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Abstract

We analyse the Noether charges for scalar and Maxwell fields on
light cones on a de Sitter, Minkowski, and anti-de Sitter backgrounds.
Somewhat surprisingly, under natural asymptotic conditions all charges
for the Maxwell fields on both the de Sitter and anti-de Sitter back-
grounds are finite. On the other hand, one needs to renormalise the
charges for the conformally-covariant scalar field when the cosmologi-
cal constant does not vanish. In both cases well-defined renormalised
charges, with well-defined fluxes, are obtained. Again surprisingly, a
Hamiltonian analysis of a suitably rescaled scalar field leads to finite
charges, without the need to renormalise. Last but not least, we indi-
cate natural phase spaces where the Poisson algebra of charges is well
defined.
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1 Introduction and summary

In field theory it is commonplace to identify the total energy of a field config-
uration with the Hamiltonian charge, also known as the Noether charge, as-
sociated with time translations. Consider, then, a field theory on a Minkowski,
de Sitter, or anti-de Sitter background. When the cosmological constant A
is negative the notion of time translation is somewhat muddled by the fact
that there are no globally timelike Killing vector fields. However, in all the
above spacetimes, given a light-cone, there exists a family of Killing vec-
tors which are timelike at its tip, generating flows which move isometrically
the whole light-cone to its future. The associated Hamiltonian provides a
good candidate for the definition of total energy contained in the light-cone;
the resulting formula coincides with the usual definition of energy when the
cosmological constant vanishes.

It should be kept in mind that the problem of real interest is the full
nonlinear theory, including the gravitational field, in the presence of a cos-
mological constant. While some progress towards the understanding of that
problem has been done [5,[7,[0,13], there remain ambiguities which are far
from understood. Therefore a systematic analysis of the simpler problem,
of linear fields on a fixed background, appears in order.

In recent work [4] we analysed the Hamiltonian charge associated with a
timelike translation of tips of light cones for the scalar field and the linearised
gravitational field on the backgrounds just listed. Much to our surprise, we
found that the charge integrals diverge when the cosmological constant does
not vanish. We proposed a renormalisation procedure that led to finite
charges, with well defined flux integrals. The aim of this work is to analyse
similar charges associated with the flow of the remaining Killing vector fields
for the conformally-covariant scalar field and for the Maxwell field on these
backgrounds.

Somewhat surprisingly, we find that all resulting charges for the Maxwell
field are finite. On the other hand, when A # 0 the charges for the scalar
field need to be renormalised again, except for angular momentum where
the divergent terms in the integrand integrate-out to zero on spheres. After
renormalisation one obtains a well defined set of charges, with well defined
flux formulae.

As a byproduct, we find an alternative Lagrangian for the scalar field
which leads to finite charges, without need for renormalisation. The al-
ternative Lagrangian depends explicitly upon the coordinates, and leads to
different global charges. This raises the question of physical significance
and relevance of the resulting expressions, and we do not have an answer



for this. The point of view advocated by Kijowski [10,[11], that different
energy expressions correspond to different sets of boundary conditions, does
not seem to be helpful for radiating systems.

Given a full set of charges of the scalar field and the Maxwell field, it is
tempting to enquire about their algebra. One is then faced with the problem
of boundary terms in the variational formulae, which appear to obstruct
a meaningful definition of a Poisson bracket. One way out is to work in
phase-space sectors where the boundary terms vanish by choice of boundary
conditions. But then the charges are defined only up to a functional which
depends upon the boundary data, and there does not exist a clear principle
to single-out a preferred one. Here we propose a simple solution, to extend
the phase space to include the boundary degrees of freedom. For yet another
proposal, see [14].

We now pass to a more detailed summary of our results.

1.1 Scalar fields

On Minkowski, de Sitter and Anti-de Sitter spacetime we consider a scalar
field with Lagrangian
2A 42

1
Z = _5\/ ’detg’(gmjau(bauqs"i‘? )7 (1'1)

where A is the cosmological constant. The mass term is chosen so that the
resulting field equation is conformally covariant. We consider fields with the
following asymptotic behaviour, for large r,

(-1) (-2) (-3)

A): ¢(uv$A) + ¢(u,233A) + gb(u;)xA)
T r T

¢(U,T,$ + ..., (12)

which can be justified by an analysis of the Cauchy problem for the field
equations. Indeed, if the asymptotic expansion ([.2]) is imposed on an initial
light cone, it is preserved by evolution when A > 0. This is also the case when
A < 0 after requiring that the associated solutions vanish at the conformal
boundary at infinity.

Consider the Noether charge associated with a vector field X and a
hypersurface . (we follow the formalism of [12]):

HIX, S| = / (whLxd— X .2)dS, (1.3)
7 =0 [X]
1
= 5 < /yww,,qus) s, — /8 yX[oqusdsW) , (1.4)
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with

00X
= Wu ,
Here (L3) is a definition while (4] is an identity for linear field theories,

compare [4, Proposition 1]; the reader is referred to the text below for no-
tation that has not been defined so far.

mh w(p, Lxd) =7 Lxp— ¢ LxTH.

1.1.1 The energy

Let us denote by %, the light cone of constant retarded time u. We use the
symbol €, r to denote the truncation of €, to r < R:

Cur =CuN{r < R}.

It turns out that the Noether charge on €, r, associated with translations
in u, diverges as R tends to infinity. A direct analysis of the integrand gives

(cf. (@25) below)

Esel6r] = / HHD,)dS,,
<gu,R

= %[g (’OYABEAbe)B(b—FmQrQ&
0, [(r2 — ar)0(0,0)| — 60, [(+* — a**) (8,0)] ) dr ds
2R (-1
= aT g (¢))2dwy+0(1), (1.5)

where Si denotes a sphere r = R within %, with
A
Oé2 = g s

and where O(1) here denotes a volume integral which has a finite limit as
R — o0o0. A finite renormalised Noether charge can then be obtained by
discarding the divergent boundary integral:

2 -1
Ewl#) = lim { c%fu[au]dsu—% ((¢))2du:y}. (1.6)
<gu,R

R—o0 Sk

The divergent term evolves on its own, so that the renormalised Noether
charge follows a well defined evolution law, as derived below in (£.43)):

daﬂ%]:‘/[ﬁgmj+@ﬁﬁ_@@>%$pw. (1.7)
du Sg
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Now, some authors discard the divergence term in (4] and use directly

B[] = % /y W (b, Lx ) dS, (1.8)

as a definition of Noether charge; this gives of course the same total energy
as the original formula (3] for field configurations for which the boundary
term vanishes. In [4] we observed that the integral (L]) is finite, leading to
a rewriting (see Equation (2.64) there)

1 (1) (D

5 (D)
EwlCur] = Eﬁ%ﬂy—542¢@mb—aR¢)mw+ouw (1.9)

So, the divergent part of (L) appears directly in the boundary term in

(C4). Equation (L) implies

R 1 [ D D
Ex|¢,)) = E,[.)— 3 Jen ¢ Oy dps . (1.10)
The energy E,[%,] satisfies a flux formula (see (£47]), p. B6l below)
dE,|€, 1 1 (-2 2) (1) D D (-1)
—?%J=§LJ—J¢%¢+J¢%¢+¢%¢%%¢VMM~@H)

The fact that E,[%, g] has a finite limit as R — oo suggests that the
resulting Noether charge E,[%,] is more fundamental than E . But one
should keep in mind that the equality between (L3]) and (I.4]) is only guar-
anteed for linear theories. In fact, (I3]) is defined for any theory, whether
linear or not, while (L4]) does not make sense for nonlinear theories, such
as Yang-Mills or metric gravity. Last but not least, E,[%,] is not monoton-
ically decreasing in asymptotically Minkowskian spacetimes, as it should;
see (LAT), p. Bl below. Therefore we view (L3) as a more fundamental
equation.

To make things even more confusing, it turns out that the field equations
for the field

p=ro,
where r is an affine parameter along the generators of the light cone, can be
derived from the Lagrangia

1 e~ ~
f:—ﬁ |detg| g""'V, 0 V00, (1.12)

'References to numbering in [4] are to the arXiv version.

2Note that the singularity at » = 0 in ([L12) is integrable for fields ¢ which are smooth
at the origin. While the presence of an unbounded integrand might be aesthetically
unpleasant, it does not present difficulties as far as calculus of variations is concerned.



which differs from (LI) by a boundary term, compare (5.2]) below. Some-

what surprisingly, again under the asymptotic conditions (I.2]). the Noether

charge associated with translations in w turns out to be finite (cf. (G.14)

below):

8 . 1 1 ape ~eo ~ ~9

Ew|€,] := E[0,,%,] = 5/ <T_27ABDA¢DB¢ + (1 - ar?)(0,9) ) dr dus, .
C,

w

O(r—2)
(1.13)
So we have a third candidate for the energy of the conformally-covariant
scalar field, with flux (cf. (5.24]) below)

dE 5[,

1 ©
[ (a*6 = 0,0)0,0d;. (1.14)
du S

The fact that the numerical value of E 4 differs from that of both E 4 and
E, when a # 0 is made clear by comparing (L.I4) with (IL7) and (LII):
all three fluxes differ.

The question then arises, whether the analysis of the Poisson algebra
might give a hint, which of the energy-type expressions above have better
properties. This is addressed in Sectionfl To answer this question one needs
to have a well defined Poisson algebra, which seems to be a problem when
“charges are leaky”, i.e. when the variations of functionals lead to nonvan-
ishing boundary integrals. We emphasise that in our setup such boundary
terms are unavoidable, because the fields under consideration radiate along
light cones.

Now, it was observed in [6] that the charge-leaking can be remedied, in
the case of (fully nonlinear) gravitational fields with A = 0, by extending
the phase space of data on the light cone by adding suitable data on the
portion of .#T to the past of the intersection of the light cone %, with
4. In Section [7] we show how to generalise the procedure from [6] to the
conformally-covariant scalar field with A > 0. For this it is convenient to
introduce a coordinate system in which the de Sitter metric takes the form

g = cosh?(ar) (- cosh™%(ar)dr? + a2 (dw2 + sin? 1) (d@2 + sin? 9dcp2)) )
—_——

=x—2 =5
da?
_9 .

= — 1.15

(ax) (=== +7) (1.15)
with  vanishes on .# . Under our asymptotic conditions above the field
¢
== 1.16
X = (1.16)



extends smoothly to .#, and the expansion (L2]) translates to, for small x,

w @ ©, W
o= ¢x+ px*+ ... — X=X+txz+..., (1.17)

Using the fact that ##* has vanishing divergence under the current con-
ditions, together with (7.33]) and (7.30)), the following equivalent equations
hold

_ (1) . (0)
Blt) = o [ Y0y (sin ' )dpiy
FHNIT(6u)

1 Q) ((0) . )
- sinh(au) — >d .. (1.18
o cosh® () /Soyux X sinh(ou) — X |dps . (1.18)

In the phase space of Section [.21the dynamical system induced by trans-
lating in u the tip of the light-cone is Hamiltonian, with Hamiltonian equal

to (see (T.48]) with h* given by (7.25]), h* by (.37) and ABy,, by (.47)):

1 /.ame o
H = [gu ﬁ(’VAB’DAQSDBQS—Fm?r?(ZQ _ ¢6r[(7~2 — a2r4) (&«qb)])rz dr dys

0 ()

1 ©) (W) . .
_— — Oy X — h 6dod
2a cosh®(au) /So,u X (X $X T XS (au)) St v

+a~t /y+ {(1 —:E2)sin1[)8x)<8wx

1 .
+5 cosz/1<(1 — 2%)(2x0ux + (8 X)?) + 22x* + a:\Dx\,zy) }d,u;, (1.19)

= Eﬁiﬂ[(gu] + Eﬁiﬂ[fu—'—] ) (1.20)

where E,-[.7:F] is the volume integral over .Z;f = .#+ \ IT(%,) in (LI9),
with all integrals finite.

Our analysis of the scalar field can be summarised as follows, compare
Table [Tt

1. The defining equation (L)) for E,r makes sense for any theory, in-
cluding non-linear ones, has the right properties when A = 0, but does
not lead to convergence integrals when A # 0. It needs to be “renor-
malised”, with ambiguities concerning the finite part of the renormal-
ising corrections.

2. The “energy” E,, defined in (L8)) leads directly to finite integrals for
all A. However, it does not lead to a monotonously decreasing quantity
when A = 0. Moreover it does not have any obvious generalisation to
nonlinear fields.



A>0 A=0 A<O

Ewp | o0 < 00, dgf <0 00

E, < oo | < oo, % can have any sign | < 00

EA% < 00 = FE < 00 corner term ad hoc

Ey | <oo | (already considered in [6]) - corner term ad hoc
E < 00 = FE < 00 Lagrangian explicitly

coordinate dependent

Table 1.1: Various energies for the conformally-covariant scalar field. F
is defined in (IH); E,, is defined in (L8) and differs from (LH) by a total
divergence; similarly for E 4, with yet another boundary term; E - is de-
fined in (.20 based on phase-space considerations and differs again from
E by a further boundary term; E uses the canonical definition as in (T3)
but with the alternative Lagrangian (LI12)).

3. The “energy” E |, of (L6]) has several desirable properties:
(a) It is finite for all A.

(b) It is non-increasing when A = 0 (since it coincides with E
then), and is conserved when A < 0 and the standard boundary

1)
condition ¢ = 0 is imposed (cf. (L7)).

(c) It has a reasonably natural derivation, namely one removes a
manifestly divergent term in Bondi coordinates.

However, the choice of Bondi coordinates is ad-hoc, and other similar
prescriptions using different coordinate systems will lead to different
expressions.

4. The energy E given by ([LI3) has properties similar to £ (cf. (LI4)
but arises from a coordinate-dependent Lagrangian, which does not
have any obvious generalisations to non-conformally-covariant theo-
ries.

5. The energy H of (I.I9) appears naturally when extending the phase
space to include the degrees of freedom at ., its numerical value



is the same for all cones %, and thus carries only global information
about the field. It splits into a volume integral on a subset of .# T and
a remainder which is determined by the fields on %,. However, the
uniqueness of this splitting is not clear.

1.1.2 Further charges

The total angular-momentum is obtained from the following integral:

J[€,)] = HPR|AS,, = RiJ'[6.], (1.21)
Cu

with (cf. ([4.28)) below)

J’[‘gu] = / TEABlO)BxilO)A(b&,(b dr dps (1.22)
which converges because a potentially divergent terms in the asymptotics of
the integrand integrates out to zero.

The alternative Lagrangian leads to the same integral, in a form which
is manifestly convergent, as determined in (G.I6]) below:

JC,) = / r AP Dpat D g0, ¢ dr dus = J' %), (1.23)

w

O(r—2)

Explicit expressions for the remaining charges associated with Killing
vector fields of the background, as well as their fluxes, can be found in
Sections M and Bl

1.2 Maxwell fields

We consider Maxwell fields on Minkowski, de Sitter and Anti-de Sitter space-
time. KEach of these spacetimes has a conformal boundary at infinity, and
we consider fields which smoothly extend through that boundary; a large
class of such solutions of the sourceless Maxwell equations exists, which
can be justified by an analysis of the Maxwell equations on the conformally
rescaled manifolds. An elegant explicit family of such solutions is presented
in Appendix [Bl essentially due to [2].

