− LXAk

)
ǫkℓmδY mdS0ℓ . (6.61)

As this holds in particular for all vector fields δY vanishing at ∂S , we
conclude that we must have

ǫkℓmDℓ

(δH 0

δπk
− LXAk

)
= 0 . (6.62)

In the Minkowskian case as in (6.58), this is the usual Maxwell equation

∂t ~B = −rot ~E . (6.63)
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We finish this section by comparing (6.41) with (6.49):

0 =

∫

S

[(δH 0
c

δπk
−LXAk

)
δπk +

(δH 0
c

δAk
+ LXπk +X0Ek

)
δAk

+
(δH 0

c

δA0
+X0E0

)
δA0

]
dS0

+

∫

∂S

{[∂H 0
c

∂Ak,ℓ
− (Xℓπk −X0πkℓ)

]
δAk

+
(∂H 0

c

∂A0,ℓ
+X0πℓ

)
δA0

}
dS0ℓ . (6.64)

A discussion similar to the one for H 0 applies, we leave the details to the
reader.

6.3.2 Noether charge algebra

In this section, unless explicitly indicated otherwise we consider a theory
with a general Lagrangian density of the form (6.34). As before we set

H
µ
X = πνµLXAν −Xµ

L . (6.65)

Given two functionals F and G of the form

F =

∫

S

f(Ak, ∂iAk, π
ℓ) dS0 , G =

∫

S

g(Ak, ∂iAk, π
ℓ) dS0 , (6.66)

following [3] we set

{F,G}S :=

∫

S

(
δf

δAl

δg

δπl
− δf

δπl
δg

δAl

)
dS0 . (6.67)

In this formula the operator δ/δπi is defined by ignoring the fact that δπi

should satisfy the Gauss constraint, so that (6.51)-(6.52) apply.
The Poisson bracket of two Hamiltonian functionals HX and HY with

integrands H
µ
X and H

µ
Y thus equals

{HX ,HY }S
=

∫

S

(
δH 0

X

δAl

δH 0
Y

δπl
− δH 0

X

δπl
δH 0

Y

δAl

)
dS0 , (6.68)

Let
EkX := Xk

E
0 −X0

E
k , EkY := Y k

E
0 − Y 0

E
k .

58



Recall that π0 = 0 and that LXπ0 := LXπ00 = 0 for any vector field. Using
(6.51)-(6.52) we find

δH 0
X

δAl

δH 0
Y

δπl
− δH 0

X

δπl
δH 0

Y

δAl
=

=
(
− LXπk + EkX

)
LYAk −

(
−LY πk + EkY

)
LXAk

= −LX
(
πνLYAν

)
+ πνLX

(
LYAν

)
+ LY

(
πνLXAν

)

−πνLY
(
LXAν

)
+

(
EkXY

µ − EkYX
µ
)
Fµk

= πν
(
LXLYAν − LY LXAν

)
− LX

(
πνLYAν − Y 0

L
)

+LY
(
πνLXAν −X0

L
)
− LX

(
Y 0

L
)

+ LY
(
X0

L
)

+
(
EkXY

µ − EkYX
µ
)
Fµk . (6.69)

Additionally, we have

(
LXLYAν −LY LXAν

)
=

= LX
(
Y µFµν

)
− LY

(
XµFµν

)

= Xα∂α
(
Y µFµν

)
+ Y µFµα∂νX

α − Y α∂α
(
XµFµν

)
−XµFµα∂νY

α

=
(
Xα∂αY

µ − Y α∂αX
µ
)
Fµν︸ ︷︷ ︸

L[X,Y ]Aν

+
(
XαY µ − Y αXµ

)
∂αFµν

+
(
Y µ∂νX

α −Xµ∂νY
α
)
Fµα

= L[X,Y ]Aν +XαY µ
(
∂αFµν − ∂µFαν

)
+ Fµα∂ν

(
Y µXα

)
(6.70)

Using the identity
∂αFµν − ∂µFαν = ∂νFµα (6.71)

we continue as follows:

(
LXLYAν − LY LXAν

)
=

= L[X,Y ]Aν +XαY µ∂νFµα + Fµα∂ν
(
Y µXα

)

= L[X,Y ]Aν + ∂ν
(
FµαY

µXα
)
. (6.72)

Recall the identities (6.19)-(6.20) for vector densities,

LXH
β
Y − LY H

β
X = 2∂α

(
X [α

H
β]
Y − Y [α

H
β]
X

)

+Xβ∂αH
α
Y − Y β∂αH

α
X , (6.73)

LX
(
Y β

L

)
− LY

(
Xβ

L

)
= 2∂α

(
X [αY β]

L

)
+ [X,Y ]βL . (6.74)

59



Inserting (6.72)-(6.74) into (6.69) results in

{HX ,HY } =

∫

S

{
H

β
[X,Y ] + Y β∂αH

α
X −Xβ∂αH

α
Y

−2∂α

(
X [α

H
β]
Y − Y [α

H
β]
X +X [αY β]

L

)

