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Zusammenfassung

Diese Arbeit beschäftigt sich mit Strahlungskorrekturen zu den Wahrscheinlichkeiten zweier
elementarer Prozesse der Quantenelektrodynamik (QED) in Präsenz eines Hintergrundfeldes
in Form einer starken elektromagnetischen planaren Welle. Bei den untersuchten Prozessen
handelt es sich um die nichtlineare Comptonstreuung (die Emission eines Photons durch ein
Elektron) und die nichtlineare Breit-Wheeler Paarproduktion (der Zerfall eines Photons in
ein Elektron-Positron-Paar).
Unter Berücksichtigung von Stahlungskorrekturen sind die Wellenfunktionen von Elektronen,
Positronen und Photonen in einer planaren Welle nicht stabil, sondern "zerfallen" in dem
Sinne, dass Elektronen und Positronen Photonen emittieren und Photonen wiederum in
Elektron-Positron-Paare zerfallen. Mit Hilfe dieser Wellenfunktionen wurden die
Wahrscheinlichkeiten für nichtlineare Comptonstreuung und nichtlineare Breit-Wheeler
Paarproduktion unter der lokal-konstantes-Feld-Näherung analytisch hergeleitet. Der Zerfall
der Wellenfunktionen führt zum Auftauchen eines exponentiellen Dämpfungsterms in diesen
Wahrscheinlichkeiten, welcher diese, auch für planare Wellenpulse mit großen Phasenlängen
und Intensitäten, auf Werten unter Eins beschränkt.
Im Anschluss wurden separat dazu die Korrekturen zur Wahrscheinlichkeit für nichtlineare
Comptonstreuung, die von der Selbstwechselwirkung des Elektrons in der planaren Welle
stammen, in erster Ordnung der Feinstrukturkonstante α untersucht. Es wird gezeigt, dass
diese, unter Berücksichtigung gleicher Näherungen, in der zuvor hergeleiteten
Wahrscheinlichkeit enthalten sind.

Abstract

In this thesis radiative corrections to the probabilities of two basic processes in Quantum
Electrodynamics (QED) in the presence of a strong electromagnetic plane wave background
field are investigated. The considered two processes are nonlinear Compton scattering (the
emission of a single photon by an electron) and nonlinear Breit-Wheeler pair production (the
decay of a photon into an electron-positron pair).
Taking radiative corrections into account, the electron, positron, and photon states inside a
plane wave are not stable, but "decay" in the sense that electrons and positrons emit photons
and photons decay into electron-positron pairs. Employing these states, the probabilities for
nonlinear Compton scattering and nonlinear Breit-Wheeler pair production are derived
analytically within the local constant field approximation. The particles states decay leads
to the appearance of an exponential damping term in those probabilities, limiting them to
values below unity even for plane wave pulses with large phase duration and intensity.
Afterwards, leading order corrections in the fine-structure constant α to the probability of
nonlinear Compton scattering, stemming from the self-interaction of the electron inside a
plane wave, are investigated separately. It is shown that those corrections are included in the
previously obtained probability within the same approximations.
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1. Introduction

It is known that there is much in the universe that we do not know [1]. Searching for new
physics beyond the standard model has become a big field and one way of doing so is to test
the known theory under extreme conditions. Here Quantum Electrodynamics (QED) might
be the best proven quantum field theory. Although it is not a true fundamental theory, in the
sense that it is confined with the weak force at energies of the order of 102 GeV [2, 3], in the
regime of validity experiments and theory agree to a astonishing precision (see e.g. Refs. [4,5]).
Due to this precision there are for example attempts to search for new particles, like Axion-like
particles or minicharged particles, via weak interactions of these hypothetical particles with
strong electromagnetic fields [2, 6, 7]. This and other research in the field is facilitated by the
development of new laser technologies leading to lasers with higher and higher peak intensities,
making them a favorable tool to test QED under the conditions of extreme electromagnetic
fields [2]. However, to be able to find new physics it is important to understand the current
theory well enough and to make precise calculations of the known effects. In this manner one
is able to detect small possible deviations in the comparison of theory with experiment, which
can finally hint to new physics.
On the other hand, as a product of the past research also new technologies were invented,

for example the particle acceleration via laser pulses, which is promising to bring useful ap-
plications in medicine, industry and science for the future [2, 8]. Again, for the development
of such technologies and their applications a deep understanding of the underlying physics is
necessary.
This work should contribute to the research process by investigating corrections to the

probabilities of the two fundamental quantum processes of QED in strong fields, which are
nonlinear Compton scattering (the emission of a photon by an electron) and nonlinear Breit-
Wheeler pair production (the decay of a photon into an electron-positron pair).
Indeed, although QED is a well proven theory, QED in the presence of strong electromagnetic

fields still offers untested regions to explore. Here "strong" means that the intensity of the
electromagnetic background field is so high, that the interaction of electrons and positrons with
the field has to be taken into account exactly in the calculations and further it is assumed
that a background field is not influenced significantly by these interactions [6].
This behavior is commonly quantified by the so-called classical nonlinearity parameter ξ0 =
|e|E0/mω0, where e andm are the electron charge and mass, respectively, E0 is the electric field
amplitude, ω0 the central angular frequency of the background laser pulse, and we use units
where ε0 = ~ = c = 1 [2, 9]. The parameter corresponds to the energy an electron/positron
gains by acceleration in one wavelength of the background field in units of the rest energy of
the particle. If the quantity ξ0 & 1, the particles become relativistic within one wavelength
and classical nonlinear effect occur. In this case the interaction of electrons and positrons with
the background field has to be taken into account exactly in the calculations. For optical lasers
ξ0 & 1 corresponds to intensities of the order of 108W/cm2, which are reached today by several

5



laser facilities [2]. The problem of including the interaction of electrons and positrons with the
background field exactly in the calculations is commonly solved by working in the so-called
Furry picture [10]. Here the photon field is splitted into a classical background part and a
quantized photon part. The electron and positron states are then quantized in the presence
of the background field by solving a modified Dirac equation which includes the interaction
with the background field [11, 12]. For a plane wave background field this Dirac equation is
analytically solvable and the solution is known as Volkov-state.
However, the field strength of an electromagnetic field can even become larger up to the

order of the so-called critical field of QED Fcr = m2/|e| = 1.3× 1016V/cm = 4.4× 1013G [9].
In an electric field of this field strength the vacuum would become unstable under electron-
positron pair production and in a magnetic field of strength Fcr the interaction energy of a
Bohr magneton with the field is of the order of m [2,13]. This regime is very interesting since
it is dominated by quantum effects. However it is mainly undiscovered, as the critical field
corresponds to a critical laser intensity of Icr ∼ 1029W/cm2, which is far from being reached by
today available lasers. Indeed the today’s record peak intensity is about I0 ∼ 1.1×1023W/cm2

[14], and even upcoming laser facilities are aiming only for intensities of the order of I0 ∼
1023 − 1024W/cm2 [15–18]. Although this means that we can not observe the interesting
regime in the lab frame, due to the Lorentz-invariance of QED, it can be explored in a Lorentz-
boosted frame already with our current technology. In fact physical observables like transition
probabilities depend only via Lorentz- and gauge-invariant parameters on the background field.
Therefore, instead of observing the vacuum in strong laser pulses, for example the behavior of
ultra-relativistic particles in strong electromagnetic fields can be studied to enter the quantum
regime.
Considering an electron (photon) of four-momentum pµ = (ε,p) [qµ = (ω, q)] with energy

ε =
√
m2 + p2 (ω = |q|), moving in a background field, represented by the field tensor F µν

0 =
(E0,B0) in the laboratory frame, the probability of a physical process depends on the so-called
quantum nonlinearity parameter χ0 =

√
|(F µν

0 pν)2|/(mFcr) (κ0 =
√
|(F µν

0 qν)2|/(mFcr)), with
the metric tensor ηµν = diag(+1,−1,−1,−1) [2, 9, 19–21]. For an electron or positron this
parameter corresponds to the field strength that the particle experiences in its rest frame in
units of the critical field. By for example combining a high intensity laser with an ultrarel-
ativistic electron beam, the interesting regime χ0 ∼ 1, where quantum effects start to play
a role, can be effectively entered already with today available technology. Indeed already in
the late 1990s first experiments in the regime χ0 . 1 were performed at the Stanford Linear
Accelerator Center (SLAC) [22–24], and more recently experiments using an all-optical setup
were carried out reaching χ0 . 1 [25, 26]. For the future new experiments are planned at the
Deutsches Elektronen-Synchrotron (DESY) [27] and at SLAC [28] aiming to reach values of
χ0 & 1.
Two elementary processes in strong field QED that can be probed in such experiments are

the emission of a photon by an electron, which is called nonlinear Compton scattering, and
the decay of a photon into an electron-positron pair, called nonlinear Breit-Wheeler pair pro-
duction. Both processes were intensively studied over the past [2, 29–37], and the expressions
of the leading-order in the fine-structure constant α = e2/4π ∼ 1/137 total probabilities for
nonlinear Compton scattering and nonlinear Breit-Wheeler pair production can be found for
example in Refs. [9,38–40]. Now it turned out that the probabilities for both processes exceed
unity for a sufficiently long phase duration ΦL of the background field laser pulse (or a suffi-

6



ciently large laser intensity) [31,41], which is of course unphysical and stands in contradiction
to the unitarity of the S-matrix. From the point of QED this behavior indicates, that in the
above mentioned limit the leading order probability is not sufficient and higher order loop
corrections to the probability have to be included.
The goal of the first part of this thesis is to identify and compute those corrections, needed

in the limit of a long phase duration ΦL of the laser pulse, and to present probabilities for
nonlinear Compton scattering and nonlinear Breit-Wheeler pair production which stay valid
within this limit.
Indeed, several other groups have investigated this problem in the past. Already in 1951

Glauber showed that in the classical limit, when the photon recoil is negligible, the leading
order probability of nonlinear Compton scattering corresponds to the mean number of photons
emitted, rather than to a probability. Also he presented that in this case the probability of
single photon emission corresponds to a Poissonian distribution instead [42]. Similar inves-
tigations but in the framework of strong field QED were performed in Ref. [41]. Here also
the recoil of the photon was taken into account and a "renormalization" was used to ensure
that the total probability of either emitting no or an arbitrary number of photons is unity.
A kinetic approach in Ref. [43] verified these findings and in the same manner results for
nonlinear Breit-Wheeler pair production were presented in Ref. [44]. In Ref. [45] then the
probability of an electron emitting an arbitrary number of photons was calculated via a recur-
sive equation. By including that the electron state is not stable inside the background field,
but decays exponentially (by means of the electron emitting a photon), it was ensured that the
total probability of emitting no or an arbitrary number of photons is unity. The exponential
damping depended on the time and the energy of the electron, and it corresponded to the
probability of an electron emitting no photon in an certain time interval. Also the photon
recoil was considered at each emission step.
In this thesis we will derive the probabilities for nonlinear Compton scattering and nonlinear

Breit-Wheeler pair production instead from first principles. For this the S-matrix is computed
using the exact states for the electron/positron and photon instead of the Volkov-state and
the free photon state, respectively. These exact states include radiative corrections and with
them the S-matrix corresponds to the resummation of all one-particle reducible diagrams
containing corrections by the mass- and polarization operator to the electron/positron and
photon states, respectively. However, to obtain analytical solutions the expressions of the one-
loop mass- and polarization operator in the case of a constant-crossed field have to be taken,
such that we performed the computation of the probabilities in the so-called locally-constant
field approximation (LCFA).
The LCFA was also applied in Refs. [41,43–45] and it states that for a physical process the

background field can locally be assumed to be constant and crossed, if the formation length
of this physical process is much smaller than the wavelength of the background field [2,9,39].
In this case the amplitudes in the limit of a constant-crossed field are taken and finally be
averaged over the phase dependent plane wave profile. This assumption is valid if ξ0 � 1 at
χ0, κ0 ∼ 1 [39], which we assumed throughout the derivation.
With that both probabilities obtain automatically an exponential damping term correspond-

ing to the decay of the electron, positron, and photon state inside the plane wave background
field, where again electrons and positrons "decay" by emitting photons and photons decay
into electron-positron pairs. In contrast to Ref. [45] this decay also depends on the spin and
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polarization of the electron/positron and photon, respectively, such that the spin- and polar-
ization resolved probabilities are presented in this thesis. We finally proof analytically that
this probabilities stay below unity for long phase durations of the laser pulse.
However, this investigations were performed considering a linear polarized plane wave and by

employing the LCFA. Without these assumptions we were not able to obtain the radiatively
corrected particle states, which are needed for the computation of the probabilities. In a
next step we therefore calculated the leading-order in α corrections stemming from the mass
operator to the probability of nonlinear Compton scattering separately. Here we consider to
have an arbitrary transverse polarized plane wave background field and do not employ the
LCFA. The leading-order in α corrections are derived again from first principles by using the
S-matrix elements of the leading order nonlinear Compton scattering process and its correction
by one mass operator to the incoming and outgoing electron state. In order to simplify the
calculations, this time the total probability summed over the spin and polarization indices of
the outgoing particles and averaged over the initial electron spin was investigated. Finally
these corrections were compared to the previously obtained probability including the particles
state decay and we show that the new corrections are implicitly included in this probability
after employing the same assumptions. In this step also the expressions of the new corrections
within the LCFA were presented.
The thesis is structured the following: In the next Chapter the basics of Strong field QED

are explained and notation is introduced. In Chapter 3 we will then elaborate which Feynman
diagrams have to be considered for the probabilities of nonlinear Compton scattering and
nonlinear Breit-Wheeler pair production in the case of background fields with long pulse
duration. Further the derivation of the exact electron, positron, and photon states is presented
and we show that they suitable are to perform the needed resummation. The probabilities
for nonlinear Compton scattering and nonlinear Breit-Wheeler pair production including the
decay of the states are investigated then in Chapter 4 and 5, respectively. The next part dealing
with the leading-order in α correction stemming from the mass operator to the probability of
nonlinear Compton scattering can be found in Chapter 6. Finally the conclusion is given in
Chapter 7. In the Appendix useful relations for γ-matrices and Airy-functions, and a short
summary of the notation can be found.
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2. Strong field QED

As mentioned in the introduction, Strong Field QED considers electrodynamic processes in
the presence of a strong electromagnetic background field. The interaction of electrons and
positrons with a strong electromagnetic field has to be treated exactly in the calculations, due
to the large intensity of the field. Instead the field itself is assumed to be not influenced signif-
icantly by those interactions such that it is described as a background field [6, 19]. Nowadays
laser pulses are commonly used to generate such background fields in experiments [2]. For
this theoretical work we consider to have a plane wave laser pulse with central photon four-
momentum kµ0 colliding with an electron of four-momentum pµ or a photon of four-momentum
qµ as depicted in Fig. 2.1. Inside the laser pulse the electron can then emit a photon and the
photon can decay into an electron-positron pair.

Figure 2.1.: Sketch of an electron and a photon colliding with a laser pulse. Inside the pulse
the electron is emitting a photon and the photon decays into an electron-positron
pair.

The behavior of fermions (electrons and positrons) and photons is thereby described by the
Lagrangian of QED which is [3, 46]

LQED = −1

4
F µν

total(x)Ftotal,µν(x)− ρ

2
(∂Atotal(x))2 + ψ̄(x)(i∂̂ −m)ψ(x)− eψ̄(x)Âtotal(x)ψ(x),

(2.0.1)
where ψ(x) and Aµtotal(x) describe the fermion field and the total photon field, respectively.
The gauge fixing parameter ρ ensures that the Lorentz-gauge condition (∂Atotal(x)) = 0
is considered when quantizing the photon field. Here and in the following the notation
(∂Atotal(x)) = ∂µA

µ
total(x) is introduced which also holds for any other arbitrary four-vectors.

Further we used the electromagnetic field tensor F µν
total(x) = ∂µAνtotal(x) − ∂νAµtotal(x), intro-

duced the notation ψ̄(x) = ψ†(x)γ0, and the notation v̂ = γµvµ, where γµ is the Dirac-matrix
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(see Appendix A on page 98) and vµ is an arbitrary four-vector. By the variation of the
Lagrangian the equations of motion for the fermion and photon field can be obtained. For the
fermion field one obtains the Euler-Lagrange equation [3, 46]

(i∂̂ − eÂtotal(x)−m)ψ(x) = 0 (2.0.2)

and for the photon field (we are working in Feynman Gauge with ρ = 1 at the end) [46]

∂2Aµtotal(x)− (1− ρ)∂µ(∂Atotal(x)) = eψ̄(x)γµψ(x). (2.0.3)

2.1. The classical nonlinearity parameter ξ0

Since QED is Lorentz- and gauge-invariant, physical observables like probabilities or transition
amplitudes only depend via Lorentz- and gauge-invariant parameters on the background field
[9]. Two important Lorentz- and gauge-invariant parameters in strong field QED are the
classical and the quantum nonlinearity parameter.
As mentioned already, the classical nonlinearity parameter is defined as [2, 9]

ξ0 =
|e|E0

mω0

, (2.1.1)

where E0 is the electric-field amplitude and ω0 the central angular frequency of the laser
pulse. It is related to the intensity of the background field and corresponds to the energy an
electron at rest gains by the Lorenz force in one laser cycle in units of m. For ξ0 & 1 the
electron becomes relativistic within one laser cycle and the interaction of the electron with
the background field cannot be treated perturbatively in the calculations anymore [see next
Section]. In this thesis we assume that ξ0 � 1.
The discussion to the quantum nonlinearity parameter can be found in Section 2.8.

2.2. The Furry picture

As we discussed before, in strong field QED the interaction of the fermion with the electromag-
netic field has to be taken into account exactly when the parameter ξ0 & 1. This is because
the interaction term eψ̄(x)Âtotal(x)ψ(x) in the Lagrangian scales with ξ0, such that it finally
can not be treated perturbatively anymore [9]. To however still be able to obtain analytical
solutions one usually works in the so-called Furry picture [10], where the total photon field is
splitted into two parts, i.e.

Aµtotal(x) = Aµ(x) + Aµrad(x). (2.2.1)

Here Aµ(x) is the four-potential of the background field and resembles the vacuum expectation
value of the total photon field. Since it is not influenced significantly by the interaction with
the fermion field we can treat it as classical and it should obey the equation of motion of
a free field, i.e. ∂2Aµ(x) = 0 [10, 11, 19]. The radiation field Aµrad(x) instead describes the
quantum fluctuations around the background field Aµ(x) and represents incoming, outgoing,
or virtual photons. This field has to be quantized where the quantization is performed similar
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to QED in vacuum. Now for the fermion field the interaction with the background field is
considered in the Furry picture already in the quantization procedure by solving the modified
Dirac equation [11]

(i∂̂ − eÂ(x)−m)ψ(x) = 0. (2.2.2)

In that way the obtained fermion states already take the interaction of the fermion field
with the background field exactly into account. The interaction of the fermion field with the
radiation field, however, can still be treated perturbatively, since it only scales with the small
fine-structure constant α = e2/(4π) ∼ 1/137 [9, 11].

2.3. The background field

In the calculations we always consider a plane wave background field with on-shell photons
(k2

0 = 0) propagating along the direction n, where n is a unit vector, i.e. n2 = 1. With
that the central photon four-momentum of the plane wave is kµ0 = ω0n

µ, with the four-vector
nµ = (1,n). The four-potential of the background field is given by Aµ(x), where xµ = (t,x) is
the four-space-time vector with time t and space-vector x. Since we consider the background
field to be a plane wave, the four-potential only depends on the phase/light-cone time φ = (nx),
i.e. Aµ(x) = Aµ(φ) = (A0(φ),A(φ)). As mentioned already, the four-potential fulfills further
the free-wave equation ∂2Aµ(φ) = 0 and the Lorentz gauge condition ∂µAµ(φ) = 0. Since we
consider the plane wave to be generated by a laser pulse with final extend, we have Aµ(φ)→ 0
for φ → ±∞. We fix the gauge to A0(φ) = 0, such that the vector potential becomes
perpendicular to the direction of propagation of the background field, i.e. n ·A(φ) = 0.
Further we introduce the four-vector ñµ = (1,−n)/2, with (nñ) = 1, and the two four-

vectors aµj = (0,aj) with j = 1, 2, which obey the relations (naj) = −2(ñaj) = −n · aj = 0
and (ajaj′) = −aj · aj′ = −δjj′ with j, j′ = 1, 2. The plane spanned by the two unit-vectors
aj is named in the following the transverse (⊥) plane. With the four-vectors nµ, ñµ, and aµj
with j = 1, 2 the metric can be expressed as ηµν = nµñν + ñµnν − aµ1aν1 − a

µ
2a

ν
2 [19, 47].

In this way the phase dependent part of the vector-potential can be extracted and it can
be rewritten into the form A(φ) = ψ1(φ)a1 + ψ2(φ)a2. Here ψj(φ) denotes the jth pulse
shape function and, according to Aµ(φ) → 0 for φ → ±∞, it vanishes for φ → ±∞. Since
the four-potential always occurs multiplied by the electron charge, we introduce the notation
Aµ(φ) = eAµ(φ).
The electromagnetic field tensor is given by F µν(φ) = nµA′ν(φ)− nνA′µ(φ), where here and

in the following a prime at a function denotes the derivative of the function with respect to its
argument. We can rewrite the field tensor into the form F µν(φ) = fµν1 ψ′1(φ) + fµν2 ψ′2(φ), with
fµν1 = nµaν1−nνa

µ
1 and fµν2 = (1/2)εµνρτf1,ρτ = nµaν2−nνa

µ
2 , where εµνρτ is the anti-symmetric

unit four-tensor with ε0123 = +1. Since the field tensor is always multiplied by the electron
charge, we also introduce the notation Fµν(φ) = eF µν(φ).
In the cases where we assume to have a linearly polarized background field we choose without

loss of generality ψ2(φ) = 0 and ψ1(φ) = A0ψ(φ), with A0 < 0 being related to the amplitude
of the electric field of the plane wave. For a monochromatic plane wave we would have then
A0 = −E0/ω0 and the pulse function ψ(φ) would be a function of ω0φ. Again we introduce
the notation A0 = eA0. Further we can rewrite Fµν(φ) = Fµνψ′(φ) with Fµν = A0f

µν
1 .
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2.4. Light cone coordinates

Since the plane wave only depends on the phase φ = (nx), it is useful to apply light-cone
coordinates [19, 47, 48]. This simplifies the integration over space-time coordinates and the
particles momenta later. For this we use the four above introduced four-vectors nµ = (1,n),
ñµ = (1,−n)/2, and aµj = (0,aj) with j = 1, 2. Those four-vectors fulfill the conditions

n2 = 0 = ñ2, (nñ) = 1, (naj) = 0 = (ñaj), (ajaj′) = −δjj′ , (2.4.1)

with j, j′ = 1, 2, and the metric can be written with them via

ηµν = nµñν + ñµnν − aµ1aν1 − a
µ
2a

ν
2. (2.4.2)

The light-cone components of an arbitrary four-vector vµ = (v0,v) are now defined by

v− = (vn) = v0 − n · v, (2.4.3)
v+ = (vñ) = (v0 + n · v)/2, (2.4.4)
v⊥ = (v⊥,1, v⊥,2) = −((va1), (va2)) = (a1 · v,a2 · v). (2.4.5)

Using the metric, the product of two arbitrary four-vectors vµ and wµ, in light-cone coordi-
nates, is therefore given by

(vw) = v−w+ + v+w− − v⊥ ·w⊥. (2.4.6)

Note that the light-cone time of the space-time coordinate xµ obtains a special notation in
light-cone coordinates and is usually indicated by φ = x− = t − n · x. The four dimensional
space-time integral in Cartesian coordinates becomes in light-cone coordinates∫

d4x =

∫
dx−dx+d

2x⊥ =

∫
dφdx+d

2x⊥, (2.4.7)

where d2x⊥ = dx⊥,1dx⊥,2. Considering the anti-symmetric unit four-tensor εµνρτ with ε0123 =
+1, the light-cone four-vectors obey the relation

εµνρτnµñνa1,ρa2,τ = +1. (2.4.8)

2.5. Radiation photon state

The quantization of the radiation field is like in vacuum QED. As a result one obtains the plane
wave solution Arad,µ

j,q (x) = e−i(qx)εµj /
√

2ω, where the photon has the on-shell four-momentum
qµ = (ω, q), with angular frequency ω = |q|, and where the quantization volume was set
for simplicity equal to unity [11, 46]. Here the transverse polarization indicated by the index
j = 1, 2 is along the direction of the polarization four-vector εµj , which obeys (εjε

∗
j′) = −δjj′

for j, j′ = 1, 2. Considering linear polarization we choose the two polarization states to be
represented by the two four-vectors

Λµ
1(q) =

fµν1 qν
q−

, Λµ
2(q) =

fµν2 qν
q−

, (2.5.1)
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which are pointing, in the case of a linearly polarized background field, along a direction
corresponding to the direction of the electric and magnetic field of the background plane
wave, respectively. Both four-vectors fulfill the relations (Λj(q)Λj′(q)) = −δjj′ , (nΛj(q)) = 0,
and (qΛj(q)) = 0, for j, j′ = 1, 2. (Note that in Chapter 6 also the short notation Λµ

j = Λµ
j (q)

is used.)
The photon propagator is given by [3, 46,49]

Dµν(x− y) =

∫
d4q

(2π)4

ηµν

q2 − λ2 + i0
e−i(q(x−y)), (2.5.2)

where a fictitious photon mass λ was added to avoid infrared divergences in the calculations
and which will be finally set equal to zero. Further we introduced the notation 1/(· · · ± i0) =
lim
d→+0

1/(· · · ± id), where d is a small positive real number.