We use the field equations to derive the asymptotic behaviour of various
components of the field along light cones in Section [2} in Bondi coordinates

10



(cf. Equation (2.1), p. [H):

(}?’) ]O)A(;’) ]O)A(;’)

ur Ar Ar

F, = e +..., (1.24)
© 5 (;) 5 (2:21) 5 (;) 5 (2:31)

FAB _ FAB+ AL Br B L Ar + AL Br S B L Ar o (125)

T 27

© 2(-F31) lo) (;) lo)B(FOz

Fyq = Foq+ 254 A2T“’“ BA .., (1.26)

see (2.8) and below for details.

Section [3 starts with an analysis of Noether currents and their flux
for Maxwell theory in a general background. In order to obtain a gauge-
independent Hamiltonian, following [I2] we use a notion of Lie-derivatives
of the Maxwell potential arising from the U(1)-principal-bundle formula-
tion of the theory. The results are applied to the de Sitter background in
Section [3.Il Recalling that %, denotes the light cone of constant u, a calcu-
lation leads to the following formula for the Noether charge on light cones
associated with u-translations of %, (cf. (3:39), p. 23)):

Exl6] = | #*.as,
1 1. . .
= — <—27ACVBDFABFCD +2F;, — 2€N27ABFTAFTB) dr dps
167 Cu T

(1.27)

where the convergence of the integral follows from (L.24])-(L.20)).
Likewise the components of the total angular-momentum vector are given
by convergent integrals:

JR] = HM[R)AS, = RJ", (1.28)
Cu
with
1

J = E 5ABani <T2FWFAT + ’?BCFBT‘FCA) dr d,Wy- (1-29)
Cu

Explicit formulae for the momentum and center of mass of the field can be

found in (3.42))-(343)).
In Section we apply the formalism to light-cones in Minkowski space-
time, while Section B3] is concerned with anti-de Sitter spacetime.

11



In Section [3.4] we consider the time-evolution of the charges, by which we
mean the evolution of the charges when the tips of the light-cones are moved
along the Killing vector 9,. In particular we find the following formulae for
the flux of the energy,

dE | 1 ) 2 () ©  ©
‘ij;u[u] = _E/ [,}/AB(O[2 F ArFpy + FAuFBu)]d,U-:/, (1.30)

and for that of angular-momentum:

dJ’ 1 o -2) © L ©
T = _E o [EABDB(TIZ) (’YBC(Oé2FBT + FBu)FCA

(-2)  (0)
- FWFAU)}dM. (1.31)

Similarly to the scalar field case, one can avoid phase-space leakage for
the Maxwell field by considering jointly fields on %, and 1 \ IT(%,).
This leads to a Hamiltonian dynamics, with u-independent Hamiltonian

(cf. (TET), with 527"[9,] given by B39) and #7*[9,] by (T.54)

1 1 .40 .
H - — (—nyAnyBDFABF(;D FoF2 _ 2eN25ABE, AF,,B> dr dyus
167'(' G T
1
_g {—gj(l _$2) COSTprkFxl/vkl
AT ) g\1+(6,) L2

. . 1 e
+ (1= 2?) sin Y Fp Fyy ™ + LT cos ¢kaFnl7m"7kl}dM ;

where all the integrals are finite, without the need for any corrections. Since
H is u-independent, formula (L30) describes the flow of energy between €,
and £\ IT(6,).

In absence of a clear guiding principle for adding boundary terms to the
Noether charges, we have not attempted to repeat the analysis of various
alternative energies, as done for the scalar field, in the Maxwell case.

1.3 Poisson brackets

Section [0 is devoted to an analysis of the Poisson brackets for unconstrained
fields. As already pointed-out, a direct calculation of Poisson brackets asso-
ciated to initial data on characteristic surfaces is tricky. We circumvent this
problem by using the fact that, for conserved quantities, the relevant Poisson
brackets can be calculated by evolving the field to a spacelike hypersurface

12
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. and calculating the brackets there, using the formula advocated in [3]:
for functionals of the form

Fe / F(6%, 067 7Y dSy, G = / g(6", 06" 7Y dSy,  (1.33)
7 S

[ (6 b9 6f b
(F,G}y = /y <5¢A ey 5¢A>d50. (1.34)

In Proposition 6.2, p. @8 we list a series of conditions that guarantee the
equality

one sets

{Hx,Hy}y = Hxy- (1.35)

This leads to another problem, of boundary terms arising in variational iden-
tities, which might affect equations such as (L35]), and leads us to propose
alternative phase spaces for the problem at hand, already mentioned above.
We turn our attention to Poisson brackets for Maxwell field in Sec-
tion The considerations of Section do not apply without further due
because of gauge-invariance, and the resulting constraints. We start with an
ab-initio analysis, on a general spacelike hypersurface in a general spacetime,
using ADM notation: in adapted coordinates such that .# = {z° = 0},

1

Yij = Gij, N = s Nk = gok - (1.36)
\/—g%
We define the electric field on .¥ as
EF = FRrT, (1.37)

where T* is the field of unit normals to .#, with the orientation chosen so
that
T,dat = —Ndt <= T = N9 — N*5). (1.38)

The canonical momentum is defined by the usual formula,

0L
= TO0A,) (1.39)

When the Lagragian depends only upon F),, the zero-component of 7# van-
ishes, so only its space-part 7% remains of interest. In the standard Maxwell
electrodynamics the field 7% is the densitised equivalent of the electric field
EF.

1

1
k Ok k
= dety;; NF™" = I det v;; B, (1.40)
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Now, functionals which depend only upon F,,, such as the Noether cur-
rent, can be expressed in terms of the space-part A; of the four-potential
A, and of the electric field. For instance, in the standard Maxwell elec-
trodynamics we have, using the ADM notation for the metric (cf. (6.95),

p. [63)

HL7, X] = / A4S,
5

1 1 B

- =/, [NXO(EkElylk + 57" B Pl + 2N EFN' )
+2EleFlk] V/det~ dSp . (1.41)
0

Since 7° vanishes by antisymmetry of F*, we cannot define the Poisson
bracket using ([L34) with (¢4) = (A,). Instead we set

B 5f 69 Of dg
(F,G}y = /y <5Al - 5A1> dsS, . (1.42)

In this formula Ay has become irrelevant, though it has neither been gauged
away nor discarded, being part of the U(1)-gauge potential A,dx*.

When deriving the Hamilton equations for the Maxwell field, or indeed
when considering ([LZ2]), there arises a difficulty related to the fact that
the Maxwell momenta are not arbitrary, but satisfy the Gauss constraint
equation 9;7* = 0. This is addressed in Section [6.3] both in an approach
where the Lie derivative of the Maxwell potential is that of a covector field
on spacetime, and where the Maxwell potential is treated as a connection
form on a U(1)-bundle. One can implement the Gauss constraint by writing

omt = MDY (1.43)

where 0Y,, is an arbitrary covector density, leading to the following varia-
tional identity on the set of solutions of the field equations (cf. (GE50) and

(661) with &# = 0)

0 = /y [e’ffmpg@% . LXAk)cSYm n (5—%) n Exwk>5Ak]dSO

ok 5 A,
0" (k& 0_ke k¢
+ (X trk = xOrk X 5A
/W [(aAW (X' T T )> k
e
+ (M—k - LXAk>eMm6Ym] dSor (1.44)

14



which can be seen to reproduce the standard form of Maxwell equations in
Minkowski spacetime.
Section [6.3.2] is devoted to the Poisson algebra of Hamiltonian charges.

We prove the identity (cf. (€.82]), p. 1)

{Hx,Hy} = Hixy]

0%
B( er AR _
+/y {Y <£ LxA, — m"[Lx, V]Ax 8gmﬁxgm)
— X" (émLyAH — 7T)‘H[£Y, VE]AA - 02 £an)\>
0 KA

+(EhYr - E{*;Xﬂ)Fuk}dsﬁ
+2 / (xlsg? — vl + Xty 2)as., . (1.45)
07
This makes clear what fields have to vanish to obtain a closed subalgebra.

We now pass to the details of the above.

2 Asymptotics of Maxwell fields along light cones

In the next section we will apply the formalism developed in [4] to Maxwell
fields on Minkowski, de Sitter and anti-de Sitter spacetimes. For this it is
first necessary to derive the asymptotic behaviour of the fields under natural
conditions arising from conformal invariance of the equations.

We consider simultaneously the Minkowski space-time, the de Sitter and
the anti-de Sitter space-times in Bondi coordinates. In these the metric
takes the form

9 = gapdr®da’ = eN%du? — 2dudr + 12 (d6? + sin® 0 dp?) (2.1)

:;ﬁ/

where

N:=+/[1-a2r2)], ae {0,\/§} CRUIR, ee{£1},

with € equal to one if 1 — a?r? < 0, and minus one otherwise; note that any
A € R, is allowed, and hence a € C but o € R.
We have

9°%0,05 = —20,0, — eN*(9,)* + 25489 ,40p .

15



For » — oo we replace the coordinate r by a new coordinate
zi=r"t (2.2)
In this coordinate system the de Sitter metric (ZI]) becomes
g = —(1—a?rHdu® — 2dudr + r* (d6? + sin® 8dp?)

::POY
= x_z( — (2% — &®)du® + 2dudz + ) . (2.3)

The volume element is equal to

V=g =274 /det5. (2.4)
Conformal invariance of the Maxwell equations shows that, for solutions
that evolve out of smooth initial data on some spacelike Cauchy surface in de
Sitter spacetime, the (u,z, 2)-components of the Maxwell field are smooth
functions of (u, z, z4):
1
F = Fydz Adu+ Foade Ada® + Fyadu A de® + §FABd:EA A da®P
= —r Y Fyudr A du + Fyadr Adz?) + Fyadu A dz?t
1

—I—§FABd:EA A dzP ) (2.5)
with F,, etc., having full Taylor expansions in x = 1/r around z = 0. In

particular the fields F4, which are associated with a conformally smooth
Maxwell field have expansions of the form

(0) _9 (-2) _9
FAT’ = _FA:L‘T +:FA7"T +7 (26)

where the expansion coefficients are functions of u and 4.
Those sourceless Maxwell equations which involve r-derivatives read

Op(r’\/det 3 F™) = —r2\/det 30, F™* — d4(r?\/det 3FA1) (2.7)

87‘F;w = _auFur - az/Fru . (28)
Using
Fre — Fur , FT’A — —7‘_2’3/AB(FUB + €N2FTB) ’ FuA — —7"_2’3/ABF7«B ,
(2.9)
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we find

0,(r*Fy) = D"Fy,, (2.10)

Oy (Fua +eN*Fra) = 0,Far +r 2DPFpa, (2.11)
0, Fap = —0aFBr+ 0pFa,, (2.12)

OuFar = —0.Fya— 0aF,, (2.13)

where (2ZI0) and (2I]) are special cases of (Z7) with p = u and p = A.
Here, and elsewhere, D denotes the covariant derivative of the metric 4.

Inserting (2.I3) in (Z.I1]) one obtains
O (2Fua — eN*Fa,) = —04Fy, + 1 2DPFpa, (2.14)

We conclude that prescribing Fa,dz® on a cone {u = const} allows one
to determine the remaining fields on this cone by successive integrations of
2I0), 2I12) and (214). We will refer to these equations as the character-
istic constraint equations. One can then view (ZI3]) as an equation which
determines Fy, “on the next cone”.

The remaining Maxwell equations have an evolution character:

OuFry = T_sz (FAu + €N2FA7«) ) (215)
OuFap = —0aFpBy +0BFa,. (2.16)

Another evolution equation can be obtained by subtracting (2I1]) from

2.13):

20,Far = —0y (eN*Fa,) — 0aF, —r 2DPFp4. (2.17)
Integrating (2.10) in r one obtains
r
Fup =172 / DAF,,ds, (2.18)
0
so that
(}?‘) ]O)A(;’) ]o)A(f')
ur Ar Ar
Fy = T +o., (2.19)
where
(-2) o0 ° 4
FW:/ D Fy,ds. (2.20)
0
Integrating (2.12]) we have
© 5 (;') P (;’) 5 (}73') 5 (}73’)
Fuag = Faip+ AL Br —UB L Ar + AL Br —UB L Ar T, (221)

r 2r2
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where o -
Fap = / (OpFar — OaFp,)ds. (2.22)
0

Substituting (2.6), [2.19), and (22I) into ([2.14]), after integration one
finds

(-3) . (-2) . (0)
© 2F o, — Dy F,.—DBF
Fyg = Foq+ 224 A2T“" BA L . (223)
0)
Here the “integration constant” F', 4 equals
© 1] 56 o0 g
Foa= 3 a“ F gy —I—/ <6AFW +s°D FBA) ds| . (2.24)
0
Inserting (2.6), (2.19), and ([2.21)) into (2.17)), one obtains
B+ DaF 08
a J—
8uFAr = Ar A2T2ur BA + ... (225)
Inserting (2.6]) and (2:23)) into (215]) leads to
DAF 4 + ?DAF
OuFry = Ar T;“ Ar g (2.26)
Substituting ([2.23]) into (21I6), one finds
© 2D\ F o + DADCF
. o
0uFap = —2DuF g, +—o B A7 T BC L (227

r

3 Noether charges in Maxwell theory

We are ready to pass to the analysis of Noether-type currents for Maxwell
fields in Minkowski, de Sitter and anti-de Sitter spacetimes. In our signature
the Lagrangian reads

ZL(A,,04,) = | — det g|g" g*P FpuaFyp - (3.1)

167

The theory is linear so there is no need to make a distinction, in the
notation of [4], between the fields F),, and F),,. Denoting 9,4, by A, ,, the
canonical momentum density reads

LB _ 0.7

1
= —— __ _Fob 2
8(1406,5) 477]: ’ (3.2)
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where F8 is a density of Maxwell tensor

FP = /] —det g|F*¥ . (3.3)

The standard Noether currents, which we will denote by 2/, is defined
as

A
H0X] = aixﬁ LxAy— ZXP
7“
= VARG (FLx Ay — TP FapXP),  (3.4)
78

where L£x A denotes Lie derivative of a covector field.
It holds that
V(A [X]) =0, (3.5)

when A satisfies the field equations and X is a Killing field of the background
metric. This follows of course from a theorem of Noether, but a direct proof
can be given starting with the identity

Aps(V, A) = [Vs,Lv]Ag
= A5V — VIR 45 Ay | (3.6)

where V is an arbitrary vector field and A is an arbitrary one-form. Next,
if V' is a conformal Killing field of the background metric,

VaVs) = Mas , (3.7)
we have
Vi VaVg = R 08V + VyAgas + Vargsy — VaAgay - (3.8)
Substituting ([3.8)) into (3.6]), we obtain for any conformal Killing field V
Aps(V, A) = Aps)(V, A) = AgVsA + VgAAs — ggs ATV A (3.9)

Let 1
= —V, " .1
j 47TV (3.10)

which of course vanishes when A satisfies the field equations. As is well
known, a consequence of the definition ([B.10]) is

Vit =0. (3.11)
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We are ready now to calculate, for any vector field X, as follows:

47 1
eV, (MX]) =V, (F*"LxA)) — =V (XFFPE,
= —dmj'Lx A, + F"(LxV, A, + Ayu(X, A))

1
—Z[FQBFQBVuX“ + XMV, (FYP Fop)]
1 1
= —47ijﬁxA,, + —ﬁx(FuyFuy) — _F;LBFVB ﬁXg“V
4 2 ——
=_9ov(kxv)

1

HFM Ay (X, A) = [FPFE, 5V, XF + X'V, (F*PF,p)]

= —Anj'LxA, + F" A, (X, A) + F,°F,4 (V(“X”) . ig“”VaXa) . (3.12)

The last line of (B.12]) vanishes for all sourceless field configurations if X is
a conformal Killing vector field of the background metric.