+
(
EkXY

µ − EkYX
µ
)
Fµk

}
dSβ . (6.75)

To continue, we wish to show that the divergence of the Noether currents,
which appear above, vanishes when the field equations hold and when the
Lagrangian does not depend upon Aµ. For this, recall that we have assumed
that the Lagrangian is a scalar density, so that

LXL = ∂α
(
Xα

L
)
. (6.76)

Thus

∂αH
α
X = ∂α

(
πναLXAν −Xα

L
)

= ∂α
(
πναLXAν

)
− LXL , (6.77)

which can be rearranged as

∂αH
α
X = ∂α

(
πνα(LXAν − LXAν

)
+ ∂αH

α
c [X] . (6.78)

For ∂αH α
c [X] the formulae (6.33) holds with L = L . Note that L does

not depend on connection coefficients. Equation (6.78) becomes

∂αH
α
X = ∂α

(
πνα(LXAν − LXAν

)

+E
κLXAκ − πλκ[LX ,∇κ]Aλ −

∂L

∂gκλ
LXgκλ . (6.79)

Now, the divergence term in (6.79) reads

∂α
[
πνα

(
LXAν − LXAν

)]
=

= E
ν
(
LXAν − LXAν

)
+ πνα∂α

(
LXAν − LXAν

)

= E
ν
(
LXAν −LXAν

)

+πνα∂α
(
XµFµν −Xµ∂µAν +Xµ∂νAµ︸ ︷︷ ︸

=0

−∂ν
(
XµAµ

))

= E
ν
(
LXAν −LXAν

)
. (6.80)
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Summarising, we have shown that

∂αH
α
X = E

νLXAν − πλκ[LX ,∇κ]Aλ −
∂L

∂gκλ
LXgκλ . (6.81)

Inserting this into (6.75) we conclude that

{HX ,HY } =

∫

S

{
H

β
[X,Y ] − 2∂α

(
X [α

H
β]
Y − Y [α

H
β]
X +X [αY β]

L

)

+Y β
(
E
κLXAκ − πλκ[LX ,∇κ]Aλ −

∂L

∂gκλ
LXgκλ

)

−Xβ
(
E
κLYAκ − πλκ[LY ,∇κ]Aλ −

∂L

∂gκλ
LY gκλ

)

+
(
EkXY

µ −EkYX
µ
)
Fµk

}
dSβ . (6.82)

where (6.79)-(6.80) have been used.

6.3.3 H 0: 3 + 1 decomposition

We continue by deriving the formula for H 0, and its variation, assuming the
standard Maxwell Lagrangean. It is convenient to introduce some notation.
In the remainder of this section we will assume that S is spacelike. We will
use the ADM parametrisation of the metric,

γij := gij , N := 1√
−g00

, Nk := g0k , Nk = γkiNi , (6.83)

where γij is an inverse of the three-dimensional metric γij induced by gµν
on S :

gµν =

[
g00 g0j
gi0 gij

]
=

[
−N2 +NkNk Nj

Ni γij

]
,

gµν =

[
g00 g0j

gi0 gij

]
=

[
− 1
N2

Nj

N2

N i

N2 γij − N iNj

N2

]
. (6.84)

It holds that √
|det gµν | = N

√
det γij . (6.85)

Let T µ denote the field of unit future-directed normals to S , thus Tµ =
−N dt. We define the electric field Ek as

Ek := NF 0k = −FµkTµ . (6.86)
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The canonical momentum πk is related to the electric field as

πk = − 1

4π

√
det γijE

k , (6.87)

and we note that

DkE
k ≡ 1√

det γij
∂k

(√
det γijE

k
)

= − 1√
det γij

∂µ
(√

det gαβF
0µ
)

= 0 ,

(6.88)
where D is the covariant derivative operator of the metric γ.

The decomposition of the Maxwell tensor density (3.3) associated with
the (3+1)-decomposition of the metric reads

F0k = N lFlk −N2F0lγlk , (6.89)

Fkl = (N lF0k −NkF0l) + γkmγlnFmn , (6.90)

where
Fαβ =

√
| − det g|Fαβ . (6.91)

For (6.90) the following calculation is useful:

Fklγkpγlq = Fµνgµkgνlγ
kpγlq

=
(
F0mg0kgml + Fm0gmkg0l + Fmngmkgnl

)
γkpγlq

= F0qNp + Fp0N q + Fpq , (6.92)

and this last equation is also useful as an intermediate step for (6.89). The
field equations operator E k reads

4πE
k = ∂l(N

lF0k −NkF0l) + ∂l(γ
kmγlnFmn) − ∂0F0k , (6.93)

which has to be supplemented with the constraint equation

4πE
0 = −∂iF i0 .
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Using (6.89)-(6.90) the Noether current (3.14) can be rewritten as

