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Abstract

This work brings together the moment matching approach based on
Loewner functions and the classical Loewner framework based on the
Loewner pencil in the case of bilinear systems. New Loewner functions
are defined based on the bilinear Loewner framework, and a Loewner
equivalent model is produced using these functions. This model is
composed of infinite series that needs to be truncated in order to be
implemented in practice. In this context, a new notion of approximate
Loewner equivalence is introduced. In the end, it is shown that the
moment matching procedure based on the proposed Loewner functions
and the classical interpolatory bilinear Loewner framework both result
in κ-Loewner equivalent models, the main difference being that the
latter preserves bilinearity at the expense of a higher order.

1 Introduction

Accurate modeling of physical phenomena often leads to large-scale dynam-
ical systems that require long simulation times and large data storage. In
this context, model order reduction (MOR) aims at obtaining much smaller
and simpler models that are still capable of accurately representing the be-
havior of the original process. Many different MOR techniques have been
proposed: SVD-based (e.g., balanced truncation) methods, Krylov-based or
moment-matching methods, proper orthogonal decomposition (POD) meth-
ods, and reduced basis methods. Most of these methods are included in the
broad family of projection-based methods: the internal state x is approx-
imated by a vector of smaller dimension x̂ obtained through a projection
into a particular subspace. For more insights, the reader can refer to [1],
[2],[3], [4], and to [5].

Among them, the Loewner framework (LF) [6] is very appealing due to
its data-driven nature, which makes it nonintrusive as it does not use the
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full/exact description of the model. It is based on the Loewner pencil that
allows solving the generalized realization problem for linear time-invariant
(LTI) systems [7], and obtaining reduced-order models through rational in-
terpolation [8]. In particular, the Loewner matrix is the cornerstone of the
LF as it can be factored into the tangential generalized controllability ma-
trix and the tangential generalized observability matrix, which can then be
used to construct LTI models.

To broaden its applicability, extensions of the LF have been proposed
for specific classes of nonlinear systems: bilinear [9], quadratic-bilinear [10],
and linear switched systems [11]. These extensions rely on higher-order
transfer functions based on Volterra series, and the definition of associated
observability and controllability matrices.

In parallel, an interconnection approach is proposed in [12], based on
the definition of left and right Loewner matrices. This approach allowed to
develop a model order reduction procedure for linear time-varying systems
[13]. This idea is taken further in [14] to extend the LF to general nonlinear
input-affine systems by defining Loewner functions, which can be seen as
time-varying nonlinear counterparts of the matrices classically used in the
LF. This branch remains mostly theoretical since the explicit computation
Loewner functions requires solving Partial Differential Equations (PDEs).

This work aims at bringing these two interpretations of the Loewner
framework together, in order to benefit from the practical implementations
of [9] and the theoretical guarantees regarding steady-state behaviour com-
ing with Loewner equivalence as in [14]. To start with, this paper focuses on
bilinear systems. New Loewner functions, inspired by [9], are proposed for
bilinear systems, allowing to derive a moment matching procedure for this
category of systems. These Loewner functions are built based on the gen-
eralized reachability and observability matrices from [9]. In particular, they
consist in infinite power series, which are not suitable for practical implemen-
tation. In this work, it is proposed to truncate these Loewner functions and a
concept of approximate Loewner equivalence, namely κ-Loewner equivalence
is introduced. Finally, it is shown that the approach from [9] preserves bilin-
earity at the expense of a higher order than the moment matching approach
resulting from the proposed Loewner function, though the latter results in
a more complex model structure. Both models are κ-Loewner equivalent to
the underlying bilinear full-order model, i.e., they both match the same first
κ-th order moments.

The outline of this paper is as follows: in Section 2, the interconnection-
based approach of the LF for input-affine nonlinear systems as in [14] and the
LF for bilinear systems from [9] are recalled. Section 3 introduces Loewner
functions for the case of bilinear systems, allowing to derive a reduced-order
Loewner equivalent model. As the resulting model cannot be implemented
in practice, it is approximated by truncating the Lowner functions, and the
concept of κ-Loewner equivalence is introduced. Connections between the
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Figure 1: Interconnected system according to [14].

Bilinear Loewner Framwork (BLF) from [9] and [14] are then established.
Conclusions are provided in Section 4.