The problem with the Hamiltonian ([B8.4)) is its gauge dependence. This
can be fixed by replacing Lx A by

LxA, = X'F,, (3.13)

(which, by the way, is a natural definition for the Lie derivative of a connec-
tion one form on a U(1) principal bundle), and defining

0%
JOHX = LxAg — LXH
[X] A, xAs
1 uB L pvs 2
= |—detg|<F LXAB_Z(F FVB)X)
1 o 1,
= Vet (FPX R — £ (FPF) X1) . (3.14)
Let us set
AXHX] = HVX] - HPX]

1
= —V[—detglj" X A4, + —05 (F*PX7A,). (3.15)
From (3.I1) and (3.15]) we immediately find
(A X)) = —+/| — det g|j*V (X7 A,) . (3.16)

so that we again have 9,.7" = 0 when the field equation j* = 0 is satisfied
and when X* is a Killing vector field.
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Now, [ X] is of the form considered in [4]. There an alternative form
of Hamiltonian density has been derived [4, Proposition 1], which in our case
reads

HMX] = %w“(A,EXA)Jr@U(X[%r”]VA,,), (3.17)

with
w”(A,ﬁxA):ﬁxABﬂ'“B—ﬁxﬂ'uﬁAg. (3.18)

and where ¢ is given by (32). This rewriting does not seem to very
enlightening in the case of the Maxwell field, with a gauge behaviour even
more cumbersome than that of (8.4]).

In order to determine the flux of energy, we continue by calculating the
Lie derivative of the Hamiltonian density in the direction of an arbitrary

vector field Y. Recall the formula for the Lie derivative of a vector density
ZM

LxZV = 0,(XZV) = Z°0, X" =V (X ZF) - Z°V X" (3.19)
In order to calculate Ly .#7"[X] we use this formula to obtain
Ly #MX] = V, <Y"%“> AV Y
= 29, (Yloer) 4 Y v,
— 2v, <Y["jf‘”) Fyr [voff;’ + Vu(A%“)] . (3.20)

where AJF has been defined in ([BI0). Keeping in mind that if Z¢ is
a vector density then V,Z¢ = 0,Z%, and substituting (3.12), (314]) and

BI6) into (B:20) we find
4

V| — det g

—w{ — A7 (Lx Ay — V(X7 Ag)) + FPA,, (X, A)

Ly A" X] = -2V, [Y[“F”]O‘X“Fm - iY[”X”]FO‘BFaﬁ}

1
+F By (VX7 - Zg“”vaxa) }- (3.21)
3.1 Noether charges in de Sitter spacetime
We wish to determine the Noether charges associated with the Killing fields

(AJ)-(A4). Since the Hamiltonian density (3.4)) is linear in the Hamiltonian
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vector field X, each charge is given by an integral of a linear combination of
the following four functionals

AM[0,] = bi+THF?, (3.22)
HMR] = eBDp(Rn)nk + RIF?, (3.23)
HH[Pys] = e [pmih‘; — (ar + 1)pmih’;1
ar +1 . ;
—TDA(pm’)hi] +PhF? (3.24)
HH Las] = e [lmih‘; + (ar — 1)lmih’;[
—1- .
ar DA(zm’)hfg} + LM F? (3.25)
where £ is a two-dimensional Levi-Civita tensor (in spherical coordinates
(0,¢) we take the sign £¢ = —L- ) and
1
n'[X] = —4—\/| —det g|F*’ X F,p5, (3.26)
7T
by = 1", (3.27)
by = b'[o,], (3.28)
by = 1"[04], (3.29)
1
F2 = K‘A —det g|F"PF,p. (3.30)
T
Written-out in detail, the functionals (3.27)-(3.30) read
1 . :
hf = o (PFL 43P FaF ) V/dety, (3.31)
1 . . :
hy = = (eN?34BE 0Fyp + 4P FyaFyup)v/det ¥, (3.32)
1, :
nY, = EVABFT AF,py/det ¥, (3.33)
1 . . s
ny = <r2Fu2r + 4B, 4F,p + eN?4PF, AFTB> Vdet, (3.34)
1 . R
hi;& = E <T2FuT’FAT’ + ’YBCFBTFC'A) V det ¥, (335)
1 . . :
), = i (T2FurFuA — eN23BCE pFoq — ’YBCFuBFCA) Vdety, (3.36)
1 /1
P = — (53" P FapFop — 2F% — 2eN*3P F,Fop
167 \r2
_454B R, AEB) Vdet7. (3.37)
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As in [4] we denote by %, the light cone of constant u. One checks that
all charge integrals over %, are convergent. The most interesting charge is
the energy-like integral associated with the motion of the tip of the light
cone to the future along the flow of the Killing vector T = 9,; recall that
0O, is timelike at the tip of the light cone so that each subsequent cone so
obtained lies to the future of the preceding one. Letting

dS, = 0,|dz" N--- Nda™, dSu, =0, N8, |da" A Nda" = —0,]dS, ,

and

dpg = \/det gap dr A dz® A dz?, dps, = +/detyap dz® A dz® | (3.38)
we find

Bel6] = [ a'0das,= | (0s. = / (b% + F?) dr de?ds®
1 1

= — <_2'07AC'07BDFABFCD +2F;, — 26N2’3/ABFTAFTB> dr dps, .
167 J¢g, \1

(3.39)

Likewise the total angular-momentum is obtained from the following inte-
gral:

JR] = AM[R)dS, = R;J", (3.40)
Cu
where
J o= / eAB Dpn'nY dr da®da®
1 ABfy i, 2 < BC
= — | BDhpn (7’ FurFay +% FB,,FCA> drdps. — (3A1)
47 Cu

For completeness we give the formulae for the remaining charges

P[Pgs] = . H"[Pys|dS,
: . 1o, . .
= Pz’/ <e°‘“ [nlh? — (ar +1)n'nf; — ar:— DA(n*)nY + anzD dr dz?da?
_ L ) U ni iOAC'OBDF F —|—2F2

ar+1

—2(ar + 1)?4*P Fy, Fp,) —4 D0 (r?Fyp Fay + 4P€ Fp, Fc A)] dr dys

(3.42)
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and

ClLas] = . JOM[Lgs]dS,,

= I . (e_a“ [nlh? + (ar — 1)n'ny; +

ar —1

DA(n")nY + niF2}> dr de’dz® . (3.43)

A more detailed formula for C'[L4g] can be obtained from (B.42)) by replacing
a by —a and p; by ;.

3.2 Noether charges in Minkowski spacetime

All the equations in Section [B.I] apply in Minkowski spacetime by taking
the limit o« — 0. Indeed, the Killing fields for Minkowski spacetime can
be obtained as a limit of those for de Sitter spacetime. In the notation of

Appendix [Al the equations (A.3]), (A4]) and (A36) give

1.

P=-3 lim (Pds + ﬁds) ; (3.44)
where in (A.36)-(A37) we set P, = p; = I; . Similarly, (A.3), (A.4) and
(A7) leads to

L i (Las = Pis), (3.)

L == lim
«

where in (A.36])-([A37) we set L; = p; = [;. This shows that for Minkowski

spacetime, the linear momentum is given by

1 ..
Py = =5 lim (P[Pas] + C[Las]) , (3.46)
while the center of mass
1 ClLy4s] — P[P
Cy = = lim (ClLas] — PlPas)) (3.47)
2 a—0 [0

Finally the equations for angular momentum and energy are obvious. One
checks that all the limits exist.

3.3 Noether charges in anti-de Sitter spacetime

All the equations in Section 3.1l apply in anti-de Sitter spacetime under the
resplacement o — +/—1la. We note that under this replacement both the
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energy and the angular momentum remain real, while P and C' become
linear combinations of two linearly independent real-valued charges:

P[Puas] = . JO [Paas]dS,

= ﬁl/ [nicos(&u)h? + n'(@rsin(au) — cos(au))hy;

(arsin(au) — cos(au))

DAn'nY 4 nicos(au)F?| dr dz?dz® , (3.48)

r
and
ClLaas) = . JO'[Laas|dS,
= [nisin(&u)h}‘ — n'(sin(qu) 4 arcos(au))hy,
Cu

_ (in(@u) + areos(@u)) pya i 4 pisin(Gu)F?] dr da?de® . (3.49)
T

3.4 The evolution of Noether charges

In this section we address the question of the rate of change of the charge
integrals as the tip of the light cone is moved to the future along the flow of
the Killing vector 9, = T

dH[X, €, d

dHX ) _ 4 [ puixas, = / Lo, (XS, (3.50)

du du G Cu

Assuming sourceless Maxwell fields, (3.21]) with two Killing vector fields X
and Y reads

| — det g|

Ly A X] = =

1
Vo [Y["F“}QX"‘F,W — ZY[UXMFaﬁFag]
(3.51)
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Using the fields ([3.26)-(330) one finds

Lo, /"0 = 2V, [T[ohﬂ , (3.52)
Lo #MR] = 2VJ{T[" [EABEB(Rmi)hﬁJ +RMF2} } (3.53)
Lo, 7* [ Pas] = 2V, {ea“’T[" [pmih‘;} — (ar + 1)p,~nih‘;}1
_ L pag it 4 e ] } (3.54)
Lo, 7" Las) = 2Vo{e TV |l nl] + (ar — 1)ln'hf}
MT L DAt 1 ) Fﬂ} (3.55)

In particular we obtain a formula for the flux of energy:

dEﬁf’[Cgu] . [0, 1]
Ju = -2 5547- hY dSUu

dz?daz?

= — lim h’
r=R

R—o0 Sk

1 . .
= — lim — / [r2F3T+fyABFuAFrB+eN2fyABFrAFrB s
Sr

R—oo 47 =
1 -2)  (0) © (0
- % /. [’yAB(oz FATFBUJFFAUFBU)]dM (3.56)

The u-derivative of angular momentum is given by

d‘][(g%R] _ o (1 AB p i ule2
Sl _2/&% [T (hAe Dp(Rin') + R F)}d&w
: r _ABp i 2 dJ'
— _R; lim [hAs DBn} dz?ds® = R;% | (3.57)
R—o0 Sk r=R du
where
dJ' _ AB 7 20 BC
du - 47‘(‘ Rh—I};o/ DBn {T FurFya — N FrpFca

FuBFCA} Rdwy

1 . (2) ©
= [eABDB( )(730 (&*F g+ Fpy)Fea
/s Soo
2 (
—FurF )| dps (3.58)
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Finally

PPy [ [ ()~ (o + ponin)
du 8.7,

ar+1

lO)A(pmi)hffg + PC%F2>] dSs,,

= — lim e [(pmih§ — (ar + 1)p,~nih}1
R—o0 SR
ar+1

DA(pni)n’y + PgSF2)] _ datda’

T

1 . ) .
=~ fim e [pm’ (46N 25ABF aFop + 4P Fy A Fup
S

1,40, .
—(ar + 1)(ﬁ’yAC’yBDFABFCD +2r2F2 + 2€N27ABFTAFTB))

+4p DA (2 By Fun = eN*3PCFpFoa =P FupFea) | dus

r=
1 - 0) (0 (-2) (09
= T {eau [Pm”YAB(FAuFBu + 0 F arFpy)
Soo

-2) (0 0) (-2) 0)

+aDA(pin) (FurF au + Fapi”C (o> F oy + FCU)H }dw . (3.59)

and

el [ eonte i)+ (o~ 1)inn]
du 8.5

ar —1
_|_

DAt + £§LF2} } dSs,.

= — lim e [lm’h? + (ar — 1)l;n'n};
R—o0 Sk

ar —1
_|_

DA(Ln")n’y + (ar — 1)lmiF2] Rdazzdazs
T r=
1 . © 2
= _4_ e_au{linwyAB(FAuFBu +a2FAT’FBu)
7y Soo

oA i (-2) (0 (0) (-2) (0)
—aD (zm)[ (

FourF au+ Fapi®C (o For+ Fou)| by . (3.60)

4 Noether charges for scalar fields

In [4] we found that the canonical energy on light cones for a natural class
of linear scalar fields in de Sitter spacetime was generically infinite, and had
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to be renormalised. The aim of this section is to address this question for
the remaining canonical charges.
In our signature the Lagrangian reads

N

for a constant m.

The theory coincides with its linearisation and we will therefore not make
a distinction between the fields ¢ and its linearised counterpart ¢, as done
in [4].

The canonical energy-momentum current sZ* equals

AKX = —/Tdetg] (V6 Lo — %(V“¢VQ¢+m2¢2)X“> L2

Analogously to our analysis of the Maxwell field, we start by considering
simultaneously the Minkowski space-time and the de Sitter space-time in
coordinates as in (2.1]).

The Lie derivative of the Hamiltonian (4.2]) reads:

Ly VX

/| det ¢

= V. (YVFG Lx¢) — VoYHVI S Ly

—%vg (V7 (Ve 4Vadtm?6?) X7
+%VJY“X”(V°‘¢VQ¢+m2¢2)
= 2V, (YOG Lx o) + YV, (VI Lx )

XYV, (V6T tm?)

5[V (V90 tm’s?)
—%VJY"X”(Vo‘qﬁvaqﬁ—kmzqﬁQ) : (4.3)
We combine the second and third terms with the equation of motion:

YV, (Vo Lxd) — %X“Y”VU (VpVagp+m?¢?)
= %Y“X”VU (VpVap+m?e?) + YFV GV, XV 6
—%X“Y"VU (VO@Vatptm?¢?)
= Vo [YIXT(VVap+m?¢?)] + YIVIGV X7V 6
—% ([X, Y]+ YHV, X7 — X“VUY”) (VOoVad+m?6?) . (4.4)
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Equations (4.3]) and (4.4]) lead to
_ LysH[X]

VA (YIvHoxoVae - %Y["X”] (V26Vag+m?e?) )
+Y PV XV p — %Y”VJX" (VAPVapt+m?¢?)

— a2v, (Y["V“] HXOV 0 — %Y["X”] (V“¢Va¢+m2¢2)>
e (VQXU - %VRX“gao> VeV

1
—§Y“VUXUm2¢2 : (4.5)

4.1 Charges in (anti)-de Sitter spacetime

We only consider here a massive scalar field, with the mass chosen so that
the equation is conformally covariant,

(d—2)R(g)
4(d —1)
—_————

=:m?