2.5.1. Light-cone related coordinates

Similar to the four-vectors nµ, ñµ, aµ1 , and aµ2 , the set of four-vectors nµ, qµ/q−, Λµ
1(q), and

Λµ
2(q) fulfill the relations n2 = 0 = q2/q2

−, (nq)/q− = 1, (nΛj(q)) = 0 = (qΛj(q))/q−, and
(Λj(q)Λj′(q)) = −δjj′ , with j, j′ = 1, 2 and qµ being the on-shell for momentum of a photon.
Hence the metric can also be written into the form [50]

ηµν =
qµnν + nµqν

q−
− Λµ

1(q)Λν
1(q)− Λµ

2(q)Λν
2(q). (2.5.3)

2.6. Volkov-States

For an exact description of the electron and positron in the Furry picture one has to solve
the Dirac-equation (2.2.2) in the presence of the background field. Considering a plane wave
background field the Dirac-equation becomes [11]

(i∂̂ − Â(φ)−m)ψV (x) = 0, (2.6.1)

which is analytically solvable and its solution is known as Volkov state ψV (x). Since the
plane wave background field vanishes in our considerations for x− → ±∞, the solution should
obey additionally the following boundary conditions: For an incoming (outgoing) electron and
positron with momentum pµ = (ε,p) and spin s = ±1 the solutions should correspond for
x− → −∞ (x− → +∞) to the free electron state ψfree

e−,s,p(x) = e−i(px)us(p)/
√

2ε and positron
state ψfree

e+,s,p(x) = ei(px)vs(p)/
√

2ε, respectively [11]. Here the free positive-energy spinor us(p)
and the free negative-energy spinor vs(p) were introduced, which fulfill, according to the free
Dirac-equation, the equations [11,46]

(p̂−m)us(p) = 0 and (p̂+m)vs(p) = 0, (2.6.2)

respectively, and their conjugates ūs(p)(p̂−m) = 0 and v̄s(p)(p̂+m) = 0. They are normalized
as u†s(p)us′(p) = 2εδss′ and v†s(p)vs′(p) = 2εδss′ , and further obey the following relations [11,46]

ūs(p)us′(p) = 2mδss′ , ūs(p)γ
µus′(p) = 2pµδss′ ,

v̄s(p)vs′(p) = −2mδss′ , v̄s(p)γ
µvs′(p) = 2pµδss′ .

(2.6.3)
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Note that again the quantization volume was set to unity.
As mentioned the analytical solutions of Eq. (2.6.1) for a plane-wave background field are

already known and with our boundary conditions the corresponding Volkov in- and out-states
are given for the electron by [11]

ψ
V,(in/out)
e−,s,p (x) = eiΦ

(in/out)(p)E(p, x)
us(p)√

2ε
(2.6.4)

and for the positron by

ψ
V,(in/out)
e+,s,p (x) = eiΦ

(in/out)(−p)E(−p, x)
vs(p)√

2ε
. (2.6.5)

Here we introduced the so-called Ritus-matrix

E(p, x) =

[
1 +

n̂Â(x−)

2p−

]
e−iSp(x) (2.6.6)

with the phase

− iSp(x) = −i(px)− i
∫ x−

0

dϕ

[
(pA(ϕ))

p−
− A

2(ϕ)

2p−

]
. (2.6.7)

For lµ = (l0, l) and l′µ = (l′0, l′) being two off-shell four-momenta, and with introducing the
notation M̄ = γ0M †γ0 where M is an arbitrary matrix, the Ritus-matrix E(l, x) fulfills the
following identities [9, 19,51]:∫

d4x Ē(l, x)E(l′, x) = (2π)4δ4(l − l′), (2.6.8)∫
d4l

(2π)4
Ē(l, x)E(l, y) = δ4(x− y), (2.6.9)

γµ[i∂µ −Aµ(φ)]E(l, x) = E(l, x)l̂. (2.6.10)

To obey the boundary conditions also an overall phase exp{iΦ(in/out)(p)} had to be introduced
into the Volkov in- and out-states, where

Φ(in/out)(p) = −
∫ 0

∓∞
dϕ

[
(pA(ϕ))

p−
− A

2(ϕ)

2p−

]
. (2.6.11)

The Greens function of the Dirac equation in a plane wave background field, solving the
equation

(i∂̂ − Â(x−)−m)GV (x, y) = δ4(x− y), (2.6.12)

is known as the Volkov-propagator [9, 51]. The Volkov-propagator describes intermediate off-
shell electrons and positrons inside the plane wave and its expression is given by [9, 51]

iGV (x, y) = i

∫
d4l

(2π)4
E(l, x)

l̂ +m

l2 −m2 + i0
Ē(l, y). (2.6.13)
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An operator representation of the Volkov-propagator can be found in Eq. (2.9.1) in Section
2.9.1 (see also Ref. [51]).
In Feynman diagrams both, the electron and positron Volkov-states as well as the Volkov-

propagator, are indicated by double lines.
Finally we choose the spin quantization axis for the electron and positron to be along the

four-vector
ζµp = −f

µν
2 pν
p−

= − 1

p−
εµνλρpνnλa1,ρ. (2.6.14)

The spin four-vector fulfills the relations (nζp) = 0, (pζp) = 0, and [11]

γ5ζ̂pus(p) = sus(p). (2.6.15)

2.7. Local constant field approximation (LCFA)

The local constant field approximation (LCFA) is valid in the limit of low-frequency plane
waves with fixed electric-field amplitude where the wavelength of the background field becomes
much larger than the formation length of the physical process. Since the formation length
usually scales with 1/ξ0, the approximation is applicable if ξ0 � 1 considering additionally
that χ0, κ0 ∼ 1 [9,39]. In the LCFA one assumes that in this case the background field can be
treated locally for a physical process as a constant crossed field. Hence probabilities of physical
processes reduce to probabilities in a constant crossed field, which are then averaged at the
end over the phase dependent plane wave profile. However, in the case of nonlinear Compton
scattering problems occur for low photon energies which we do not consider here [39,52].

2.8. The quantum nonlinearity parameters χ0 and κ0

The quantum nonlinearity parameter is the second important Lorentz- and gauge-invariant
parameter and it is given by χ0 =

√
|(F µνpν)2|/(mFcr) for electrons and positrons with four

momentum pµ = (ε,p) and by κ0 =
√
|(F µνqν)2|/(mFcr) for photons with four-momentum

qµ = (ω, q), where Fcr = m2/|e| is the critical field [9]. For an electron this parameter
resembles the field strength the particle experiences in its rest frame in units of the critical
field [2]. If χ0 ∼ 1 or κ0 ∼ 1, then nonlinear quantum effects start to become significant.
For example, in the limit of a constant-crossed field, loop corrections (like the one-loop mass
operator in the next Section) scale for χ0, κ0 � 1 with αχ

2/3
0 or ακ2/3

0 , which is also known
as Ritus-Narozny conjecture [53]. When in this case χ0 or κ0 become so large that αχ2/3

0 & 1

or ακ2/3
0 & 1, then higher order loop corrections would scale like leading order processes and

the theory would become non-perturbative [53, 54]. However, in this thesis we assume that
the quantum nonlinearity parameters are sufficiently small that a perturbative approach is
applicable.
In the calculations where the LCFA is applied, the parameters χ0 and κ0 are replaced by

their corresponding local phase dependent expressions

χp(φ) =
p−A0

m3
ψ′(φ) and κq(φ) =

q−A0

m3
ψ′(φ). (2.8.1)
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2.9. Mass operator

The mass operator describes the self-interaction of electrons and positrons and leads to the
correction of the electron mass [3,11]. It consists of an infinite sum of one-particle irreducible
Feynman diagrams where its leading order one-loop Feynman diagram is depicted in Fig. 2.2.
For an exact description of electrons and positrons in principle, a resummation of up to an
infinite number of corrections by the mass operator to the Volkov-states and Volkov-propagator
has to be considered. However these corrections are usually small and can be neglected in the
realm of pertubation theory.

Figure 2.2.: The mass operator consists of the one-loop mass operator (Feynman diagram
shown here) and higher order loop diagrams (not presented here).

An expression of the one-loop mass operator in a plane wave field can be found for example
in Refs. [49, 55]. The next subsections are rather technical and present the derivation of the
expression of the one-loop mass operator, which is oriented on and similar to the one presented
in Ref. [49]. These expressions will be used then in Chapters 3 and 6. The reader not interested
into the technical details of the derivation can proceed with Section 2.10 on page 23.

2.9.1. Renormalized expression of the mass operator depending on
the outgoing electron momentum

In this subsection we want to derive the expression of the one-loop mass operator in a plane
wave which depends on the electron momentum of the outgoing electron in the Feynman
diagram in Fig.2.2. The one-loop mass operator depending on the electron momentum of the
incoming electron was calculated in Ref. [49] and we follow their steps to calculate the one
depending on the outgoing electron momentum.
The calculations in Ref. [49] start with an operator approach, thus we first have to introduce

the following operators: $µ
P (Φ) = P µ−Aµ(Φ) is the kinetic four-momentum, Φ is the operator

of light-cone time φ, Xµ is the operator of four-space, and finally the canonical four-momentum
operator is P µ = i∂µ, which has in light-cone coordinates the components PΦ = −i∂Φ =
−i(ñ∂), Pτ = −i(n∂), and P⊥ = −i(a1 ·∇,a2 ·∇).
Further, we need for the derivation an operator representation of the Volkov-propagator.

For the mass operator depending on the incoming electron momentum in Ref. [49] an operator
representation of the Volkov propagator, which has a ($̂P + m) on the right side (see Eq.(6)
in [49]), was used. Instead, for the expression of the mass operator depending on the outgoing
electron momentum, we need a Volkov propagator which has ($̂P +m) on the left side. This
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expression is given already in Eq.(10) in Ref. [56] and reads

GV =[$̂P (Φ) +m]
1

$̂2
P (Φ)−m2 + i0

=(−i)[$̂P (Φ) +m]

∫ ∞
0

dre−irm
2

e2irPτPΦe−i
∫ r
0 dr

′[P⊥−A⊥(Φ−2r′Pτ )]2

×
{

1− 1

2Pτ
n̂[Â(Φ− 2rPτ )− Â(Φ)]

}
,

(2.9.1)

where the Volkov-propagator in configuration space can be obtained from this via GV (x, x′) =〈
x | GV | x′

〉
.

The following calculation of the renormalized mass operator is now similar to the one in Ref.
[49]. The mass operator in momentum space is given by (see Eq.(10) in [49] with substitution
q → −q)

M̃(l, l′) = −ie2

∫
d4xd4x′

∫
d4q

(2π)4

ei(q(x−x
′))

q2 − λ2 + i0
Ē(l, x)γµGV (x, x′)γµE(l′, x′). (2.9.2)

We use now the relation
∫∞

0
du exp[iu(q2 − λ2)] = i/(q2 − λ2 + i0) and the operator relation

exp[i(qX)]g(P ) exp[−i(qX)] = g(P+q) for a generic function g(P ) of the momentum operator
P µ [49]. Together with Φ | x′〉 = φ | x′〉 and 〈x | x′〉 = δ4(x − x′) we derive to the following
expression for the mass operator

M̃(l, l′) =ie2

∫
d4x

∫
d4q

(2π)4

∫ ∞
0

dudreiu(q2−λ2)−im2rĒ(l, x)γµ

× [$̂P (φ) + q̂ +m]e2ir(Pτ−q−)(Pφ−q+)e−i
∫ r
0 dr

′[P⊥+q⊥−A⊥(φ−2r′Pτ+2r′q−)]2

×
{

1− 1

2(Pτ − q−)
n̂[Â(φ− 2rPτ + 2rq−)− Â(φ)]

}
γµE(l′, x)

(2.9.3)

(see Eq.(11) in [49] for comparison). Next we introduce the notation φ̃r = φ + 2r(l− + q−),
∆Aµ(φ̃r) = Aµ(φ̃r)−Aµ(φ), ∆̂A(φ̃r) = γµ∆Aµ(φ̃r), and the classical kinetic four-momentum
of an electron in the plane wave

Πλ
l (φ) = lλ −Aλ(φ) +

(lA(φ))

l−
nλ − A

2(φ)

2l−
nλ, (2.9.4)

with the limit limφ→±∞π
λ
l (φ) = lλ. Further we employ the relation

Ē(l, x)$λ
P (φ) = Ē(l, x)

[
Πλ
l (φ) + i

n̂Â′(φ)

2l−
nλ

]
. (2.9.5)

Now three components of the integral in d4x in Eq. (2.9.3) provide δ-functions. Only the
integral in dx− = dφ can not be taken at this stage. Considering the integrals in the momentum
q, the integral in d2q⊥ is Gaussian and can be performed via the substitution q⊥ = q̃⊥− [rl⊥−∫ r

0
dr′A⊥(φ̃r′)]/(u + r). For dq+ there are two kinds of integrals, one giving a δ-function and
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the other giving the derivative of a δ-function. Both can be used to solve afterwards the
integral in dq− and we obtain from the δ-functions the replacement q− = −l−r/(u + r), such
that φ̃r = φ+ 2l−ur/(u+ r) [49]. With that we obtain for the mass operator the expression

M̃(l, l′) =(2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)
α

2π

∫
dφe−i(l

′
+−l+)φ

∫ ∞
0

dudr

(u+ r)2

× e−iuλ
2−i r

2

u+r

[
m2−

∫ 1
0 dw∆A2(φ̃wr)+(

∫ 1
0 dw∆A(φ̃wr))

2
]
+i ur

u+r
(l2−m2)

×

{
2(m− l̂)

[
1− n̂∆̂A(φ̃r)

2l−

]
+

[
1 +

r

u

n̂∆̂A(φ̃r)

2l−

]
Π̂1,l(φ̃r)

+

[
1− 2u+ r

u

n̂∆̂A(φ̃r)

2l−

]
r

u+ r
Π̂2,l(φ̃r)

+
n̂

2l−

r

u

[(∫ 1

0

dw∆A(φ̃wr)

)2

−
∫ 1

0

dw∆A2(φ̃wr)

+
r

u+ r

(
∆A(φ̃r)−

∫ 1

0

dw∆A(φ̃wr)

)2
]}

,

(2.9.6)

where we introduced the two four-vectors

Πλ
1,l(φ̃r) = lλ −∆Aλ(φ̃r) +

(l∆A(φ̃r))

l−
nλ − (∆A(φ̃r))

2

2l−
nλ, (2.9.7)

Πλ
2,l(φ̃r) = lλ −

∫ 1

0

dw∆Aλ(φ̃wr) +

(∫ 1

0
dw∆A(φ̃wr)

)
l−

nλ −

(∫ 1

0
dw∆A(φ̃wr)

)2

2l−
nλ, (2.9.8)

and the quantity φ̃wr = φ + 2wurl−/(u + r) (compare with Eq. (15) in Ref. [49]). The
mass operator has to be renormalized. Since the difference between the mass operator in a
plane wave and the mass operator in vacuum is already finite, the renormalization is done
by subtracting the vacuum part from the mass operator in a plane wave and adding the
renormalized vacuum part to it, where the renormalization of the vacuum part is already
known [55], i.e.

M̃R(l, l′) = M̃(l, l′)− M̃(l, l′)(l̂ = m,Aµ = 0)− (l̂ −m)
∂M̃(l, l′)

∂l̂
(l̂ = m,Aµ = 0). (2.9.9)

Thus we finally obtain for the renormalized one-loop mass operator depending on the outgoing
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electron momentum the expression

M̃R(l, l′) = (2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)
α

2π

∫
dφe−i(l

′
+−l+)φ

∫ ∞
0

dudr

(u+ r)2

× e−iuλ2−i r
2

u+r
m2

{
e
i r

2

u+r

[∫ 1
0 dw∆A2(φ̃wr)−(

∫ 1
0 dw∆A(φ̃wr))

2
]
+i ur

u+r
(l2−m2)

×

[
2(m− l̂)

[
1− n̂∆̂A(φ̃r)

2l−

]
+MII

]

− u+ 2r

u+ r
m− u

u+ r

(
1− 2i

u+ 2r

u+ r
m2r

)
(m− l̂)

}
(2.9.10)

where

MII =

[
1 +

r

u

n̂∆̂A(φ̃r)

2l−

]
Π̂1,l(φ̃r) +

[
1− 2u+ r

u

n̂∆̂A(φ̃r)

2l−

]
r

u+ r
Π̂2,l(φ̃r)

+
n̂

2l−

r

u

[(∫ 1

0

dw∆A(φ̃wr)

)2

−
∫ 1

0

dw∆A2(φ̃wr)

+
r

u+ r

(
∆A(φ̃r)−

∫ 1

0

dw∆A(φ̃wr)

)2
]
.

(2.9.11)

With the definitions in Eqs. (2.9.7) and (2.9.8) we can further rewrite MII to

MII =
u+ 2r

u+ r
l̂ − ∆̂A(φ̃r)−

r

u+ r

∫ 1

0

dw∆̂A(φ̃wr) +
r

u+ r

∆̂A(φ̃r)n̂

2l−
l̂

− r

u

2u+ r

u+ r

∆̂A(φ̃r)n̂

2l−

∫ 1

0

dw∆̂A(φ̃wr) +
n̂

2l−
NII ,

(2.9.12)

where

NII =2
(
l∆A(φ̃r)

)
− u+ 2r

u+ r

(
∆A(φ̃r)

)2

+ 2
r

u+ r

(
l

∫ 1

0

dw∆A(φ̃wr)

)
+ 2

r

u

r

u+ r

(∫ 1

0

dw∆A(φ̃wr)

)2

− r

u

∫ 1

0

dw
(

∆A(φ̃wr)
)2

− 2
r

u

r

u+ r

(
∆A(φ̃r)

∫ 1

0

dw∆A(φ̃wr)

)
.

(2.9.13)
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2.9.2. Renormalized expression of the mass operator depending on
the incoming electron momentum

For completeness also the renormalized expression of the one-loop mass operator depending
on the incoming electron momentum is presented, which was derived in Eq.(18) in Ref. [49],

MR(l, l′) = (2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)
α

2π

∫
dφe−i(l

′
+−l+)φ

∫ ∞
0

dudr

(u+ r)2

× e−iuλ2−i r
2

u+r
m2

{
e
i r

2

u+r

[∫ 1
0 dw∆A2(φwr)−(

∫ 1
0 dw∆A(φwr))

2
]
+i ur

u+r
(l′2−m2)

×

[
2

[
1 +

n̂∆̂A(φr)

2l′−

]
(m− l̂′) +MI

]

− u+ 2r

u+ r
m− u

u+ r

(
1− 2i

u+ 2r

u+ r
m2r

)
(m− l̂′)

}
.

(2.9.14)

Here the notation φr = φ− 2url′−/(u+ r) and φwr = φ− 2wurl′−/(u+ r) is used. Further we
introduced the quantity MI which is given by

MI = Π̂1,l′(φr)

[
1− r

u

n̂∆̂A(φr)

2l′−

]
+

r

u+ r
Π̂2,l′(φr)

[
1 +

2u+ r

u

n̂∆̂A(φr)

2l′−

]

+
n̂

2l′−

r

u

[(∫ 1

0

dw∆A(φwr)

)2

−
∫ 1

0

dw∆A2(φwr)

+
r

u+ r

(
∆A(φr)−

∫ 1

0

dw∆A(φwr)

)2
]
.

(2.9.15)

Note thatMI andMII in Eq. (2.9.11) are related to each other byMII = γ0M †
I γ

0|l′→l,φr,wr→φ̃r,wr .
With the definitions in Eqs. (2.9.7) and (2.9.8) we can rewrite MI to

MI =
u+ 2r

u+ r
l̂′ − ∆̂A(φr)−

r

u+ r

∫ 1

0

dw∆̂A(φwr) +
r

u+ r
l̂′
n̂∆̂A(φr)

2l′−

− r

u

2u+ r

u+ r

∫ 1

0

dw∆̂A(φwr)
n̂∆̂A(φr)

2l′−
+

n̂

2l′−
NI ,

(2.9.16)

where

NI =2 (l′∆A(φr))−
u+ 2r

u+ r
(∆A(φr))

2 + 2
r

u+ r

(
l′
∫ 1

0

dw∆A(φwr)

)
+ 2

r

u

r

u+ r

(∫ 1

0

dw∆A(φwr)

)2

− r

u

∫ 1

0

dw (∆A(φwr))
2

− 2
r

u

r

u+ r

(
∆A(φr)

∫ 1

0

dw∆A(φwr)

)
.

(2.9.17)
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2.9.3. The one-loop mass operator in the LCFA

In this subsection the expression of the renormalized one-loop mass operator in a linear po-
larized plane wave and within the LCFA is derived, which we will need later in Section 3.2.
For this we start from the renormalized expression of the mass operator depending on the
incoming electron momentum in Eq. (2.9.14).
We use that due to the δ-functions the momenta l′− = l− and l′⊥ = l⊥. Since we deal with

a linearly polarized background field MI in Eq. (2.9.16) reduces to

MI =
u+ 2r

u+ r
l̂′ − ∆̂A(φr)−

r

u+ r

∫ 1

0

dw∆̂A(φwr) +
r

u+ r
l̂′
n̂∆̂A(φr)

2l−

+
n̂

2l−

[
NI +

r

u

2u+ r

u+ r

(
∆A(φr)

∫ 1

0

dw∆A(φwr)

)]
,

(2.9.18)

In the next step we want to perform the LCFA for the mass operator. This means that we
assume the formation length of the mass operator to be much smaller than the wavelength of
the background field, and hence we can approximate that the phase difference φr − φ � 1.
Therefore we can expand the potential of the background field around φ up to first order [9,38],
such that

∆Aµ(φr) = Aµ(φr)−Aµ(φ) ≈ Aµ(φ)− 2url−
u+ r

A′µ(φ)−Aµ(φ)

≈ −2url−
u+ r

A′µ(φ)

(2.9.19)

and similar
∆Aµ(φwr) ≈ −w

2url−
u+ r

A′µ(φ). (2.9.20)

With this expansion we have to make the following replacements∫ 1

0

dw∆Aµ(φwr) ≈ −
url−
u+ r

A′µ(φ), (2.9.21)∫ 1

0

dw∆A2(φwr) ≈
4u2r2l2−

3(u+ r)2
A′2(φ), (2.9.22)(∫ 1

0

dw∆Aµ(φwr)

)2

≈
u2r2l2−

(u+ r)2
A′2(φ), (2.9.23)

∆A2(φr) ≈
4u2r2l2−
(u+ r)2

A′2(φ), (2.9.24)(
∆A(φr)

∫ 1

0

dw∆A(φwr)

)
≈

2u2r2l2−
(u+ r)2

A′2(φ), (2.9.25)

and the exponential becomes

e
i r

2

u+r

[∫ 1
0 dw∆A2(φwr)−(

∫ 1
0 dw∆A(φwr))

2
]
≈ e

i
u2r4l2−
3(u+r)3

A′2(φ)
. (2.9.26)
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Inserting the above replacements into Eq. (2.9.18) we derive to the following expression of the
mass operator in the LCFA

MLCFA
R (l, l′) = (2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)

α

2π

∫
dφe−i(l

′
+−l+)φ

∫ ∞
0

dudr
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× e−iuλ2−i r
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A′2(φ)+i ur
u+r
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×
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m2r
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(m− l̂′)

}
,

(2.9.27)

where

MLCFA
I =

u+ 2r

u+ r
l̂′ +

(2u+ 3r)url−
(u+ r)2

Â′(φ)− ur2

(u+ r)2
l̂′n̂Â′(φ)

− n̂

2l−

[
(2u+ 3r)ur2l−

(u+ r)2
(lA′(φ)) +

(
4 +

4r

3u

)
u2r2l2−

(u+ r)2
A′2(φ)

]
.

(2.9.28)

Now we commute l̂′ in Eq. (2.9.27) to the left side and use, for terms with three γ matrices,
the relation in Eq. (A.0.4) in the Appendix, which gives us l̂′n̂Â′(φ) = l−Â′(φ)− (lA′(φ))n̂−
iετµνργτγ

5l′µnνA′ρ(φ). Further, we perform two substitutions, first v = r/u and then ũ =
um2/(1 + v) [49]. Since the background field is assumed to be linear polarized, we can write
the derivative of the potential A′µ(φ) = (0,A′(φ)) as A′(φ) = A0ψ

′(φ)a1. In the exponential
functions we express the derivative of the potential in terms of the local quantum nonlinearity
parameter χl(φ) = (l−/m

3)A0ψ
′(φ). With these changes we obtain the following expression

MLCFA
R (l, l′) = (2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)
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ũv
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(2.9.29)
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Now we change in the pre-exponent the notation to

2n̂Â′(φ) = −iσµνFµν(φ), (2.9.30)
l−A′2(φ)n̂ = −(lF2(φ)γ), (2.9.31)

i

m2
ετµνργτγ

5l′µnνA′ρ(φ) = imχl(φ)γ5ζ̂l′ , (2.9.32)

where we introduced the matrix σµν = (i/2)(γµγν−γνγµ) and used the spin four-vector in Eq.
(2.6.14). Notice that the spin four-vector only depends on l′− and l′⊥, such that here ζµl′ = ζµl .
The final expression of the one-loop mass operator in a linear polarized plane wave and within
the LCFA is then

MLCFA
R (l, l′) = (2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)
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1− eiũv
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1 + v
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iũv
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1− l′2
m2

)}
,

(2.9.33)

which is in agreement with the one presented in Ref. [48].