2 Preliminaries

2.1 Nonlinear model order reduction based on Loewner func-
tions

In [14], nonlinear input-affine systems of the following form are considered:

ẋ=f(x) + g(x)u
y=h(x)

, (1)

with state x ∈ Cn, input u ∈ Cm and output y ∈ Cp.
This system is interconnected with two linear generators (2) and (3) as

visible on Figure 1: {
ζ̇r=Λζr +∆
v=Rζr

, (2){
ζ̇l=Mζl + Lχ
η=ζl

, (3)

with states ζr ∈ Cρ and ζl ∈ Cν , inputs ∆ ∈ Cρ and χ ∈ Cp, and outputs
v ∈ Cm and v ∈ Cν , and with matrices Λ ∈ Cρ×ρ, R ∈ Cm×ρ, M ∈ Cν×ν ,
and L ∈ Cν×p. The matricesΛ andM have all eigenvalues on the imaginary
axis, and these eigenvalues have geometric multiplicity one. For more details
on the interconnection interpretation, see [12].

Loewner functions are introduced as generalizations of the Loewner ma-
trices to extend the Loewner method for model reduction to nonlinear
input-affine systems. The tangential generalized controllability function
X : Cρ → Cn is defined as the solution, provided it exists, to the PDE
with boundary condition:

∂X
∂ζr

Λζr = f(X(ζr)) + g(X(ζr))Rζr X(0) = 0 (4)

while the tangential generalized observability function Y : Cn → Cν is de-
fined as the solution, provided it exists, to the PDE with boundary condition

∂Y
∂x f(x) = MY (x)− Lh(x) Y (0) = 0 . (5)
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In [14], the existence of X and Y is proven under the following assumptions:
the unforced system ẋ = f(x) is locally exponentially stable at the origin
and the matrices Λ and M have all eigenvalues on the imaginary axis and
of geometric multiplicity one. The Loewner function L is then defined as

L(ζr) = −Y (X(ζr)). (6)

The nonlinear counterparts V and W of the data matrices V and W are
defined as follows:

V(ζr) =
∂Y

∂x
(X(ζr))g(X(ζr)),W(ζr) = h(X(ζr)). (7)

The left-Loewner function Ll : Cρ → Cν is the solution (provided it exists)
of

∂Ll

∂ζr
Λζr = MLl(ζr)− V(ζr)Rζr,Ll(0) = 0. (8)

The right-Loewner function Lr : Cρ → Cν is defined as:

Lr(ζr) = L(ζr)− Ll(ζr). (9)

The shifted Loewner function Ls : Cρ → Cν is defined as:

Ls(ζr) = ML(ζr) + LW (ζr). (10)

Definition 1 Two systems Σ and Σ of the form (1) are called Loewner
equivalent at (Λ,R,M,L) if their left- and right-Loewner functions satisfy

Ll(ζr) = Ll
(ζr) and Lr(ζr) = Lr

(ζr) in a neighborhood of the origin.

The property of Loewner equivalence between two locally exponentially
stable systems implies that, for initial conditions on the manifold x = X(ζ),
the two systems interconnected with the generators have the same steady-
state behavior, provided it exists.

Theorem 1 (From [14]) Consider the interconnected system with ρ = ν.
Let Ll, Lr, L, Ls, V and W be the associated Loewner function. Assume
that ∂L

∂ζr
is non-singular. The system

∂L
∂ζr

(xr)ẋr=Ls(xr)− V(xr)u

yr=W(xr)
(11)

with state xr ∈ Cρ, input u ∈ Cm and output yr ∈ Cp, is Loewner equivalent
at (Λ,R,M,L) to the system (1).

Locally, the original model and the interpolating model produce the
same steady-state response, provided that it exists, when interconnected
with generators corresponding to the Loewner functions.
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2.2 The bilinear Loewner framework

The bilinear Loewner framework (BLF) presented here first appears in [9].
In this paper, single input - single output (SISO,m = p = 1) bilinear systems
of the form: {

Eẋ=Ax+Nxu+Bu
y=Cx

(12)

are considered, with state x ∈ Rn, input u ∈ R and output y ∈ R, with
matrices E,A,N ∈ Rn×n, and B,CT ∈ Rn.

The cornerstone of the BLF is that the behavior of bilinear systems is
characterized by the following serie of generalized transfer function, defined
for l ≥ 1:

Hl(s1, s2, . . . , sl) = CΦ(s1)NΦ(s2)N . . .NΦ(sl)B, (13)

where
Φ(s) = (sE−A)−1 (14)

is the resolvent of the matrix pencil (A,E). These generalized transfer
functions are obtained by taking the Laplace transform of the kernels of the
Volterra series expansion of the system, see [9] for more details.