Uy — =0, (4.6)

where d is the dimension of spacetime and R(g) is the scalar curvature of g.
In the four-dimensional case, it leads to

m? = 202 (4.7)

After a conformal transformation g — Q2g the field Q42~1¢ satisfies
again (&6, with g there replaced by Q2g. This is useful in that solutions
of (48) with smooth initial data on a Cauchy surface in de Sitter space-
time extend smoothly, afer the rescaling above, in local coordinates on the
conformally completed manifold, across the conformal boundary at infinity.
This translates to the following asymptotic behaviour of ¢, for large r, in
spacetime dimension four:

Dlnat) | Gl | 6wt

Ay _
¢(u7 T ) - r r2 r3

T (4.8)

See [4], Section 2.2.1] for a discussion. Here we simply note that the functions
(-1) (-2)
¢ and ¢ are freely prescribable, with all remaining expansion coefficients

determined uniquely by these two.
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We wish to construct the Noether charges associated with the Killing

fields (A.)-(A.4)). For this let

hUX] = —/[detg|V'oXVag, (4.9)
hy = %\/]detgl(vo‘(bva(b—i—nﬂ(ﬁz), (4.10)
and
ny = 1*o.], (4.11)
ny, = n"[o,], (4.12)
hy = h"[04]. (4.13)

Since the Hamiltonian density (£.2)) is linear in the Hamiltonian vector field
X, each charge is given by an integral of a linear combination of the following
four functionals

JOM0,) = nf+Thng, (4.14)
HAPR] = e*BDp(Rin®)nY + Rihy, (4.15)
M Pys] = e [pmih‘; — (ar + 1)pmih’;]
_ordl EA(pini)hffx] + Plshr, (4.16)
HF[Las] = e [lmih’; + (ar — 1)ln'nY;
P LDAUnt w4 + Lhigh (4.17)

Written-out in detail, the functionals (LI1)-(ZI3) read

by = (r?0,¢0,0)\/det ¥, (4.18)
hp = 1r2(0u¢ + (@®r? — 1)0,¢)0upr/det ¥, (4.19)
o= r2(0¢)*V/detd, (4.20)
o= 2 (0ud + (aPr? —1)0,0)0,¢+/det ¥, (4.21)
hY = r20,¢Da¢y/det, (4.22)
ny = 12(3¢+ (a®r? —1)0,4) Dagr/det 7, (4.23)
b = (AP DadDo + m¥

—220,¢0,6 + (1 — ar?)r2(8,¢)°) /det 5. (4.24)
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Recall that we denote by %, the light cone of constant u, and €, r =
%y N {r < R} its truncation to r = R. It turns out that, generically, all
charge integrals over %, diverge as R tends to infinity, and therefore need to
be renormalised. Therefore we first calculate the charges on €, r and exhibit
their divergent parts, for large r. We use the asymptotics (4.8]) which applies
both to the a = 0 case with m = 0 and to the case a? = m?/2 with m # 0:

Eoplbun] = / A0S, — / H0,]dS,
%u,R <gu,R

= / (bY +hy) dr dz*da®
<gu,R

= % [g (’OYABZQ?AtﬁlO?B(ﬁ +m?r?¢? + (r? — or?) (8,,¢)2) dr dys
=5 [g (442 DagDpo + m*r*g”
+0, | (1% = a*r")6(9,0) | — 60, [(r? — 0*r) (8,0)] ) dr dp
’R 1)
- aT ; (¢)*dus + [g O(r=2)drdus (4.25)

where we have used
(7‘2 — oz27‘4)¢(8r¢) = gozz((—gz?)2 + O(T‘_l) (4.26)

As before, the total angular-momentum is obtained from the following
integral:

)

JCur] = [g MRS, = RiJ' [Gu.r), (4.27)

where now

JCur) = [g eAB Dpn'n® dr da’da®
u,R

= / r2sABanilo)A¢8r¢ dr dus,
C,

(-1) ABb Zf) (-1)
= / < _9e s DA ¢ + O(r_2)> dr dps
<gu R

r

= / O(r=%)dr dps, (4.28)
%,

31



where we have used
1) .. (D 1 . )
y ¢ e*BDpn'Dy ¢ duy = 3 /Sz Dy <EABDBn’( ) )2> dus = 0. (4.29)

We further have

PPas, Gur] = / AP [Pys]dS,
<gu,R

1., . .
or DA(n")hY + nZhL] dr dz?dax®

= pi/ e {nlh? — (ar + 1)nih?l —
€,

u,R r

1 ./, o o
_ pi[g U |:§’I’LZ<’7ABDA¢DB¢+’I7L2¢2T‘2
u,R

(0% +20r +12)(8,6)°) — (o + 1)rD*nl (8,6) Da] dr dus
(-1

oull o i('l)z LoV [ caBp ip O i -2
= pz‘/ e [50171525 +;¢ ay*PDyn'Dp ¢ —n'a ¢ | +O(r )]drd,u:y
<gu,R

R 2 au '(_1)2
= pi[ @’ / n' ¢ dpus +/ O(r~2)dr dﬂ»"y] , (4.30)
2 SR Cu,R

and note that the second and third terms in the before-last line integrate
out to zero. Finally,

C[£d$7 %u,R] = / c%ﬂu[ﬁdg]dsu
<gu,R

ar —1

DA(n")nY + nihL]) dr dzdz® .

= li/ (e [nlh? + (ar — 1)n'ny; +
Gt r

(4.31)

Similarly to the case of the Maxwell field, a more detailed formula version
of (A31)) can be obtained from (£.30) by replacing there a by —« and p; by
l;.

4.2 Noether charges in Minkowski spacetime

All the equations in Section[Z T apply to the massless scalar field in Minkowski
spacetime by passing to the limit m = o = 0. In that case we clearly have
a finite energy. This is also clear for the total momentum, which we denote
by Pus, using (£30)- [31)) with P; replaced by p; for consistency of notation
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with (A27)) (see (A36]), compare (A.38)):

1.
Py[P,Cur] = —3 ilglo (P[Pas, Cur] + ClLas: Curlii=p,) »

i u Lea ivu i )
= P,/ < (hH—hI)—F;D n'h% nhL>‘a:0drd,uﬁ,
= / O(r=2)dr dus . (4.32)

uR

Consider, next, the formula for the center of mass, which can be similarly

obtained from (A.39) and ([£30)-(£31): in the notation of (A.30),

(C[£d5'7 (gu,r] - P[Pd57 (gu,r]pi::Li)
(6%

CulL,Cur] =

1
— lim
2a

— L-/ (—unh,+(u+r) ih}q+(1+g)ﬁAnihZ—unihL>drdua

= / O(r=2)dr dps (4.33)
u R

Finally, the total angular momentum is finite,

j’[%u] = lim [[g r2sABanilo)A¢8r¢drdu:,
R

R—o0

+InR [ e*PDpn <£1°) (qlﬁ)d (4.34)
. B A Ky .

0

as the boundary integral in (4.34]) is a total divergence.

4.3 Noether charges in anti-de Sitter spacetime

All the equations in Section [£.1] apply in anti-de Sitter spacetime under the
replacement o — \/—1a. Then both the energy and the angular momentum
remain real, while P and C become linear combinations of two linearly
independent real-valued charges. Indeed, using (A25)-([A-26]) one finds

P[Puas Cu,r] ;:/ FO'[Paas|dS,
u,R

= D L [nicos(au)h? + n'(arsin(au) — cos(au))hY;
(arsin(au) — cos(au))

DAn'nY% + nicos(&u)hL] drdz?dz®, (4.35)
,
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and

ClLads, Gur] i= / AL aas) S,
<€uR

= l:/ [nisin(&u)h}‘ — n'(sin(qu) 4 arcos(au))hy,
Cu R

_ (sin(au) + arcos(au))

DAn'nY + n'sin(du)hy | dr de?da®.  (4.36)

4.4 The time-evolution of Noether charges

A question of interest is the rate of change of the charge integrals as the tip
of the light cone is moved to the future along the flow of the Killing vector
O =T:

dH[X, €y R] d

= 1% — m
du du %u,R%p ]S, [guﬁ,ﬁa’“%ﬂ [X]dS,.  (4.37)

Assuming two Killing vector fields X and Y, we have

Ly #MX] = —2¢/[detg|V, ( o H XV b
—§Y[0XM (V26Vag+m23?) ). (4.38)

Using the fields (4.9)-(ZI3]) one finds

Lo, M0, = 2V, [T[Jh*ﬂ] , (4.39)
Lo AMR] = 2VJ{T[U [EABBB(Rmi)h’;Q + Rﬂth} } . (4.40)
Lo, A" Pas) = 2o {e™ T [pn'nl = (ar + 1)pin'nf]
_T L pAGt) 4 Py ] } (4.41)
Lo, 7 Las] = 2VJ{6_°‘“T[" [lmih’;} + (ar — 1)linih’;]l
+C”’T_ L DA + cg}shL} } . (4.42)
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In particular we obtain the energy-flux: ﬁ

dE ¢ |Cu,R) _ / Tloysl ds,
d’LL agu’R 1 H

:—/h§
Sr

_ /S 72 (0ud+ (a*r® 1) 0,0) 0] _ dps

r=

dx?dx?
R

r=

(-1)

(-1)
- / [a2¢au¢R
Sr
2(-1) (-2) 2(-2) (-1) (-1)
+02 60,6 + (2026 — 0y 6 ) ud |dus +o0(1), (4.43)

where o(1) tends to zero as R tends to infinity.

We turn now our attention to the rate of change of the functional E,,[.¥]
of (L)), when the tip of the light cone is moved to the future along the flow
of the Killing vector d,,:

dE, €y R] 1d
du 2 du

1
| wreLass=5 [ Low(6.Lo0)ds,.
cgu,R <gu,R

(4.44)
We find

Lywh(p,Lo,d) = 05 (Yw") —wpY"
= 20, (Y[C’w“}) +YHO,w7 . (4.45)

Assuming that the field equations hold, we have 9, (w"(qb, Ls, qb)) = 0. The
flux of E,[%,, r] reads

dEw[(gu,R] o 1 [0’ U}
Tu = 2[@}{ 280(7' w )dSu
_ 1 T[Uw”]dsgu
2 Jsg
1

_ 1 2 2.2 2
_ 2/5Rr (602 ~ 10,0, + 6020

—(Butp + (aPr? — 1)ar¢)au¢) i (4.46)

r=

3We take this opportunity to correct a misprint in [4) Equation (2.68)], where the terms
(-2)
involving ¢ are missing.
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with asymptotic expansion

(1) (-2) -2) 1 1) D (-1
ellurl [ (~?90.6 +0250,8 + DS - 0,6)7) s
du 2 Sk
1
+0(55). (4.47)

Note that when o = 0 the limit of dE,/du as R tends to infinity is not
negative, which makes questionable the interpretation of E, as the right
functional for a physically significant definition of energy.

We continue with the u-derivative of angular momentum, given by

d'][(gu,R] _ [o (.1 _AB 7 i |
—a = _lgm [T (hAs Dp(Rin") + R hLﬂdSw
. dJ
- —R; W28 Dpn’ de?dz® =: R; 4.4
R SR[AE Bn]T:RJc x Rdu’ (4.48)
with
dJ — —/ v/ det %EABlo?Bni [r2(8u<z5+ (a2r2 — 1) &,(b)lo?Aqﬁ} dypis
du Sk r=R
o . (1) o (1)
_ / [5ABDBn’<a2¢DA¢R
Sr
2(-1) . (-2) 2(-2) (-1) . (1)
ta2dDao + <2a ¢ —am)Dm)}duﬁou)
2(-1) . (-2) (1) o (1)
- —/S (07 6Da6 +8,6Da'd) ] dus + (1), (4.49)
R

36



where the terms proportional to R integrated-out to zero. Finally

dP[Pys, G, ' '
dP[Pas, Cur] _ / [e““T “’(pm’h‘f”—(awl)mlh’f}f
du Cu,R
1. :
_O”: DAy + Pﬁ}th)] dSop
e oot
<gu,R
ar+1

DA(pin' )Yy — (ar + 1)hL)] da?da?
_ oy, i2au 22_187’ O
[+ - )
—(ar + 1)7‘2 (augb + (a2r2 — 1) arqb) Or @

—%(ar +1) (42 DaéDpé - 22 (9,6) (9,0)

+m?r¢? — (a®r? — 1) r? (8,0)? )}
—(ar + 1)rbAni8T¢bA¢} Rd,u:y

r—=
o i (-1) 2(-1) 2(-1) (-1)
= | empni{ad a6 +m? 6 +200, 6 |R
Sr

(-2) -2) (-2) 1) (17 (1)
+[4a3¢ +2am? ¢ +2020, ¢ + a2 ¢ —l—mzqﬁ} 10)

5, (DED 1\ 2
14020, 6 & —2 (0 o }dusy +o(1). (4.50)

Comparing (A.3]) with (A.4]), we see that an analogous formula for dC[Lgs, €., r]/du
can be obtained from ([@50]) by replacing o by —a and p; by I;:

Bl = [ femm T i)+ (o )tnn
du Cu,R

ar — 1
_|_

DAt + L’Z}ShL] } S
. (-1 (-1) (-1 (-1)
= / e_o‘“lmz{ —a¢ [aQ & +m* ¢ — 200, qﬁ]R
Sr
1) (-2>} 1)

9 (-2) 2(-1) 9 3(-2) 9
—|—[20z Oy +a” ¢ +m° ¢ —4a” ¢ —2am” ¢

102,98 —2 (0.9) Y
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5 An alternative Lagrangian for the scalar field

The Lagrangian for a conformally-covariant scalar field theory on the de
Sitter background reads

& = —%v [ det g| (9" V6 Vi + 202¢%) | (5.1)

which coincides with (&) with m? = 2a2. With some work this can be
rewritten as

J% = o (#Vu0) V. (r0)) — 19 ((r0)2 0 2) . (52

Since boundary terms in a Lagrangian do not change the Euler—Lagrange

equations, after neglecting the boundary term in (5.2]) we obtain a La-
grangian which leads us to an equivalent theory

N 1 e~ ~
L = =55V ]detglg" V.o Vo, (5.3)

where

p=rop.
As already announced, all Noether charges turn out to be finite, no renor-
malisation is required. The price is that the time-derivatives of some charges
are not boundary integrals anymore, because both the Lagrangian and the
Hamiltonian depend explicitly on the coordinate r now.
The canonical momentum for (5.3]) reads

0L 1~
T = — = —/|det g| 5 V%. 5.4
sog = VIl (54)
The canonical energy-momentum current equals
— 1 ~ -~ 1 -~
HMX] = —\/]det g] <ﬁw¢ Lx6 =35 (V°9 VaqS)X“) . (5.5)

The large-r asymptotic behaviour of ¢ of (4.8) translates into the follow-
ing asymptotics for ¢:

1) -2)

(0)
o) = o (u,at) + L0020 | 0 ()

(5.6)
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5.1 Noether charges

The analysis of the Noether charges associated with the Killing fields (A.T])-
([A.4)) proceeds now in a way completely analogous to that for ¢. The charges
are again of the form (£14)-(£I7), where now

Bf = (9:00,0)\/det, (5.7)
hy = (8u¢~5+ (a2r2—1)8rgz~5)8uqz~5\/det°, (5.8)
fo= (000)"Vdet, (5.9)
1= (Oud+ (0®r —1)0,0)0,6/det 3, (5.10)
hY = 0,6Dsp/det ¥, (5.11)
ny = (9up+ (a2 —1)9,0)Dagy/det ¥, (5.12)
b = 5 (597 DadDsG -~ 20,00,6

+(1- a%?) (9:9)" ) v/det 7. (5.13)

The asymptotic behaviour (5.6)) leads to
B lbun] = / 0,5, = / (0,148
<€u R <gu R

= / (b} +hg)dr dz*dz?
<gu,R

1 1 apo ~n ~ .,
- 5[@% (5547 Dadbpd + (1 - 0®?) (0,)°) drpy.  (5.14

O(r—2)

hence the volume integral has a finite limit as R tends to infinity, resulting
in a finite total energy.