H
0 =

1

2
πkX0F0k + πkX lFlk +

1

16π

√
|det g|X0F klFkl

=
1

2
πkX0

(
N lFlk −N2F 0lγlk

)
+ πkX lFlk

+
1

16π

√
|det g|X0

(
(N lF 0k −NkF 0l) + γkmγlnFmn

)
Fkl

= −1

2
X0N2πkF 0lγlk +

1

16π

√
|det g|X0γkmγlnFmnFkl

+X0πkN lFlk + πkX lFlk

=

√
det γ

8π

[
NX0

(
EkElγlk +

1

2
γkmγlnFmnFkl + 2N−1EkN lFlk

)

+2EkX lFlk

]
. (6.94)

We can therefore write H 0 in terms of the πk’s as

H
0 =

2πX0N√
det γ

πkπlγlk +
1

16π
N
√

det γX0γkmγlnFmnFkl

+X0πkN lFlk + πkX lFlk . (6.95)

For completeness we calculate the variation of H 0 as given by (6.94):

δH 0 =

√
det γ

8π

[
NX0

(
2γlkE

kδEl + γkmγlnFmnδFkl

+2N−1N l(EkδFlk + FlkδE
k)
)

+ 2X l
(
EkδFlk + FlkδE

k
)]

=

√
det γ

8π

{
2
[
NX0

(
γlkE

kδEl +N−1NkFkl
)

+XkFkl
]
δEl

−2∂k
[
NX0

(
γkmγlnFmn − 2N−1N [lEk]

)
− 2X [lEk]

]
δAl

−2∂k
[(
NX0

(
γkmγlnFmn − 2N−1N [lEk]

)
− 2X [lEk]

)
δAl

]}
.

(6.96)

7 Plumbing the leakage

The variational identities discussed so far suffer from the existence of “leaky
boundary terms”, i.e., non-zero boundary terms in the variational formulae.
These create problems when attempting to define Poisson brackets. In this
section we show how this can be avoided by suitably extending the phase
spaces.
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7.1 De Sitter background

In what follows we will need explicit formulae for Fefferman-Graham coor-
dinates in de Sitter spacetime; the aim of this section is to address this.

In addition to the form (2.1) of the de Sitter metric, let us recall the
more standard form

g = −(1 − α2r2)dt2 +
dr2

1 − α2r2
+ r2(dθ2 + sin2 θdφ2) . (7.1)

The Bondi form (2.1) of g can be obtained from (7.1) with αr > 1 by
introducing a coordinate u through the formula

du := dt− dr

1 − α2r2
≡ d

(
t+

1

2α
ln

(αr − 1

αr + 1

))
; (7.2)

cf., e.g., [8].
Instead of either form of the metric above, for the purpose of global

Hamiltonian analysis it seems best to use a globally defined, manifestly
regular representation of the metric on the cylinder R × S3 for de Sitter
spacetime. For instance, the apparent singularity of the metric (7.1) at
r = α is due to a poor choice of coordinates, as can be seen by setting,

r = α−1 sinψ cosh(ατ) , t = α−1 areatanh

(
cosψ

tanh(ατ)

)
. (7.3)

Using (7.2), we can obtain a relation between Bondi coordinates and the
coordinates on the cylinder R× S3,

u =
1

α
areatanh

(
sinh(ατ) cos(ψ) − sin(ψ)

cosh(ατ)

)
, (7.4)

toghether with the first equation in (7.3).
After the coordinate transformation (7.3) the metric (7.1) becomes

g = −dτ2 +
cosh2(ατ)

α2

(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

))
, (7.5)

with
√

det |g| = α−3 cosh(ατ)3 sin2 ψ sin θ. The Killing vector field

T = ∂t ≡ ∂u , (7.6)

defining the Hamiltonian energy, in the coordinates (7.3) reads

T = cosψ∂τ − α sinψ tanh(ατ)∂ψ . (7.7)
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For future reference we note

∂r =
1

1 − sin2 ψ cosh2(ατ)

[
− sinψ sinh(ατ)∂τ +

α cosψ

cosh(ατ)
∂ψ

]
. (7.8)

The metric (7.5) can be rewritten in a manifestly conformally smooth
form

g = cosh2(ατ)︸ ︷︷ ︸
=:x−2

(
− cosh−2(ατ)dτ2 + α−2

(
dψ2 + sin2 ψ

(
dθ2 + sin2 θdϕ2

))
︸ ︷︷ ︸

=:γ̌

)

= (αx)−2
(
− dx2

1 − x2
+ γ̌

)
, (7.9)

so that the coordinate x (not to be confused with the coordinate x of (2.2))
is a time coordinate for |x| < 1, with spacelike level sets there.

The conformal boundary is obtained by attaching the hypersurface

I
+ := {x = 0}

to the physical spacetime. The Killing vector (7.7) becomes

T = −α tanh(ατ)
[

sech(ατ) cos ψ∂x + sinψ∂ψ
]

= −α
√

1 − x2
[
x cosψ∂x + sinψ∂ψ

]
, (7.10)

and extends smoothly to I +. For further reference we note

∂r = − αx2

sin2 ψ − x2

(
(1 − x2) sinψ∂x + x cosψ∂ψ

)
. (7.11)

Let g̃ := x2g, the g̃-Lorentzian norm-squared of T is

g̃(T ,T ) ≡ x2g(T ,T ) = x2(α2r2 − 1) = x2(sin2(ψ) cosh2(ατ) − 1)

= sin2(ψ) − x2 , (7.12)

thus T is spacelike througout I +.