The BLF interpolates the generalized transfer functions at interpolation
points which are grouped into left and right multi-tuples, denoted µ(j) and
λ(i) respectively, with j = 1 . . . q̂ and i = 1 . . . k̂. The multi-tuples are
defined as follows:

µ(j) =



{
µ
(j)
1

}{
µ
(j)
1 , µ

(j)
2

}
...{
µ
(j)
1 , µ

(j)
2 , . . . , µ

(j)
p

} λ(i) =



{
λ
(i)
1

}{
λ
(i)
2 , λ

(i)
1

}
...{
λ
(i)
m , . . . , λ

(i)
2 , λ

(i)
1

} . (15)

The generalized reachability matrix R ∈ Cn×k associated with the right

multi-tuples λ(1),λ(2), . . . ,λ(k̂) is

R =
[
R(1), R(2), · · · , R(k̂)

]
, (16)

where the matrices R(j) ∈ Cn×m, j = 1, . . . , k̂, are associated with the j-th
multi-tuple λ(j) in (15) are given by

R(j) =
[
Φ(λ

(j)
1 )B,Φ(λ

(j)
2 )NΦ(λ

(j)
1 )B, . . .

. . . ,Φ(λ(j)
mi

)N . . .NΦ(λ
(j)
2 )NΦ(λ

(j)
1 )B

]
.

(17)

Similarly, the generalized observability matrix O ∈ Ck×n associated with

the left multi-tuples µ(1),µ(2), . . . ,µ(k̂) is given by

O =
[(
O(1)

)T
,
(
O(2)

)T
, . . .

(
O(k̄)

)T ]T ∈ Ck×n, (18)
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where O(i) ∈ Cp×n, i = 1, . . . , k̄, correspond to the j-th multi-tuple µ(j) in
(15) and

O(j) =


CTΦ(µ

(j)
1 )

CTΦ(µ
(j)
1 )NΦ(µ

(j)
2 )

...

CTΦ(µ
(j)
1 )NΦ(µ

(j)
2 )N . . .NΦ(µ

(j)
pj )

 . (19)

Next, similarly to the linear case, the Loewner matrix L and the shifted
Loewner matrix Ls are defined using the generalized reachability (16) and
observability (18) matrices as

L = −OER, Ls = −OAR . (20)

The fact that the Loewner matrices are factorized in terms of the pairs of ma-
trices (E,A) and (O,R) is an inherent property of the Loewner framework,
which holds true for both the bilinear and quadratic-bilinear case, and even
for more general extensions involving higher-order polynomial structures.

Next, introduce the following matrices:

V = OB, W = CR, T = ONR, (21)

Lemma 1 (from [9]) Assuming that the pencil (L,Ls) is regular, then the
quintuple

(−L,−Ls,T,V,W)

defining the following model

−Lẋr=−Lsxr +Txru+Vu
yr=Wxr

(22)

is a minimal realization of an interpolant of the generalized transfer func-
tions Hl for l = 1 . . . k̂ + q̂ at the points defined by the multi-tuples (15).

In case of redundant data, i.e. the pencil (L,Ls) is not regular, then
a reduced-order model can be constructed by performing and truncating a
singular value decomposition of the pencil, see [9].

3 Moment matching for bilinear systems

In this section, Loewner functions are proposed in Section 3.1 for bilinear
systems as described in (12) with E = I. To start with, the left generator is
given by Λ = λ and R = 1, and the right generator is given by M = µ and
L = 1, i.e. ρ = ν = 1. Connections are then established with the BLF from
[9] in Section 3.3. The general case ρ ≥ 1 is presented in Section 3.4.
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3.1 Loewner functions for bilinear systems

Theorem 2 The tangential generalized controllability function X

X(ζr) =

∞∑
k=1

Φkζ
k
r , (23)

with coefficients {Φk} defined by{
Φ1=(λI−A)−1B
Φk=(kλI−A)−1NΦk−1 for k > 1

(24)

solves (4).