As before, the total angular-momentum is obtained from the following
integral:

Tun] = / TPPIRIAS, = RiT[%0n). (5.15)
<gu,,ﬂ',
where now
ji[(gu’R] = / A8 Dpn'hY dr da?da®
<gu,R
_ ABfy ify Tn X )
= 7 Dpn'DA¢p0,¢ drdps, (5.16)
T o0
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again an integral which converges to a finite value as R tends to infinity.
We further have

PlPas, Gur] / T Ps]dS,,
<guR

ar +1

= pi/ et [nZth — (ar + 1)nih?l —
€,

u,R

DA(n")nY + nihL] dr da*da®

1 /1  ype ~e ~ .
= pi/ ea“[5n2<ﬁ7ABDA¢DB¢—(a2r2—|—2a—|—1)(&¢)2>
<gu,R

(ot D) pa (aras) D A%} dr du

,
= / O(r=2)dr dus . (5.17)
<gu,R

Finally,

C[£d$7 %u,R] = / :\%Z“[ﬁds]dsu
Cu,R

ar —1

= / (e [nlh? + (ar — 1)n'nY; + DA(n")nY + nihL]) dr dz?dz® .
<gu,R

T

(5.18)

A more detailed version of the integral (5.1I8]), which is again finite in the
limit R — oo, can be obtained from (5.I7)) by replacing there o by —a and
pi by L.

5.2 Time derivatives
Recall that the Lie derivatives of the Noether current read
Ly A" = Vo (YOR") - AV
— 2v, (Y“”%’”) FYHV (5.19)

We associate Hamiltonian density with the canonical energy-momentum ten-
sor through the formula

HMX] = TH X, (5.20)

where B B .
TV, =7V op — 6H.ZL . (5.21)
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Since the alternative Lagrangian (5.2]) depends explicitly upon the coordi-
nate r, for solutions of the field equations we find

V" = V(T x") = 9, X0 %;fxaaar. (5.22)

Using (5.19), (5.22]), and assuming that X is Killing vector field, the Lie
derivative of the Noether current reads
Ly A" =2V, [Y[a%ﬂq - waaiﬂxaaar.

r
Using (5.3]) and (5.5]) one obtains

— 1 -~ - 1 -~
Ly#* = —2y/[detg|Va [Y[a(ﬁv%cw—ﬁv%vmxﬂ)]
—Y”T% | det g|g”pvygz~5qu~5Xo‘6ar . (5.23)

The “non-divergence term” (...)Y*#X®0,r in this equation implies that
some charges might have volume terms in their evolution formulae. No such
terms will certainly occur when either Y is tangent to . (which will be the
case for rotations), or when r is invariant under the flow of X (which will
be the case for u-translations and rotations).

For instance, consider (5.23])) with X =Y = 0, = 7. In this case (439
applies, with the relevant component given by (5.8]). Passing to the limit

R — oo in (437) with ([£39) and (5.8]) one obtains

dE 6, (v 4]
2 = 22 nt dSs,
o aL%T M ds,,

= — lim h’
R—o0 SR

dxdax®
R

= = [ [(@6+ @ -nad)a]  d
1) ©  ©

_ /S(a2 & — 040 dilpss . (5.24)

As another example, the u-derivative of angular momentum is obtained

from ([@37), and (£40) with X =R and Y =09, =T

dJ 6] - —2/ Tlo <hff1]€ABlo)B(Rmi) + RM]hL) dSop
du 8.
. dJ
= —R; li hT’ ABD 7 2 3 = R; ) D)
R R1—I>rcl>o SR |: A% Bn ]T:Rdw de R du (5 5)
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Using (5.12]) we find

dji__. s ABA i Y 2.2 N .
i = 1%1_13(1)0 o v/det ¥ Dpn [(8u¢+ (a r 1) Gr(ﬁ)DA(ﬁ]T:Rd,uﬁ,
o 20 @, ., @
= /5ABDBnZ(2a2 ¢ —8u¢>DA¢dusy, (5.26)
S

which does not coincide with ([Z.49]).
The remaining u-derivatives have both fluxes and volume integrals. For
instance, calculating similarly to (£.50) and taking into account the volume
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term in (5.23)),

dP[Pys, )

m = —2/8(% [ea“T[C’ <pmih‘;} — (ar + 1)p,~nih‘;}1

_a7‘+1

DA(pin*)nt + Pg‘]thﬂ dSsp
- /y, 2 [Ty as,
= - /65@ [eo‘“ <pmih§ — (ar 4+ 1)p;n'ny;

ar+1
r

—1—/ 2 [hL (ar + 1)pml} dr de?dz?
S T

DApin' )y — (ar + 1)y, ) | S,

— _/S ea“pi{ni[(aung (a?r® — 1) 5@)(%(;

—(ar+1) <8u25+ (a®r® —1) 87“5) oo
—%(ar +1) (TizaABﬁAaﬁB&ﬁ —2(5,6) (9.9)
_ (a2r2 — 1) <8T<;~5>2 )]

(ar+1) oy o v~
DM 0,600} dius

U1 oaps or o~ e~
+ [ (537 DadDd - 20,50,
7 T r

+(1 - azrz) (8rgz~5)2> Vdet 5 (ar + 1)pm’} ds,,
- ©,  (©

= [ empaifato - 0,00, 0du;
0SS
+ / O(r=2)dr dus . (5.27)
S

It is not clear whether a meaningful comparison to (4.50) is possible because
of the volume term appearing here.
A formula for 9€Eas-%url oy he obtained from (527) by replacing there

a by —a and p; by ;.
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6 Poisson algebras

Having obtained a set of global charges, either directly or after renormalisa-
tion, the question arises whether the charges satisfy a well-defined Poisson
algebra. As we will see, the question is far from clear, because of the bound-
ary integrals arising when varying the charges.

Quite generally, we consider two Hamiltonian functionals, H[., X] and
H[.7,Y], defined as integrals on a hypersurface .¥ with boundary 0., with
two vector field X and Y. Here the boundary might be at finite distance,
before a limit to infinity is taken, or it can be a boundary at infinity in the
conformally compactified spacetime. We take an approach similar to that
of [3] to define the Poisson algebra of charges through the Poisson algebra
of fields on .. When there are no constraints, as is the case of the scalar
field, and when there are no boundary terms in the variations, and when .
is spacelike, the algebra is straightforward. When the hypersurface is null
the algebra of the fields is more demanding. We avoid the work associated
with the last problem by deforming . to a hypersurface which is spacelike,
and calculating the Poisson brackets on the deformed hypersurface. We
expect this to give a correct answer in situations where the charges are
independent of the hypersurface, within the family of hypersurfaces sharing
the same boundary.

The problem of boundary integrals that remain after a variation of the
charges has been carried-out, which arises in the situations of interest in this
work, will be addressed in Section [7l

Let us pass now to an analysis of the Poisson algebra of Noether charges
associated with diffeomorphisms generated by two vector fields X and Y.
We consider first order Lagrangian densities depending upon the fields, the
metric, and possibly upon coordinates: £ = f((bA,aMgbA,gag,x"). The
key assumption in this section is that there are no Hamiltonian constraints;
thus some of the calculations that follow do not apply to Maxwell fields,
which will be discussed elsewhere.

As elsewhere in this work, the Noether current associated with a vector
field X reads

0%

_ A
K = gy xet - XL (6.1)

Given a hypersurface .7 = {2 = 0}, one thus obtains a charge integral

H[.Y,X] = /y H°dSy . (6.2)
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The canonical momentum on .7 is defined as

— 0._ 0L
TA=TA = 300 (6.3)

6.1 Hamilton equations

To avoid ambiguities, variations of fields are defined as follows: given a one
parameter family of fields A — ¢?()\) one sets

_ d¢?

5¢A — k _dﬂ'Ak

o = T

etc.

The calculations that follow are standard. We carry them out in detail
in order to keep track of the boundary terms that arise in the process. We
assume that §X vanishes, in particular [Ly,d]¢* = 0. The variation of the
functional (6.2]) is defined as

d d#"

assuming that differentiation under the integral is justified, with

5A° = §(malxe™ — X°.2)

0% 0%
_ A A 0 A A
= Lx¢“oma+maLlxdo X <—8¢A 0™ + 90004 (aﬂgb“‘)a“éqb >

= £X¢A57TA — ﬁxﬂA(SqﬁA + Lx (7TA5(;5A)

_XO{ [% — 0, (%)} ot + 0, (%W‘)} . (6.5)

Ea

where the vanishing of £4 is the contents of the Euler-Lagrange equations.
If we assume additionally that 7m40¢? = 7% ¢4 is the 0-component of a
vector density, using the definition of the Lie derivative of a vector density
we find

Lx(m400") = Lx(m4%001) = 0o( X7 4%007) — 66 m 40 X" . (6.6)
Inserting ([6.6]) into (6.5]) we obtain
5° = Lx¢™0ma— Lxmadd™ 4+ 0a(Xma%001) — 6¢ 2“0, X°
—XO{€A5¢A +0, (m“a@f‘) }
= Lx¢?Poma— [Lxma+ X 6] 607
+0, [(X%A - X%Aﬂ)aqsﬂ . (6.7)
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Here L£Lx 74 is understood as the @ = 0-component of the field £xm4%.

Recall that by assumption the Lagrangian, and therefore also 7, is a
functional of the fields and their first derivatives. Let us suppose that the
equation defining 74 can be inverted to express the z%-derivative of ¢4 as a
function of w4, ¢4, and of the derivatives of fields ¢ in directions tangential
to . (which we denote by dr¢?); we emphasise that (6.7)) holds regardless
of whether or not this assumption is true. Reexpressing #° as a functional
of 74 and ¢* we can then calculate as

0" o0 X
0 _ A A
sH0 = - oA + 5 St + 78(%&)56@
N——
_.3£0
57'rA
50 oA oA s o 4
= 5 oma + <—8¢A — Ok <78(8k¢f4)>> 0™ + O <78(8k(25‘4)5¢ > . (6.8)
_.o0
=427

In this equation the notation % is somewhat of an overkill: by assumption

% depends only on the first deri(}fatives of ¢4, thus .#° does not depend on
the derivatives of dy¢?, and % is simply a partial derivative with respect
to m4.

Comparing (6.5) with (6.8]), for variations w4 and §¢ of compact sup-
port, and supported away from the boundaries of .¢ if any, we find

0 0
/5, ((ﬁquA — 5;2 )omA + (% — [Lxma + X°5A1)5¢A> dSy. (6.9)

If all the variations w4 and d¢*? are independent and arbitrary we can
conclude that

540 A

= 1
57TA £X¢ ) (6 0)
640
W —£X7TA—X0€A. (611)

We emphasise that the assumptions above are satisfied for a scalar field, but
are not for a Maxwell field.
It further holds that, for variations that do not necessarily vanish on

0.7, i
/W (% — (X — X%A'f))w‘ds% —0, (6.12)
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where the integration over 0.7, when not compact, is understood by ex-
hausting . with a family of compact domains with smooth boundary, and
passing to the limit. In situations where both 0.% and the variations of the
fields on 0. are arbitrary, we conclude that

X
04

)

= XFrq— X0,k (6.13)

6.2 Algebra of charges

Consider two functionals F' and G depending upon the fields 74, ¢ and
the tangential derivatives 0,¢*, which in the adapted coordinates as above
take the form

F:/ f(¢4,0:04, ) dSy, G:/ g™, 0,04, 7 dSy . (6.14)
54 54

Following [3] we set

[ (5 89 8f 3
(F,G} sy = /y <5¢A e 5¢A> dSo, (6.15)

with

)

of _ Of of of _ of
SpA T apA <5¢A,i> " 0ma Oma
similarly for g.

We note that there is no reason for {F, G} to be independent of .7,
e.g. when the original functionals F' or G depend upon .. We will, however,
see shortly that {Hx, Hy } & will be independent of .¥; within its homology
class, in situations of interest.

We note that the question of boundary terms in the variations of Noether
charges arising from flows in spacetime can be shuffled under the carpet by
defining instead

{Hx,Hy} o = —Qo(Lxd, Ly ), (6.16)

where
Oy = / whdS, = / oma Aot dS,, . (6.17)
54 7
Equation is a special case of ([6.15]) whenever no boundary terms arise in

the variations of Hx and Hy. We will, however, use the more fundamental
equation (6.I5]) in our calculation of the left-hand side of (G.I6]).
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Using (6.10) and (6.11)), the Poisson bracket of two Hamiltonian func-
tionals Hx and Hy thus equals

[ [OHYHY 5L A

= —/ |:£Y¢A(£X7TA+X0€A)—£X¢A(£Y7TA+Y0(€A):|CZSO
54

= = [ {ex(ragyo?) £y (ratxo’) + ma (ErLxot - £xLvo?)
+Ea (XOLy ot = YOLx ™) JdSo
— /y {Lx A~ Ly A+ Lx (VL) — Ly (X°2) + malyy.xy6”
+E4 (XOLy o — YOLx9?) 1dSy . (6.18)
The following relations hold
Lx Al — Ly = 20, (XA - Y]
+XP00 6 — YPO ML, (6.19)
Ly (Yﬁz) ~ Ly <X5.,§f> — 20, (X[O‘Yﬁ]f) FX,YPZ. (6.20)
Inserting (620) and (G19) into (BI8) results in

{Hx,Hy}, = / {3%3( y] — €4 <XB£Y¢A - YBEX‘JSA)
y b
+Y P, 8 — XPO,
~20, (X Yl 4 xXlevilg) ass. (621)
We conclude that:

PROPOSITION 6.1 If 0,765 = 00765 = 80“7“{& y] = 0, if the field equations
are satisfied, and if 0.1 = 0.%, then

{Hx,Hy} o ={Hx,Hy}y, . (6.22)
PRrROOF: Under the conditions listed the right-hand side of (6.21I]) does not
depend upon .#. O

Another immediate consequence of (6.21]) is:

ProrosITION 6.2 If
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/ (X[ayﬁlg + (XloLy et — Y[%quA)mﬁl)dsaﬁ =0, (6.23)
0.7

and if

2. X is tangent to ./ or the field equations are satisfied and 0,765 van-
ishes, and if

3. 'Y is tangent to ./ or the field equations are satisfied and On ¢ van-
ishes,

then it holds that

{Hx, Hy}y = Hp@y} . (6.24)
(|

A comment on the vanishing of 9,5 is in order. For this, we recall
that in [4] theories satisfying the following were considered:

H1. . is a scalar density.