7.2 Conformally-covariant scalar field

Using the coordinates as in (7.9), the phase space of Cauchy data on three-
dimensional spheres of constant x consists of smooth fields (φ, ∂xφ) with
symplectic form

Ω = −
∫

x=const
δπx ∧ δφ dSx , (7.13)
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where the minus sign in front of the integral comes from the fact that ∂x is
past pointing. Writing π for −πx (where again the negative sign is motivated
by the time orientation of ∂x), and Sc := {x = c}, there is an associated
Poisson bracket, without problems with boundary terms since S3 has no
boundary:

{F,G}Sc :=

∫

x=c

(
δF

δφ

δG

δπ
− δF

δπ

δG

δφ

)
dSx . (7.14)

It follows from conformal invariance of the equation satisfied by φ that
the field

χ :=
φ

x
(7.15)

extends smoothly to the boundary {x = 0}. We have the expansions, for
small x,

φ =
(1)

φx+
(2)

φx2 + . . . ⇐⇒ χ =
(0)
χ +

(1)
χx+ . . . , (7.16)

with coefficients which are functions on S3, where

(1)
χ ≡ ∂xχ|x=0 . (7.17)

Since Ω is x-independent when applied to variations satisfying the field equa-
tions, it is tempting to pass with x to zero. Using (7.9) and (7.15) one
obtains

Ω = − 1

α2

∫

x=0
δ∂xχ ∧ δχ dµγ̌ , (7.18)

with Poisson bracket

{F,G}S0 :=

∫

S3

(
δf

δχ

δg

δπ
− δf

δπ

δg

δχ

)
dSx . (7.19)

where now π = −α−2∂xχ
√

det γ̌.
In order to avoid leakage for fields on light-cones Cu, for each u we can

consider the phase space consisting of the field φ on Cu and of the fields
(χ, ∂xχ) on

I
+
u := {x = 0} \ I+(Cu) (7.20)

(compare Figure 7.1), equipped with the symplectic form
∫

Cu

∂rδφ ∧ δφ r2dr dµγ̊ −
1

α2

∫

I
+
u

δ∂xχ ∧ δχ dµγ̌ . (7.21)

If F and G are associated with conserved functionals, the Poisson brackets
thereof can be calculated using (7.19).
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•

r = 0

x = x(R) ⇔ R = R(x)

x = 0

Cu,R

•

γ

I+(Cu) ∩ {x = 0}

Figure 7.1: The integral curve of ∂u passing through r = 0 is denoted by
γ.

We wish to calculate the Noether charge associated with translations
of the light-cones in u for a conformally-covariant scalar field, thus with
Lagrangian

L = −1

2

√
|det g|

(
gµν∂µφ∂νφ+ m2

︸︷︷︸
2α2

φ2
)
. (7.22)

One expects a formula of the kind

H =

∫

Cu∪I
+
u

H
µ[∂u]dSµ

=

∫

Cu

H
u[∂u]dSu −

∫

I
+
u

H
x[∂u] dSx , (7.23)

where the minus sign in front of the second integral arises again from the
fact that ∂x is past-directed. However, the individual integrals diverge, so
some care must be taken. For instance, assuming α 6= 0, on the level sets of
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x the integrand H x[∂u] ≡ H x[T ] is,

H
x[∂u] =

√
|det g|

(
−∇xφLT φ+

1

2

(
∇αφ∇αφ+m2φ2

)
T x

)

= (αx)−4

√
det γ̌

1 − x2

(
− α3x2(1 − x2)3/2∂xφ

[
x cosψ∂xφ+ sinψ∂ψφ

]

−α
3x2

2

√
1 − x2x cosψ

(
− (1 − x2)(∂xφ)2 + |Ďφ|2γ̌ +m2(αx)−2φ2

))

= −α−1x−2
√

det γ̌
(

(1 − x2) sinψ∂xφ∂ψφ

+
1

2
x cosψ

(
(1 − x2)(∂xφ)2 + |Ďφ|2γ̌ +m2(αx)−2φ2

))
, (7.24)

where Ď is the covariant derivative associated with γ̌. Inspection of (7.24)
reveals terms which diverge as x→ 0 with this asymptotics and which, using
m2 = 2α2, can be collected into a divergence as follows:

H
x[∂u] = −α−1x−2

√
det γ̌

{
(1 − x2) sinψ∂x(xχ)∂ψ(xχ)