Proof: First, X(0) = 0. Note that, from (24), we have kλΦk = AΦk +
NΦk−1 for k > 1, and λΦ1 = AΦ1 +B. Therefore, we have:

∂X
∂ζr

λζr=
∑∞

k=1 kλΦkζ
k
r

=(AΦ1 +B)ζr +
∑∞

k=2(AΦk +NΦk−1)ζ
k
r

=A
∑∞

k=1Φkζ
k
r +

(
N
∑∞

k=1Φkζ
k
r +B

)
ζr

=f(X(ζr)) + g(X(ζr))Rζr.

The tangential observability function

Y (x) = C(µI −A)−1x, (25)

solves (5) as Y (0) = 0 and ∂Y
∂x (µI −A)x = Cx.

Then, the corresponding Loewner functions can be expressed as in (6),
(7) and (10) respectively:

L(ζr) = −C(µI −A)−1
∞∑
k=1

Φkζ
k
r , (26)

V(ζr) = C(µI −A)−1

(
B +N

∞∑
k=1

Φkζ
k
r

)
, (27)

W(ζr) = C
∞∑
k=1

Φkζ
k
r , (28)

Ls(ζr) = −C(µI −A)−1A
∞∑
k=1

Φkζ
k
r . (29)

In addition, the left and right Loewner functions are defined as:

Ll(ζr) = C(µI −A)−1

(
B

λ− µ
ζr +

∞∑
k=2

NΦk−1

(kλ− µ)
ζkr

)
, (30)
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Lr(ζr) = −C(µI −A)−1
(
Φ1 − B

λ−µ

)
ζr

−C(µI −A)−1
∑∞

k=2(Φk − NΦk−1

(kλ−µ))ζ
k
r .

(31)

Then the Loewner equivalent model (11) at (λ, 1, µ, 1) to the system (12)
is given by:∑∞

k=1 kC(µI −A)−1Φkr
k−1ẋr =

∑∞
k=1C(µI −A)−1AΦkr

k+
+
∑∞

k=1C(µI −A)−1NΦkr
kur

+C(µI −A)−1Bur
yr =

∑∞
k=1CΦkr

k

(32)

Remark 1 If R ̸= 1 and/or L ̸= 1, the basis functions Φk are multiplied
by R in (24) and the generalized observability function becomes Y (x) =
LC(µI −A)−1x.

3.2 Truncation of the Loewner functions and κ-Loewner equiv-
alence

In practice, it is difficult to implement the Loewner equivalent model (32)
as the Loewner functions consist in infinite series. To overcome this issue,
let the truncated (generalized) controllability function be defined for a given
κ as:

X̂(ζr) =

κ∑
k=1

Φkζ
k
r . (33)

As a result, the truncated left and right Loewner functions are given by

L̂l(ζr) = C(µI −A)−1

(
B

λ− µ
ζr +

κ+1∑
k=2

NΦk−1

(kλ− µ)
ζkr

)
, (34)

and
L̂r(ζr) = −C(µI −A)−1

(
Φ1 − B

λ−µ

)
ζr

−C(µI −A)−1
∑κ

k=2(Φk − NΦk−1

(kλ−µ))ζ
k
r

−C(µI −A)−1 NΦκ
((κ+1)λ−µ))ζ

κ+1
r .

(35)

Hence the truncated model (11) is given by:∑κ
k=1 kC(µI −A)−1Φkr

k−1ẋr =
∑κ

k=1C(µI −A)−1AΦkr
k+

+
∑κ

k=1C(µI −A)−1NΦkr
kur

+C(µI −A)−1Bur
yr =

∑κ
k=1CΦkr

k

(36)

The truncation introduced previously for practical implementation is
supported by the following concept of κ-Loewner equivalence. Intuitively,
κ-Loewner equivalence means that the Loewner functions are close for suf-
ficiently small signals ζr.

8



Definition 2 (κ-Loewner equivalence) Two systems Σ and Σ̂ are called
κ-Loewner equivalent at (Λ, L,M, R), if the left- and right- Loewner func-
tions of Σ and Σ̂, denoted by Lr(ζr), Ll(ζr) and L̂r(ζr), L̂l(ζr) respectively,
are smooth and have the same k-order derivatives at zero for any k ≤ κ:{

dk

dζkr
Lr(ζr)|ζr=0 =

dk

dζkr
L̂r(ζr)|ζr=0

dk

dζkr
Ll(ζr)|ζr=0 =

dk

dζkr
L̂l(ζr)|ζr=0

(37)

Note that Loewner equivalence corresponds to the case κ = ∞.