H2. There exists a notion of derivation with respect to a family of vector
fields X, which we will denote by Lx, which coincides with the usual
Lie derivative on vector densities, and which we will call Lie derivative
regardless of whether or not this is the usual Lie derivative on the
remaining fields, such that the following holds:

a) Lx preserves the type of a field, thus Lx of a scalar density is a
scalar density, etc.;

b) the field m4*Lx ¢ is a vector density;
¢) in a coordinate system in which X = dy we have Lx = 0p;
d) Lx satisfies the Leibniz rule.

In our case the Lagrangian also depends on a background structure,
namely the background metric. Let us collectively denote background fields
by ¢!, with the understanding that if the Lagrangian depends upon both
a background field x and its derivatives, then these derivatives appear as a
separate entry in 1! = (x,9,x,...). As will be seen shortly, under H1-H2
one then has the identity

0L
QAL = EALx ™ — a—w[cxzpf. (6.25)
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Hence the divergence of s* vanishes when the field equations are satisfied
and the background quantities are invariant under .. For the scalar field,
or for linearised gravity, this requires X to be a Killing vector field of the
background. In the Maxwell case, the divergence of . also vanishes for
conformal Killing vector fields of the background metric.

The proof of (6.25]) is simplest in adapted coordinates as in [4]. An
“explicitly covariant” proof can be given for tensor fields, in which case we
can write

VuﬁbA = 8M¢A + FABHQSB )

where V is the covariant derivative operator of g,,. Let us assume, for
simplicity, that the Lagrangian .Z (gbA, auqu, G s aggw,) depends upon the
derivatives of the metric through the connection coefficients only:

Z(61,0,0™, 9ps 0o gus) = Z (67, V0™, g -
Then
0.7 0.Z¢

Vo)~ 0. (6.26)

0L 07 0% g 0Z L
067 T 067 Bouem) M apn T e (020
8? 8$ 8FABM B m 8FABM B
e =7 . 6.28
8(8agaﬁ) 8(8M¢A) 8(809115) ¢ A 8(809046) ¢ ( )

Assuming that £ is a scalar density, it follows from (G.27) that the Euler-
Lagrange equations

0z _ 07

557 = aga T 5T

Oumat =

can be equivalently written as

07
oA’

Vumalt =

since w4*L quA@a is a vector density. Further:

£X§(¢Ay Vu(;SA, Guv, 809#1/)

07, .. . 07
= gorlxot At LxVao + g

Lxgu +maloPLxTp,; (6.29)

50



recall that
ﬁxrg,y = VBV»YXQ + Raga-yXo , (6.30)

which carries over to £xI'4 B~ according to the rank of the tensor field 4.
The divergence of the Noether currents reads

Oadl™ = 0o(TaALxd? — XOL) = 00 (74" Lx ¢ — X*7)
= Ou(ma“Lxo™) — Lx.2, (6.31)
where we used the fact that the Lagrangian is a scalar density:
LxZ =0,(X"2). (6.32)

Using again the fact that the vector field TA*Lx¢? 0, is a vector density,
we note that

O (A Lxd™) = Vo (ma*Lxd?).
From (6.31)) and (6.29) we conclude that
Oa A" = Vo (maLxd™)
0Z

0Z 0ZL

_ A o A Bp A
(5 A L0t F T LxVab 5 Lg 5 LAT Bu)
0.2 0.2
= EALx¢" — TA°Lx, Val¢"! = S —Lxguw — 51— 0" LxT By,
OGuv 0%

(6.33)

which provides an explicitly covariant derivation of (6.25]).

The above treatment applies to any theories of tensor fields with a
coordinate-invariant Lagrangian and without constraints, e.g. for a scalar
field. This does, however, fail for theories where constraints are present,
which require further considerations.

6.3 The Maxwell field

We turn now our attention to Maxwell fields. Unless explicitly indicated
otherwise we consider a general Lagrangian

X(Aua aaAﬁa gpo) = 2(8[11146]79;)0) ) (6'34)

thus .2 neither involves the undifferentiated potential A, nor derivatives of
the metric, and the canonical momentum is antisymmetric:

P g

We start by noting that there are several ways to proceed:
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1. We view A, as a covector field on spacetime, with the Noether currents
A, of ([B4) providing a starting point of further analysis; or

2. we view A, as a U(1)-gauge field, using the Noether currents ¢ in-
stead; and

3. in either case we may, or we may not, gauge fix, to address issues
arising from the vanishing of the momentum conjugate to Ap.

4. Yet another approach is presented in [I, Chapter 3].

We continue by noting that the Lagrangian (3.1]) is a scalar density, so
that the condition H1, p. is satisfied in all cases.

Next, while the replacement of Lx A in the Noether currents by Lx A,
as given by (B.I3]) renders the current ##* given by (B.14]) manifestly gauge
invariant, it leads to problems with point c) of H2. For instance, if X = 9y
the partial derivative 0yAg = L, Ag will be equal to

Lo, Ap = Fog = doAp — 0 Ao (6.35)

only in a gauge where
03Ap =0. (6.36)

But we do not wish to gauge-fix, and therefore we need to revisit the scheme.

6.3.1 Hamilton’s equations

For future reference we calculate on a general hypersurface ., in a general
metric, for a general vector field X, but using adapted coordinates in which
& = {20 = 0}.

Choosing the covector-field approach leads to the Noether charge integral

H|Y,X] = / A0Sy, (6.37)
7
cf. (34), while the U(1)-gauge field approach leads instead to
H[.,X] = / A4S, , (6.38)
7

where S0 is defined by (B.13)).
The variation of H.[.#,X] is obtained immediately by setting (¢4) =

(Aa) in (6.7):
§H = LxAom0 — [Lx70 + X E] 64,
+0, [(quao - XOWW)(;AQ} , (6.39)
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where £x70 is understood as the o = 0-component of the field £xm®,
and where &% denotes the field equations operator,

ga

_iL 0L, oz
T 0A, T 0A, K

m) = — g, (6.40)

Integration gives
/ o0 = / [.CXAZ-W'O — [Lx7™ + X8 54, — XogoaAo} dSo
7 7
v / [(XW‘O — X075 A; — X%OiaAo]dsm. (6.41)
0

For the variations of H[.¥, X], one can recycle the calculations leading
to ([6.39) by rewriting 7 [X] as

HMX] = 7PPLxAs — L XM
= (LxAg+ X"F.5 — LxAg) — LX"
—ag(XaAa)
— Ly Ag = LX" 05X M) + XA D™ L (6.42)
N——
AL [X] &n

(Setting 1 = 0, we observe the well known fact that #° and 0 differ by
a divergence when the constraint equation &% = 0 holds.) We can apply
([639) to the first two terms in the right-hand side of ([6.42), obtaining thus

50 = LxAq om0 — [Lx7m0 + X% 6 A,
Lx Aa+0a(XBAg)
+0a | (X7 — XOnP)5 45| — 60, (70 XPA5) — 6(X° 44 67)
= LxA,0m0 — [Lx7® 4+ X6~ — X*&%] 6A,
+0, [(X%BO — XOpfe Xﬁwao)aAg]
= LxA;0r" — [Lxn™ + X" — X'€Y) 6 A;
+0; [(XW’O _ X0t ijio)aAj] , (6.43)

where we use lower-case latin indices for coordinates on .. Note that
dAp vanished from this formula. Equation (6.43)) is the U(1)-gauge-field-
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equivalent of (6.39), and leads to
/ 540 = / [LXAidwio — [Lx7 + X " — X'&°] 5A,~] dSo
S S
+ / (X'770 — XOr9* — XI7')6A; dSoi (6.44)
0

where the integration over 9. might be understood by exhausting . with
a family of compact domains with smooth boundary, and passing to the
limit.
To continue we set
mh = H0 (6.45)

Anti-symmetry of 7 leads to
=70 =0, (6.46)

and so the variations of the momenta are not arbitrary. Further, the field
equations give in particular
o =0 (6.47)

which gives a constraint on the 7*’s when the field equations are assumed.

In view of (640), and keeping in mind that dAy does not appear in
(6:43]), one could be tempted to drop the field Ay from the Hamiltonian
formalism altogether. But then treating A,, as a vector field on spacetime, or
a gauge-field on a U(1)-principal bundle over spacetime, will not make sense.
Likewise neither (6.35]) would not make sense, nor the usual expression for
the Lie derivative

X*0,A, +0,X"A,,

should one wish to use this expression instead of (G.35]) in the definition
of the Noether charge. So it is natural to keep the field Ay as part of the
variables, even though it does not appear in some equations below.

To continue, recall that the variation 0 H is defined as follows: given any
one parameter family of fields A — A, () one sets

_dAy, L drk
6Api=TE, o= o

etc. Now, in the U(1)-bundle Hamiltonian picture both the time derivatives
of A, and the space derivatives of Ay are eliminated in terms of 7. We can
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therefore calculate as follows

SH[S, X] = yd‘fodso / 6.%dS,
_ / [3;?577’“ %‘f OaAngf ’ZéagAk]dSO
= [ G5+ (G o) Jsai]aso
o gji ’ZéAk dSor

0 0 0
/ [5‘%0 0 O 5 ApdSes.  (6.48)

5k o + (5Ak5 k]dS()-i- o 00

On the other hand, in the covector-field Hamiltonian approach we find

0
SH. [, X] = A dSy = / 6.°dS,
A
DAL i, SHE oA
_ / [ S ant + = i 5Au]dSo + [ aasAdsu. (649)

Hamilton’s equations of motion will be obtained after comparing ([6.44])

with (48], or (6.41]) with (6.49I).
Now, comparison of (6.44) with (6.48]) leads to

0 = /y[(%‘%j)—LxAk)éwar(éﬁ 4 Ly 4+ X0k Xkeo)aAk}dso

0
+/ [&%ﬂ (Xt — X0kt _Xkﬂﬁ)} §A, dSop . (6.50)
o7 L0Ak

The question then arises whether or not, and if so how, to take into account
the Gauss constraint (6.47). (Strictly speaking, this is the Gauss constraint
when the Lagrangian for the standard Maxwell electrodynamics is consid-
ered, but we will keep using this terminology for the more general theories
considered here.) We emphasise that (6.50), as well as (6.64]) below, are

identities which hold for all variations, whether or not the constraints are
satisfied. So we have now at least two options:

1. We allow any variations, perhaps but not necessarily assuming that
the Gauss constraint is satisfied at the field configuration at which the
variation is carried-out; or
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2. we assume that the Gauss constraint is satisfied, and we restrict our-
selves to variations which satisfy this constraint.

Consider, then, Equation (6.50). In the first case, both §A4; and é7* are
arbitrary. Restricting to variations which vanish at 0. we obtain

LxA, = % , (6.51)
Lxm* = —5520 — X0¢ek 4 xke0, (6.52)

It then also follows that
/8 . [gj‘:z —(xtak - X0kt X’%rf)] 5 Ay dSor =0, (6.53)

(If 0Ay, is arbitrary on 0. we can further conclude that

((9,%” 0
0AL

— (Xrb — XOrkt — Xkﬂé))byng =0,
where ny is the field of conormals to 0., but in some situations it might
be appropriate to restrict the class of field variations allowed at 0.%. If

moreover §Ay, is arbitrary on 0. and we allow 0. to vary we further find

0"

27 = xtpk — XO0gkt _ xkgl 6.54
Tans T T 7o) ( )

Next, we return to (6.50) in the second case where the variations of Ay
remain arbitrary but those of 7* are subject to the constraint

680 = dpomt = 0. (6.55)
Now, the vanishing of the divergence of 7% implies that for any function \
we have
/ STl NSy = — / 50, A Sy + / ST A dSo; . (6.56)
& 54 0
—_———
0

The right-hand side vanishes when A or when the normal component of 7
vanish on 0.7. We expect therefore that (6.5I]) should be replaced by

0

0
X“(Ak,u — Au,k) =LxA, = &T—k + O\, (6.57)
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and it is conceivable that this equation can be justified for classes of fields
with restricted boundary conditions, but we have not attempted to do this.

The apparent discrepancy between the last equation and (6.51]) is easiest
to understand in Minkowski spacetime, on the standard slices t = const, with

X = 0;. Then (6.57)) reads
Ot Ay, — O Ay = T+ Op), (6.58)

so that in this case the function A can be absorbed in a redefinition of Ag.
More generally, (6.57) can be rewritten as

0
Lx A — ak(X‘uA“) = % + Ok, (6.59)
which makes it clear that the freedom in the choice of A is closely related to
the gauge freedom of the theory.

Regardless of whether or not (G.57) provides the correct way to proceed
in whole generality, one can take into account the constraint (G.55]) by using
variations of the form

ok = MDY (6.60)

which have vanishing divergence for all vector fields §Y . For such variations,
and after taking into account (6.51))-(6.53]), Equation (6.50) becomes

0
0 = / (%—LXAk>eMmD55YmdSO
5

ok
540
o kfm _
= /(y € Dg( 57Tk LxAk) 5Ymd50
o4 ktm

As this holds in particular for all vector fields Y vanishing at 0.7, we
conclude that we must have

N
Sk

ekéng< - LXAk> = 0. (6.62)

In the Minkowskian case as in (6.58]), this is the usual Maxwell equation

B = —rot E . (6.63)
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We finish this section by comparing (6.41]) with (6.49):

0 = /y [(5(;}:20 - EXAk)&rk + (5;20 Y L+ Xog’“)dAk
+ (55‘;20 v XOSO)(SAO] dSo
+ /8 B { [gﬁz — (Xt - X%“)] SA,
+ (gij“j + XOx!) 640 } dSor (6.64)

A discussion similar to the one for /9 applies, we leave the details to the
reader.

6.3.2 Noether charge algebra

In this section, unless explicitly indicated otherwise we consider a theory
with a general Lagrangian density of the form ([6.34]). As before we set

A =7 Lx A, — XPL (6.65)

Given two functionals F' and G of the form
F= [t G= [ onoianatdse, (600
7 54

following [3] we set

of dg of dg
F = — = - L = . .
£ Gy /y <5Al ort ol 6 A 45 (6.67)

In this formula the operator §/6m" is defined by ignoring the fact that 5
should satisfy the Gauss constraint, so that (6.51)-(6.52]) apply.