+
1

2
x cosψ

(
(1 − x2)(∂x(xχ))2 + |Ď(xχ)|2γ̌ + 2χ2

)}

= −α−1x−2 sin2 ψ sin θ
{
x(1 − x2) sinψ(χ + x∂xχ)∂ψχ

+
1

2
x cosψ

(
(1 − x2)(χ+ x∂xχ)2 + x2|Ďχ|2γ̌ + 2χ2

)}

= −1

2
∂ψ

{
α−1x−1 sin3 ψ sin θ(1 − x2)χ2

}

+
3

2
α−1x−1 sin2 ψ cosψ sin θ(1 − x2)χ2

−α−1x−2 sin2 ψ sin θ
{
x2(1 − x2) sinψ∂xχ∂ψχ

+
1

2
x cosψ

(
(1 − x2)(3χ2 + 2xχ∂xχ+ x2(∂xχ)2) + 2x2χ2 + x2|Ďχ|2γ̌

)}

= −∂ψ
{1

2
α−1x−1 sin3 ψ sin θ(1 − x2)χ2

}

︸ ︷︷ ︸
=:−ĥx

−α−1
√

det γ̌
{

(1 − x2) sinψ∂xχ∂ψχ

+
1

2
cosψ

(
(1 − x2)(2χ∂xχ+ x(∂xχ)2)+2xχ2 + x|Ďχ|2γ̌

)}

=: ∂ψĥ
x + hx . (7.25)
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It should be admitted that this way of handling the divergence is ambiguous,
and could lead to a different finite part of the resulting boundary integral
when, e.g., other coordinates are used.

7.2.1 Spacelike Cauchy surfaces

Consider, first, the Hamiltonian charge obtained by integrating (7.25) over
a three-dimensional sphere of constant x. Then there is no boundary term,
and choosing the exterior orientation of the slices appropriately one is led
to a finite charge equal to

α−1

∫

S3

{
(1 − x2) sinψ∂xχ∂ψχ

+
1

2
cosψ

(
(1 − x2)(2χ∂xχ+ x(∂xχ)2)+2xχ2 + x|Ďχ|2γ̌

)}
dµγ̌ , (7.26)

independently of x. In particular we can pass to the limit x→ 0 to define

ĚH [I +] := α−1

∫

S3

(
sinψ∂xχ∂ψχ+ cosψχ∂xχ

)
|x=0 dµγ̌

= α−1

∫

S3

(
sinψ

(1)
χ∂ψ

(0)
χ + cosψ

(0)
χ

(1)
χ
)
dµγ̌

= α−1

∫

S3

(1)
χ∂ψ(sinψ

(0)
χ )dµγ̌ . (7.27)

Note that ∂u is tangent to {x = 0}, and equals there

∂u|x=0 = −α sinψ∂ψ .

Writing πx = −px
√

det γ̌, the symplectic form Ω is independent of x on
solutions of the field equations and reads

Ω =

∫

S3

δpx ∧ δχ dµγ̌ (7.28)

The Legendre transformation leads to px = −α−2∂xχ and a Hamiltonian on
I equal to

H := ĚH [I +]

= α

∫

S3

px∂ψ(sinψ
(0)
χ )dµγ̌

≡ α

∫

S3

px∂ψ(sinψ
(0)
χ ) sin2(ψ) sin(θ)dψdθdϕ . (7.29)
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The resulting Hamilton equations take the simple form:

dpx

du
= −δH

δ
(0)
χ

=
1

sinψ
α∂ψ(sin2 ψpx) ,

d
(0)
χ

du
=
δH

δpx
= α∂ψ(sinψ

(0)
χ ) , (7.30)

with px and
(0)
χ evolving independently of each other.

7.2.2 Corner terms

We pass now to a Cauchy surface which is the union of a light-cone and the
“complementary part of I +”.

Recall that Cu is a light-cone in M with vertex at r = 0. For αR > 1
we set

Sx,u := Sx \ I+(Cu) , I
+
u := I

+ \ I+(Cu) ,

see Figure 7.1. The hypersurface I +
u can be viewed as the limit, as x tends

to 0+, of the Sx,u’s. Let Sx,u be the intersection of Cu with the Sx. Let
S0,u be the intersection of Cu with the conformal boundary at infinity I +;
thus the surface S0,u is a limit of Sx,u in which x tends to 0+.

Since the Noether current H µ = H µ[∂u] has vanishing divergence, we
have for x > x′ > 0

∫

Cu,R(x)∪Sx,u

H
µdSµ =

∫

Cu,R(x′)∪Sx′,u

H
µdSµ . (7.31)

We can thus pass to the limit x′ → 0 to obtain

∫

Cu,R(x)∪Sx,u

H
µdSµ = lim

x→0

∫

Cu,R(x)∪Sx,u

H
µdSµ , (7.32)

in particular the limit exists and is finite.
Recall that (see (7.25))

H
x = hx + ∂ψĥ

x . (7.33)

so that ∫

Sx,u

H
µdSµ =

∫

Sx,u

hxdSx + B1 , (7.34)
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where

B1 := −1

2

∫

S3

∂ψ

{
α−1x−1 sin3 ψ(1 − x2)χ2

}
dψ dθ dϕ

= −1

2

∫

Sx,u

{
α−1x−1 sin3 ψ(1 − x2)χ2

}
dθ dϕ

= − 1

2αcosh(αu)3

∫

Sx,u

[(
(0)
χ )2

x
+ 2

(0)
χ

(1)
χ − 3 sinh(αu)(

(0)
χ )2

+O(x)
]

sin θ dθ dϕ . (7.35)