Theorem 3 Given λ, µ, the truncated model (36) is κ-Loewner equivalent
to the original system at (λ, 1, µ, 1).

Proof: Considering the left and right Loewner functions in (30) and (31),
their truncated counterparts in (34) and (35) satisfy (37).

3.3 Connection to the bilinear Loewner framework

In order to establish a first connection between the moment matching method
by [14] for bilinear systems with the BLF from [9], the following interpolation
multi-tuples are considered:

µ(1) = {µ} and λ(1) =


{λ}
{2λ, λ}
...
{κλ, . . . , 2λ, λ}

. (38)

The reachability matrix R from the BLF can be written as follows:

R =
[
Φ1 Φ2 · · · Φκ

]
∈ Cn×κ, (39)

and the observability matrix is O = C(µI−A)−1 ∈ C1×n.
Then, the generalized controllability function can be written as

X(ζr) = Rv(ζr), (40)

with v(ζr) ∈ Rκ defined as:

v(ζr) =
[
ζr, ζ

2
r , . . . , ζ

κ
r

]
. (41)

The generalized observability function can be written as

Y (x) = Ox. (42)
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The Loewner functions can then be expressed according to the Loewner
matrices as follows:

L(ζr) = −ORv(ζr) = −Lv(ζr),
V(ζr) = O (B +NRv(ζr)) = V +Tv(ζr),

W(ζr) = CRv(ζr) = Wv(ζr),

Ls(ζr) = −MORv(ζr) + LCRv(ζr) = Lsv(ζr).

(43)

The BLF then results in the following bilinear model of order κ:

−Lẋr=−Lsxr −Txru−Vu
yr=Wr

(44)

while the Loewner equivalent model obtained based on the Loewner func-
tions is of order 1 and is characterized by:

−L ∂v
∂ζr

(xr)ẋr=Lsv(xr)− (Tv(xr) +V)u

yr=Wv(xr)
(45)

Note that when κ = 1, the Loewner equivalent model (45) is the same
than the one resulting from the BLF (44), and is written in descriptor form.

For κ ≥ 2, the BLF results in a bilinear model of order κ while the
moment matching approach results in a first-order model but that does not
preserve bilinearity.

Remark 2 Note that for κ ≥ 2, the model (45) from the BLF is not a
descriptor model, but an ordinary differential equation of order κ. This is
due to the choice of the interpolation multi-tuples. In the classical BLF, the
data is usually split equally between left and right multi-tuples, and the left
and right multi-tuples have the same number of components, which leads to
descriptor models (with square Loewner matrices).

Theorem 4 The BLF model (44) is κ-Loewner equivalent to the original
one (12).

Proof: The Loewner functions corresponding to the BLF models are derived
as in the moment matching procedure, based on the generalized controlla-
bility and observability functions which can be written as follows:

YBLF (x) = W(−µL+ Ls)x,
XBLF (ζr) =

∑κ
k=1Φ

BLF
k ζkr ,

(46)

with {
ΦBLF
1 =(−λL+ Ls)

−1V
ΦBLF
k =(−kλiL+ Ls)

−1TΦBLF
k−1 for k > 1

.

The rest of the Loewner functions can be derived accordingly, in a similar
manner as to (26)-(31).
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Due to the interpolatory properties of the BLF, see [9], we have that, for
all l = 1 . . . κ:

Hl(λ, 2λ, . . . , lλ) = HBLF
l (λ, 2λ, . . . , lλ)

Hl+1(µ, λ, 2λ, . . . , lλ) = HBLF
l+1 (µ, λ, 2λ, . . . , lλ)

(47)

where HBLF
l are the generalized transfer functions of the BLF model, as

defined in (13). According to the definition of the generalized transfer func-
tions in (13) and to the expressions of the Loewner functions in the bilinear
case, it implies that the truncated Loewner functions corresponding to the
BLF model (44) are equal to the truncated ones from the moment matching
procedure proposed in Section 3.1. Consequently, according to Theorem 3,
the BLF model is κ-Loewner equivalent to the original system.

3.4 Extension to higher-order generators

These Loewner functions can be extended to the case ρ ≥ 1 (recall that
ρ = ν). Consider the general case where the left generator is given by
Λ and R, see (2), and the right generator is given by M and L, see (3).
Up to a similarity transformation, the left generator can be defined by a
diagonal matrix Λ, with distinct coefficients λ1, . . . , λρ on the imaginary
axis and R = [R1 . . . Rρ]. The same goes for the right generator, and the
coefficients of M are denoted µ1, . . . , µρ and LT = [L1 . . . Lρ].