The Poisson bracket of two Hamiltonian functionals Hx and Hy with
integrands 7% and J& thus equals

(6.68)

8006560 6.0 57
Hs . H — X Y X Y
{Hx. Hy}y /y<5Al onl  oml oA >d50’

Let
EY = XPe0 - X% By =YFRE0 —vOsk,
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Recall that 7% = 0 and that Lx7% := Lx7 = 0 for any vector field. Using

(651)-([652) we find
SHQOHY  SHLIAY
§A; ont  oml 04
= (—Lxm"+EY)Ly Ay — (- Ly7n" + EY)Lx Ay
= —Lx (FVLyAy) + 7Ly (LyA,,) + Ly (w”LXA,,)
—m"Ly (LxA,) + (EXY" — E§ X")F,y,
= 7(LxLyA, — LyLxA,) — Lx (7"Ly A, — Y'.%)
+Ly (7"Lx A, — X°.ZL) — Lx (Y°.L) + Ly (X".Z)
+(EXYH — EE XM F . (6.69)

Additionally, we have

(LxLyA, — LyLxA,) =
= Lx (YuFW) — Ly (XHFMV)
= X0o(YMFu) + YV Fua0, X® = Y04 (X' Fy) — XFFua0,Y ™
= (XYY" =Y 0o X")Fp +(XYH = YOX") 00 Fpu

L[X,Y]AV
+(YH0,X* — XFO,Y ™) F
= Lixyj4y + XV (0o Fuw — 0pFay) + Fua0, (YHX®) (6.70)
Using the identity
OaFly — OpFow = 0y Fa (6.71)

we continue as follows:

(LxLy A, — LyLxA,) =
Lixy Ay + XY 0, Fua + Fla0y (Y4 X®)
= Lixyidy + 0y (FuaY*X7). (6.72)

Recall the identities (6.19)-(6.20) for vector densities,

Lx ] — Ly = 20, (X1 — v
+XP0, 8 — YPO M (6.73)
Ly (YBZ) Ly <X5.$> — 20, (X[ayﬁl.z) FIXY]PZ. (6.74)
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Inserting (6.72)-(6.74) into (6.69) results in
(Hy, Hy} — /y [y + Y P00 — XPO, A5
20, (X! — Yl + xleyilg)
+(BYY" — BEX¥)Fy }dS (6.75)

To continue, we wish to show that the divergence of the Noether currents,
which appear above, vanishes when the field equations hold and when the
Lagrangian does not depend upon A,,. For this, recall that we have assumed
that the Lagrangian is a scalar density, so that

Lx Y = aa(Xa.i”) . (6.76)
Thus

Do ¢ = 0a(7LxA, — X°.Z)
— 0, (7""LxA) — Lx 2, (6.77)

which can be rearranged as
Oy = O0Oq (w”a(LXA,, — £XA,,) + 0,70 X]. (6.78)

For 0,22%[X] the formulae (6.33) holds with .Z = .#. Note that .# does
not depend on connection coefficients. Equation (6.78]) becomes

aa%)? = 8a(7TVa(LXAV—ﬁxA,,)

+ELx A, — T [Lx, V] Ay — 02

990 Lxgexn. (6.79)

Now, the divergence term in (6.79) reads
Oa [T (Lx A, — LxA,)] =
= &” (LXAV — ﬁxA,,) + ﬁyaaa (LXAV — ﬁxA,,)
= &"(LxA, - £xA)
00 ( XPFpyy — X1, A, + X10,A, —0, (X”Au)>
=0
= & (LXA,, —LxA,). (6.80)
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Summarising, we have shown that

ODu ¢ = EVLxA, — 1 [Lx, Vi]Ay — gji

,CXgH)\ . (6.81)

Inserting this into (6.75]) we conclude that

{Hx,Hy} = / {%TQY}—2aa(X[a%ﬂ—y[a,fffux[ayﬁ]g)
y )

A
+Y"” (é"“LXA,.i — M [Lx, Vi]Ay — 0z EXQHA)
89&)\
A
—Xx” <£“LyAR — 71’\“[£y, VA — 0 EYQHA)
agli)\
+(ELY" — B X")Fy }dSs (6.82)

where (6.79)-(6.80) have been used.

6.3.3 7°: 3+ 1 decomposition

We continue by deriving the formula for #°, and its variation, assuming the
standard Maxwell Lagrangean. It is convenient to introduce some notation.
In the remainder of this section we will assume that . is spacelike. We will
use the ADM parametrisation of the metric,

Yij = Gij » N = ﬁ) Nk = 9ok » Nk :/ykZva (683)

where 4% is an inverse of the three-dimensional metric 7i; induced by g,
on .%:

Gy = [Qoo QOj]:[—N2+Nka Nj:|

m gio  9ij N; Yij |’
00 05 _1 NI
g g 2 p)

g = [ 0 . } = N N2 . (6.84)
g0 4" & - I

It holds that

\/|det g | = Ny/detv;; . (6.85)

Let T* denote the field of unit future-directed normals to ., thus T}, =
—N dt. We define the electric field E* as

EF .= NFO% = —prT, . (6.86)
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The canonical momentum 7% is related to the electric field as

1
= —E\/det vi; E¥ (6.87)

and we note that

1 1
/det Yij \/det Yij
where D is the covariant derivative operator of the metric +.

The decomposition of the Maxwell tensor density (B.3]) associated with
the (3+1)-decomposition of the metric reads

DkEk = ak( det’yijEk) = —

9u(v/det gogF") =0,

(6.88)

For = N'Fy— N2Fly, (6.89)
FH = (N'FO% — NFFO A F (6.90)

where
F = /| = det g|F*" . (6.91)

For (6.90) the following calculation is useful:

Fary = F gugun

= (fomgowmz + F™ gmigor + Pn"gmkgnz)’ykp’qu
— FUINP 4 FPONT 4 FPI (6.92)

and this last equation is also useful as an intermediate step for (6.89). The
field equations operator &% reads

dns* = ON'F* = NFFN) 4+ 0, (3* "y Fopn) — 80 F*, (6.93)
which has to be supplemented with the constraint equation

480 = —9, F V.

62



Using (6.89)-(6.90]) the Noether current (3.14]) can be rewritten as

%0

1 1
§7TkXOF0k + Wleﬂk + K\/ ‘ det g\XOFlekl
T
1
§7TkX0(Nvalk _ N2F0l,ylk) + ﬂ_k‘Xvalk
1
+167T /| detg|X0((NlF0k‘ _ Nk:FOl) + ,yk‘m,ylnan)Fkl

1 1
—§X0N27TkF0l’}/lk + ﬁ | det g|X0’7km’7lnanFkl
+ X7 N Fy + 7F X Py

vdet 1
= Y |:NX0 (EkEl/ylk + §7km71nanFkl + 2N—1Ek‘NlF1lk)

+2EleFlk] . (6.94)

We can therefore write 70 in terms of the 7%’s as

%0

27 XN 1 [T+ 0.kmin
= \/mﬂ- T Yik + 16—7TN deth T anFkl
+ X7 N Fy, + 7R Xy, (6.95)

For completeness we calculate the variation of s as given by (6.94)):

5.0

vdet
% |:NXO (2"}/”€Ek(5El + ’Ykm’ylnan(SFkl

+2N T NYEFSFy + Fyd EX)) + 2X (E*0Fy, + Fyo EY)|

C;it : {2 [NXO (i B*OE! + NTIN*Eyy) + X" |0 E!
20 [N X (7" By, — 2N TINEER) — 21 ER) 64,
=20, [(N X" (""" Py — 2N~ NUEH) — 2x1EH)54,] }

(6.96)

7 Plumbing the leakage

The variational identities discussed so far suffer from the existence of “leaky
boundary terms”, i.e., non-zero boundary terms in the variational formulae.
These create problems when attempting to define Poisson brackets. In this
section we show how this can be avoided by suitably extending the phase
spaces.
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7.1 De Sitter background

In what follows we will need explicit formulae for Fefferman-Graham coor-
dinates in de Sitter spacetime; the aim of this section is to address this.

In addition to the form (2.1]) of the de Sitter metric, let us recall the
more standard form

d 2
g=—(1—a*?)dt* + 1_7;2742 + r2(d6* + sin? 0d¢?) . (7.1)

The Bondi form (21]) of g can be obtained from (71)) with ar > 1 by
introducing a coordinate u through the formula

dr 1 ar—1
du::dt—irzd<t+ﬁln(ar+l)>; (7.2)
cf., e.g., [8].

Instead of either form of the metric above, for the purpose of global
Hamiltonian analysis it seems best to use a globally defined, manifestly
regular representation of the metric on the cylinder R x S3 for de Sitter
spacetime. For instance, the apparent singularity of the metric (1) at
r = « is due to a poor choice of coordinates, as can be seen by setting,

. 1 cos
r=a “sinycosh(ar), t=a " areatan <tanh(a7) > (7.3)

Using (7.2]), we can obtain a relation between Bondi coordinates and the
coordinates on the cylinder R x S3,

<sinh(a7') cos (1)) — Sin(¢)> , (7.4)

cosh(art)

1
u = — areatanh
o

toghether with the first equation in (Z3]).
After the coordinate transformation (7.3]) the metric (7.I]) becomes

cosh?(ar . :
2+ % (d? +sin* 4 (d6? +sin”0d?)) . (7.5)

g = —dr
with y/det |g] = a~3 cosh(a7)? sin? 1) sin §. The Killing vector field
defining the Hamiltonian energy, in the coordinates (7.3]) reads

T = cos 0, — asintp tanh(ar)0y, . (7.7)
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For future reference we note

1

"1 sin? 1 cosh?(ar)

o,  Cos 81/,} '

[ — sin® sinh(ar)d; + cosh(ar)

(7.8)

The metric (T.5) can be rewritten in a manifestly conformally smooth
form

g = cosh?(ar) (- cosh™2(ar)dr? + a2 (dw2 + sin? 1) (d@2 + sin? 9dcp2)) )

—_——
=x—2 =5
_ dz? |
= () (=== +1). (7.9)

so that the coordinate = (not to be confused with the coordinate = of (2.2)))
is a time coordinate for |z| < 1, with spacelike level sets there.
The conformal boundary is obtained by attaching the hypersurface

It = {x =0}

to the physical spacetime. The Killing vector (7)) becomes

T = —atanh(ar)|sech(ar)cos 18, + sin Yy
= —aV1—a?[zcosd, +sinydy] , (7.10)
and extends smoothly to #*. For further reference we note
2
ax 2\ .
0, = —m<(l—x )smw(‘)x—kxcosw&/,) . (7.11)

Let § := 22%g, the §-Lorentzian norm-squared of T is
T, T) = 2%(T,T) =2%(a*? — 1) = 2%(sin®(¢) cosh?(at) — 1)
sin?(y) — 22, (7.12)

thus 7 is spacelike througout .# .

7.2 Conformally-covariant scalar field

Using the coordinates as in ([7.9]), the phase space of Cauchy data on three-
dimensional spheres of constant x consists of smooth fields (¢, d,¢) with
symplectic form

Q- _ / 57 N0 dS, (7.13)
xr=const
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where the minus sign in front of the integral comes from the fact that 0, is
past pointing. Writing 7 for —n® (where again the negative sign is motivated
by the time orientation of 0;), and ., := {& = ¢}, there is an associated
Poisson bracket, without problems with boundary terms since S® has no

boundary:
0F 0G  OF G
F = _——— v - 14

It follows from conformal invariance of the equation satisfied by ¢ that
the field s

- (7.15)

X =

extends smoothly to the boundary {z = 0}. We have the expansions, for
small z,

w G, © W
o= dr+ dx*+... — X=X+ XxXr+..., (7.16)

with coefficients which are functions on S®, where

(1)

X = a:cX’:c:O . (717)
Since € is z-independent when applied to variations satisfying the field equa-
tions, it is tempting to pass with = to zero. Using (T9) and (Z.I5) one
obtains

1
Q= 2 / 30z x N Ox dpy (7.18)
=0
with Poisson bracket
df 6g  of og
F = . - 1
{F.Gla /SS (5)( dm  Om oy a5 (7.19)

where now ™ = —a 20, x/det 7.
In order to avoid leakage for fields on light-cones %, for each u we can
consider the phase space consisting of the field ¢ on %, and of the fields

(x,0zX) on

Ir={x=0}\I1(%.) (7.20)
(compare Figure [[1]), equipped with the symplectic form
1
0p 0 A S ridr dpsy — — / 59uX A Ox dpus . (7.21)
Cu a” Jaf

If F and G are associated with conserved functionals, the Poisson brackets
thereof can be calculated using (Z.19]).
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(@) N iz =0}

Figure 7.1: The integral curve of 0, passing through r = 0 is denoted by
5.

We wish to calculate the Noether charge associated with translations
of the light-cones in u for a conformally-covariant scalar field, thus with
Lagrangian

1
£ = =5/ det (9" 0ud 0y + 12 6%) . (7.22)
202

One expects a formula of the kind

H — / J0,]dS,,
CuUIF

= H[0,)dSy — | A0, dS, (7.23)
Cu g

where the minus sign in front of the second integral arises again from the
fact that 0, is past-directed. However, the individual integrals diverge, so
some care must be taken. For instance, assuming a # 0, on the level sets of
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x the integrand J%[0,] = H*[T] is,

H(0,]

VIdetgl( = V76 L7+ 5 (Vo 6Vabtm?¢*)T7)
()™ 1ditz2 < —a32%(1 — m2)3/28x<;5[a: o8 YOy ¢ + sin 10y )|

_ae? T L VBB DO )22
5 1 —z2zcostp( — (1 — 2%)(8,0) + [D¢|s +m*(ax) ¢)>
—oflm_zx/det"y<(1 — 2%)sin Y0, ¢y ¢

yreosp((1—2)(@u0)? + DOR +mi(aw)2¢)),  (121)

where D is the covariant derivative associated with 5. Inspection of (7.24))
reveals terms which diverge as x — 0 with this asymptotics and which, using
m? = 2a?, can be collected into a divergence as follows:

H10,]

—a~ 272 /det "y{(l — %) sin 90, (xx) 0y (X)
+gmeosth((1 - a)(@uax))? + D) +2x7) }
—a te 2 sin? ¢ sin@{az(l — o) sin(x + 202X) Iy X

1 .
+§x cos((1 — %) (x + 20 x)* + :E2|Dx|,2vy + 2X2)}

1
—5(%{04_13:_1 sin® 1 sin O(1 — x2)X2}
+§ofla;_1 sin? 1 cos 1 sin O(1 — %) x>

2
—a 7 2sin% ¢ sin 9{3;2(1 — 2%)sin Y0 X Oy X

1 .
+o cos (1 — 2?)(3x? + 2zx0ux + 2(0:X)?) + 22%x* + leDxl%)}

—0y {%a‘lm_l sin® ) sin 6(1 — xz)x2}

:;—6‘"
—a 1\ /det 7{(1 — z?%)sin YO XOpX
1 3
+§ cos Y ((1 — 2?)(2x0ux + 2(0xX)?)+22X° + x\DX‘?y) }
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It should be admitted that this way of handling the divergence is ambiguous,
and could lead to a different finite part of the resulting boundary integral
when, e.g., other coordinates are used.