2.10. Polarization operator

Similar to the mass operator, the polarization operator describes the self-interaction of the
photon from the radiation field inside the background field [3, 11]. The polarization operator
leads to the correction of the electron charge and its exact description requires the summa-
tion of infinitely many one-particle irreducible Feynman diagrams. Its leading order one-loop
Feynman diagram is depicted in Fig. 2.3. For the exact photon state or propagator corrections
by the polarization operator have to be included in principle up to an infinite order, however
the corrections are usually small and can be neglected in the realm of pertubation theory.

Figure 2.3.: The polarization operator consists of the one-loop polarization operator (Feynman
diagram is shown here) and higher order loop diagrams (not presented here).
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The expression of the one-loop polarization operator in a plane wave can be found in Refs.
[57,58]. Here the derivation of the polarization operator is not presented, since we will use its
expression given in Ref. [58].

2.11. Vertex correction

The vertex correction, as the name indicates already, describes the correction to the vertex and
contributes to the anomalous magnetic moment of the electron [3]. Also here the exact descrip-
tion requires the summation of infinitely many one-particle irreducible Feynman diagrams. Its
leading order Feynman diagram is depicted in Fig. 2.4. For the exact description of processes
including a vertex, the vertex correction has to be included in principle. Since the corrections
are usually small, its contribution can be often neglected in the realm of pertubation theory.

Figure 2.4.: The vertex correction consists of the one-loop vertex correction (Feynman diagram
is shown here) and higher order loop diagrams (not presented here).

Since we do not need the expression of the vertex correction in this thesis, its expression is
not presented here. However, a derivation of the one-loop vertex correction can be found in
Ref. [50].
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3. Nonlinear Compton scattering and nonlinear
Breit-Wheeler pair production

Note that the content of this chapter was also published in the publication [20] and therefore
the structure, the equations, and the text of this chapter are similar or identical to the one in
Ref. [20].
Using Volkov-states there are two first order processes in Strong-Field QED, nonlinear

Compton scattering and nonlinear Breit-Wheeler pair production [9, 38]. As mentioned non-
linear Compton scattering describes the process when an electron moving in a background
field emits a single photon, whereas nonlinear Breit-Wheeler pair production describes the
decay of a photon in a background field into an electron-positron pair. Both processes are not
possible in vacuum since a second photon is needed for energy-momentum conservation. In a
background field however energy-momentum conservation is achieved by the interaction of the
electron/positron with the background field. The corresponding Feynman diagrams to this
two processes are shown in Fig. 3.1, on the left hand side for nonlinear Compton scattering
and on the right hand side for nonlinear Breit-Wheeler pair production.

Figure 3.1.: Shown are the leading Feynman diagrams of nonlinear Compton scattering (left)
and nonlinear Breit-Wheeler pair production (right).

The S-matrix elements are given by [9]

SNCS
0 = −ie

∫
d4xψ̄

V,(out)
e−,s′,p′(x)Ârad,∗

j,q (x)ψ
V,(in)

e−,s,p(x) (3.0.1)

for nonlinear Compton scattering with an incoming (outgoing) electron of momentum pµ

(p′µ) and spin quantum number s (s′) and with an outgoing photon of momentum qµ and
polarization j, and for nonlinear Breit-Wheeler pair production by

SNBW
0 = −ie

∫
d4xψ̄

V,(out)
e−,s′,p′(x)Ârad

j,q (x)ψ
V,(out)
e+,s,p (x) (3.0.2)
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with an incoming photon of momentum qµ and polarization j, and an outgoing positron
(electron) of momentum pµ (p′µ) and spin quantum number s (s′). From this two S-matrices
one obtains the leading order probabilities for both processes (see e.g. Refs. [9, 38, 40]).

3.1. Wrong probabilities for a large pulse length and
higher order loop corrections

The leading order probabilities for nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production exceed unity for sufficiently large pulse length (intensities) of the background
field [41,42], which is of course unphysical and violates against the unitarity of the S-matrix.
Indeed the reason behind this behavior is that pertubation theory, as it was used to calculate
these probabilities, is not applicable anymore and higher order corrections have to be taken
into account to obtain correct results. These corrections are in general given by the exact
mass operator, polarization operator and vertex correction [11,46]. To obtain an exact result
in principle diagrams including an arbitrary number of mass- and polarization operators and
combinations with the vertex correction have to be resummed. The summation of Feynman
diagrams with corrections up to order α is depicted for nonlinear Compton scattering in
Fig. 3.2. However, already the exact expressions of the complete mass operator, polarization
operator, and vertex correction are not known. In order to get analytical results we therefore
have to understand why the higher order corrections become important in the limit of large
pulse length and which corrections contribute to the leading amplitude.
In order to do so we will have a brief look at a higher order strong field QED process,

namely nonlinear double Compton scattering. Here the electron is emitting two photons
by two following nonlinear Compton scattering processes. This process was investigated by
several groups (see e.g. Refs. [59–63]) and they found out that there are two contributions to
nonlinear double Compton scattering, the one-step and the two-step contribution. In the one-
step contribution the intermediate electron in between the two photon emissions stays off-shell
and the phases of the two photon emissions are correlated, whereas in the two-step contribution
the intermediate electron also can go on-shell. Here the intermediate on-shell particles in the
two-step contribution can travel macroscopic large distances and the phases of the two photon
emissions are uncorrelated. Also the probabilities of both contributions scale differently. The
probability of the one-step contribution scales with α2ΦL/Φf and the two-step contribution
scales with α2Φ2

L/Φ
2
f , where ΦL is the total phase duration of the background field and Φf is

a measure of the formation length. Hence, for a sufficiently large phase duration ΦL � Φf the
two-step contribution dominates over the one-step contribution and when the phase duration
is in the order of ΦL & Φf/α ≈ 137Φf the probability of the two-step contribution becomes
comparable to the one of a first-order process (this condition was also identified in Ref. [41]).
Now we go back to single nonlinear Compton scattering. For this, as mentioned, in Fig.

3.2 additionally to the leading order diagram also the corrections up to linear order in α
are depicted. Having a look on the corrections by the mass operator on the incoming and
outgoing electron (second and third diagram in Fig. 3.2) we see that we have an intermediate
electron (between mass operator and vertex) which principally can go on-shell and receives
then a contribution from the plane wave that scales with ΦL/Φf . For a sufficiently large pulse
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duration (ΦL & Φf/α ≈ 137Φf ) this contribution becomes in the order of 1/α such that the
whole diagram scales like the leading order contribution (the first Feynman diagram in Fig.
3.2). The same holds for the correction by the polarization operator to the outgoing photon.
Here we have an intermediate photon (between polarization operator and vertex) which can go
on-shell and receives a contribution from the plane wave. Also higher order contributions with
several mass- and polarization operator corrections contribute to the leading order amplitude
since for every mass- and polarization operator there is also an additional intermediate fermion
and photon, respectively, that receives a contribution from the plane wave when going on-shell.

Figure 3.2.: Shown is the sum of Feynman diagrams contributing to nonlinear Compton scat-
tering with corrections up to linear order in α (blue) by the mass operator (M),
polarization operator (P), and vertex correction (V). Intermediate particles (or-
ange circles) can go on-shell and receive a contribution from the plane wave scaling
with ΦL/Φf (red).

For the vertex correction the situation is however different, since here all intermediate parti-
cles are in a loop (in the vertex correction itself). If two particles go on-shell in the same loop
the above discussed contributions from the plane wave do not occur, which was investigated
in Ref. [64] in the case of the one-loop polarization operator. Therefore we expect that also
the vertex correction does not receive a contribution from the plane wave. This makes also
physically sense since the vertex correction is a local physical process whereas intermediate
on-shell particles can travel macroscopic large distances. Hence contributions from the vertex
correction only scale with α and can be neglected when calculating the leading contributions
to the probability in the limit of large phase duration.
Now, for the same reason as for the vertex correction, we only have to consider for the

mass- and polarization operators the one-loop diagram contributions, because higher loop
corrections would be at least scale with α2 and do not contain intermediate particles outside
a loop. Therefore they are sub-leading in α and it is enough to consider the one-loop mass-
and polarization operator for the leading order probability. But, as discussed before, we still
have to take all higher order corrections into account where we have multiple corrections by
one-loop mass- and polarization operators (including combinations of both) since for every
mass- and polarization operator we have also an intermediate particle receiving contributions
from the background field.
In conclusion, we have to compute the resummation of all one-particle reducible diagrams

containing only corrections by the one-loop mass- and polarization operator depicted in Figs.
4.1 and 5.1 for nonlinear Compton scattering and nonlinear Breit-Wheeler pair production,
respectively.
In order to perform this resummation we use instead of the Volcov electron/positron states

and the vacuum photon state in the S-matrix elements in Eqs. (3.0.1) and (3.0.2), the exact

27



electron and positron state Ψ(x), and exact photon state A µ(x). These states are in general
for a plane wave background field obtained by solving the following equations [11,13]

[i∂̂ − Â(φ)−m]Ψ(x) =

∫
d4yMPW (x, y)Ψ(y), (3.1.1)

−∂2A µ(x) =

∫
d4yP µν

PW (x, y)Aν(y), (3.1.2)

where MPW (x, y) and P µν
PW (x, y) are the mass and polarization operator in a plane wave,

respectively. Instead of only considering the propagation of the electron/positron (photon)
through a plane wave field like in the modified Dirac equation (free wave equation), Eq. (3.1.1)
(Eq. (3.1.2)) takes also the self-interaction of the particle by the mass (polarization) operator
into account and hence describes the exact electron and positron (photon) state. The solution
of this equation intrinsically contains the resummation of all one-particle reducible corrections
by the mass (polarization) operator to the electron/positron (photon) state [11], which will be
showed in the next Section in the case of the electron state. Since this properties are similar
to Schwinger-Dyson equations which describe exact Greens-functions [3], we will name in the
following the above equations Schwinger-Dyson equations of the fermion and photon. For
an exact description of the electron, positron and photon again the exact expression of the
mass- and polarization operator would be needed, however as discussed above it is in our case
sufficient to consider only the one-loop contributions.
In that way the resummation of the Feynman diagrams for nonlinear Compton scattering

and nonlinear Breit-Wheeler pair production can be absorbed into the expressions of the exact
electron, positron, and photon states. The solutions of the Schwinger-Dyson equations (3.1.1)
and (3.1.2) in the LCFA and for the one-loop mass and polarization operator, respectively, are
already known and can be found in Refs. [48,64,65]. However, we will see that both equations
are only suitable for electron and photon in-states, respectively. In the following two Sections
for completeness a derivation for the exact electron, positron, and photon in- and out-states
is presented.

3.2. Exact electron and positron states

We start with the Schwinger-Dyson equation (3.1.1) for a fermion inside a plane wave. Before
solving this equation, we observe that with the help of the Volkov propagator GV (x, y) and
the Volkov state ψV (x) the solution of the Schwinger-Dyson equation can be written as the
series [48]

Ψ(x) = ψV (x) +

∫
d4yd4z GV (x, y)MPW (y, z)ψV (z)

+

∫
d4yd4zd4rd4sGV (x, y)MPW (y, z)GV (z, r)MPW (r, s)ψV (s) + · · · ,

(3.2.1)

which can easily be proved by plugging the series into the Schwinger-Dyson equation and
using Eqs. (2.6.1) and (2.6.12) (This expansion is similar to the expansion of the exact Green’s
function, which is a solution of the Schwinger-Dyson equation for the Green’s function, see e.g.
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Ref. [11]). Interestingly, the solution of this equation precisely gives us the resummation of
all one-particle reducible diagrams of the fermion state with corrections by the mass operator
(see Fig. 3.3), which is exactly what we need to perform a part of the resummation for the
probabilities of nonlinear Compton scattering and nonlinear Breit-Wheeler pair production.

Figure 3.3.: The thick lines indicate the exact incoming electron line (a) and the exact outgoing
electron line (b), and are symbolically expressed as series expansion in terms of
Volkov propagators (double internal lines) and mass operators (circles with letter
M inside).

Now we imagine to use this solution for the computation of S-matrix elements and we notice
that it is only suitable for describing an electron in-state Ψ

(in)

e− (x) (see Fig. 3.3(a)), since in
a S-matrix element the electron in-state acts from the right hand side to the amplitude. We
therefore rewrite

Ψ
(in)

e− (x) = ψ
V,(in)

e− (x) +

∫
d4yd4z GV (x, y)MPW (y, z)ψ

V,(in)

e− (z)

+

∫
d4yd4zd4rd4sGV (x, y)MPW (y, z)GV (z, r)MPW (r, s)ψ

V,(in)

e− (s) + · · ·
(3.2.2)

and we rewrite Eq. (3.1.1) to

[i∂̂ − Â(φ)−m]Ψ
(in)

e− (x) =

∫
d4yMPW (x, y)Ψ

(in)

e− (y). (3.2.3)

An exact electron out-state Ψ
(out)
e− (x) instead requires the series (see Fig. 3.3(b))

Ψ̄
(out)
e− (x) = ψ̄

V,(out)
e− (x) +

∫
d4yd4z ψ̄

V,(out)
e− (z)MPW (z, y)GV (y, x)

+

∫
d4yd4zd4rd4s ψ̄

V,(out)
e− (s)MPW (s, r)GV (r, z)MPW (z, y)GV (y, x) + · · · ,

(3.2.4)

since in a S-matrix element the electron out-state acts from the left hand side to the amplitude.
This is not simply the Dirac conjugated of Eq. (3.2.2) and we rather need to solve for the
exact electron out-state Ψ

(out)
e− (x) the Schwinger-Dyson equation

Ψ̄
(out)
e− (x)[−i

←
∂µ γ

µ − Â(φ)−m] =

∫
d4y Ψ̄

(out)
e− (y)MPW (y, x). (3.2.5)

or, equivalently, the equation

[i∂̂ − Â(φ)−m]Ψ
(out)
e− (x) =

∫
d4y M̄PW (y, x)Ψ

(out)
e− (y). (3.2.6)
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With similar considerations we derive the Schwinger-Dyson equations for the incoming and
outgoing positron states, i.e. Ψ

(in)

e+ (x) and Ψ
(out)
e+ (x), respectively, which are

[i∂̂ − Â(φ)−m]Ψ
(in)

e+ (x) =

∫
d4y M̄PW (y, x)Ψ

(in)

e+ (y), (3.2.7)

[i∂̂ − Â(φ)−m]Ψ
(out)
e+ (x) =

∫
d4yMPW (x, y)Ψ

(out)
e+ (y). (3.2.8)

In the following, only the derivation of the solution of Eq. (3.2.3) is presented as the other
equations (3.2.6)-(3.2.8) can be solved in an analogous way. The solution of Eq. (3.2.3) was
already found in Refs. [48, 65] and in the following an equivalent but alternative solution is
presented.
To find a solution of Eq. (3.2.3) we first simplify the expression of the mass operator.

For this we assume that the plane wave background field is linearly polarized, the classical
nonlinearity parameter ξ0 � 1, and the quantum nonlinearity parameter χ0 ∼ 1, such that the
LCFA can be applied. Also, as explained in the introduction of this Chapter, it is enough to
consider the one-loop expression of the mass operator since higher order loop terms would only
give subleading contributions. The derivation of the one-loop mass operator in the LCFA was
presented in Section (2.9.3) and we use its expression given in Eq. (2.9.33) (see also Ref. [48]),

MLCFA
R (l, l′) = (2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)

∫
dφ e−i(l

′
+−l+)φ α

2π

∫ ∞
0

dũ

ũ

∫ ∞
0

dv

(1 + v)2

× e−iũ
[
(1+v) λ

2

m2 +v2+v
(

1− l
′ 2
m2

)]{(
2m− l̂′

1 + v

)[
e−

i
3
v4χ2

l (φ)ũ3 − 1
]

+ e−
i
3
v4χ2

l (φ)ũ3

×
[

2ũ2v2

m4

(
1 +

v

3

)
(lF2(φ)γ) + i

ũv

m
σµνFµν(φ)− imũv2 + v

1 + v
χl(φ)γ5ζ̂l

]
+

(
2m− l̂′

1 + v

)[
1− eiũv

(
1− l

′ 2
m2

)]
− 2iũv

1 + 2v

1 + v
(l̂′ −m)e

iũv
(

1− l
′ 2
m2

)}
.

(3.2.9)

By using Eqs. (2.6.8) and (2.6.9) we go to configuration space and obtain for the one-loop
mass operator

MLCFA
R (x, y) =

∫
d4l

(2π)4

d4l′

(2π)4
E(l, x)MLCFA

R (l, l′)Ē(l′, y) =

∫
d4l′

(2π)4
E(l′, x)M

(1)
R (l′, φx)Ē(l′, y),

(3.2.10)
where

M
(1)
R (l′, φ) =

α

2π

∫ ∞
0

dũ

ũ

∫ ∞
0

dv

(1 + v)2
e
−iũ

[
(1+v) λ

2

m2 +v2+v
(

1− l′2
m2

)]

×
{(

2m− l̂′

1 + v

)[
e−

i
3
v4χ2

l′ (φ)ũ3 − 1
]

+ e−
i
3
v4χ2

l′ (φ)ũ3

×
[

2ũ2v2

m4

(
1 +

v

3

)
(l′F2(φ)γ) + i

ũv

m
σµνFµν(φ)− imũv2 + v

1 + v
χl′(φ)γ5ζ̂l′

]
+

(
2m− l̂′

1 + v

)[
1− eiũv

(
1− l′2

m2

)]
− 2iũv

1 + 2v

1 + v
(l̂′ −m)e

iũv
(

1− l′2
m2

)}
,

(3.2.11)
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and where φx is the minus light-cone coordinate of the spacetime point x.
To arrive to the second equality in Eq. (3.2.10) the integral in d4l was taken. This is trivial

for the components d2l⊥ and dl− which exploit the δ-functions in Eq. (3.2.9). For the integral
in dl+ we made the observation, that except of the first exponential all the dependence on lµ
in Eq. (3.2.9) is only in the components l⊥ and l−. Hence the integral in dl+ leads to the
δ-function δ(φ − φx), which is removed by the integral in dφ, and the remaining exponential
exp(−il′+φx) is absorbed into the left Ritus matrix in the second equality of Eq. (3.2.10).
Now it might surprise that M (1)

R (l, φx) evaluated at φx looks “asymmetric”. This only arises
because we have decided to express the mass operator in terms of l′ 2 and l̂′ by starting in the
derivation of Eq. (3.2.9) in Section 2.9.3 from the mass operator expression depending on the
incoming electron momentum given in Eq. (2.9.14). If we would have started the derivation
from the mass operator depending on the outgoing electron momentum, given in Eq. (2.9.10),
we would have obtained an equivalent expression to Eq. (3.2.9) depending on l2 and l̂ instead
and the quantity M (1)

R (l, φy) would have appeared in the second equality of Eq. (3.2.10), with
φy being the minus light-cone coordinate of the spacetime point y. In the following derivation
the expression with M (1)

R (l′, φx) has been chosen.
Now we want to find a solution to the Schwinger-Dyson equation for the electron in state in

Eq. (3.2.3). We observe that the left hand side of the Schwinger-Dyson equation is essentially
the Dirac equation in a plane wave field which is then modified by the mass operator on the
right hand side of the equation, leading to radiative corrections of the Volkov state. Similarly
as in Ref. [65], thus we make the Ansatz that the solution of the Schwinger-Dyson equation
can be obtained by a modification of the Volkov electron in state ψV,(in)

s,p (x), i.e.

Ψ
(in)

e−,s,p(x) = f (in)
s (p, φ)ψV,(in)

s,p (x) = eiΦ
(in)(p)f (in)

s (p, φ)E(p, x)
us(p)√

2ε
, (3.2.12)

where f (in)
s (p, φ) is a function to be determined. According to the physical requirement that

the electron in state coincides with the free state exp(−i(px))us(p)/
√

2ε before the electron
interacts with the plane-wave field, the function f

(in)
s (p, φ) has to fulfill the initial condition

limφ→−∞ f
(in)
s (p, φ) = 1. By substituting the expression of Ψ

(in)
e (x) into Eq. (3.2.3), applying

the relation in Eq. (2.6.10), multiplying the resulting expression by ūs′(p)Ē(p, x), and using
Eq. (2.6.3), we obtain

2ip−δss′
df

(in)
s (p, φx)

dφx

=

∫
d4y

d4l′

(2π)4
ūs′(p)Ē(p, x)E(l′, x)M

(1)
R (l′, φx)Ē(l′, y)E(p, y)us(p)f

(in)
s (p, φy).

(3.2.13)

The number of integrals on the right hand side can further be reduced. As the Ritus matrices
E(p, y) depend only linearly in the phase on the transverse and the plus light-cone space-
time coordinates, the integrals in d2y⊥ and dy+ reduce to δ-functions. These are employed to
perform the integrals in d2l′⊥ and dl′−, enforcing the replacement l′⊥ = p⊥ and l′− = p−. With
that we obtain

2ip−δss′
df

(in)
s (p, φx)

dφx
=

∫
dφy

dl′+
2π

ei(p+−l′+)(φx−φy)ūs′(p)M
(1)
R (l′, φx)us(p)f

(in)
s (p, φy). (3.2.14)
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where now for notational simplicity the four-momentum l′µ has light-cone components p−,
p⊥, and l′+. For the component l′+ in the quantity M (1)

R (l′, φx) we notice, that it appears only
linearly in the exponents and the preexponential functions in Eq. (3.2.11) via the squared four-
momentum l′2 = 2p−l

′
+ − p2

⊥ and the matrix l̂′ = l′+n̂+ p− ˆ̃n− (pa1)â1 − (pa2)â2, respectively.
This observation is important as it allows us to perform the integral in l′+ analytically. For this
we first employ the substitution r+ = l′+−p+, which leads to the replacements l′2 = p2 +2p−r+

and l̂′ = p̂ + r+n̂. The integral over r+ is still complicated but it can be solved within our
approximations. There are three kinds on how terms of M (1)

R (l′, φx) depend on l′+ and then on
r+ and they can be integrated in the following way [see also Eq. (3.2.11)]:

1. Terms in the quantityM (1)
R (l′, φx) independent on r+ can be directly integrated and yield

the δ-function δ(φy−φx). With the integral in φy this reduces to the function f (in)
s (p, φx)

on the right hand side of Eq. (3.2.14).

2. Terms where r+ only appears in the exponential function exp(2iũvp−r+/m
2) can be

again directly integrated and give the δ-function δ(φy −φx + 2ũvp−/m
2). With that the

integral in φy can be performed such that the function f (in)
s (p, φx − 2ũvp−/m

2) appears
on the right hand side of Eq. (3.2.14). Now, as our considerations are only valid within
the LCFA and since the function f (in)

s (p, φx−2ũvp−/m
2) can be a posteriori ascertained

to be sufficiently smooth, we can approximate that f (in)
s (p, φx−2ũvp−/m

2) ≈ f
(in)
s (p, φx)

(see also below Eq. (3.2.20)).

3. Terms containing r+ in the preexponential can be rewritten into a derivative in ∂/∂φy of
the exponential function in Eq. (3.2.14) and then, after partial integration, result to the
derivative ∂fs(p, φy)/∂φy appearing on the right-hand side of Eq. (3.2.14). The integral
in r+ and φy can be taken as explained in the first and second remark where now instead
the δ-functions lead finally to ∂fs(p, φx)/∂φx. Apart from being proportional to α, this
contributions have the same structure as the left hand side and we can combine both
together. After dividing the resulting equation by the overall factor of ∂fs(p, φx)/∂φx we
observe that these additional terms only lead to higher order corrections proportional to
α and hence we can neglect them within our approximations.

After these steps we obtain the equation

ip−δss′
df

(in)
s (p, φ)

dφ
= mMss′(p, φ)f (in)

s (p, φ), (3.2.15)

where Mss′(p, φ) = ūs′(p)M(p, φ)us(p)/ūs(p)us(p), with

M(p, φ) =
α

2π

∫ ∞
0

dũ

ũ

∫ ∞
0

dv

(1 + v)2
e−iv

2ũ

{(
2m− m

1 + v

)[
e−

i
3
v4χ2

p(φ)ũ3 − 1
]

+ e−
i
3
v4χ2

p(φ)ũ3

×
[

2ũ2v2

m4

(
1 +

v

3

)
(pF2(φ)γ) + i

ũv

m
σµνFµν(φ)− imũv2 + v

1 + v
χp(φ)γ5ζ̂p

]}
.