Similarly, setting
H

u = hu + ∂rĥ
u , (7.36)

we can rewrite (4.25) as
∫

Cu,R(x)

H
µdSµ =

∫

Cu,R(x)

hudSu + B2 , (7.37)

where

B2 :=
1

2

∫

Cu,R(x)

∂r

[(
r2 − α2r4

)
φ
(
∂rφ

)
sin θ

]
dr dθ dϕ

=
1

2

∫

Sx,u

(
r2 − α2r4

)
φ∂rφ sin θ dθ dϕ . (7.38)

Thus
∫

Cu,R(x)∪Sx,u

H
µdSµ =

∫

Sx,u

hxdSx +

∫

Cu,R(x)

hudSu + B1 + B2 . (7.39)

Both volume integrals have a finite limit as x→ 0. It remains to analyze
the divergent boundary terms in the energy on the family Sx,u’s. This
requires some changes of coordinates. Equations (7.3)-(7.4) together with
x = 1/ cosh(ατ) can be inverted as

r(x, u) = α−1

√
1 − x2 − x sinh(αu)

x cosh(αu)

=
1 − x sinh(αu) +O(x2)

αx cosh(αu)
, (7.40)

sinψ(x, u) =

√
1 − x2 − x sinh(αu)

cosh(αu)

=
1 − x sinh(αu)

cosh(αu)
+O(x2) . (7.41)
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Since we need to calculate derivatives of the fields along Cu in the new
variables, we need instead (x, ψ) as a function of (r, u). For x > 0 and
αr > 0 one finds:

x(r, u) =

√
1 − tanh(αu)2

1 + α2r2 + 2αr tanh(αu)
, (7.42)

sin
(
ψ(r, u)

)
= αr

√
1 − tanh(αu)2

1 + α2r2 + 2αr tanh(αu)
. (7.43)

This leads to

∂ψ

∂r

∣∣∣∣
u=const

= αx2 cosh(αu) , (7.44)

∂x

∂r

∣∣∣∣
u=const

= −αx2
√

1 − x2 cosh(αu) . (7.45)

One then finds

B2 =
1

2

∫

Sx,u

(
r2 − α2r4

)
φ
(∂ψ
∂r
∂ψ +

∂x

∂r
∂x

)
φ sin θ dθ dϕ

=
1

2

∫

Sx,u

(
α−2x−2 sin2 ψ − α2(α−1x−1 sinψ)4

)
xχ×

αx2 cosh(αu)

(
∂ψ −

√
1 − x2∂x

)
xχ sin θ dθ dϕ

=
1

2α cosh3(αu)

∫

Sx,u

(0)
χ
[ (0)
χ

x
− ∂ψ

(0)
χ + 3

(-1)
χ − 4 sinh(αu)

(0)
χ

+O(x)
]

sin θ dθ dϕ . (7.46)

We are ready now to compare (7.35) and (7.46). Note that each diverges
when x tends to 0+, but their sum ∆Bx,u := B1 +B2 ,, relevant for the total
energy, is finite. Indeed, passing to the limit x→ 0+ one finds

∆B0,u := lim
x→0+

∆Bx,u

=
1

2α cosh3(αu)

∫

S0,u

(0)
χ
(

(1)
χ − ∂ψ

(0)
χ − (0)

χ sinh(αu)
)

sin θ dθ dϕ . (7.47)

Summarising: in the phase space described above the dynamical system
induced by translating in u the tip of the light-cone is Hamiltonian, with
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Hamiltonian equal to (compare (7.23) and (7.33)):

H := lim
x→0

∫

Cu,R(x)∪Sx,u

H
µdSµ

=

∫

Cu

hudSu + ∆B0,u

︸ ︷︷ ︸
=:ĚH [Cu]

−
∫

I
+
u

hxdSx (7.48)

(with the minus sign in the last integral arising from the fact that ∂x is past-
directed), where now all the terms are finite. In this picture the “leaking
terms” correspond to an exchange of energy between the subsystem consist-
ing of the field on the light cone and the field on I +

u .

7.3 Maxwell fields

The analysis for Maxwell fields is quite simpler than that for the conformally-
covariant scalar field. The phase space of Cauchy data on three-dimensional
spheres of constant x consists of smooth fields (Aµ, ∂νAµ) with, loosely
speaking, symplectic form

Ω = −
∫

x=const
δπµx ∧ δAµ dSx

= −
∫

x=const
δπkx ∧ δAk dSx , (7.49)

where we used (xµ) = (x, xk), where the xk’s are local coordinates on I +,
as well as the fact that πxx = 0. There exists a gauge in which all fields
extend smoothly through x = 0, so that we can write

Ak =
(0)

Ak + x
(1)

Ak + · · · , (7.50)

Fxk =
(0)

F xk + x
(1)

F xk + x2
(2)