7.2.1 Spacelike Cauchy surfaces

Consider, first, the Hamiltonian charge obtained by integrating (7.25]) over
a three-dimensional sphere of constant . Then there is no boundary term,
and choosing the exterior orientation of the slices appropriately one is led
to a finite charge equal to

a‘l/ {(1 —x2)sin1/18xx8¢x
S3
1 .
+35 cos (1 = 2%)(2x0ux + #(9eX)?)+22x> + 2| Dx[3) }d,uxy , (7.26)

independently of z. In particular we can pass to the limit z — 0 to define

Ewlst] = ofl/ (sin 98y X0y x + o8 YXDuX) |z=0 dpiy
S3

(0)(1

_ . (1) 4 (0) (1
- «a 1/53 (sinX 0y x + cospx X )dps
— 1) . (0)
= a! /SS X Oy (sinap X )d s, . (7.27)
Note that 0, is tangent to {x = 0}, and equals there

Oylz=0 = —asin oy .

Writing % = —p®+/det ¥, the symplectic form €2 is independent of z on
solutions of the field equations and reads

0= /S3 dp™ A dx dps (7.28)
The Legendre transformation leads to p* = —a~20,x and a Hamiltonian on
& equal to
H = Exls"]
= o [ oo
= « /SS P Oy (sin zb(;()) sin?(1) sin(#)dipdfdep . (7.29)
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The resulting Hamilton equations take the simple form:

(0)
) . d oH O
ady (sin? ¢Yp”) % =5 a8¢(81n¢>0<), (7.30)

dp* _ _0H _ 1
du 5(§g_sin¢

with p* and ()O() evolving independently of each other.

7.2.2 Corner terms

We pass now to a Cauchy surface which is the union of a light-cone and the
“complementary part of 1",

Recall that %, is a light-cone in .# with vertex at r = 0. For aR > 1
we set

S =L\ I (%), IF = I\ (%),

see Figure [Tl The hypersurface .#;" can be viewed as the limit, as = tends
to 01, of the .7, ,,’s. Let Sy, be the intersection of %, with the .7,. Let
So,u be the intersection of €, with the conformal boundary at infinity .#;
thus the surface Sp,, is a limit of S, in which = tends to ot.

Since the Noether current J* = 7+[J,] has vanishing divergence, we
have for z > 2’ > 0

/ A4S, = / S, (7.31)
<gu,R(z)LLyz,u €, ,R(x/)Uyz/,

u u

We can thus pass to the limit 2’ — 0 to obtain

/ AAS, = lim S, (7.32)
G,

u,R(z)Uyz,u =0 Cgu’R(z)Uyz’u

in particular the limit exists and is finite.

Recall that (see (T.25))
S = 1§ + Dyh” . (7.33)

so that
/ JMdS,, = / h*dS, + B1, (7.34)
yz,u

T,u
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where

By, = _1/ Z?w{a_lx_lsin?’q/}(l—xz)x2}dwd9d<p
2 Jgs
_ 1 —1,.-1 .3 N
= Z/SM {oz x” sin” (1 — %)y }d@dg@
(0)
1 (X)? oo . 09
2acosh(au)? /SM[ g oKX 3sinh(ow)(x)
+0(x)| sing o dip . (7.35)
Similarly, setting .
A N (7.36)
we can rewrite (£25]) as
/ JO*S, = / h"“dSy + Ba , (7.37)
<gu,R(mc) <gu,R(mr)
where
B, = 1 / 0, [ (r? = 0?r") 6(0,0) sin 0| dr df dp
2 <gu,R(ac)
_ % /S (r2 — a2r) 0, ¢sin 0 df di (7.38)
Thus
/ HAS, = / 6°dS, + / bdS, + By + By  (7.39)
%uyR(x)ny,u S <gu,R(ac)

Both volume integrals have a finite limit as x — 0. It remains to analyze
the divergent boundary terms in the energy on the family S;,’s. This
requires some changes of coordinates. Equations (T3)-(74) together with
x = 1/ cosh(at) can be inverted as

_1V1—2?— zsinh(ou)
x cosh(au)
1 — zsinh(au) + O(z?)

r(x,u) = «

- az cosh(au) ’ (7.40)
V1 — 2?2 — xsinh(au
singp(z,u) - = 1 cosh(au) e
_ 1= x sinh(aw) +O0(?). (7.41)

cosh(au)
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Since we need to calculate derivatives of the fields along %, in the new
variables, we need instead (z,%) as a function of (r,u). For z > 0 and
ar > 0 one finds:

x(ryu) = \/ 1 — tanh(ou)” (7.42)

1 4 a2r2 + 2ar tanh(au) ’

) B 1 — tanh(au)?
sin (4(r,u)) - = Cw,\/1 + a?r? + 2ar tanh(au) (7.43)

This leads to

o 2
i = ax”cosh(au), (7.44)
67" u=const
% = —aziV1— 22 cosh(au) . (7.45)
u=const
One then finds
_ 1 2 ooay, (O 9z i
Br = 3 /s (% = )G 00 + 50x )6 sin0 db d
_ % / (a2 2sin?y — a2(a~ 'z~ sinyh)*)zx x
Sx,u

oz’ cosh(au) <8¢ —V1- x28m> xx sin @ df dy

0)
1 (0) (0) )

X (-1) . 0
= — = — 0y X +3x —4sinh(au
2a cosh? (au) /gm X [az X X (au)X

+O(az)] sin 6 df dg . (7.46)
We are ready now to compare (7.35]) and (7.46]). Note that each diverges

when z tends to 0T, but their sum AB, ,, := By + Ba ,, relevant for the total
energy, is finite. Indeed, passing to the limit z — 0" one finds

AByy = lim AB,,

z—0t

1 ©) /(1) © (0 . _
~ 2acosh(au) — Oy X — X sinh 0dodp. (7.47
2a cosh®(au) /So,u X <X Y X — X Sl (Om)) sin 0. ( )

Summarising: in the phase space described above the dynamical system
induced by translating in u the tip of the light-cone is Hamiltonian, with
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Hamiltonian equal to (compare (7.23) and (Z.33):

H = lim J0MdS,
z—0 %u,R(ac)ny,u
_ / b dS, + ABy, — / b%ds, (7.48)
w I
=E (%]

(with the minus sign in the last integral arising from the fact that 0, is past-
directed), where now all the terms are finite. In this picture the “leaking
terms” correspond to an exchange of energy between the subsystem consist-
ing of the field on the light cone and the field on 7.

7.3 Maxwell fields

The analysis for Maxwell fields is quite simpler than that for the conformally-
covariant scalar field. The phase space of Cauchy data on three-dimensional
spheres of constant = consists of smooth fields (A,,d,A,) with, loosely
speaking, symplectic form

Q = - / 574 N5 A, dS,
r=const

= - / omh T A AL dS, (7.49)
r=const

where we used (z*) = (z,z*), where the 2*’s are local coordinates on .# 7,
as well as the fact that #%* = 0. There exists a gauge in which all fields
extend smoothly through z = 0, so that we can write

0 (1)

Ay = Ap+zAp+---, (7.50)
(0) 1) 2(2)

Foa = Foap+4+axFag+ax"Fuagp+..., (7.51)

where the expansion coefficients are functions of z*. Since Q is conserved
for variations satisfying the field equations it holds that

0) (0)

Q AMSF o NS Ay dps . (7.52)

B 4r z=0

The dynamics generated by the flow of d, is Hamiltonian, with

ExlS%] = - ngff[au]dsm. (7.53)
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Assuming « # 0, using (7.9)-(7.I0) we find

1 1
=~/ detg] (FfﬁT‘*Faﬁ . Z(F”BF,,B)T”E>

4 [ dety

47

—%a\/ 1— 222 COS¢(F”BFVB)}

1 1
= —4—ax/det ﬁ{ax(l — 2?) cos YFpg, Fy 7™
T

1
+(1 — 2%) sin o Fpp, Fyy 7™ + 17 €08 mekam%“} . (7.54)

Hence

ORIV

Ex[S%] = sin ) §F F o Flyp + 0(95)} dpy

“ir Ja L
o . vkl(o) 0)
= 5 3s1n¢’y Fop F oy dps (7.55)
S

where in the last equality we used the fact that E 4 [S?] does not depend
upon x.

To take care of the leakage, for each u we can consider the phase space
consisting of the fields A, on %,, and (Ag, 0y Ax) on the set 7 of (T.20),
equipped with the symplectic form

1
QO = — <r25Fm NSA, +3ABSF 5 A SA A) dr djis
471' Cu
S — SKLSE A G djis (7.56)
A JJL v xk QM . .

The Hamiltonian charge associated with moving the light-cones along
the flow of the Killing vector 9, = T decomposes as in (.23)),

H = [ #0,]dS,— | #7[9,]dS,, (7.57)

(where the minus sign in the second integral is again motivated by orien-
tation considerations) but now each integrand is finite without further due;
hence no corner contributions arise.
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A Killing fields in Minkowski, de Sitter and anti-
de Sitter spacetimes

In order to determine the Noether charges in our formalism we will need
the explicit form of the Killing vector fields in Bondi coordinates on the de
Sitter, and anti-de Sitter and Minkowski spacetimes.

A.1 Killing fields in de Sitter spacetime

We use the following basis of the space of Killing vectors in de Sitter space-
time

T = 0Oy, (A1)
R = P4DA(Rin')05, (A.2)

. : 1. .
Pas = e {pmlau — (ar + 1)pm18r — ar:— DA(me)aA] . (A33)

ar —1

Lis = e—W[z,-niau+(ar—1)z,-niar+ f)A(z,-ni)aA}, (A.4)

r

where R;,p; and l; are constants. Using the following coordinate change

o _ (sinh(au) —r?a?sinh(au) — ar) cosh(au) 4+ ar — sinh(ow) (A5)
B a((a?r? — 1) cosh(au)? + 2 cosh(au) — a?r? — 1) T
1 (cosh(au) — sinh(ua)ar — 1)rsin 6 cos ¢
x = , (A.6)
(a2r? — 1) cosh(au)? + 2 cosh(au) — a?r? — 1
h — sinh — 1)rsin@si
2 (cosh(au) — sinh(ua)ar — 1)rsinfsin ¢ (A7)

(a2r? — 1) cosh(au)? + 2 cosh(au) — a?r? — 1’

3 (cosh(au) — sinh(ua)or — 1)7 cos (AS)
x> = : :
(272 — 1) cosh(au)? 4 2 cosh(au) — a?r? — 1

the de Sitter metric (7)) transforms into conformally Minkowskian form

4
g =—————=nudztdx”, (A.9)
(1+ 82a2)2 g

where 17, = diag(—1,1,1,1) and s*> = n,,z"z”. Defining

o?

1
Su = _§8ﬂ 2 (2nuaa’a” — s26,7)0, (A.10)

Ly = 77/0\1')\81/ - 771/)\33)\8;1 ) (A.11)
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one finds

T = S, (A.12)
R = R Ly, (A.13)
Pas = pin”(aLoj — S;), (A.14)
Las = Lin"(aLoj +5;), (A.15)

where {i,7,k} € {1,2,3},¢'% = 1. Ei,ﬁi,l:- are respectively linear combina-
tions of R;,. The following commutation relations hold

[LaB, Lpo’] = anLao + naoLBp - UBULap - napLBa ) (A'16)
[L;wa Sp] = (77/0\"7;)1/ - nupn)\u)n)\aso s (A17)
[S:5,] = a’Lyg, (A.18)

which leads to

[T.R] = 0, (A.19)
[T Pds] aPys , (A.20)
[T EdS] —alys, (A.21)
[Rr,Rir] = Rur, (A.22)
where Ry, R, Rrrrare given by (A13).
A.2 Killing fields in anti-de Sitter spacetime
Using for anti-de Sitter & := —i« , while simultaneously keeping p;,[; real,
the real and imaginary parts of Pyg and L4g are
Pas(pi) = Paas(pi) +1Lads(pi) (A.23)
ﬁds(li) = PadS(li) + Z»Cads(_li) (A.24)
where
Puas(Di) = pi [nicos(&u)au + n'(@rsin(au) — cos(au))o,
N (arsm(au)r— Cos(au))f)Ani@A] , (A.25)
Loas(l) = 1;|n'sin(@u)d, — n'(sin(au) + arcos(au))d,
_ (sin(aw) +Tozrcos(ozu))lo)AniaA] . (A.26)
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A.3 Killing fields in Minkowski spacetime
The Killing fields in Minkowski spacetime will be labelled as

T = 0, (A.27)
R = €9*R;5;2'0y, (A.28)
P = Py, (A.29)
L = Lig'd,+tLio;, (A.30)

where P, = P | L; = L' and R; are all constants.
The coordinate transformation between Minkowskian and Bondi coordi-
nates

(u=t—rr, a:A) (A.31)
gives
. 1. .
O =0y, 0;=n"(8,—8,)+ ;DAnZ(?A, (A.32)
where the fields ,
i
n' = (A.33)

form a basis of the space of ¢ = 1 spherical harmonics, and thus n' is viewed
as a scalar on S? in formulae such as D4n’. Under (A31)) the Killing vectors

(A.27)-(A.30) become

T = 0, (A.34)
R = PDp(Rin')oa, (A.35)
P = P, (n (@ — Bu) + %bAniaA) : (A.36)
L = L,~< —un'Oy + (u+r)n'o, + (1 + %)15%"@)) . (A.37)

where e48 is a two-dimensional Levi-Civita tensor; in spherical coordinates

(0,¢) we take the sign /¢ = _L_.
The Killing fields for Minkowski spacetime can be obtained as a limit of

de Sitter spacetime. Equations (A3)-(A4) and (A36]) give
L.
P = — lim (Pas + Las) (A.38)

where one has to set [; = p; = P,. Analogically, (A.3])-(A.4]) and (A.37)) lead
to

<ﬁds — Pds) 7

a

1
L == 1lim

2 a—0

(A.39)

where the parameters should be taken as p; = 1; = L.
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B An example: Blanchet-Damour-type solutions
of the Maxwell equations

An elegant class of linearised solutions of the Maxwell equations with A = 0
can be constructed in analogy to the Blanchet—Damour solution for lin-
earized gravity, introduced in [2]. The electromagnetic potential A, dz* in
Lorenz gauge satisfies

0,4, =0, 8,A*=0. (B.1)

Here 7 is the Minkowski metric, taken to be —(dz?)?+(dz!)2 4 (dz?)%+(dx3)?
in the coordinates of (B.Il), and [J,, the associated wave operator. As in [2]
we start with an ansatz for the electromagnetic potential in Lorenz gauge:
given a collection of smooth functions I; : R — R, the one-form

4 — aj(fj(t—r);fj(wrr))
= —(Lit—r)+ L+ r))g:—; +0(r %), (B.2)
Aj _ fj(t—r);fj(t—l-r)’ (B3)

where each dot represents a derivative with respect to the argument of I;,
is a smooth tensor field on Minkowski spacetime solving (B.IJ).

Since the operators appearing in (B.Il) commute with partial differentia-
tion, further solutions can be constructed by applying 9, - -- 9, to A,, and
by applying Poincaré transformations.

ACKNOWLEDGEMENTS: We are grateful to Jacek Jezierski and Jerzy Ki-
jowski for useful discussions.
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