(3.2.16)

Here the square of the fictitious photon mass λ was finally set equal to zero, because we use
the mass operator on the mass shell [3, 9, 46]. Further we observe that the quantity M(p, φ)

32



vanishes if the plane wave vanishes since it does not contain vacuum terms. This behavior
was expected, as on-shell states do not undergo radiative corrections in vacuum [11].
Eq. (3.2.15) is simplified further using the properties of the free states us(p) in Eqs. (2.6.2),

(2.6.3), and (2.6.15). Additionally, with Eq. (A.0.14), the commutator [(γf2γ), p̂] = 4(γf2p)
and by multiplying ones in the form of p̂2/m2 and (γ5)2, one obtains the replacement σµνFµν →
2m2χp(φ)γ5ζ̂p. In this way the matrix Mss′(p, φ) becomes diagonal and Eq. (3.2.15) reduces
to

i
df

(in)
s (p, φ)

dφ
=
m

p−
Ms(p, φ)f (in)

s (p, φ), (3.2.17)

where

Ms(p, φ) = m
α

2π

∫ ∞
0

dũ

ũ

∫ ∞
0

dv

(1 + v)2
e−iv

2ũ

{
1 + 2v

1 + v

[
e−

i
3
v4χ2

p(φ)ũ3 − 1
]

+e−
i
3
v4χ2

p(φ)ũ3

[
2ũ2v2

(
1 +

v

3

)
χ2
p(φ) + is

ũv2

1 + v
χp(φ)

]}
.

(3.2.18)

After employing the substitution u = ũv2 and using the relation in Eq. (B.0.18) the quantity
Ms(p, φ) reduces to

Ms(p, φ) = m
α

2π

∫ ∞
0

du

∫ ∞
0

dv

(1 + v)3
e
−iu

[
1+ 1

3

χ2
p(φ)

v2 u2

] [
5 + 7v + 5v2

3

χ2
p(φ)

v2
u+ isχp(φ)

]
,

(3.2.19)
which turns out to exactly coincide with the spin-dependent mass correction in a constant
crossed field, with the replacement χ0 → χp(φ) [48, 65–67].
At this point the differential equation (3.2.17) can be integrated. Taking the initial condition

limφ→−∞ f
(in)
s (p, φ) = 1 into account we obtain for the radiatively corrected Volkov electron

in-state Ψ
R,(in)

e−,s,p(x) the expression

Ψ
R,(in)

e−,s,p(x) = eiΦ
(in)(p)e

−i m
p−

∫ φ
−∞ dϕMs(p,ϕ)

E(p, x)
us(p)√

2ε

=

[
1 +

n̂Â(φ)

2p−

]
e
i

{
−(px)−

∫ φ
−∞ dϕ

[
(pA(ϕ))
p−

−A
2(ϕ)

2p−
+ m
p−

Ms(p,ϕ)

]}
us(p)√

2ε
.

(3.2.20)

Apparently new in comparison to the ordinary Volkov electron in-state is the exponential
function, which depends on the mass operator, as it can be seen especially in the first equality.
For the imaginary part of the mass operator this term features an exponential damping of the
state, which can be understood as the radiatively corrected state decays in the plane wave
(see discussion below Eq. (3.2.23)).
This expression also coincides with the results found in Ref. [65] after applying the LCFA

to the latter one. Note that the preexponential function in Ref. [65] contains an additional
term proportional to n̂Â(φ) but scaling with 1/ξ0 (see also Ref. [48]). This term can be
ignored within the LCFA since ξ0 � 1. Further, regarding point two below Eq. (3.2.14) we
observe, that a shift of φ proportional to p−/m2 in the integral over the quantity Ms(p, ϕ)
in the exponent would give a correction to the preexponential in the order of α that can be
neglected within our approximations.
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Now, for the positron in-state the Schwinger-Dyson equation (3.2.7) can be solved anal-
ogously. The corresponding radiatively-corrected Volkov positron in-state again includes a
decaying exponential function and is given by

Ψ
R,(in)

e+,s,p(x) =

[
1− n̂Â(φ)

2p−

]
e
i

{
(px)−

∫ φ
−∞ dϕ

[
(pA(ϕ))
p−

+
A2(ϕ)
2p−

− m
p−

M∗s (−p,ϕ)

]}
vs(p)√

2ε
. (3.2.21)

At this point we have a look onto the normalization of the radiatively-corrected electron and
positron in-states

Ψ̄
R,(in)

e−,s,p(x)Ψ
R,(in)

e−,s,p(x)

ψ̄free
e−,s,p(x)ψfree

e−,s,p(x)
= e

2m
p−

∫ φ
−∞ dϕ Im[Ms(p,ϕ)]

, (3.2.22)

Ψ̄
R,(in)

e+,s,p(x)Ψ
R,(in)

e−,s,p(x)

ψ̄free
e+,s,p(x)ψfree

e+,s,p(x)
= e

2m
p−

∫ φ
−∞ dϕ Im[Ms(−p,ϕ)]

. (3.2.23)

Apparently both depend on the imaginary part of the mass operator, i.e. −(2m/p−)Im[Ms(±p, φ)].
According to the optical theorem this quantity precisely corresponds to the total probability
per unit of light-cone time φ that an electron/positron with initial four-momentum pµ and
spin quantum number s emits a photon [68]. Therefore, the additional corrections by the
mass operator in the radiatively corrected states describe the fact, that Volkov electron and
positron states are not stable inside a plane wave background field but "decay" in the sense
that electrons and positrons emit photons.
Finally the radiatively-corrected Volkov electron and positron out-states can be obtained

similarly from the Schwinger-Dyson equations (3.2.6) and (3.2.8):

Ψ
R,(out)
e−,s,p (x) =

[
1 +

n̂Â(φ)

2p−

]
e
i

{
−(px)+

∫∞
φ dϕ

[
(pA(ϕ))
p−

−A
2(ϕ)

2p−
+ m
p−

M∗s (p,ϕ)

]}
us(p)√

2ε
, (3.2.24)

Ψ
R,(out)
e+,s,p (x) =

[
1− n̂Â(φ)

2p−

]
e
i

{
(px)+

∫∞
φ dϕ

[
(pA(ϕ))
p−

+
A2(ϕ)
2p−

− m
p−

Ms(−p,ϕ)

]}
vs(p)√

2ε
. (3.2.25)

In this case in the new exponential decaying function the mass operator is integrated from φ
to ∞ as it is expected for outgoing particles.

3.3. Exact photon states

Now we move over to the Schwinger-Dyson equation (3.1.2) for the radiation field, which has
been already solved within the LCFA in Refs. [48,64]. Again with the free photon state of the
radiation field and the photon propagator (see Section 2.5) the solution can be written as a
series representing the resummation of all one-particle reducible diagrams featuring corrections
by the polarization operator (see Fig. 3.4 and Ref. [48]).
However, similar to the previous subsection the Schwinger-Dyson equation (3.1.2) only

describes the photon in-states A (in)
ν (x) correctly (see Fig. 3.4(a)). We therefore rewrite it for

a plane wave background field to

− ∂µ∂µA (in)
ν (x) =

∫
d4y P λ

PW,ν(x, y)A (in)
λ (y). (3.3.1)
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Figure 3.4.: The thick wiggly lines indicate the exact incoming photon line (a) and the exact
outgoing photon line (b), and are symbolically expressed as series expansion in
terms of free photon propagators (thin wiggly internal lines) and polarization
operators (circles with letter P inside).

For the photon out-state A (out)
ν (x) the Schwinger-Dyson equation is instead given by (see Fig.

3.4(b))

− ∂µ∂µA (out)
ν (x) =

∫
d4y P ∗λPW ν(y, x)A (out)

λ (y). (3.3.2)

Again only the derivation of the photon in-states is presented, as the expression for the
photon out-states can be obtained analogously. As mentioned the Schwinger-Dyson equation
(3.3.1) for the photon in-states has been solved already in Refs. [48, 64] with the one-loop
polarization operator P (1) νλ

LCFA (x, y) within the LCFA and a linearly polarized plane wave instead
of P νλ

PW (x, y). Therefore we present only a few steps of the derivation for completeness.
The expression of the one-loop polarization operator was derived in Refs. [57, 64, 69]. In

the following we restrict us to photons with transverse polarization, such that the expression
of the one-loop polarization operator within the LCFA and a linearly polarized plane wave is
given by [58,64]

P
(1)µν
LCFA (x, y) =

∫
d4l

(2π)4

d4l′

(2π)4
e−i(lx)P

(1)µν
LCFA (l, l′)ei(l

′y), (3.3.3)

where

P
(1)µν
LCFA (l, l′) = −(2π)3δ2(l⊥ − l′⊥)δ(l− − l′−)

∫
dφ e−i(l

′
+−l+)φ α

24π
m2κ2

l (φ)

×
∫ ∞

0

du u

∫ 1

0

dv(1− v2)e
−iu

[
1− l

′ 2
m2

1−v2

4
+

(1−v2)2

48
κ2
l (φ)u2

]

× [(3 + v2)Λµ
1(l)Λν

1(l) + (6− 2v2)Λµ
2(l)Λν

2(l)]

(3.3.4)

is the transverse part of the one-loop polarization operator in momentum space. The expres-
sion is in agreement with the corresponding one in a constant crossed field after replacing
κ0 → κl(φ) = l−A0ψ

′(φ)/m3 [70–72].
We rewrite the polarization operator similar to the previous section into the form

P
(1)µν
LCFA (x, y) =

∫
d4l′

(2π)4
e−i(l

′x)P
(1)µν
LCFA (l′, φx)e

i(l′y), (3.3.5)

where

P
(1)µν
LCFA (l′, φ) = − α

24π
m2κ2

l′(φ)

∫ ∞
0

du u

∫ 1

0

dv(1− v2)e
−iu

[
1− l′2

m2
1−v2

4
+

(1−v2)2

48
κ2
l′ (φ)u2

]

× [(3 + v2)Λµ
1(l′)Λν

1(l′) + (6− 2v2)Λµ
2(l′)Λν

2(l′)].

(3.3.6)
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At this point we want to solve the Schwinger-Dyson equation (3.3.1). We observe that the left
hand side of the equation is identical to the wave equation in vacuum, which would lead to
the free photon in-state Arad

j,q,µ(x) = exp(−i(qx))Λj,µ(q)/
√

2ω, and the right hand side contains
the radiative corrections. Therefore, we make similar to the last Section (and like in Ref. [64])
the Ansatz, that these corrections modify the free photon in-state, i.e. we assume

A (in)
µ (x) = g

(in)
j (q, φ)e−i(qx) Λj,µ(q)√

2ω
(3.3.7)

to be a solution of Eq. (3.3.1), where the function g
(in)
j (q, φ) has to be determined. As the

solution should correspond to the free photon in-state before interacting with the plane wave,
g

(in)
j (q, φ) has to fulfill the boundary condition limφ→−∞ g

(in)
j (q, φ) = 1. With this Ansatz the

Schwinger-Dyson equation (3.3.1) becomes

2iq−δjj′
dg

(in)
j (q, φ)

dφ
=

∫
d4y

d4l′

(2π)4
e−i((l

′−q)x)Λj′,µ(q)P
(1)µν
LCFA (l′, φx)Λj,ν(q)e

i((l′−q)y)g
(in)
j (q, φy).

(3.3.8)
Similar to the previous Section we can directly perform the integrals over d2y⊥ and dy+

leading to the δ-functions δ2(l′⊥ − q⊥) and δ(l′− − q−), respectively, which on the other hand
are employed to solve the integrals in d2l′⊥ and dl′+, respectively. Thus we obtain

2iq−δjj′
dg

(in)
j (q, φ)

dφ
=

∫
dφy

dl′+
2π

ei(q+−l
′
+)(φx−φy)Λj′,µ(q)P

(1)µν
LCFA (l′, φx)Λj,ν(q)g

(in)
j (q, φy), (3.3.9)

with the four-vector l′µ having light-cone components q−, q⊥, and l′+. We observe that Λµ
j (l′)

in the polarization operator in Eq. (3.3.6) only depends on the minus and perpendicular light-
cone component of the momentum and that thus Λµ

j (l′) = Λµ
j (q). Since Λµ

j (q)Λµ,j′(q) = −δjj′
with j, j′ = 1, 2, the right hand side of Eq. (3.3.9) is diagonal in the polarization quantum
number j and j′. Further the polarization operator only depends on l′+ via l′2 = 2q−l

′
+−q2

⊥ in
the exponent, such that the integral in l′+ can be performed similar to the electron case (see
remark 2 below Eq. (3.2.14)). According to this, the function g(in)

j (q, φ) has to solve within
the LCFA the differential equation

iq−
dg

(in)
j (q, φ)

dφ
= mPj(q, φ)g

(in)
j (q, φ), (3.3.10)

where

P1(q, φ) =
α

48π
mκ2

q(φ)

∫ ∞
0

du u

∫ 1

0

dve
−iu

[
1+

(1−v2)2

48
κ2
q(φ)u2

]
(1− v2)(3 + v2), (3.3.11)

P2(q, φ) =
α

48π
mκ2

q(φ)

∫ ∞
0

du u

∫ 1

0

dve
−iu

[
1+

(1−v2)2

48
κ2
q(φ)u2

]
(1− v2)(6− 2v2), (3.3.12)

or equivalently

Pj(q, φ) =
α

48π
mjκ2

q(φ)

∫ ∞
0

du u

∫ 1

0

dve
−iu

[
1+

(1−v2)2

48
κ2
q(φ)u2

]
(1− v2)[3− (−1)jv2]. (3.3.13)
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Note that P1(q, φ) and P2(q, φ) vanish for q− → 0 as κq(φ) is proportional to q−.
At this point Eq. (3.3.10) can be easily solved. Considering the initial condition for g(in)

j (q, φ)
we finally arrive to the expression of the radiatively-corrected photon in-state

A (in)
R,j,µ(q, x) = e

−i(qx)−i m
q−

∫ φ
−∞ dϕPj(q,ϕ) Λj,µ(q)√

2ω
. (3.3.14)

The Schwinger-Dyson equation (3.3.2) for the photon out-state can be solved analogously. We
obtain for the radiatively-corrected photon out-state the expression

A (out)
R,j,µ (q, x) = e

−i(qx)+i m
q−

∫∞
φ dϕP ∗j (q,ϕ) Λj,µ(q)√

2ω
. (3.3.15)

In both cases the difference to the photon state without radiative corrections is the exponential
function depending on the polarization operator. This can be also seen in the normalization
of the exact photon state, given e.g. for the photon in-state by

A (in),∗
R,j,µ (q, x)A (in),µ

R,j (q, x)

Arad,∗
j,q,µ (x)Arad,µ

j,q (x)
= e

2m
q−

∫ φ
−∞ dϕ Im[Pj(q,ϕ)]

, (3.3.16)

and in the case of the photon out-state the normalization would be in the exponent with
light-cone integration from φ to ∞. Now, according to the optical theorem, the quantity
−(2m/q−)Im[Pj(q, φ)] in the exponent on the right hand side of the equality precisely describes
the total probability per unit of light-cone time φ that a photon with four-momentum qµ and
polarization j decays into an electron-positron pair [57]. Hence, similar to the case of the exact
electron and positron states, the new exponential damping term containing the polarization
operator takes into account the fact that photons can decay in a plane wave into electron-
positron pairs and the photon state is therefore not stable inside the background field.
In the next two chapters we will use these radiatively corrected electron, positron, and

photon states to calculate radiatively corrected probabilities for nonlinear Compton scattering
and nonlinear Breit-Wheeler pair production, which should give appropriate results in the
limit of a long phase duration for the plane wave pulse.
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4. Nonlinear Compton scattering including the
particle states decay

Note that the content of this chapter was published in the publications [20, 21] and therefore
the structure, the equations, and the text of this chapter are similar or identical to Refs. [20,21].
In the previous chapter we presented the radiatively corrected electron, positron and photon

states which include the effects of the particle states decay. Now we want to use these states
to compute the probabilities of the basic strong-field QED processes at leading order in α. For
this the states in the S-matrices in Eqs. (3.0.1) and (3.0.2) are replaced by the corresponding
radiatively corrected states. In this chapter we start with the computation of the nonlinear
Compton scattering probability. In the next chapter the same computation for nonlinear
Breit-Wheeler pair production is examined.
In the case of nonlinear Compton scattering, we assume the incoming (outgoing) electron to

have four-momentum pµ = (ε,p) (p′µ = (ε′,p′)), with energy ε =
√
m2 + p2 (ε′ =

√
m2 + p′2),

and an asymptotic spin quantum number s = ±1 (s′ = ±1). For the outgoing photon the
four-momentum is qµ = (ω, q), with energy ω = |q|, and its asymptotic transverse polarization
state is indicated by the index j = 1, 2.
The leading-order S-matrix amplitude in α of nonlinear Compton scattering including the

states decay is then given by

S
(e−→e−γ)
j,s,s′ = −ie

∫
d4x Ψ̄

R,(out)
e−,s′,p′(x)Â (out) ∗

R,j (q, x)Ψ
R,(in)

e−,s,p(x). (4.0.1)

This S-matrix intrinsically contains the resummation of all one-particle reducible diagrams
with corrections by the one-loop mass and polarization operator, as depicted in Fig. 4.1.

Figure 4.1.: The exact amplitude of nonlinear Compton scattering (first diagram) corresponds
to the sum of all one-particle reducible diagrams with corrections by the one-loop
mass and polarization operators (circles with M and P, respectively). Here the
first Feynman diagrams of this series are presented.

After inserting the expressions of the radiatively corrected states presented in Eqs. (3.2.20),
(3.2.24), and (3.3.15) into the S-matrix, it is easy to arrive to the amplitude depending only
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on the integral over the light-cone time φ :

S
(e−→e−γ)
j,s,s′ = − ie√

8εε′ω
(2π)3δ2(p′⊥ + q⊥ − p⊥)δ(p′− + q− − p−)

×
∫
dφ e

−i m
p−

∫ φ
−∞ dϕMs(p,ϕ)−i

∫∞
φ dϕ

[
m
p′−

Ms′ (p
′,ϕ)+ m

q−
Pj(q,ϕ)

]

× e
i

{
(p′++q+−p+)φ−

∫∞
φ dϕ

[
(p′A(ϕ))

p′−
−A

2(ϕ)

2p′−

]
−
∫ φ
−∞ dϕ

[
(pA(ϕ))
p−

−A
2(ϕ)

2p−

]}

× ūs′(p′)

[
1− n̂Â(φ)

2p′−

]
Λ̂j(q)

[
1 +

n̂Â(φ)

2p−

]
us(p).

(4.0.2)

4.1. The radiatively corrected probability

Now we use the S-matrix in Eq. (4.0.2) to compute the probability of nonlinear Compton
scattering,

P
(e−→e−γ)
j,s,s′ =

∫
d3q

(2π)3

d3p′

(2π)3
|S(e−→e−γ)
j,s,s′ |2

=

∫
d3q

16π2

d3p′

(2π)3

α

εε′ω
(2π)6[δ2(p′⊥ + q⊥ − p⊥)δ(p′− + q− − p−)]2

×
∫
dφdφ′e

−i m
p−

∫ φ
−∞ dϕMs(p,ϕ)+i m

p−

∫ φ′
−∞ dϕM∗s (p,ϕ)

× e
−i
∫∞
φ dϕ

[
m
p′−

Ms′ (p
′,ϕ)+ m

q−
Pj(q,ϕ)

]
+i
∫∞
φ′ dϕ

[
m
p′−

M∗
s′ (p
′,ϕ)+ m

q−
P ∗j (q,ϕ)

]

× e
i(p′++q+−p+)(φ−φ′)+i

∫ φ
φ′ dϕ

[
(p′A(ϕ))

p′−
−A

2(ϕ)

2p′−
− (pA(ϕ))

p−
+
A2(ϕ)
2p−

]

× tr

{[
1− n̂Â(φ)

2p′−

]
Λ̂j(q)

[
1 +

n̂Â(φ)

2p−

]
us(p)ūs(p)

×

[
1− n̂Â(φ′)

2p−

]
Λ̂j(q)

[
1 +

n̂Â(φ′)

2p′−

]
us′(p

′)ūs′(p
′)

}
.

(4.1.1)

The bispinors us(p)ūs(p) can be rewritten in terms of the positive-energy electron density
matrix us(p)ūs(p) = (p̂+m)(1 + sγ5ζ̂p)/2 and analogously for us′(p′)ūs′(p′) [11]. Further, the
probability contains the square of three δ-functions in light-cone coordinates. To remove the
square, the δ-functions first have to be transformed into Cartesian coordinates. Transforming
the remaining δ-function back after performing the square leads to the following replacement
[39]:

(2π)3[δ2(p′⊥ + q⊥ − p⊥)δ(p′− + q− − p−)]2 =
ε

p−
δ2(p′⊥ + q⊥ − p⊥)δ(p′− + q− − p−). (4.1.2)

The remaining δ-functions are exploited to perform the integral in d3p′. Also here the integra-
tion variables are in Cartesian coordinates and we first have to transform them into light-cone
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coordinates. This transformation yields d3p′ = dp′−d
2p′⊥(ε′/p′−) [39] and the integral enforces

the momentum conservation p− = p′− + q− and p⊥ = p′⊥ + q⊥. For the exponential function
containing the phase of the Volkov-states we can use the fact that the particles are on-shell to
rewrite the plus light-cone components of the momenta and get

e
i(p′++q+−p+)(φ−φ′)+i

∫ φ
φ′ dϕ

[
(p′A(ϕ))

p′−
−A

2(ϕ)

2p′−
− (pA(ϕ))

p−
+
A2(ϕ)
2p−

]

= e
i
m2q−
2p−p′−

∫ φ
φ′ dϕ

[
1+
(

p⊥
m
− p−
q−

q⊥
m
−A⊥(ϕ)

m

)2
]
.

(4.1.3)

With these transformations the probability reduces to

P
(e−→e−γ)
j,s,s′ =

∫
d3q

16π2

α

p−p′−ω

∫
dφdφ′e

−i m
p−

∫ φ
−∞ dϕMs(p,ϕ)+i m

p−

∫ φ′
−∞ dϕM∗s (p,ϕ)

× e
−i
∫∞
φ dϕ

[
m
p′−

Ms′ (p
′,ϕ)+ m

q−
Pj(q,ϕ)

]
+i
∫∞
φ′ dϕ

[
m
p′−

M∗
s′ (p
′,ϕ)+ m

q−
P ∗j (q,ϕ)

]

× e
i
m2q−
2p−p′−

∫ φ
φ′ dϕ

[
1+
(

p⊥
m
− p−
q−

q⊥
m
−A⊥(ϕ)

m

)2
]

× 1

4
tr

{[
1− n̂Â(φ)

2p′−

]
Λ̂j(q)

[
1 +

n̂Â(φ)

2p−

]
(p̂+m)(1 + sγ5ζ̂p)

×

[
1− n̂Â(φ′)

2p−

]
Λ̂j(q)

[
1 +

n̂Â(φ′)

2p′−

]
(p̂′ +m)(1 + s′γ5ζ̂p′)

}
.

(4.1.4)

Next we apply the substitution φ+ = (φ+ φ′)/2 and φ− = φ− φ′, which leads to the replace-
ments dφdφ′ = dφ+dφ−, φ = φ+ + φ−/2, and φ′ = φ+ − φ−/2 [29, 39].
We recall that the expressions of the mass- and polarization operator, i.e. Ms(p, φ) and

Pj(q, φ), respectively, are only valid within the LCFA and a linearly polarized plane wave.
To arrive to a correct probability we therefore have to apply the LCFA to the remaining
expression, too, which we will do in the following.
Since in the LCFA the phase ω0φ− is approximately of the order of 1/ξ0 and it is assumed

that ξ0 � 1, we have to expand the integrand around φ− → 0 (see also Refs. [29,39]). In order
to obtain the leading order results it is sufficient to expand the preexponential function up to
the linear order in φ−. The quantities Ms(p, φ) and Pj(q, φ) are expanded at the zero order in
φ− as they are already in the LCFA (a first-order expansion in φ− would result into a correction
of the order of α and is neglected within our approximations). For the remaining phase coming
from the Volkov-states we first add and subtract iq−(

∫ φ++φ−/2

φ+−φ−/2 dϕA⊥(ϕ))2/(2p−p
′
−φ−) in the

exponent such that we have

e
i
m2q−
2p−p′−

∫ φ++φ−/2
φ+−φ−/2

dϕ

[
1+
(

p⊥
m
− p−
q−

q⊥
m
−A⊥(ϕ)

m

)2
]

= e
i
m2q−φ−
2p−p′−

(
p⊥
m
− p−
q−

q⊥
m
− 1
φ−

∫ φ++φ−/2
φ+−φ−/2

dϕ
A⊥(ϕ)

m

)2

× e
i
m2q−
2p−p′−

[
φ−− 1

φ−

(∫ φ++φ−/2
φ+−φ−/2

dϕ
A⊥(ϕ)

m

)2
+
∫ φ++φ−/2
φ+−φ−/2

dϕ
(

A⊥(ϕ)

m

)2
]
.