F xk + . . . , (7.51)

where the expansion coefficients are functions of xk. Since Ω is conserved
for variations satisfying the field equations it holds that

Ω =
1

4π

∫

x=0
γ̌klδ

(0)

F xl ∧ δ
(0)

Al dµγ̌ . (7.52)

The dynamics generated by the flow of ∂u is Hamiltonian, with

EH [S3] := −
∫

S3

H
x[∂u]dSx . (7.53)
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Assuming α 6= 0, using (7.9)-(7.10) we find

H
x[∂u] :=

∂L

∂Aβ,x
LT Aβ − L T x

= − 1

4π

√
| − det g|

(
F xβT αFαβ −

1

4

(
F νβFνβ

)
T x

)

=
(αx)−4

4π

√
det γ̌

1 − x2

{
F xβα

√
1 − x2

[
x cosψFxβ + sinψFψβ

]

−1

4
α
√

1 − x2x cosψ
(
F νβFνβ

)}

= − 1

4π
α
√

det γ̌
{1

2
x(1 − x2) cosψFxkFxlγ̌

kl

+(1 − x2) sinψFxkFψlγ̌
kl +

1

4
x cosψFmkFnlγ̌

mnγ̌kl
}
. (7.54)

Hence

EH [S3] = − α

4π

∫

S3

[
sinψ γ̌kl

(0)

F xk

(0)

F ψl +O(x)
]
dµγ̌

= − α

4π

∫

S3

sinψ γ̌kl
(0)

F xk

(0)

F ψl dµγ̌ , (7.55)

where in the last equality we used the fact that EH [S3] does not depend
upon x.

To take care of the leakage, for each u we can consider the phase space
consisting of the fields Aµ on Cu, and (Ak, ∂xAk) on the set I +

u of (7.20),
equipped with the symplectic form

Ω =
1

4π

∫

Cu

(
r2δFur ∧ δAr + γ̊ABδFrB ∧ δAA

)
dr dµγ̊

− 1

4π

∫

I
+
u

γ̌klδ
(0)

F xk ∧ δ
(0)

Al dµγ̌ . (7.56)

The Hamiltonian charge associated with moving the light-cones along
the flow of the Killing vector ∂u ≡ T decomposes as in (7.23),

H =

∫

Cu

H
u[∂u]dSu −

∫

I
+
u

H
x[∂u] dSx , (7.57)

(where the minus sign in the second integral is again motivated by orien-
tation considerations) but now each integrand is finite without further due;
hence no corner contributions arise.
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A Killing fields in Minkowski, de Sitter and anti-
de Sitter spacetimes

In order to determine the Noether charges in our formalism we will need
the explicit form of the Killing vector fields in Bondi coordinates on the de
Sitter, and anti-de Sitter and Minkowski spacetimes.

A.1 Killing fields in de Sitter spacetime

We use the following basis of the space of Killing vectors in de Sitter space-
time

T = ∂u , (A.1)

R = εBAD̊A

(
Rin

i
)
∂B , (A.2)

PdS = eαu
[
pin

i∂u −
(
αr + 1

)
pin

i∂r −
αr + 1

r
D̊A(pin

i)∂A

]
, (A.3)

LdS = e−αu
[
lin

i∂u +
(
αr − 1

)
lin

i∂r +
αr − 1

r
D̊A(lin

i)∂A

]
, (A.4)

where Ri, pi and li are constants. Using the following coordinate change

x0 =

(
sinh(αu) − r2α2 sinh(αu) − αr

)
cosh(αu) + αr − sinh(αu)

α
((
α2r2 − 1

)
cosh(αu)2 + 2 cosh(αu) − α2r2 − 1

) ,(A.5)

x1 =

(
cosh(αu) − sinh(uα)αr − 1

)
r sin θ cosφ(

α2r2 − 1
)

cosh(αu)2 + 2 cosh(αu) − α2r2 − 1
, (A.6)

x2 =

(
cosh(αu) − sinh(uα)αr − 1

)
r sin θ sinφ(

α2r2 − 1
)

cosh(αu)2 + 2 cosh(αu) − α2r2 − 1
, (A.7)

x3 =

(
cosh(αu) − sinh(uα)αr − 1

)
r cos θ(

α2r2 − 1
)

cosh(αu)2 + 2 cosh(αu) − α2r2 − 1
, (A.8)

the de Sitter metric (7.1) transforms into conformally Minkowskian form

g =
4

(
1 + s2α2

)2 ηµνdx
µdxν , (A.9)

where ηµν = diag(−1, 1, 1, 1) and s2 = ηµνx
µxν . Defining

Sµ = −1

2
∂µ −

α2

2

(
2ηµλx

λxν − s2δµ
ν
)
∂ν , (A.10)

Lµν = ηµλx
λ∂ν − ηνλx

λ∂µ , (A.11)
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one finds

T = S0 , (A.12)

R = R̃iǫ
ijkLjk , (A.13)

PdS = p̃iη
ij(αL0j − Sj) , (A.14)