Theorem 5 For Λ ∈ Cρ×ρ, RT ∈ Cρ, with ρ ≥ 1, the tangential generalized
controllability function X is defined by

X(ζr) =
[
X(1)(ζr1) . . . X(ρ)(ζrρ)

]
, (48)

where, for i = 1 . . . ρ, ζri denotes the i-th component of ζr, and the functions
X(i) are defined as in the first-order generator case as follows:

X(i)(ζ(i)r ) =
∞∑
k=1

Φ
(i)
k ζkri (49)

with the coefficients
{
Φ
(i)
k

}
defined by{

Φ
(i)
1 =(λiI−A)−1BRi

Φ
(i)
k =(kλiI−A)−1NΦ

(i)
k−1Ri for k > 1

. (50)

The tangential generalized controllability function X from (48) solves (4).

Proof: First, as X(i)(0) = 0 for all i = 1 . . . ρ, we have X(0) = 0. In
addition, from Theorem 2, we have, for all i = 1 . . . ρ, that:

∂X(i)

∂ζr,i
λiζr,i = f(X(i)(ζr,i)) + g(X(i)(ζr,i))Riζr,i.

11



which implies that X from (48) solves (4).
The generalized observability function can be defined in a similar way.

Theorem 6 The tangential observability function is defined as:

Y (x) =

Y
(1)(x)
...

Y (ρ)(x)

 , (51)

with, for i = 1 . . . ρ, the function Y (i) defined as in the first-order generator
case as Y (i)(x) = LiC(µiI − A)−1x. The tangential generalized controlla-
bility function X from (51) solves (5).

Proof: First, as Y (i)(0) = 0 for all i = 1 . . . ρ, we have Y (0) = 0. In
addition, from Section 3.1, we have for all i = 1 . . . ρ:

∂Y (i)

∂x
f(x) = µiY

(i)x− Lih(x)

which implies that Y from (51) solves (5).
Similarly to the first-order generators case, a truncated version of the

tangential generalized controllability function can be introduced so that the
resulting model can be implemented in practice:

∀i = 1 · · · ρ, X̂(i)(ζ(i)r ) =

κ∑
k=1

Φ
(i)
k ζkri . (52)

For any value of κ (finite or infinite), the connection with the BLF from [9]
can be established as in Section 3.3 by choosing ρ interpolation multi-tuples:

µ(i) = {µi} and λ(i) =


{λi}
{2λi, λi}
...
{κλi, . . . , 2λi, λi}

. (53)

Then, equation (40) becomes:

L(ζr) = −Lw(ζr),

V(ζr) = V +Tw(ζr),

W(ζr) = Ww(ζr),

Ls(ζr) = −Lsw(ζr),

(54)

with w(ζr) ∈ Rρκ×ρ defined as:

w(ζr) =


v(ζr,1) 0 · · · 0

0 v(ζr,2)
...

...
. . . 0

0 · · · 0 v(ζr,ρ)
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with v defined in (41).
In the end, the BLF results in a bilinear model of order ρκ while the

moment matching approach results in a model of order ρ that does not
preserve bilinearity. As previously shown, the two models are exactly the
same for κ = 1. Finally, the two models are κ-Loewner equivalent to the
original one at (Λ,L,M,R).

4 Conclusion

In this work, new Loewner functions have been proposed for bilinear sys-
tems, using the generalized reachability and observability matrices used in
the bilinear Loewner framework from [9]. A reduced-order Loewner equiv-
alent model is then derived as in [14]. Inpractice, it is quite challenging
to implement. That is why, in this work, the Loewner functions are trun-
cated in order to obtain approximate Loewner equivalence.This is defined
in this work as κ-Loewner equivalence. It appears that the approach from
[9] preserves bilinearity at the expense of a higher order than the moment
matching approach resulting from the proposed Loewner function, although
the latter results in a more complex model structure. Regarding the choice
of κ, practical implementations of the BLF from [9] are performed with
κ = 2 but based on different multi-tuples definition. Future work will inves-
tigate the impact of κ and could provide approximation error bounds for the
truncated κ-Loewner equivalent model. In addition, the authors aim at ex-
panding this concept and proposing Loewner functions in a similar manner
for more general polynomial extensions of the Loewner framework.
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