(4.1.5)

The first exponential function can be used to perform the integral in d2q⊥ which gives Gaussian
integrals and contributes to the preexponential. We do not do it at this stage, but at a later
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stage. However, since we expand the prefactor only up to linear order in φ−, we also have
to expand this part only up to linear order in φ−. The second exponential instead has to be
expanded up to cubic order in φ− and results at a later stage to Airy-functions when solving
the integral in dφ− [9, 38, 39].
Following these steps we end up with the probability of nonlinear Compton scattering in-

cluding the particle states decay within the LCFA and a linearly polarized plane wave:

P
(e−→e−γ)
j,s,s′ =

∫
d3q

16π2

α

p−p′−ω

∫
dφ+e

DNC
j,s,s′

×
∫
dφ−e

i m
2

2p−
q−
p′−

{
[1+π2

⊥,e(φ+)]φ−+
E2(φ+)

m2

φ3
−

12

}
Tj,s,s′ ,

(4.1.6)

where we introduced the exponential damping function

DNC
j,s,s′ = 2Im

{
m

p−

∫ φ+

−∞
dϕMs(p, ϕ) +

∫ ∞
φ+

dϕ

[
m

p′−
Ms′(p

′, ϕ) +
m

q−
Pj(q, ϕ)

]}
, (4.1.7)

the trace

Tj,s,s′ =
1

4
tr

{[
1− n̂[Â(φ+) + Â′(φ+)φ−/2]

2p′−

]
Λ̂j(q)

[
1 +

n̂[Â(φ+) + Â′(φ+)φ−/2]

2p−

]

×(p̂+m)(1 + sγ5ζ̂p)

[
1− n̂[Â(φ+)− Â′(φ+)φ−/2]

2p−

]
Λ̂j(q)

×

[
1 +

n̂[Â(φ+)− Â′(φ+)φ−/2]

2p′−

]
(p̂′ +m)(1 + s′γ5ζ̂p′)

}
,

(4.1.8)

the transverse momentum

π⊥,e(φ) =
p⊥
m
− p−
q−

q⊥
m
− A⊥(φ)

m
, (4.1.9)

and the plane-wave electric field (times the electron charge) E(φ) = −A′(φ). Due to energy-
momentum conservation the minus component and the perpendicular component of the out-
going electron momentum are fixed to p′− = p− − q− and p′⊥ = p⊥ − q⊥, respectively.
As expected, the probability comprises a damping term due to the particle states decay,

which is given by exp(DNC
j,s,s′) in Eq. (4.1.6). This term is new in comparison to the probability

obtained without radiatively corrected states, which expression can be found for example in
Refs. [9,38–40]. The damping function DNC

j,s,s′ contains the imaginary part of the one-loop mass
and polarization operator (see Eqs. (3.2.19) and (3.3.13), respectively) which are, as already
mentioned, related to the probabilities of an electron emitting a photon and a photon decaying
into an electron-positron pair, respectively.
Indeed, for PNC

s,p being the probability of nonlinear Compton scattering without radiative
corrections of an electron with momentum p and spin quantum number s, and PNBW

j,q being
the probability of nonlinear Breit-Wheeler pair production without radiative corrections of
a photon with momentum q and polarization quantum number j, according to the optical
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theorem it is −(2m/p−)Im[Ms(p, φ)] = ∂PNC
s,p /∂φ and −(2m/q−)Im[Pj(q, φ)] = ∂PNBW

j,q /∂φ
[3, 57,68]. Therefore we can rewrite the damping function to

DNC
j,s,s′ = −

∫ φ+

−∞
dϕ
∂PNC

s,p

∂ϕ
−
∫ ∞
φ+

dϕ

(
∂PNC

s′,p′

∂ϕ
+
∂PNBW

j,q

∂ϕ

)
. (4.1.10)

We see that these probabilities per unit of light-cone time ϕ are integrated over the light-cone
time ϕ from ϕ → −∞ to ϕ = φ+ (from ϕ = φ+ to ϕ → ∞) for an incoming (outgoing)
state, such that the damping term scales with the phase length of the plane wave. Then the
exponential damping term itself corresponds to the probability that the electron and photon
states do not decay in the plane wave which is also sketched in Fig 4.2. Therefore we conclude
that the probability in Eq. (4.1.6) describes the radiatively corrected probability of an electron
with momentum p and spin s emitting only one single photon in a linearly polarized plane
wave pulse. Processes where multi photon emissions occur or emitted photons decay into
electron-positron pairs are excluded in this probability.

Figure 4.2.: Sketch of an interpretation of the new radiatively corrected probability. Con-
sidering an electron bunch colliding with a laser pulse, the new probability with
damping at a certain phase φ+ corresponds to the product of the probability
without damping at a certain phase φ+ (green box) times the probability of an
electron emitting not a photon (blue boxes, left for incoming electrons and right
for outgoing electrons) times the probability that the produced photons do not
decay into electron-positron pairs (yellow box).

Now we observe that the mass and polarization operators in DNC
j,s,s′ in Eq. (4.1.7) scale at

least with αmχp(φ) (analogously for p′) and αmκq(φ), respectively (see Eqs. (3.2.19) and
(3.3.13)). In a monochromatic plane wave with A0 = |e|E0/ω0 therefore the function DNC

j,s,s′

scales as αχp(φ)m2/p− = ακq(φ)m2/q− = αA0ψ
′(φ)/m = αξ0ψ

′(φ). Considering that we
assume to have χ0 ∼ 1 and κ0 ∼ 1 for additional powers of these parameters and that the
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pulse function is integrated over the phase, this leads to the conclusion that damping effects
become important for pulse phase lengths ΦL when the product αξ0ΦL & 1, which is in
agreement with the discussion in Chapter 3.
For the computation of the trace in Eq. (4.1.8) complications arise due to the fact that the

damping depends not only on the momentum of the particles, but also on the electrons spin
and photons polarization. This prevents us using well-known spin and polarization summation
rules for the trace [3, 11] and the spin and polarization resolved trace has to be computed.
Ignoring these spin- and polarization-effects and neglecting the damping of the photon state,

the probability is, after averaging (summing) over the quantum numbers of the initial (final)
states, in agreement with the result obtained by the probabilistic approach in Ref. [45]. In
the next two sections, first an analytical computation of the trace is presented, and then the
integrals in d2q⊥ and dφ− are performed.

4.2. Solving the trace

As mentioned already, the exponential damping term depends on the spin of the incoming and
outgoing electrons and on the polarization of the outgoing photon. This prevents one from
employing the commonly used spin and polarization summation rules when solving the trace
in Eq. (4.1.8), such that the spin- and polarization-resolved trace has to be calculated. This
trace was computed already in Refs. [40, 73] (see also Refs. [38, 74]), however in the following
an alternative and more detailed analytical computation of the trace for nonlinear Compton
scattering given in Eq. (4.1.8) is presented. For this we first introduce the quantity

Qp,s(φ+, φ−) =

[
1 +

n̂[Â(φ+) + Â′(φ+)φ−/2]

2p−

]
(p̂+m)(1 + sγ5ζ̂p)

×

[
1− n̂[Â(φ+)− Â′(φ+)φ−/2]

2p−

]
.

(4.2.1)

The trace of nonlinear Compton scattering in Eq. (4.1.8) is then with this new quantity given
by

Tj,s,s′ =
1

4
tr
{

Λ̂j(q)Qp,s(φ+, φ−)Λ̂j(q)Qp′,s′(φ+,−φ−)
}
. (4.2.2)

Now every 4×4 matrix can be decomposed into a linear combination of the matrices 14×4, γ5,
γµ, iγµγ5, σµν = (i/2)(γµγν − γνγµ) (see Appendix A and Refs. [3, 48]). Using this fact the
function Qp,s(φ+, φ−) can be rewritten into the form

Qp,s(φ+, φ−) = c114×4 + c5γ
5 + cµγ

µ + c5µiγ
µγ5 + cµνσ

µν , (4.2.3)
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where the coefficients are defined as

c1 =
1

4
Tr [14×4Qp,s(φ+, φ−)] , (4.2.4)

c5 =
1

4
Tr
[
γ5Qp,s(φ+, φ−)

]
, (4.2.5)

cµ =
1

4
Tr [γµQp,s(φ+, φ−)] , (4.2.6)

c5µ =
1

4
Tr
[
iγµγ

5Qp,s(φ+, φ−)
]
, (4.2.7)

cµν =
1

8
Tr [σµνQp,s(φ+, φ−)] . (4.2.8)

The traces defining the coefficients are calculated using relations for γ-matrices presented in
Appendix A on page 98f. To reduce the number of indices we introduce for the following steps
the short notation ζµ = ζµp and ζ ′µ = ζµp′ . For a linear polarized plane wave background field
we obtain

c1 = m− i s

4p−
εαβγδζαFβγψ′(φ+)φ−pδ, (4.2.9)

c5 = 0, (4.2.10)

cµ =pµ −Aµ(φ+)− 1

p−
nµp⊥ ·A⊥(φ+)

+
1

2p−
nµ

[
A2
⊥(φ+)−A′2⊥(φ+)

φ2
−

4

]
− i ms

4p−
ηµνε

αβδνζαFβδψ′(φ+)φ−,

(4.2.11)

c5µ =imsζµ +
1

4p−
ηµνε

αβδνpαFβδψ′(φ+)φ−, (4.2.12)

and

cµν =
1

2

{
− i m

2p−
Fµνψ′(φ+)φ− − sεµνρσpρζσ

+
s

2p−
(ηνρεµστδ − ηµρενστδ)pρζσF τδψ(φ+)

+
s

2p−
εµντρn

τζρ
[
Aδ(φ+)Aδ(φ+)−A′δ(φ+)A′δ(φ+)

φ2
−

4

]}
.

(4.2.13)

Now the trace of nonlinear Compton scattering in Eq. (4.2.2) further depends on the
quantity Qp′,s′(φ+,−φ−) for which we introduce the following notation

Qp′,s′(φ+,−φ−) = c′114×4 + c′5γ
5 + c′τγ

τ + c′5τ iγ
τγ5 + c′τλσ

τλ, (4.2.14)

where the primed coefficients are defined analogously to Eqs. (4.2.4)-(4.2.8). Using Eqs.
(4.2.3) and (4.2.14) the trace for nonlinear Compton scattering reduces to

Tj,s,s′ =− c1c
′
1 + c5c

′
5 + (cµc

′
τ − c5µc

′
5τ )(2Λµ

j (q)Λτ
j (q) + ηµτ )

− 2cµνc
′
τλη

νλ(4Λµ
j (q)Λτ

j (q) + ηµτ ),
(4.2.15)
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where again relations from the Appendix A were used to derive to this expression. We observe
that the trace only depends on contractions of the primed and the corresponding not primed
coefficients, which we can calculate:

c1c
′
1 =m2 − im

4
εαβγδFβγψ′(φ+)φ−

[
s

p−
ζαpδ −

s′

p′−
ζ ′αp
′
δ

]
+

1

16

ss′

p−p′−
εαβγδFβγζαpδεα

′β′γ′δ′Fβ′γ′ζ ′α′p′δ′ψ′2(φ+)φ2
−,

(4.2.16)

c5c
′
5 = 0, (4.2.17)

cµc
′
τ

(
2Λµ

j (q)Λτ
j (q) + ηµτ

)
= (pp′) + (p⊥ + p′⊥) ·A⊥(φ+)

−
[
p′−
p−
p⊥ +

p−
p′−
p′⊥

]
·A⊥(φ+) +

1

2

(
p′−
p−

+
p−
p′−

)[
A2
⊥(φ+)−A′2⊥(φ+)

φ2
−

4

]
+Aµ(φ+)Aµ(φ+)− im

4
εαβγδFβγψ′(φ+)φ−

[
s

p−
ζαp
′
δ −

s′

p′−
ζ ′αpδ

]
+ 2 (pΛj(q)) (p′Λj(q))− 2[pµ + p′µ]Λµ

j (q) (Λj(q)A(φ+))

+ 2 (Λj(q)A(φ+))2 ,

(4.2.18)

c5µc
′
5τ

(
2Λµ

j (q)Λτ
j (q) + ηµτ

)
= −m2ss′ [2 (ζΛj(q)) (ζ ′Λj(q)) + (ζζ ′)]

+ i
m

4
εαβγδFβγψ′(φ+)φ−

[
s′

p−
pαζ

′
δ −

s

p′−
p′αζδ

]
+ i

m

2
εαβγδFβγψ′(φ+)φ−

[
s′

p−
pα (ζ ′Λj(q))−

s

p′−
p′α (ζΛj(q))

]
Λj,δ(q)

− 1

16p−p′−
εαβγδpαFβγεα

′β′γ′δ′p′α′Fβ′γ′ [ηδδ′ + 2Λj,δ(q)Λj,δ′(q)]ψ
′2(φ+)φ2

−,

(4.2.19)

and
2cµνc

′
τλη

νλ
(
4Λµ

j (q)Λτ
j (q) + ηµτ

)
= −ss′ [(pζ ′)(p′ζ)− (pp′)(ζζ ′)]

− 2ss′
[
(pζ ′)(p′Λj(q))(ζΛj(q)) + (ζp′)(ζ ′Λj(q))(pΛj(q))

− (pp′)(ζΛj(q))(ζ
′Λj(q))− (ζζ ′)(pΛj(q))(p

′Λj(q))
]

+ i
m

4
ψ′(φ+)φ−ε

µνρσ
[
Fµν + 4Λj,µ(q)

(
Λτ
j (q)Fτν

)] [ s′
p−
p′ρζ
′
σ −

s

p′−
pρζσ

]
− ss′

2

[
Aδ(φ+)Aδ(φ+)−A′δ(φ+)A′δ(φ+)

φ2
−

4

]
× [(ζζ ′) + 2(ζΛj(q))(ζ

′Λj(q))]

(
p−
p′−

+
p′−
p−

)
+ ss′ψ(φ+)(ζζ ′)

[
p− − p′−
p−p′−

(p′Fp)− 2
(p′Λj(q))

p′−
(pFΛj(q))− 2

(pΛj(q))

p−
(p′FΛj(q))

]
− ss′

4p−p′−
ψ2(φ+)(ερ

′σγδp′ρ′ζσFγδ)(ερσ
′γ′δ′pρζ

′
σ′Fγ′δ′).

(4.2.20)
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Now we insert Eqs. (4.2.16)-(4.2.20) into Eq. (4.2.15) and simplify the expression for the two
polarization states j = 1 and j = 2. With our definitions of the spin and polarization four-
vectors (see Sections 2.6 and 2.5, respectively), we obtain for the trace in a linearly-polarized
field in the two polarization states j = 1, 2:

T1,s,s′ = (1 + ss′)

[
(pp′)−m2 − 1

2

q−
p−

q−
p− − q−

(
p1 −

p−
q−
q1

)2

−
(

2 +
1

2

q−
p−

q−
p− − q−

)
A2

0ψ
′2(φ+)

φ2
−

4

+

(
2 +

1

2

q−
p−

q−
p− − q−

)(
p1 −

p−
q−
q1 +A0ψ(φ+)

)2 ]
− i(s+ s′)

m

2
A0ψ

′(φ+)φ−
q−
p−

(
2 +

q−
p− − q−

)
− ss′ q−

p−

q−
p− − q−

(
p2 −

p−
q−
q2

)2

(4.2.21)

and

T2,s,s′ = (1− ss′)
[
(pp′)−m2 − 1

2

q−
p−

q−
p− − q−

(
p1 −

p−
q−
q1

)2

− 1

2

q−
p−

q−
p− − q−

A2
0ψ
′2(φ+)

φ2
−

4

+
1

2

q−
p−

q−
p− − q−

(
p1 −

p−
q−
q1 +A0ψ(φ+)

)2 ]
+ (1 + ss′)2

(
p2 −

p−
q−
q2

)2

+ ss′
q−
p−

q−
p− − q−

(
p2 −

p−
q−
q2

)2

+ i(s− s′)m
2
A0ψ

′(φ+)φ−
q−
p−

q−
p− − q−

.

(4.2.22)

4.3. Final integrals

In this Section we want to perform the integrals in d2q⊥ and dφ− in Eq. (4.1.6). This procedure
is well known and was carried out e.g. in Refs. [29, 39, 40]. It turns out that the integral in
d2q⊥ is Gaussian and the integral in dφ− leads to Airy-functions (see Appendix B).
But before performing the integrals we observe that the traces in Eqs. (4.2.21) and (4.2.22)

depend on the pulse shape function ψ(φ+). However, we should be able to remove the de-
pendence on ψ(φ+) and write the trace in a manifestly gauge-invariant way. For this we
first expand the four-product (pp′) and observe that the remaining dependence on the pulse
function ψ(φ+) and q1 can be rewritten into a dependence on the square of the electron
quasi-momentum π⊥,e(φ+) defined in Eq. (4.1.9). Now it is worth noticing that by adding
and subtracting suitable terms these dependence turns out to be part of a term proportional
to the derivative in φ− of the second exponential function in Eq. (4.1.6), i.e. proportional
to
[
1 + π2

⊥,e(φ+) + (A2
0ψ
′2(φ+)/m2)(φ2

−/4)
]
. This is important as those contributions vanish

when performing the integral over φ−, which follows from properties of the Airy-function and
a proof thereof is presented in Eq. (B.0.6) on page 100.

46



Therefore the trace only depends on the derivative ψ′(φ+) of the pulse shape function and the
probability is manifestly gauge-invariant. Without these vanishing terms the trace becomes

T1,s,s′ = −2(1 + ss′)m2 − (1 + ss′)

(
4 +

q−
p−

q−
p− − q−

)
A2

0ψ
′2(φ+)

φ2
−

4

− i(s+ s′)
m

2
A0ψ

′(φ+)φ−
q−
p−

(
2 +

q−
p− − q−

)
−
(

2 + 2ss′ + ss′
q−
p−

q−
p− − q−

)(
p2 −

p−
q−
q2

)2

(4.3.1)

and

T2,s,s′ = −(1− ss′)q−
p−

q−
p− − q−

A2
0ψ
′2(φ+)

φ2
−

4

+ i(s− s′)m
2
A0ψ

′(φ+)φ−
q−
p−

q−
p− − q−

+

(
2 + 2ss′ + ss′

q−
p−

q−
p− − q−

)(
p2 −

p−
q−
q2

)2

.

(4.3.2)

Now we want to perform the integral in d2q⊥ and dφ− in Eq. (4.1.6). For the former one we
have to transform the integral in d3q from Cartesian into light-cone coordinates which is done
via the relation d3q = (ω/q−)dq−d

2q⊥ [39]. Further we introduce the notation

T̃j,s,s′ = − 1

4π2m2

p−
q−p′−

∫
dφ−

∫
d2q⊥e

i
m2q−
2p−p′−

{
[1+π2

⊥,e(φ+)]φ−+
E2(φ+)

m2

φ3
−

12

}
Tj,s,s′ . (4.3.3)

As mentioned, the integral in the perpendicular photon momentum q⊥ is Gaussian and can
be computed analytically with the following two basic integrals [75]∫

d2q⊥e
i
m2q−
2p−p′−

π2
⊥,e(φ+)φ−

= 2πi
q−p

′
−

p−(φ− + i0)
, (4.3.4)∫

d2q⊥

(
p2 −

p−
q−
q2

)2

e
i
m2q−
2p−p′−

π2
⊥,e(φ+)φ−

= −2π
p′2−

(φ− + i0)2
. (4.3.5)

The integral in φ− is related to the Airy-function (see Appendix B) which has the integral
representation Ai(z) =

∫∞
−∞(dφ̃)/(2π) exp[izφ̃ + iφ̃3/3] (see Eq. (B.0.2) or Ref. [75]). It can

be solved using the four basic integrals given in Eqs. (B.0.2)-(B.0.5) on page 100 after apply-
ing the substitutions φ̃ =

[
q−E2(φ+)/(8p−p

′
−)
]1/3

φ− and z =
[
q−/(p

′
−χp(φ+))

]2/3. Further,
since p−, p′−, q− ≥ 0 for on-shell particles and due to momentum conservation, the integration
boundary in dq− becomes finite. Finally we derive to the following probability of nonlinear
Compton scattering including the damping of particle states

P
(e−→e−γ)
j,s,s′ = −αm

2

4p2
−

∫ p−

0

dq−

∫
dφ+ e

DNC
j,s,s′ T̃j,s,s′ , (4.3.6)
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where

T̃1,s,s′ =

[
1 + ss′

(
1−

q2
−

2p−(p− − q−)

)]
Ai1(z)

+

[
3 +

q2
−

p−(p− − q−)
+ ss′

(
3 +

q2
−

2p−(p− − q−)

)]
Ai′(z)

z

+ (s+ s′)

(
2
q−
p−

+
q2
−

p−(p− − q−)

)
Ai(z)√

z
sgn(ψ′(φ+))

(4.3.7)

and

T̃2,s,s′ =

[
1 + ss′

(
1 +

q2
−

2p−(p− − q−)

)]
Ai1(z)

+

[
1 +

q2
−

p−(p− − q−)
+ ss′

(
1−

q2
−

2p−(p− − q−)

)]
Ai′(z)

z

+ (s′ − s)
q2
−

p−(p− − q−)

Ai(z)√
z

sgn(ψ′(φ+)),

(4.3.8)

with Ai1(z) =
∫∞
z
dxAi(x) and with sgn(ψ′(φ+)) denoting the sign of ψ′(φ+). It is worth

noticing that without the exponential damping the probability is in agreement with the spin-
and polarization resolved expression of nonlinear Compton scattering presented in Ref. [40].
Therefore, neglecting the exponential damping and summing over the final quantum numbers
yields PNC

s,p = −(αm2)/(4p2
−)
∑

j,s′

∫ p−
0

dq−
∫
dφ+ T̃j,s,s′ .

4.4. Proof that the probability stays below unity

Our original motivation for the computation of the probability in Eq. (4.3.6) was, that the
probability of nonlinear Compton scattering without radiative corrections exceeds unity for
a sufficiently large phase length of the plane wave. At this point we want to proof that the
total probability obtained in Eq. (4.3.6) summed and averaged over the quantum numbers
of the final and initial states, respectively, indeed stays below unity. As the average of two
numbers, which are smaller than unity, is smaller than unity as well, it is sufficient to proof
that the probability P (e−→e−γ)

s =
∑

j,s′ P
(e−→e−γ)
j,s,s′ stays always below unity. In order of doing

so we recall the following observations:

1. The damping function DNC
j,s,s′ is the sum of three functions where the exponential of

each part itself is smaller or equal to unity, such that when neglecting part of them the
expression is larger than the original one.

2. The probability without damping is in agreement with the probability of nonlinear
Compton scattering without radiative corrections (see remark below Eq. (4.3.8)).

3. The exponents in the damping terms contain the probabilities of nonlinear Compton
scattering and nonlinear Breit-Wheeler pair production without radiative corrections
(see Eq. (4.1.10)).
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With these observation the analytical proof that the probability P (e−→e−γ)
s is always smaller

than unity can be performed within a few steps:

P (e−→e−γ)
s < −αm

2

4p2
−

∑
j,s′

∫ p−

0

dq−

∫
dφ+ T̃j,s,s′e

2Im m
p−

∫ φ+
−∞ dϕMs(p,ϕ)

=

∫
dφ+

∂PNC
s,p

∂φ+

e−
∫ φ+
−∞ dϕ

∂PNC
s,p
∂ϕ = −

∫
dφ+

∂

∂φ+

e−
∫ φ+
−∞ dϕ

∂PNC
s,p
∂ϕ

= 1− e−
∫∞
−∞ dϕ

∂PNC
s,p
∂ϕ < 1.

(4.4.1)

Of course this proof also implies that the probability in Eq. (4.3.6) is smaller than unity.

4.5. Limits

In this Section we investigate the asymptotic behavior in the two regions q− � p− and
p− − q− � p− of the differential probability

∂P
(e−→e−γ)
j,s,s′

∂q−
=− αm2

4p2
−

∫
dφ+e

DNC
j,s,s′ T̃j,s,s′ , (4.5.1)

which we obtained from Eq. (4.3.6).

Asymptotic expression for q− � p−

In the region q− � p− the recoil of the outgoing photon is negligible. Starting with this case,
we assume that the quantum nonlinearity parameter χp(ϕ) of the electron is fixed, and the
absolute value of the quantum nonlinearity parameter κq(ϕ) = (q−/p−)χp(ϕ) of the photon is
much smaller than unity (if |χp(ϕ)| is larger than unity, we presume that the ratio q−/p− is
sufficiently small that |κq(ϕ)| � 1). In this way, the corresponding asymptotic expansion of
the nonlinear Breit-Wheeler pair production probability in the damping function can be used,
i.e. [9]

∂PNBW
j,q

∂ϕ

κq(ϕ)�1
≈

√
3

2

αm2|κq(ϕ)|j
8q−

e
− 8

3|κq(ϕ)| . (4.5.2)

We observe that for κq(ϕ) → 0 this probability is exponentially suppressed and can be ne-
glected within the damping function. As the recoil of the outgoing photon is negligible, we can
further estimate that p′− ≈ p−, such that the damping function in Eq. (4.1.10) is approximately
given by

DNC
j,s,s′

q−�p−≈ −
∫ φ+

−∞
dϕ
∂PNC

s,p

∂ϕ
−
∫ ∞
φ+

dϕ
∂PNC

s′,p

∂ϕ
. (4.5.3)

Moving over to the preexponential of the differential probability in Eq. (4.5.1), we can ex-
pand the Airy functions in the functions T̃j,s,s′ for z =

(
q−/(p

′
−χp(φ+))

)2/3 ≈ (q−/(p−χp(φ+)))2/3 �
1 (we assume that χp(φ+) is fixed and that the ratio q−/p− is much smaller than 1/|χp(ϕ)| if
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|χp(ϕ)| < 1). The asymptotic expressions of the Airy functions are presented in Eqs. (B.0.7)-
(B.0.9) and with these the functions T̃j,s,s′ reduce to

T̃1,s,s
z�1
≈ −2× 32/3

Γ
(

1
3

)
z
, T̃1,s,−s

z�1
≈ −

q2
−

2p2
−

1

31/3Γ
(

1
3

)
z
, (4.5.4)

T̃2,s,s
z�1
≈ − 2

31/3Γ
(

1
3

)
z
, T̃2,s,−s

z�1
≈ −

q2
−

2p2
−

32/3

Γ
(

1
3

)
z
, (4.5.5)

where Γ(x) is the Gamma-function. We observe that the quantities T̃j,s,s′ are independent
of the initial electron spin and that the probability with spin flip (s = −s′) is significantly
suppressed in comparison to the probability without spin flip (s = s′) within the region
q− � p−. This is in agreement with the expectations for the classical limit where the recoil of
the photon is negligible (see Ref. [38]).
Now, considering identical spin quantum numbers, the damping function in Eq. (4.5.3)

becomes independent of the phase and reduces to a constant, corresponding to minus the
probability of an electron with momentum p and spin s emitting a photon between phase −∞
and ∞. However, in the classical limit this quantity rather corresponds to the mean number
of photons emitted by the electron than to a probability [42]. Therefore and according to the
dominance of the terms with same spins s = s′, we can approximate in the classical limit the
total probability with damping summed over the quantum numbers of the final states to be

P (e−→e−γ)
s

c.l.
≈PNC

s,p e
−PNC

s,p , (4.5.6)

which describes a Poissonian distribution and is in agreement with the result found in Ref. [42].