LdS = l̃iη
ij(αL0j + Sj) , (A.15)

where {i, j, k} ∈ {1, 2, 3} , ǫ123 = 1. R̃i, p̃i, l̃i are respectively linear combina-
tions of Ri,. The following commutation relations hold

[
Lαβ, Lρσ

]
= ηβρLασ + ηασLβρ − ηβσLαρ − ηαρLβσ , (A.16)

[
Lµν , Sρ

]
=

(
ηµληρν − ηµρηλν

)
ηλσSσ , (A.17)[

Sβ, Sρ
]

= α2Lρβ , (A.18)

which leads to

[
T ,R

]
= 0 , (A.19)[

T ,PdS
]

= αPdS , (A.20)[
T ,LdS

]
= −αLdS , (A.21)[

RI ,RII

]
= RIII , (A.22)

where RI ,RII ,RIIIare given by (A.13).

A.2 Killing fields in anti-de Sitter spacetime

Using for anti-de Sitter α̃ := −ıα , while simultaneously keeping pi, li real,
the real and imaginary parts of PdS and LdS are

PdS(pi) = PadS(pi) + ıLadS(pi) (A.23)

LdS(li) = PadS(li) + ıLadS(−li) (A.24)

where

PadS(p̃i) = p̃i

[
nicos(α̃u)∂u + ni(α̃rsin(α̃u) − cos(α̃u))∂r

+
(α̃rsin(α̃u) − cos(α̃u))

r
D̊Ani∂A

]
, (A.25)

LadS(l̃i) = l̃i

[
nisin(α̃u)∂u − ni(sin(α̃u) + α̃rcos(α̃u))∂r

−(sin(α̃u) + α̃rcos(α̃u))

r
D̊Ani∂A

]
. (A.26)
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A.3 Killing fields in Minkowski spacetime

The Killing fields in Minkowski spacetime will be labelled as

T = ∂t , (A.27)

R = ǫijkRiδjlx
l∂k , (A.28)

P = P k∂k , (A.29)

L = Lix
i∂t + tLi∂i , (A.30)

where Pi ≡ P i , Li ≡ Li and Ri are all constants.
The coordinate transformation between Minkowskian and Bondi coordi-

nates (
u = t− r, r, xA

)
(A.31)

gives

∂t = ∂u , ∂i = ni (∂r − ∂u) +
1

r
D̊Ani∂A , (A.32)

where the fields

ni :=
xi

r
(A.33)

form a basis of the space of ℓ = 1 spherical harmonics, and thus ni is viewed
as a scalar on S2 in formulae such as D̊Ani. Under (A.31) the Killing vectors
(A.27)-(A.30) become

T = ∂u , (A.34)

R = εABD̊B(Rin
i)∂A , (A.35)

P = Pi

(
ni (∂r − ∂u) +

1

r
D̊Ani∂A

)
, (A.36)

L = Li

(
− uni∂u + (u+ r)ni∂r +

(
1 +

u

r

)
D̊Ani∂A

))
. (A.37)

where εAB is a two-dimensional Levi-Civita tensor; in spherical coordinates
(θ, φ) we take the sign εθφ = 1

sin θ .
The Killing fields for Minkowski spacetime can be obtained as a limit of

de Sitter spacetime. Equations (A.3)-(A.4) and (A.36) give

P = −1

2
lim
α→0

(
PdS + LdS

)
; (A.38)

where one has to set li = pi = Pi. Analogically, (A.3)-(A.4) and (A.37) lead
to

L =
1

2
lim
α→0

(LdS − PdS
α

)
, (A.39)

where the parameters should be taken as pi = li = Li.
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B An example: Blanchet-Damour-type solutions
of the Maxwell equations

An elegant class of linearised solutions of the Maxwell equations with Λ = 0
can be constructed in analogy to the Blanchet–Damour solution for lin-
earized gravity, introduced in [2]. The electromagnetic potential Aµdx

µ in
Lorenz gauge satisfies

�ηAν = 0 , ∂µA
µ = 0 . (B.1)

Here η is the Minkowski metric, taken to be −(dx0)2+(dx1)2+(dx2)2+(dx3)2

in the coordinates of (B.1), and �η the associated wave operator. As in [2]
we start with an ansatz for the electromagnetic potential in Lorenz gauge:
given a collection of smooth functions Ii : R → R, the one-form

At = ∂j
( İj(t− r) − İj(t+ r)

r

)

= −
(
Ïj(t− r) + Ïj(t+ r)

)xj
r2

+O(r−2) , (B.2)

Aj =
Ïj(t− r) − Ïj(t+ r)

r
, (B.3)

where each dot represents a derivative with respect to the argument of Ii,
is a smooth tensor field on Minkowski spacetime solving (B.1).

Since the operators appearing in (B.1) commute with partial differentia-
tion, further solutions can be constructed by applying ∂µ1 · · · ∂µℓ to Aµ, and
by applying Poincaré transformations.

Acknowledgements: We are grateful to Jacek Jezierski and Jerzy Ki-
jowski for useful discussions.
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