Asymptotic expression for p− − q− � p−

We move over to the case where p′− = p− − q− � p−. In this region the final photon
takes up almost all the light-cone energy of the incoming electron. To obtain an asymptotic
expression of the differential probability in Eq. (4.5.1), again we assume that the quantum
nonlinearity parameter χp(ϕ) of the incoming electron is fixed. In this way the absolute value
of the quantum nonlinearity parameter χp′(ϕ) = (p′−/p−)χp(ϕ) of the outgoing electron can
be considered as being smaller than unity (again, if |χp(ϕ)| is larger than unity, we presume
that the ratio p′−/p− is sufficiently small that |χp′(ϕ)| � 1). Similar to the previous case we
can use for the decay of the outgoing electron the corresponding asymptotic expression for the
probability of nonlinear Compton scattering in the damping function in Eq. (4.1.10). This
one is independent of p′ and given by [9]

∂PNC
s′,p′

∂ϕ

χp′ (ϕ)�1

≈ 5

2
√

3

αm2|χp(ϕ)|
p−

. (4.5.7)

Since the photon takes up almost all the light-cone energy we approximate q− ≈ p− and the
damping function becomes

DNC
j,s,s′

p′−�p−≈ −
∫ φ+

−∞
dϕ
∂PNC

s,p

∂ϕ
−
∫ ∞
φ+

dϕ

(
∂PNBW

j,p

∂ϕ
+

5√
3

αm2|χp(ϕ)|
p−

)
. (4.5.8)
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Further, with a sufficiently small ratio p′−/p− we can expand the Airy-functions in the pre-
exponential quantities T̃j,s,s′ for z =

(
q−/(p

′
−χp(φ+))

)2/3 ≈
(
p−/(p

′
−χp(φ+))

)2/3 � 1. The
asymptotic expressions of the Airy-functions are presented in Eqs. (B.0.10)-(B.0.12). In the
following we consider each combination of quantum numbers separately. Starting with a pho-
ton polarization j = 1 and identical spin quantum numbers (s = s′) of the electrons, the
asymptotic expression of T̃1,s,s is

T̃1,s,s
z�1
≈ − 1√

π
z−3/4e−

2
3
z3/2

[
p−
p′−

(1− s sgn(ψ′(φ+))) + 2
p′−
p−
s sgn(ψ′(φ+))

]
− 1

96
√
π
z−9/4e−

2
3
z3/2

(124 + 20s sgn(ψ′(φ+)))

− 1

9216
√
π
z−15/4e−

2
3
z3/2 p−

p′−
(3938− 770s sgn(ψ′(φ+))) .

(4.5.9)

Due to compensations which occur in the case s = sgn(ψ′(φ+)) higher-orders have been re-
ported here. However, considering an oscillating laser wave, the quantity sgn(ψ′(φ+)) switches
between the two values +1 and −1 for different phases φ+. Since the functions T̃j,s,s′ are finally
integrated over φ+ in order to obtain the total probability, the scaling of the probability is
determined by the term in T̃1,s,s scaling with z−3/4/p′− and we can approximate

T̃1,s,s
z�1
≈ − 2√

π
z−3/4e−

2
3
z3/2 p−

p′−
, for s = −sgn(ψ′(φ+)). (4.5.10)

Moving over to the next case of opposite spin quantum numbers (s = −s′) the asymptotic
expression is

T̃1,s,−s
z�1
≈ − 1

4
√
π
z−9/4e−

2
3
z3/2 p−

p′−
. (4.5.11)

Considering outgoing photons with polarization j = 2, we obtain for identical spin quantum
numbers (s = s′) the asymptotic expression

T̃2,s,s
z�1
≈ − 1

4
√
π
z−9/4e−

2
3
z3/2 p−

p′−
(4.5.12)

and for opposite spin quantum numbers (s = −s′)

T̃2,s,−s
z�1
≈ − 1√

π
z−3/4e−

2
3
z3/2 p−

p′−
[1 + s sgn(ψ′(φ+))]

− 1

9216
√
π
z−15/4e−

2
3
z3/2 p−

p′−
[3938 + 770s sgn(ψ′(φ+))] .

(4.5.13)

Analogously to the case of T̃1,s,s above, the final emission probability will scale with the
approximated expression

T̃2,s,−s
z�1
≈ − 2√

π
z−3/4e−

2
3
z3/2 p−

p′−
, for s = sgn(ψ′(φ+)). (4.5.14)
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4.6. Independence of spin and polarization basis

Up to now, all calculations in this Chapter and in the previous Chapter we preformed con-
sidering a special direction for the spin and polarization of the electron/positron and photon,
respectively (in the next Chapter we will choose these directions, too). The advantage of
this choice is, that the mass- and polarization operator become diagonal and the equations
involving the particles states decay are relatively easy to solve. However, of course the final
probabilities should be independent of the choice of the spin and polarization basis at the end,
when summing the results over the corresponding spin and/or polarization quantum numbers.
In the following we will prove this independence explicitly.
First we consider the direction of the spin, the independence of the choice of the polarization

basis follows analogously and is treated at the end. For an electron the spin state is presented
via the two free, positive-energy spinors u1(p) and u−1(p), which form the spin basis in our
case (see also Section 2.6 and Ref. [11]). Similarly, the two free negative-energy spinors v1(p)
and v−1(p) form the spin basis of the positron and we restrict us in the following to the case
of the electron as the proof for the positron follows analogously. Now, as expected for a basis,
an arbitrary spinor u+(p), corresponding to an arbitrary direction of the electron spin, can be
decomposed into a linear combination of the two basis spinors u1(p) and u−1(p), i.e.

u+(p) = β1u1(p) + β−1u−1(p). (4.6.1)

Here both coefficients, β1 and β−1, are complex numbers fulfilling the relation |β1|2+|β−1|2 = 1
and they are related to the polar and the azimuthal angle between the spin vector ζ and the
new spin axis corresponding to the spinor u+(p) [11]. We further introduce the spinor

u−(p) = β∗−1u1(p)− β∗1u−1(p), (4.6.2)

which is perpendicular to u+(p). Together the spinors u+(p) and u−(p) form again a new
basis. Now we consider the radiatively corrected probability of nonlinear Compton scattering
in Eq. (4.3.6), which was calculated from the S-matrix by using the exact electron and photon
states. These states were obtained by solving the corresponding Schwinger-Dyson equations,
which is, for example, for the electron out-state Ψ

(out)
e− (x) given by [i∂̂− Â(φ)−m]Ψ

(out)
e− (x) =∫

d4y M̄PW (y, x)Ψ
(out)
e− (y) (see Eq. (3.2.6)). We observed in Section 3.2 that this equation is

linear in the spin basis u1(p) and u−1(p), such that we can construct the states Ψ
(out)
e−,1 (x) and

Ψ
(out)
e−,−1(x) via those spinors, respectively, which are solutions of the Schwinger-Dyson equation

for the corresponding spinor. Therefore the electron out-state can be decomposed into the
sum Ψ

(out)
e− (x) = Ψ

(out)
e−,1 (x) + Ψ

(out)
e−,−1(x).

Now, if we consider to have an arbitrary spin direction, where the spinors ub(p) with spin
quantum numbers b = {+,−} form a basis, the electron out-state Ψ

(out)
e−,b (x), which is a solution

of the Schwinger-Dyson equation corresponding to those new spinors, can then be expressed
by the linear combination

Ψ
(out)
e−,+(x) =β1Ψ

(out)
e−,1 (x) + β−1Ψ

(out)
e−,−1(x),

Ψ
(out)
e−,−(x) =β∗−1Ψ

(out)
e−,1 (x)− β∗1Ψ

(out)
e−,−1(x).

(4.6.3)
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Note that, as the electron out-states Ψ
(out)
e−,1 (x) and Ψ

(out)
e−,−1(x) evolve differently under the

Schwinger-Dyson equation, the spin axis of the state Ψ
(out)
e−,b (x) with the above choice of β1 and

β−1 is intended to point along the chosen axis at x0 → ∞ in the rest frame of the electron.
With the above relations we can write the S-matrix element of nonlinear Compton scattering
for an incoming electron of spin quantum number s, an outgoing photon of polarization j, and
an outgoing electron with spin quantum number b, into the form

S
(e−→e−γ)
j,s,+ ∼

∫
d4x Ψ̄

(out)
e−,+(p′, x)Â(out)∗

j (q, x)Ψ
(in)

e−,s(p, x)

∼ β∗1S
(e−→e−γ)
j,s,1 + β∗−1S

(e−→e−γ)
j,s,−1

(4.6.4)

and

S
(e−→e−γ)
j,s,− ∼

∫
d4x Ψ̄

(out)
e−,−(p′, x)Â(out)∗

j (q, x)Ψ
(in)

e−,s(p, x)

∼ β−1S
(e−→e−γ)
j,s,1 − β1S

(e−→e−γ)
j,s,−1 .

(4.6.5)

Now it is straight forward to express the probability of nonlinear Compton scattering for the
two final electron spin quantum numbers + and − in terms of S-matrix elements. They are
given by

P
(e−→e−γ)
j,s,+ =

∫
d3q

(2π)3

d3p′

(2π)3
|S(e−→e−γ)
j,s,+ |2

=

∫
d3q

(2π)3

d3p′

(2π)3

[
|β1|2|S(e−→e−γ)

j,s,1 |2 + |β−1|2|S(e−→e−γ)
j,s,−1 |2

+ β1β
∗
−1S

(e−→e−γ)∗
j,s,1 S

(e−→e−γ)
j,s,−1 + β∗1β−1S

(e−→e−γ)
j,s,1 S

(e−→e−γ)∗
j,s,−1

] (4.6.6)

and

P
(e−→e−γ)
j,s,− =

∫
d3q

(2π)3

d3p′

(2π)3
|S(e−→e−γ)
j,s,− |2

=

∫
d3q

(2π)3

d3p′

(2π)3

[
|β−1|2|S(e−→e−γ)

j,s,1 |2 + |β1|2|S(e−→e−γ)
j,s,−1 |2

− β1β
∗
−1S

(e−→e−γ)∗
j,s,1 S

(e−→e−γ)
j,s,−1 − β∗1β−1S

(e−→e−γ)
j,s,1 S

(e−→e−γ)∗
j,s,−1

]
.

(4.6.7)

Summing the probability now over the spin quantum number b = {+,−} of the outgoing
electron, i.e. taking the sum of Eqs. (4.6.6) and (4.6.7), we derive to∑
b={+,−}

P
(e−→e−γ)
j,s,b =

∫
d3q

(2π)3

d3p′

(2π)3

[
|S(e−→e−γ)
j,s,+ |2 + |S(e−→e−γ)

j,s,− |2
]

=

∫
d3q

(2π)3

d3p′

(2π)3

[
|S(e−→e−γ)
j,s,1 |2 + |S(e−→e−γ)

j,s,−1 |2
]

=
∑

s′={1,−1}

P
(e−→e−γ)
j,s,s′ ,

(4.6.8)

which is identical to the analogous result obtained for the original spin axis with spin quantum
numbers s = {1,−1}. Therefore, the probability is independent of the choice of the spin
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quantization axis after summing over the corresponding spin quantum numbers. This is true
for electron in-states and for the positron in- and out-states, too, and the proof thereof is
analogous to the one of the electron out-state.
Finally we discuss the photon polarization. For a transverse polarized photon we had chosen

the two four-vectors Λµ
1(q) and Λµ

2(q) in order to describe the photon polarization state. They
form a basis for the plane perpendicular to the photon momentum and any other polarization
basis, e.g. given by the two four-vectors Λµ

+(q) and Λµ
−(q), can be decomposed into the linear

combination

Λµ
+(q) = b1Λµ

1(q) + b2Λµ
2(q),

Λµ
−(q) = b2Λµ

1(q)− b1Λµ
2(q),

(4.6.9)

where b1, b2 are real numbers obeying b2
1 + b2

2 = 1. Following similar steps as for the electron
spin we can finally conclude, that the probability is also independent of the choice of the
polarization basis after summing over the corresponding polarization index.

4.7. Numerical results

Finally some numerical results for the probability of nonlinear Compton scattering including
the decay of the states in Eq. (4.3.6) will be presented. The numerical results shown in this
Section are taken from the reference [21] and were all performed by Victor Dinu. However
they are presented here to visualize some properties of the probability which we also found in
the analytical investigations.
For the numerical calculations the vector potential of the background field was chosen as

A(φ) = A0e
−(φ/τ)2

sin(ω0φ)a1, (4.7.1)

describing a linearly polarized plane wave laser pulse with Gaussian envelope. Here, the carrier
frequency ω0 is fixed to 1.55 eV in our units and the parameter τ describes the length of the
pulse.
In the plots in Figs. 4.3 and 4.4 the probabilities are presented in a color code and are

plotted over the classical nonlinearity parameter ξ0 on the horizontal axis and the energy of
the incoming electron in MeV (and the parameter η0 = χ0/ξ0 = (k0p)/m

2) on the vertical axis.
As the probabilities are valid within the LCFA the parameter ξ0 is here restricted to values
ξ0 > 5. Further, since we assumed that χ0 ∼ 1, the parameter η0 is restricted to be smaller
than unity, which corresponds to incoming electron energies smaller than 100 GeV.
Now in Fig. 4.3 the top panel presents the probability in Eq. (4.3.6) summed over the

final quantum numbers, i.e. P (e−→e−γ)
s =

∑
j,s′ P

(e−→e−γ)
j,s,s′ , whereas the bottom panel presents

a Poissonian distribution of the form PNC
s,p exp[−PNC

s,p ], both for spin quantum number s = 1
and a pulse length of τ = 5 fs.
We see that the probability of nonlinear Compton scattering is in agreement with that

of a Poissonian distribution in the case of low initial electron energies. We observed this
behavior also in the classical limit of the analytical expressions presented in Eq. (4.5.6) (see
also Ref. [42]). Important deviations occur however for increasing incoming electron energies.
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In Fig. 4.4 again the probability of nonlinear Compton scattering is presented as in Fig.
4.3 top panel, but now for a pulse length of τ = 20 fs.
Now if we compare the top panel of Fig. 4.3 with Fig. 4.4 we observe the following: In the

top panel of Fig. 4.3 the probability first increases with increasing ξ0 and reaches its maximum
for ξ0 . 10 within the presented range of η0. Here the maximum of the probability lies around
e−1 ≈ 0.367 for low values of η0, as expected from the Poissonian distribution. After the
maximum the probability is decreasing monotonically with growing ξ0. Instead in Fig. 4.4 the
probability is monotonically decreasing with increasing ξ0 within the whole presented range of
η0. Further the probability is staying well below the values of Fig. 4.3 (note the different scales
of ξ0 on the horizontal axis). This indicates that the exponential damping of the probability
is stronger in the case of a larger pulse length in Fig. 4.4, which we also expected from our
analytical investigations and discussed below Eq. (4.1.10).
Finally we observe in both cases, Fig. 4.3 and Fig. 4.4, that the probability always stays

well below unity, like we presented in the analytical proof in Eq. (4.4.1).
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Figure 4.3.: The total probability of nonlinear Compton scattering with damping P (e−→e−γ)
s

(top panel), as compared to the result obtained from a Poissonian distribution
whose average photon number is the total “undamped emission probability” PNC

s,p

(bottom panel). The pulse length corresponds to τ = 5 fs and the initial electron
spin corresponds to s = 1. The plots are taken from Ref. [21] and were done by
Victor Dinu.
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Figure 4.4.: Nonlinear Compton scattering total probability P (e−→e−γ)
s including the decay of

the wave functions, as in Fig. 4.3 top panel, but here for τ = 20 fs. Again the
plot is taken from Ref. [21] and was done by Victor Dinu.
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5. Nonlinear Breit-Wheeler pair production
including particle states decay

Note that the content of this chapter was published in the publications [20, 21] and therefore
the structure, the equations, and the text of this chapter are similar or identical to Refs. [20,21].
Similar as to the last chapter, we calculate in this chapter the radiatively corrected proba-

bility but now for nonlinear Breit-Wheeler pair production. For this the states in the S-matrix
in Eq. (3.0.2) are replaced by the corresponding electron, positron and photon states including
the effects of the states decay, which we obtained in Sections 3.2 and 3.3.
In the case of nonlinear Breit-Wheeler pair production, we assume the incoming photon

to have four-momentum qµ = (ω, q), with energy ω = |q|, and its asymptotic transverse
polarization state is indicated by the index j = 1, 2. For the outgoing positron (electron) the
four-momentum is pµ = (ε,p) (p′µ = (ε′,p′)), with energy ε =

√
m2 + p2 (ε′ =

√
m2 + p′2),

and it is supposed to have the asymptotic spin quantum number s = ±1 (s′ = ±1). With
this choice of symbols for the particles quantum numbers it is easy to exploit the symmetry
between nonlinear Compton scattering and nonlinear Breit-Wheeler pair production. The
leading-order S-matrix amplitude in α of nonlinear Breit-Wheeler pair production including
the states decay is then given by (compare Eq. (3.0.2))

S
(γ→e−e+)
j,s,s′ = −ie

∫
d4x Ψ̄

R,(out)
e−,s′,p′(x)Â (in)

R,j (q, x)Ψ
R,(out)
e+,s,p (x). (5.0.1)

This S-matrix intrinsically contains the resummation of all one-particle reducible diagrams
with corrections by the one-loop mass and polarization operator, as depicted in Fig. 5.1.

Figure 5.1.: The exact amplitude of nonlinear Breit-Wheeler pair production (first diagram)
corresponds to the sum of all one-particle reducible diagrams with corrections by
the one loop mass and polarization operators (circles with M and P, respectively).
Shown are the first Feynman diagrams of this series.

After inserting the expressions of the radiatively corrected states presented in Eqs. (3.2.24),
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(3.2.25), and (3.3.14) into the S-matrix, we arrive to:

S
(γ→e−e+)
j,s,s′ = − ie√

8εε′ω
(2π)3δ2(p′⊥ − q⊥ + p⊥)δ(p′− − q− + p−)

×
∫
dφ e

−i m
q−

∫ φ
−∞ dϕPj(q,ϕ)−i

∫∞
φ dϕ

[
m
p′−

Ms′ (p
′,ϕ)+ m

p−
Ms(−p,ϕ)

]

× e
i

{
(p′+−q++p+)φ−

∫∞
φ dϕ

[
(p′A(ϕ))

p′−
−A

2(ϕ)

2p′−

]
+
∫∞
φ dϕ

[
(pA(ϕ))
p−

+
A2(ϕ)
2p−

]}

× ūs′(p′)

[
1− n̂Â(φ)

2p′−

]
Λ̂j(q)

[
1− n̂Â(φ)

2p−

]
vs(p).

(5.0.2)

5.1. The radiatively corrected probability

With the S-matrix in Eq. (5.0.2) we can compute the probability of nonlinear Breit-Wheeler
pair production,

P
(γ→e−e+)
j,s,s′ =

∫
d3p

(2π)3

d3p′

(2π)3
|S(γ→e−e+)
j,s,s′ |2

=

∫
d3p

16π2

d3p′

(2π)3

α

εε′ω
(2π)6[δ2(p′⊥ − q⊥ + p⊥)δ(p′− − q− + p−)]2

×
∫
dφdφ′e

−i m
q−

∫ φ
−∞ dϕPj(q,ϕ)+i m

q−

∫ φ′
−∞ dϕP ∗j (q,ϕ)

× e
−i
∫∞
φ dϕ

[
m
p′−

Ms′ (p
′,ϕ)+ m

p−
Ms(−p,ϕ)

]
+i
∫∞
φ′ dϕ

[
m
p′−

M∗
s′ (p
′,ϕ)+ m

p−
M∗s (−p,ϕ)

]

× e
i(p′+−q++p+)(φ−φ′)+i

∫ φ
φ′ dϕ

[
(p′A(ϕ))

p′−
−A

2(ϕ)

2p′−
− (pA(ϕ))

p−
−A

2(ϕ)
2p−

]

× tr

{[
1− n̂Â(φ)

2p′−

]
Λ̂j(q)

[
1− n̂Â(φ)

2p−

]
vs(p)v̄s(p)

×

[
1 +

n̂Â(φ′)

2p−

]
Λ̂j(q)

[
1 +

n̂Â(φ′)

2p′−

]
us′(p

′)ūs′(p
′)

}
.

(5.1.1)

Now we can perform similar steps as in the case of nonlinear Compton scattering, where
in this case the negative-energy electron density matrix can be replaced by vs(p)v̄s(p) =
(p̂−m)(1 + sγ5ζ̂p)/2 [11]. Alternatively the probability can be obtained from Eq. (4.1.6) by
symmetry considerations. In both cases one arrives to the following probability of nonlinear
Breit-Wheeler pair production including the decay of particle states within the LCFA and a
linearly polarized plane wave

P
(γ→e−e+)
j,s,s′ =

∫
d3p

16π2

α

q−p′−ε

∫
dφ+e

DNBW
j,s,s′

×
∫
dφ−e

i m
2

2p−
q−
p′−

{
[1+π2

⊥,p(φ+)]φ−+
E2(φ+)

m2

φ3
−

12

}
Gj,s,s′ ,

(5.1.2)
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with the exponential damping function

DNBW
j,s,s′ = 2Im

{
m

q−

∫ φ+

−∞
dϕPj(q, ϕ) +

∫ ∞
φ+

dϕ

[
m

p′−
Ms′(p

′, ϕ) +
m

p−
Ms(−p, ϕ)

]}
, (5.1.3)

the trace

Gj,s,s′ =
1

4
tr

{[
1− n̂[Â(φ+) + Â′(φ+)φ−/2]

2p′−

]
Λ̂j(q)

[
1− n̂[Â(φ+) + Â′(φ+)φ−/2]

2p−

]

×(p̂−m)(1 + sγ5ζ̂p)

[
1 +

n̂[Â(φ+)− Â′(φ+)φ−/2]

2p−

]
Λ̂j(q)

×

[
1 +

n̂[Â(φ+)− Â′(φ+)φ−/2]

2p′−

]
(p̂′ +m)(1 + s′γ5ζ̂p′)

}
,

(5.1.4)

and the transverse momentum

π⊥,p(φ) =
p⊥
m
− p−
q−

q⊥
m

+
A⊥(φ)

m
. (5.1.5)

Here, due to energy-momentum conservation the minus component and the perpendicular
component of the outgoing electron momentum are fixed to p′− = q−− p− and p′⊥ = q⊥− p⊥,
respectively.
New in comparison to the expression of the probability without the decay of the states

(see for example Refs. [29, 40]), is the exponential damping in Eq. (5.1.2) with the damping
function DNBW

j,s,s′ . Similar to the case of nonlinear Compton scattering, the damping function
is here, according to the optical theorem, equal to minus the sum of the total probability
of nonlinear Breit-Wheeler pair production between −∞ and φ+ for the incoming photon
with light-cone energy q− and polarization quantum number j and the total probabilities of
nonlinear Compton scattering between φ+ and +∞ for the outgoing electron with light-cone
energy p′− and spin quantum number s′ and for the outgoing positron with light-cone energy
p− and spin quantum number s [57, 68], i.e.

DNBW
j,s,s′ = −

∫ φ+

−∞
dϕ
∂PNBW

j,q

∂ϕ
−
∫ ∞
φ+

dϕ

(
∂PNC

s′,p′

∂ϕ
+
∂PNC

s,−p

∂ϕ

)
. (5.1.6)

Analogous remarks about the damping as for the case of nonlinear Compton scattering can
be made here, too: The damping becomes significant when the product αξ0ΦL & 1, with ΦL

being the pulse phase length and assuming that χ0 ∼ 1 and κ0 ∼ 1. Again the dependence of
the damping on the quantum numbers prevents us using summation rules [3,11] and forces us
to employ the spin and polarization resolved trace. This trace will be computed in the next
Section.

5.2. Solving the trace

In this Section we are going to compute the spin and polarization resolved trace for nonlinear
Breit-Wheeler pair production in Eq. (5.1.4). This trace was already solved in Ref. [40] (see
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also Refs. [38,74]), here however a short alternative analytical derivation based on the results
for nonlinear Compton scattering in Section 4.2 is presented.
Using the notation in Eq. (4.2.1) the trace for nonlinear Breit-Wheeler pair production in

Eq. (5.1.4) can be expressed as

Gj,s,s′ = −1

4
tr
{

Λ̂j(q)Q−p,s(φ+, φ−)Λ̂j(q)Qp′,s′(φ+,−φ−)
}
. (5.2.1)

Now comparing this trace with the one of nonlinear Compton scattering in Eq. (4.2.2) we ob-
serve that we can derive the final expression of the trace directly from the results for nonlinear
Compton scattering in Eqs. (4.2.15)-(4.2.20). For this we have to multiply Eq. (4.2.15) by an
overall minus sign and change the sign of the four-momentum pµ in the Eqs. (4.2.16)-(4.2.20).
With our choice of the spin and polarization four-vectors and the conservation laws for the
minus and perpendicular light-cone components of the four-momenta we obtain for the two
polarization states j = 1 and j = 2

G1,s,s′ = (1 + ss′)

[
1

2

q2
−

p−p′−

(
m2 +m2π2

⊥,p(φ+)−A2
0ψ
′2(φ+)

φ2
−

4

)
− 2

(
m2π2

⊥,p(φ+)−A2
0ψ
′2(φ+)

φ2
−

4

)]
+ i(s+ s′)

m

2
A0ψ

′(φ+)φ−
q−
p−

(
2− q−

p′−

)
+

(
2 + 2ss′ − ss′

q2
−

p−p′−

)(
p2 −

p−
q−
q2

)2

(5.2.2)

and

G2,s,s′ = (1− ss′)1

2

q2
−

p−p′−

(
m2 +m2π2

⊥,p(φ+)−A2
0ψ
′2(φ+)

φ2
−

4

)
+ i(s− s′)m

2
A0ψ

′(φ+)φ−
q2
−

p−p′−

−
(

2 + 2ss′ − ss′
q2
−

p−p′−

)(
p2 −

p−
q−
q2

)2

,

(5.2.3)

where the pulse shape function was already expressed in terms of π⊥,p(φ+) (see Eq. (5.1.5)).
Note that here the conservation laws for the minus and perpendicular light-cone components
of the four-momenta are different than for nonlinear Compton scattering.

5.3. Final integrals

In the following we will perform the integration over the variables dφ− and d2p⊥ analogue to
the case of nonlinear Compton scattering (see also Refs. [29, 39, 40]). For this we first recall
that, similar as in the case of nonlinear Compton scattering, the dependence of the traces on
π⊥,p(φ+) can be removed by using properties of the Airy function (see Appendix B). In fact,
according to Eq. (B.0.6), terms proportional to

[
1 + π2

⊥,p(φ+) + (A2
0ψ
′2(φ+)/m2)(φ2

−/4)
]
do
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not contribute to the probability as they vanish after the integration in φ−. Therefore, after
adding and subtracting suitable terms, the traces are manifestly gauge invariant. Continuing
with the integral in d2p⊥, we use the relation d3p = (ε/p−)dp−d

2p⊥ to transform the integral
in the positron momentum into light-cone coordinates and introduce the notation

G̃j,s,s′ = − 1

4π2m2

q−
p−p′−

∫
dφ−

∫
d2p⊥e

i
m2q−
2p−p′−

{
[1+π2

⊥,p(φ+)]φ−+
E2(φ+)

m2

φ3
−

12

}
Gj,s,s′ . (5.3.1)

Similar as to the previous Chapter the integral in d2p⊥ turns out to be Gaussian and is solved
by [75] ∫

d2p⊥e
i
m2q−
2p−p′−

π2
⊥,p(φ+)φ−

= 2πi
p−p

′
−

q−(φ− + i0)
, (5.3.2)∫

d2p⊥

(
p2 −

p−
q−
q2

)2

e
i
m2q−
2p−p′−

π2
⊥,p(φ+)φ−

= −2π

[
p−p

′
−

q−(φ− + i0)

]2

. (5.3.3)

The remaining integral in φ− is solved by Airy functions (see Eqs. (B.0.2)-(B.0.5)). With that
we derive to the final expression of the probability of nonlinear Breit-Wheeler pair production
including the damping due to the particle states decay:

P
(γ→e−e+)
j,s,s′ =− αm2

4q2
−

∫ q−

0

dp−

∫
dφ+e

DNBW
j,s,s′ G̃j,s,s′ , (5.3.4)

with

G̃1,s,s′ =

[
−(1 + ss′)− ss′

q2
−

2p−p′−

]
Ai1(z)

+

[
−3(1 + ss′) +

(
1 +

ss′

2

)
q2
−

p−p′−

]
Ai′(z)

z

− (s+ s′)

(
q−
p−
− q−
p′−

)
Ai(z)√

z
sgn(ψ′(φ+))

(5.3.5)

and

G̃2,s,s′ =

[
−(1 + ss′) + ss′

q2
−

2p−p′−

]
Ai1(z)

+

[
−(1 + ss′) +

(
1− ss′

2

)
q2
−

p−p′−

]
Ai′(z)

z

+ (s′ − s)
q2
−

p−p′−

Ai(z)√
z

sgn(ψ′(φ+)).

(5.3.6)

This expression describes the radiatively corrected probability of a photon with momentum q
and polarization j decaying into an electron-positron pair in a linearly polarized plane wave
background field. Processes where the final electrons and positrons emit additional photons
are not included in this probability. Note that, due to momentum conservation, the minus
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component of the electron momentum has to be replaced by p′− = q− − p− before performing
the remaining integral in p−.
The above probability, ignoring the exponential damping term, is in agreement with the spin-

and polarization-resolved probability of nonlinear Breit-Wheeler pair production presented in
Ref. [40]. Moreover, neglecting the exponential damping and summing over the final quantum
numbers yields PNBW

j,q = −(αm2)/(4q2
−)
∑

s,s′

∫ q−
0
dp−

∫
dφ+ G̃j,s,s′ .

5.4. Proof that the probability stays below unity

Analogously as in the case of nonlinear Compton scattering, it can be proved analytically
that the probability in Eq. (5.3.4) summed over the final quantum numbers, i.e. P (γ→e−e+)

j =∑
s,s′ P

(γ→e−e+)
j,s,s′ , is always smaller than unity (see also Section 4.4). The explicit proof is given

by

P (γ→e−e+)
s < −αm

2

4q2
−

∑
s,s′

∫ q−

0

dp−

∫
dφ+ G̃j,s,s′e

2Im m
q−

∫ φ+
−∞ dϕPj(q,ϕ)

=

∫
dφ+

∂PNBW
j,q

∂φ+

e−
∫ φ+
−∞ dϕ

∂PNBW
j,q
∂ϕ = −

∫
dφ+

∂

∂φ+

e−
∫ φ+
−∞ dϕ

∂PNBW
j,q
∂ϕ

= 1− e−
∫∞
−∞ dϕ

∂PNBW
j,q
∂ϕ < 1.

(5.4.1)

This proof implies that the average over the initial quantum number as well as Eq. (5.3.4)
stay below unity, too.

5.5. Limits

In this Section we consider the two cases where q− − p− � q− and p− � q−, and study the
asymptotic behavior for the differential probability of nonlinear Breit-Wheeler pair production,
i.e.

∂P
(γ→e−e+)
j,s,s′

∂p−
=− αm2

4q2
−

∫
dφ+e

DNBW
j,s,s′ G̃j,s,s′ , (5.5.1)

which we obtained from Eq. (5.3.4).

Asymptotic expression for q− − p− � q−

We start with the region p′− = q− − p− � q−. Here almost all the light-cone energy of the
photon goes into the positron such that p− ≈ q−. Similar to the case of nonlinear Compton
scattering we first assume that the quantum nonlinearity parameter κq(ϕ) of the photon is
fixed. The absolute value of the quantum nonlinearity parameter of the electron χp′(ϕ) =
(p′−/q−)κq(ϕ) is estimated to be much smaller than unity (if κq(ϕ) is larger than unity, we
suppose the ratio p′−/q− to be such small that |χp′(ϕ)| � 1). With this assumptions the
probability of nonlinear Compton scattering of the electron in the damping function in Eq.
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(5.1.6) can be replaced by the corresponding asymptotic expression, which is independent of
p′ and presented in Eq. (4.5.7). Therefore the damping function reduces to

DNBW
j,s,s′

p′−�q−≈ −
∫ φ+

−∞
dϕ
∂PNBW

j,q

∂ϕ
−
∫ ∞
φ+

dϕ

(
∂PNC

s,−q

∂ϕ
+

5√
3

αm2|κq(ϕ)|
q−

)
, (5.5.2)

where we additionally used that χp(ϕ) = (p−/q−)κq(ϕ). In the preexponent of the dif-
ferential probability the quantities G̃j,s,s′ contain Airy functions which we can expand for
z =

(
q−/(p

′
−χp(φ+))

)2/3 ≈
(
q−/(p

′
−κq(φ+))

)2/3 � 1 (see Eqs. (B.0.10)-(B.0.12) for the asymp-
totic expressions of the Airy-functions). Starting with the case of photon polarization j = 1
and identical spin quantum numbers (s = s′), the asymptotic behavior of G̃1,s,s is given by

G̃1,s,s
z�1
≈ − 1√

π
z−3/4e−

2
3
z3/2

[
q−
p′−

(1− s sgn(ψ′(φ+))) + 2
p′−
q−
s sgn(ψ′(φ+))

]
+

1

96
√
π
z−9/4e−

2
3
z3/2

[124 + 20s sgn(ψ′(φ+))]

− 1

9216
√
π
z−15/4e−

2
3
z3/2 q−

p′−
[3938− 770s sgn(ψ′(φ+))] .

(5.5.3)

Similar to the case of nonlinear Compton scattering (see discussion below Eq. (4.5.9)), the
case s = −sgn(ψ′(φ+)) determines the scaling of the probability, i.e.

G̃1,s,s
z�1
≈ − 2√

π
z−3/4e−

2
3
z3/2 q−

p′−
. (5.5.4)

Considering opposite spin quantum numbers (s = −s′) we obtain the expression

G̃1,s,−s
z�1
≈ − 1

4
√
π
z−9/4e−

2
3
z3/2 q−

p′−
. (5.5.5)

For the photon polarization j = 2 and identical spin quantum numbers (s = s′) we have

G̃2,s,s
z�1
≈ − 1

4
√
π
z−9/4e−

2
3
z3/2 q−

p′−
(5.5.6)

and finally for opposite spin quantum numbers (s = −s′)

G̃2,s,−s
z�1
≈ − 1√

π
z−3/4e−

2
3
z3/2 q−

p′−
[1 + s sgn(ψ′(φ+))]

− 1

9216
√
π
z−15/4e−

2
3
z3/2 q−

p′−
[3938 + 770s sgn(ψ′(φ+))] .

(5.5.7)

Here the case s = sgn(ψ′(φ+)) determines the scaling of the probability of nonlinear Breit-
Wheeler pair production and we obtain

G̃2,s,−s
z�1
≈ − 2√

π
z−3/4e−

2
3
z3/2 q−

p′−
. (5.5.8)
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Asymptotic expression for p− � q−

In the region p− � q− almost all the light-cone energy of the photon goes into the electron.
Instead of performing the same steps as before for this limit, we notice that the probability of
nonlinear Breit-Wheeler pair production is symmetric under the exchanges p− ↔ p′−, s↔ s′,
and ψ′(φ+) ↔ −ψ′(φ+) (see Eqs. (5.3.4)-(5.3.6) and (5.1.3) and (3.2.19)). By employing
these substitution rules it is straight forward to obtain the asymptotic expressions in the limit
p− � q− for the differential probability of nonlinear Breit-Wheeler pair production from those
in the case p′− � q−, which we investigated in the previous Subsection.

5.6. Independence of spin and polarization basis

The proof that the probability summed over a spin or polarization quantum number stays
unchanged when using a different basis for that spin or polarization index is similar to the
one presented for nonlinear Compton scattering. The latter one can be found in Section 4.6
on page 52ff. and for this reason the proof is not presented here again.

5.7. Numerical results

Finally some numerical results for the probability of nonlinear Breit-Wheeler pair production
including the decay of the states in Eq. (5.3.4) will be presented. Again the numerical results
shown in this Section are taken from the Ref. [21] and were all performed by Victor Dinu.
However they are presented here to visualize some properties of the probability which we found
in the analytical investigations, too.
As in the case of nonlinear Compton scattering in Section 4.7 a linearly polarized plane

wave laser pulse with Gaussian envelope described by the vector potential in Eq. (4.7.1) was
chosen, with carrier frequency ω0 = 1.55 eV and the length of the pulse is described by the
parameter τ .
Now in Figs. 5.2 and 5.3 the total probability of nonlinear Breit-Wheeler pair production

including the states decay and summed over the final quantum numbers, i.e. P
(γ→e−e+)
j =∑

s,s′ P
(γ→e−e+)
j,s,s′ , is plotted for a pulse length of τ = 5 fs and τ = 20 fs, respectively. In both

Figures the left plot presents the result for polarization j = 1 and the right one for j = 2.
Here the probability is presented in a color code and is plotted over the classical nonlinearity
parameter ξ0 on the horizontal axis and on the vertical axis over the incoming photon energy
in GeV which is also related to the parameter ρ0 = κ0/ξ0 = (k0q)/m

2. Analogously as for
nonlinear Compton scattering, we restrict the parameter ξ0 ≥ 5 due to the LCFA and set
an upper bound of 100 GeV on the photons energy corresponding to the parameter ρ0 not
exceeding (approximately) unity.

First we observe that in all plots the probability stays well below unity as we expected from
the analytical proof in Section 5.4. Now, comparing both Figures, we observe that within the
same parameter range the probability in the longer pulse (Fig. 5.3) is significantly smaller
and reaches only about half of the maximal value from the one in the shorter pulse (Fig. 5.2).
Also the maximum value is moved towards smaller ξ0. This indicates that the damping due
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Figure 5.2.: The probability P (γ→e−e+)
j of nonlinear Breit-Wheeler pair production in a short,

τ = 5 fs pulse, by a photon with polarization quantum number j = 1 (left panel)
and j = 2 (right panel). The plots are taken from Ref. [21] and were done by
Victor Dinu.

to the particles states decay is stronger in the longer pulse as we expected from or analytical
results (see discussion below Eq. (5.1.6)).
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Figure 5.3.: Same as in Fig. 5.2, but for τ = 20 fs. Again the plots are taken from Ref. [21]
and were done by Victor Dinu.
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6. Corrections to nonlinear Compton
scattering of order α2

In the last chapters we investigated how radiative corrections modify the probabilities of non-
linear Compton scattering and nonlinear Breit-Wheeler pair production and obtained prob-
abilities which are also valid in the limit of a large pulse phase length ΦL of the plane wave
background field. For this we assumed that the product αΦL/Φf & 1, with Φf being the
formation length (see discussion in Chapter 3), which allowed us to neglect the Vertex correc-
tion and only consider an infinite series of mass- and polarization operator corrections to the
electron and photon states for both processes. This series of Feynman diagrams was implicitly
resummed by using radiatively corrected states for the electron, positron and photon which
we obtained from their corresponding Schwinger-Dyson equations (3.1.1) and (3.1.2). How-
ever, to obtain analytical solutions, we had to apply the LCFA and considered only a linearly
polarized background field.
In a more general case this resummation is not trivial. The Vertex correction has to be

considered and also the expressions of the mass- and polarization operator become more com-
plicated. Our next goal is to calculate (a part of) the leading order in α corrections to the
probability of nonlinear Compton scattering in a more general case. Here the background field
is considered to be a plane wave field with an arbitrary transverse polarization and no LCFA
is applied.
The Feynman diagrams for the leading order in α corrections to nonlinear Compton scatter-

ing were already depicted in Fig. 3.2 on page 27 and we write this Figure in terms of S-matrix
elements

SNCS
RC = SNCS

0 + SNCS
corr , (6.0.1)

with
SNCS

corr = SNCS
mass in + SNCS

mass out + SNCS
pol + SNCS

vertex + ... (6.0.2)

Here SNCS
RC is the complete S-matrix including all corrections, SNCS

0 is the S-matrix for the
leading diagram without corrections (see Eq. (3.0.1)), and SNCS

corr is the S-matrix containing all
corrections. Further SNCS

mass in and SNCS
mass out are the corrections by one mass operator acting on

the incoming and outgoing electron, respectively, SNCS
pol is the correction by one polarization

operator on the outgoing photon, and SNCS
vertex is the correction of the vertex. The S-matrix SNCS

0

scales with
√
α, whereas the S-matrices SNCS

mass in, SNCS
mass out, SNCS

pol , and SNCS
vertex scale with α3/2.

Higher corrections would result in S-matrices scaling at least with α5/2 and we can therefore
neglect them in our considerations. Now the probability of nonlinear Compton scattering is
proportional to the complex square of the complete S-matrix element and we can write

PNCS
RC ∝ |SNCS

RC |2 = |SNCS
0 |2 + SNCS,∗

0 SNCS
corr + SNCS

0 SNCS,∗
corr + |SNCS

corr |2

= |SNCS
0 |2 + 2Re[SNCS,∗

0 SNCS
corr ] + |SNCS

corr |2.
(6.0.3)
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We observe that the leading order correction term is given by the quantity 2Re[SNCS,∗
0 SNCS

corr ]
which is proportional to α2, whereas for comparison the term |SNCS

corr |2 scales with α3 and of
course |SNCS

0 |2 ∝ α.
In the following we want to investigate the leading order in α corrections which are stemming

from the quantity 2Re[SNCS,∗
0 SNCS

corr ]. However we restrict us in this thesis to only a part of them,
namely corrections resulting from the mass operator acting on the incoming and outgoing
electron states, i.e. 2Re[SNCS,∗

0 SNCS
mass in] and 2Re[SNCS,∗

0 SNCS
mass out]. Further we only consider the

one-loop expression of the mass operator, since higher order contributions of the mass operator
scale with additional powers of α and do not contribute to the leading order in α corrections.

6.1. The S-matrix elements

To calculate the corrections to the probability of nonlinear Compton scattering stemming from
2Re[SNCS,∗

0 SNCS
mass in] and 2Re[SNCS,∗

0 SNCS
mass out] we need the S-matrix elements corresponding to

the three Feynman diagrams depicted in Figs. 6.1-6.3.

Figure 6.1.: The leading order nonlinear Compton scattering amplitude, corresponding to the
S-matrix SNCS

0 . Here we need the complex conjugate SNCS,∗
0 .

Figure 6.2.: One leading order correction where the mass operator is acting on the incoming
electron, corresponding to SNCS

mass in. For the computation of this term we use the
one-loop mass operator MR(l, l′).

All incoming and outgoing particles are assumed to be on-shell, where the incoming (out-
going) electron has four-momentum pµ = (ε,p) (p′µ = (ε′,p′)), with energy ε =

√
m2 + p2

(ε′ =
√
m2 + p′2), and an asymptotic spin quantum number s = ±1 (s′ = ±1). For the

outgoing photon the four-momentum is qµ = (ω, q), with energy ω = |q|, and its asymptotic
transverse polarization state is indicated by the index j = 1, 2.
To compute the S-matrix elements we use the Volkov electron state in Eq. (2.6.4), the

Volkov-propagator in Eq. (2.6.12) and the photon state from Section 2.5. For the mass
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Figure 6.3.: Another leading order correction where the mass operator is acting on the outgoing
electron, corresponding to SNCS

mass out. For the computation of this term we use the
one-loop mass operator M̃R(l, l′).

operators we use for SNCS
mass in the expression of the renormalized one-loop mass operatorMR(l, l′)

in Eq. (2.9.14) on page 20, which depends on the incoming electron momentum, and for
SNCS

mass out we use the renormalized one-loop mass operator M̃R(l, l′) in Eq. (2.9.10) on page 19,
which depends on the outgoing electron momentum. Both mass operators were presented in
momentum-space and they have to be transformed to configuration space via

− iMR(x, y) = −i
∫

d4l

(2π)4

∫
d4l′

(2π)4
E(l, x)MR(l, l′)Ē(l′, y) (6.1.1)

and analogously for M̃R(x, y). With that the S-matrix elements can be expressed as

SNCS,∗
0 =ie

∫
d4x′ ψ̄

V,(in)
e−,s,p(x

′)Ârad
j,q (x′)ψ

V,(out)
e−,s′,p′(x

′), (6.1.2)

SNCS
mass in =−ie

∫
d4xd4yd4z ψ̄

V,(out)
e−,s′,p′(x)Ârad,∗

j,q (x)GV (x, y)MR(y, z)ψ
V,(in)
e−,s,p(z), (6.1.3)

SNCS
mass out =−ie

∫
d4xd4yd4z ψ̄

V,(out)
e−,s′,p′(z)M̃R(z, y)GV (y, x)Ârad,∗

j,q (x)ψ
V,(in)
e−,s,p(x). (6.1.4)

Note, as we need later the complex conjugate SNCS,∗
0 , its expression is presented here directly

instead (see also Eq. (3.0.1)). Further different integration variables were applied in order to
avoid confusion when later calculating the probabilities. To simplify computational steps we
rewrite the S-matrix elements into the form

SNCS,∗
0 =

ie√
8εε′ω

∫
d4x′ ūs(p)Γ

µ
M0(x′)us′(p

′)εj,µe
−iqx′+iΦ(out)(p′)−iΦ(in)(p), (6.1.5)

SNCS
mass in =

−ie√
8εε′ω

∫
d4x ūs′(p

′)ΓνM1(x)us(p)ε
∗
j,νe

iqx−iΦ(out)(p′)+iΦ(in)(p), (6.1.6)

SNCS
mass out =

−ie√
8εε′ω

∫
d4x ūs′(p

′)ΓνM2(x)us(p)ε
∗
j,νe

iqx−iΦ(out)(p′)+iΦ(in)(p), (6.1.7)

where we introduced the quantities

ΓµM0(x′) =Ē(p, x′)γµE(p′, x′), (6.1.8)

ΓνM1(x) =

∫
d4l

(2π)4
Ē(p′, x)γνE(l, x)

l̂ +m

l2 −m2 + i0
MR(l, p), (6.1.9)

ΓνM2(x) =

∫
d4l

(2π)4
M̃R(p′, l)

l̂ +m

l2 −m2 + i0
Ē(l, x)γνE(p, x). (6.1.10)
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Here the property of the Ritus matrix in Eq. (2.6.8) was exploited in order to perform the
integrals in dy and dz in Eqs. (6.1.3) and (6.1.4) and to reduce the number of momentum
integrals. Now, the propagator in the quantities ΓνM1(x) and ΓνM2(x) can be rewritten into the
form

l̂ +m

l2 −m2 + i0
=

n̂

2l−
+
l̂− − l̂⊥ +m+ n̂

2l−
(l2⊥ +m2)

2l+l− − l2⊥ −m2 + i0
, (6.1.11)

where we want to stress that the term l̂+ was not simply replaced by n̂
2l−

(l2⊥ + m2), which
would be incorrect for the off-shell momentum l. Instead we added and subtracted suitable
terms, i.e. l̂+ = n̂l+2l−/(2l−) = n̂(2l−l+ − l2⊥ − m2 + i0 + l2⊥ + m2 − i0)/(2l−), in order to
remove l+ in the numerator by cancellation with the denominator (the remaining quantity i0
in the numerator was set finally equal to zero).
At this point we insert the mass operators from Eqs. (2.9.14) and (2.9.10) into Eqs. (6.1.9)

and (6.1.10) and then into Eqs. (6.1.6) and (6.1.7), respectively. Using the properties (p̂ −
m)us(p) = 0 and ūs′(p′)(p̂′−m) = 0 it turns out that some terms of the mass operator do not
contribute. Further with the δ-functions in the mass operator the integrals in dl− and d2l⊥ can
be taken, enforcing momentum conservation in this light-cone components. The expressions
become

ΓνM1(x) =
α

2π

∫
dφ e−i(φ−x−)p+

∫ ∞
0

dudr

(u+ r)2
e−iuλ

2−i r
2

u+r
m2

× Ē(p′, x)γνE(p, x)

∫
dl+
2π

e−i(x−−φ)l+

(
n̂

2p−
+

p̂+m

2l+p− − p2
⊥ −m2 + i0

)
×
[
e
i r

2

u+r

[∫ 1
0 dw∆A2(φwr)−(

∫ 1
0 dw∆A(φwr))

2
]
MI −

u+ 2r

u+ r
m

] (6.1.12)

and

ΓνM2(x) =
α

2π

∫
dφ ei(φ−x−)p′+

∫ ∞
0

dudr

(u+ r)2
e−iuλ

2−i r
2

u+r
m2

×
[
e
i r

2

u+r

[∫ 1
0 dw∆A2(φ̃wr)−(

∫ 1
0 dw∆A(φ̃wr))

2
]
MII −

u+ 2r

u+ r
m

]
×
∫
dl+
2π

e−i(φ−x−)l+

(
n̂

2p′−
+

p̂′ +m

2l+p′− − p′2⊥ −m2 + i0

)
Ē(p′, x)γνE(p, x),

(6.1.13)

where φr = φ − 2urp−/(u + r), φwr = φ − 2wurp−/(u + r), φ̃r = φ + 2urp′−/(u + r), φ̃wr =
φ + 2wurp′−/(u + r), and MI and MII are given in Eqs. (2.9.16) and (2.9.12) on pages 20
and 19 with the replacements l′ → p and l → p′, respectively. Again we use the property
of the free bispinor in Eq. (2.6.2) to rewrite MI = M̃I + m(u + 2r)/(u + r) and MII =
M̃II +m(u+ 2r)/(u+ r) with

M̃I = −∆̂A(φr)−
r

u+ r

∫ 1

0

dw∆̂A(φwr) +
r

u+ r
p̂
n̂∆̂A(φr)

2p−

− r

u

2u+ r

u+ r

∫ 1

0

dw∆̂A(φwr)
n̂∆̂A(φr)

2p−
+

n̂

2p−
NI ,

(6.1.14)
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and

M̃II = −∆̂A(φ̃r)−
r

u+ r

∫ 1

0

dw∆̂A(φ̃wr) +
r

u+ r

∆̂A(φ̃r)n̂

2p′−
p̂′

− r

u

2u+ r

u+ r

∆̂A(φ̃r)n̂

2p′−

∫ 1

0

dw∆̂A(φ̃wr) +
n̂

2p′−
NII ,

(6.1.15)

where NI and NII are given in Eqs. (2.9.17) and (2.9.13) with the replacements l′ → p and
l→ p′, respectively.
Now we are able to perform the integral in l+ which we split for this purpose into two parts.

Beginning with ΓνM1(x) the first part of the integral in l+ is∫
dl+
2π

e−i(x−−φ)l+
n̂

2p−
=

n̂

2p−
δ(x− − φ) (6.1.16)

which simply gives a δ-function. The second part of the integral can be solved using the
relation Θ(x) = i

∫∞
−∞

dτ
2π

1
τ+i0

e−ixτ [76, 77] and the substitution τ = l+ − p+, such that the
result is a Heavyside-function, i.e.∫

dl+
2π

e−i(x−−φ)l+
1

2l+p− − p2
⊥ −m2 + i0

=
−i
2p−

Θ(x− − φ)e−i(x−−φ)p+ . (6.1.17)

Analogously the integral in ΓνM2(x) can be solved. Writing both contributions of the integral
separately, i.e. ΓνM1(x) = Γ

(δ),ν
M1 (x) + Γ

(θ),ν
M1 (x) and ΓνM2(x) = Γ

(δ),ν
M2 (x) + Γ

(θ),ν
M2 (x), we obtain the

four expressions:

Γ
(δ),ν
M1 (x) =

α

2π

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

Ē(p′, x)γνE(p, x)

× n̂

2p−

[
eT

x−
1 M̃

x−
I −

u+ 2r

u+ r
m
(

1− eT
x−
1

)]
,

(6.1.18)

Γ
(θ),ν
M1 (x) =

α

2π

∫ x−

−∞
dφ

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

Ē(p′, x)γνE(p, x)

× (−i)
2p−

(p̂+m)

[
eT1M̃I −

u+ 2r

u+ r
m
(
1− eT1

)]
,

(6.1.19)

Γ
(δ),ν
M2 (x) =

α

2π

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

×
[
eT

x−
2 M̃

x−
II −

u+ 2r

u+ r
m
(

1− eT
x−
2

)] n̂

2p′−
Ē(p′, x)γνE(p, x),

(6.1.20)

Γ
(θ),ν
M2 (x) =

α

2π

∫ ∞
x−

dφ

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

×
[
eT2M̃II −

u+ 2r

u+ r
m
(
1− eT2

)] (−i)
2p′−

(p̂′ +m)Ē(p′, x)γνE(p, x),

(6.1.21)
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where we introduced the quantities

eT1 = exp

{
i
r2

u+ r

[∫ 1

0

dw∆A2(φwr)−
(∫ 1

0

dw∆A(φwr)

)2
]}

, (6.1.22)

eT2 = exp

{
i
r2

u+ r

[∫ 1

0

dw∆A2(φ̃wr)−
(∫ 1

0

dw∆A(φ̃wr)

)2
]}

. (6.1.23)

Note that also a new notation was employed and the upper index x− means that in this
expression φ→ x−, for example M̃x−

I = M̃I |φ→x− . In this example M̃x−
I depends then on φx−wr

and φx−r , which again are defined by replacing φ → x− in their definitions. Other functions
depending on φ have to be treated analogously. Further the square of the fictitious photon
mass was set to λ2 = 0, since all momenta are on-shell [3, 9, 46].

6.2. Leading order in α correction to the probability

Now, as we discussed already, corrections to the probability scaling with α2 are coming from
the quantity 2Re[SNCS,∗

0 SNCS
corr ] and we will consider here only the contributions by the one-

loop mass operator, i.e. 2Re[SNCS,∗
0 SNCS

mass in] and 2Re[SNCS,∗
0 SNCS

mass out]. Further, we will consider
only the total correction to the probability, summed (averaged) over the final (initial) particles
spin/polarization quantum numbers. This time we can employ the commonly used summation
rules

∑
s us(p)ūs(p) = (p̂ + m) and

∑
j ε
∗
j,νεj,µ = −ηµν [3, 11] to perform the summation and

the average over the quantum numbers. With this and Eqs. (6.1.5)-(6.1.7) we obtain for the
corrections to the probability

P1 =
1

2

∑
s,s′,j

∫
d3q

(2π)3

∫
d3p′

(2π)3
2Re

[
SNCS,∗

0 SNCS
mass in

]
=Re

{∫
d3q

(2π)3

∫
d3p′

(2π)3

−απ
2εε′ω

∫
d4x

∫
d4x′ e−iq(x

′−x)

× Tr
[
(p̂+m)ΓµM0(x′)(p̂′ +m)ΓνM1(x)

]
ηµν

} (6.2.1)

and

P2 =
1

2

∑
s,s′,j

∫
d3q

(2π)3

∫
d3p′

(2π)3
2Re[SNCS,∗

0 SNCS
mass out]

=Re

{∫
d3q

(2π)3

∫
d3p′

(2π)3

−απ
2εε′ω

∫
d4x

∫
d4x′ e−iq(x

′−x)

× Tr
[
(p̂+m)ΓµM0(x′)(p̂′ +m)ΓνM2(x)

]
ηµν

}
.

(6.2.2)
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Now, similar as in Ref. [50], with the representation of the metric in Eq. (2.5.3), i.e. ηµν =
(qµnν +nµqν)/q−−Λ1,µ(q)Λ1,ν(q)−Λ2,µ(q)Λ2,ν(q), we can express for example P1 into the form

P1 =Re

{∫
d3q

(2π)3

∫
d3p′

(2π)3

−απ
2εε′ω

∫
d4x

∫
d4x′ e−iq(x

′−x)

×

{
1

q−
Tr
[
(p̂+m)(qΓM0(x′))(p̂′ +m)(nΓM1(x))

]
+

1

q−
Tr
[
(p̂+m)(nΓM0(x′))(p̂′ +m)(qΓM1(x))

]
−

2∑
i=1

Tr
[
(p̂+m)(Λi(q)ΓM0(x′))(p̂′ +m)(Λi(q)ΓM1(x))

]}}
.

(6.2.3)

Due to gauge invariance and the Ward-identity (qΓM0(x′)) = 0 and the first trace vanishes [3].
For the second trace one can show that finally it does not contribute to any physical observable.
To obtain the complete corrections in order α2 both probabilities, P1 and P2, as well as the
probabilities coming from the polarization operator and the vertex correction have to be added.
In Ref. [56] it was shown that the sum over the two mass operator diagrams (Figs. 6.2 and 6.3)
and the vertex correction diagram contracted with the photon four-momentum vanishes, i.e.
(qΓM1(x)) + (qΓM2(x)) + (qΓV ertex(x)) = 0. Therefore, the second trace does not contribute
to any physical observable and we ignore it in the following. Similar conclusions can be made
for P2 and we are left with the expressions

P̃1 =Re

{∫
d3q

(2π)3

∫
d3p′

(2π)3

απ

2εε′ω

∫
d4x

∫
d4x′ e−iq(x

′−x)

×
2∑
i=1

Tr
[
(p̂+m)(Λi(q)ΓM0(x′))(p̂′ +m)(Λi(q)ΓM1(x))

]}
,

(6.2.4)

and

P̃2 =Re

{∫
d3q

(2π)3

∫
d3p′

(2π)3

απ

2εε′ω

∫
d4x

∫
d4x′ e−iq(x

′−x)

×
2∑
i=1

Tr
[
(p̂+m)(Λi(q)ΓM0(x′))(p̂′ +m)(Λi(q)ΓM2(x))

]}
.

(6.2.5)

Inserting the expressions of the Γ quantities in Eq. (6.1.8) and in Eqs. (6.1.18)-(6.1.21)
one observes that, except of the phase terms of the initial and final states, the remaining
equation only depends on the minus component of the four-space-time, such that six integrals
in space-time can be taken, leading to δ-functions. By rewriting the square of δ-functions
as in Eq. (4.1.2) and changing the integral d3p′ from Cartesian to light-cone coordinates via
d3p′ = dp′−d

2p′⊥(ε′/p′−) [39], these δ-functions lead to momentum conservation in the light-
cone components p− = p′− + q− and p⊥ = p′⊥ + q⊥. Further with these transformations the
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corrections P̃1 = P̃
(δ)
1 + P̃

(θ)
1 and P̃2 = P̃

(δ)
2 + P̃

(θ)
2 become

P̃
(δ)
1 =Re

{
α2

p−p′−ω

∫
d3q

(2π)3

∫
dx−

∫
dx′−

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

× e
i(p+−p′+−q+)(x′−−x−)+i

∫ x′−
x− dϕ

[
(pA(ϕ))
p−

− (p′A(ϕ))

p′−
−A

2(ϕ)
2p−

+
A2(ϕ)

2p′−

]

×
2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i(q)

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×

[
1− n̂Â(x−)

2p′−

]
Λ̂i(q)

[
1 +

n̂Â(x−)

2p−

]
n̂

2p−

×
[
eT

x−
1 M̃

x−
I −

u+ 2r

u+ r
m
(

1− eT
x−
1

)]}}
,

(6.2.6)

P̃
(θ)
1 =Re

{
α2

p−p′−ω

∫
d3q

(2π)3

∫
dx−

∫
dx′−

∫ x−

−∞
dφ

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

× e
i(p+−p′+−q+)(x′−−x−)+i

∫ x′−
x− dϕ

[
(pA(ϕ))
p−

− (p′A(ϕ))

p′−
−A

2(ϕ)
2p−

+
A2(ϕ)

2p′−

]

×
2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i(q)

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×

[
1− n̂Â(x−)

2p′−

]
Λ̂i(q)

[
1 +

n̂Â(x−)

2p−

]
(−i)
2p−

(p̂+m)

×
[
eT1M̃I −

u+ 2r

u+ r
m
(
1− eT1

)]}}
,

(6.2.7)

P̃
(δ)
2 =Re

{
α2

p−p′−ω

∫
d3q

(2π)3

∫
dx−

∫
dx′−

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

× e
i(p+−p′+−q+)(x′−−x−)+i

∫ x′−
x− dϕ

[
(pA(ϕ))
p−

− (p′A(ϕ))

p′−
−A

2(ϕ)
2p−

+
A2(ϕ)

2p′−

]

×
2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i(q)

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×
[
eT

x−
2 M̃

x−
II −

u+ 2r

u+ r
m
(

1− eT
x−
2

)]
× n̂

2p′−

[
1− n̂Â(x−)

2p′−

]
Λ̂i(q)

[
1 +

n̂Â(x−)

2p−

]}}
,

(6.2.8)
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and

P̃
(θ)
2 =Re

{
α2

p−p′−ω

∫
d3q

(2π)3

∫
dx−

∫
dx′−

∫ ∞
x−

dφ

∫ ∞
0

dudr

(u+ r)2
e−i

r2

u+r
m2

× e
i(p+−p′+−q+)(x′−−x−)+i

∫ x′−
x− dϕ

[
(pA(ϕ))
p−

− (p′A(ϕ))

p′−
−A

2(ϕ)
2p−

+
A2(ϕ)

2p′−

]

×
2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i(q)

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×
[
eT2M̃II −

u+ 2r

u+ r
m
(
1− eT2

)]
× (−i)

2p′−
(p̂′ +m)

[
1− n̂Â(x−)

2p′−

]
Λ̂i(q)

[
1 +

n̂Â(x−)

2p−

]}}
.

(6.2.9)

At this point we have to solve for each term the corresponding traces.

6.2.1. Computation of the traces

For each of the four corrections to the probability we have one trace, which we will split into
two parts in the following. One part contains the quantity M̃I or M̃II (this part gets the
index M) and the other part contains the remaining term with the electron mass m (which
will have the index m). This makes in total 8 traces to be solved. Fortunately, it turns out,
that the four traces coming from P̃

(δ)
2 and P̃ (θ)

2 can be calculated on a similar way to, and at
the end can be directly obtained from, the corresponding traces of P̃ (δ)

1 and P̃ (θ)
1 by changing

p− ↔ p′−, Π ↔ Π′, and φr,wr → φ̃r,wr. Therefore we present only the results for the former
four traces later. To perform the computation of the traces, Appendix A holds useful relations
for γ-matrices. Further we introduce the short notation Λµ

i = Λµ
i (q) in the following.

1st Trace: R(δm)
1

We start with the first part of the trace from P̃
(δ)
1 , i.e.

R
(δm)
1 =

2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×

[
1− n̂Â(x−)

2p′−

]
Λ̂i

[
1 +

n̂Â(x−)

2p−

]
n̂

2p−

}
.

(6.2.10)

We notice that only an even number of γ-matrices is present if there is either p̂ or p̂′ in the
trace. Instead, in the case of both or none of them being present, the number of γ-matrices is
odd and the trace vanishes accordingly. Since {n̂, Â} = 0, {n̂, Λ̂i} = 0, and n̂2 = n2 = 0 the
trace reduces to

R
(δm)
1 =

2∑
i=1

m

4

{
Tr
[
p̂Λ̂iΛ̂i

n̂

2p−

]
+ Tr

[
Λ̂ip̂′Λ̂i

n̂

2p−

]}
. (6.2.11)
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With (ΛiΛj) = −δij we obtain

R
(δm)
1 = m

(
p′−
p−
− 1

)
. (6.2.12)

2nd Trace: R(δM)
1

The second part of the trace from P̃
(δ)
1 is

R
(δM)
1 =

2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×

[
1− n̂Â(x−)

2p′−

]
Λ̂i

[
1 +

n̂Â(x−)

2p−

]
n̂

2p−
M̃

x−
I

}
.

(6.2.13)

Due to the term n̂/2p− the trace, including the quantity M̃x−
I , simplifies to

R
(δM)
1 =

2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

× Λ̂i
n̂

2p−

[
− r

u+ r

∫ 1

0

dw∆̂A(φx−wr )−
u

u+ r
∆̂A(φx−r )

]}
.

(6.2.14)

We rewrite now (p̂ + m) and (p̂′ + m) in the above expression using the relation (p̂ + m) =∑
s us(p)ūs(p). It is easy to verify the following identities:

ūs(p)

[
1−

n̂Â(x′−)

2p−

]
= ūs(p)

n̂

2p−

[
m+ Π̂(x′−)

]
(6.2.15)

and [
1 +

n̂Â(x′−)

2p′−

]
us′(p

′) =
[
m+ Π̂′(x′−)

] n̂

2p′−
us′(p

′), (6.2.16)

where we introduced the short notation Π̂(x′−) = Π̂p(x
′
−) and Π̂′(x′−) = Π̂p′(x

′
−) with the

four-vector Πµ
p(x′−) defined in Eq. (2.9.4). Note that the above equalities stay valid under the

simultaneous exchange of p↔ p′ and Π↔ Π′. Transforming the spinors back to (p̂+m) and
(p̂′ + m) we observe that due to the new appearance of n̂ in the trace they reduce to p̂ and
p̂′, respectively. The dependence on the electron mass m resulting from the relations in Eqs.
(6.2.15) and (6.2.16) turns out to not contribute to the trace, as traces which scale linear with
m have an odd number of γ-matrices and are therefore zero, and the trace scaling with m2

turns out to vanish due to the contraction of n̂2 = 0. With this the trace reduces to

R
(δM)
1 =

2∑
i=1

1

4
Tr

{
Π̂(x′−)Λ̂iΠ̂

′(x′−)Λ̂i
n̂

2p−

×
[
− r

u+ r

∫ 1

0

dw∆̂A(φx−wr )−
u

u+ r
∆̂A(φx−r )

]}
.

(6.2.17)
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After anti-commutation of Λ̂i and Π̂′(x′−) the trace can be solved,

R
(δM)
1 =

2∑
i=1

{
(ΛiΠ

′(x′−))

[
r

u+ r

(
Λi

∫ 1

0

dw∆A(φx−wr )

)
+

u

u+ r
(Λi∆A(φx−r ))

]
− 1

2

p′−
p−

[
r

u+ r

(
Π(x′−)

∫ 1

0

dw∆A(φx−wr )

)
+

u

u+ r

(
Π(x′−)∆A(φx−r )

)]
+

1

2

[
r

u+ r

(
Π′(x′−)

∫ 1

0

dw∆A(φx−wr )

)
+

u

u+ r

(
Π′(x′−)∆A(φx−r )

)]}
.

(6.2.18)

The expression can be simplified further using again the representation of the metric shown
in Eq. (2.5.3). Thereafter the four-product of two arbitrary four-vectors Bµ and Cµ can be
expressed as

(BC) = [(qB)C− + (qC)B−]/q− −
2∑
i=1

(ΛiB)(ΛiC). (6.2.19)

With this identity we can perform the remaining sum and obtain the final expression

R
(δM)
1 =

r

u+ r

[
p′−
q−

(
q

∫ 1

0

dw∆A(φx−wr )

)
−
p′−
p−

(
Π(x′−)

∫ 1

0

dw∆A(φx−wr )

)]
+

u

u+ r

[
p′−
q−

(q∆A(φx−r ))−
p′−
p−

(
Π(x′−)∆A(φx−r )

)]
.

(6.2.20)

3rd Trace: R(θm)
1

We continue with the first part of the trace from P̃
(θ)
1 given by

R
(θm)
1 =

2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×

[
1− n̂Â(x−)

2p′−

]
Λ̂i

[
1 +

n̂Â(x−)

2p−

]
(p̂+m)

}
.

(6.2.21)

First we observe that (p̂ + m)2 = 2m(p̂ + m) and the trace is therefore identical to 2m times
the trace of the leading order nonlinear Compton scattering diagram. However, we computed
this trace so far only within the LCFA, such that we have to perform the calculation here
again. For this we rewrite all four squared brackets according to the relations in Eqs.(6.2.15)
and (6.2.16). Again, we observe that the quantities (p̂ +m) and (p̂′ +m) reduce to p̂ and p̂′,
respectively, and with n̂p̂n̂ = 2p−n̂ we obtain

R
(θm)
1 =2m

2∑
i=1

1

4
Tr

{
n̂

2p−

[
m+ Π̂(x′−)

]
Λ̂i

[
m+ Π̂′(x′−)

] n̂

2p′−

×
[
m+ Π̂′(x−)

]
Λ̂i

[
m+ Π̂(x−)

]}
.

(6.2.22)
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At this point we use Eq. (6.2.19) to expand every square bracket into a form similar to

[
m+ Π̂(x−)

]
=

[
m+ n̂

(qΠ(x−))

q−
+ q̂

(nΠ(x−))

q−
−

2∑
k=1

Λ̂k(ΛkΠ(x−))

]
, (6.2.23)

with (nΠ(x−)) = p−. Note that the term on the right hand side depending on n̂ does not
contribute to the trace and can be neglected. The number of possible combinations in Eq.
(6.2.22) is reduced by the following observation: Considering the expression in between two
n̂ the two square brackets can depend each on m, q̂, and Λ̂k. Now contributions where both
square brackets only depend on m and Λ̂k vanish as n2 = 0 and if both square brackets
only depend on q̂ they vanish as q2 = 0, too. Hence only contributions where one square
bracket depends on q̂ and the other one on m or Λ̂k are non-zero. Further, considering only
contributions with an even number of γ-matrices we end up with eight possible combinations

R
(θm)
1 =

m

2

2∑
i=1

1

4p−p′−q
2
−

{
m2

{
Tr
[
n̂q̂Λ̂in̂q̂Λ̂i

]
p−p

′
− + Tr

[
n̂q̂Λ̂in̂Λ̂iq̂

]
p2
−

+ Tr
[
n̂Λ̂iq̂n̂q̂Λ̂i

]
p′2− + Tr

[
n̂Λ̂iq̂n̂Λ̂iq̂

]
p−p

′
−

}
+

2∑
k=1

2∑
j=1

{
Tr
[
n̂q̂Λ̂iΛ̂jn̂q̂Λ̂iΛ̂k

]
p−p

′
−(ΛjΠ

′(x′−))(ΛkΠ(x−))

+ Tr
[
n̂q̂Λ̂iΛ̂jn̂Λ̂kΛ̂iq̂

]
p2
−(ΛjΠ

′(x′−))(ΛkΠ
′(x−))

+ Tr
[
n̂Λ̂jΛ̂iq̂n̂q̂Λ̂iΛ̂k

]
p′2−(ΛjΠ(x′−))(ΛkΠ(x−))

+ Tr
[
n̂Λ̂jΛ̂iq̂n̂Λ̂kΛ̂iq̂

]
p−p

′
−(ΛjΠ(x′−))(ΛkΠ

′(x−))

}}
.

(6.2.24)

These traces can be solved using anti-commutation relations. Again, we rewrite with Eq.
(6.2.19) the remaining sum and we identify (Π(x−)Π(x′−)) = m2 − [A(x′−) − A(x−)]2/2 =
(Π′(x−)Π′(x′−)). With these transformations we obtain for the expression

R
(θm)
1 =− 4m3 +m

(
p−
p′−

+
p′−
p−

)
[A(x′−)−A(x−)]2

+ 2m
p−
q−

[
(qΠ′(x′−)) + (qΠ′(x−))

]
+ 2m

p′−
q−

[
(qΠ(x′−)) + (qΠ(x−))

]
.

(6.2.25)

Now considering that the momenta are on-shell and exploiting their conservation law for the
minus and perpendicular light-cone component, one can show that

−2(qΠ(x−)) = Π2(x−)− Π′2(x−) + q2 − 2(qΠ(x−))

= (Πµ(x−)− Π′µ(x−)− qµ)(Πµ(x−) + Π′µ(x−)− qµ)

= (Π+(x−)− Π′+(x−)− q+)(Π−(x−) + Π′−(x−)− q−)

= 2p′−(Π+(x−)− Π′+(x−)− q+)

(6.2.26)
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and analogously (qΠ′(x−)) = −p−(Π+(x−)−Π′+(x−)−q+). Further one can rewrite (Π+(x−)−
Π′+(x−) − q+) = −(m2q−/(2p−p

′
−))[1 + π2

⊥,e(x−)], where π⊥,e(x−) is defined in Eq. (4.1.9).
With these observations we finally end up with the expression

R
(θm)
1 =− 4m3 +m

(
p−
p′−

+
p′−
p−

){[
A(x′−)−A(x−)

]2
+m2

[
2 + π2

⊥,e(x
′
−) + π2

⊥,e(x−)
]}
.

(6.2.27)

4th Trace: R(θM)
1

Now we solve the second part of the trace from P̃
(θ)
1 , i.e.

R
(θM)
1 =

2∑
i=1

1

4
Tr

{
(p̂+m)

[
1−

n̂Â(x′−)

2p−

]
Λ̂i

[
1 +

n̂Â(x′−)

2p′−

]
(p̂′ +m)

×

[
1− n̂Â(x−)

2p′−

]
Λ̂i

[
1 +

n̂Â(x−)

2p−

]
(p̂+m)M̃I

}
.

(6.2.28)

First we rewrite all squared brackets into the form given in Eqs.(6.2.15) and (6.2.16). Further,
by the transformation

(p̂+m)M̃I(p̂+m) =
[
M̃I(m− p̂) + {p̂, M̃I}

]
(p̂+m)

={p̂, M̃I}(p̂+m).
(6.2.29)

the trace depends on the anti-commutator between p̂ and M̃I . This anti-commutator can be
calculated and is given by

{p̂, M̃I} =K0 +
r

u+ r
∆̂A(φr)p̂+

r

u

2u+ r

u+ r

∫ 1

0

dw∆̂A(φwr)∆̂A(φr) +
n̂

2p−
K̂n, (6.2.30)

where we introduced the quantities

K0 =− u+ 2r

u+ r
(∆A(φr))

2 + 2
r

u

r

u+ r

(∫ 1

0

dw∆A(φwr)

)2

− r

u
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0

dw (∆A(φwr))
2 − 2

r

u

r

u+ r

(
∆A(φr)

∫ 1

0

dw∆A(φwr)

) (6.2.31)

and

K̂n =2m2 r

u+ r
∆̂A(φr)− 2(p∆A(φr))

r

u+ r
p̂

− 2

(
p

∫ 1

0

dw∆A(φwr)

)
r

u

2u+ r

u+ r
∆̂A(φr)

+ 2(p∆A(φr))
r

u

2u+ r

u+ r

∫ 1

0

dw∆̂A(φwr).

(6.2.32)
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Note that the first term of the anti-commutator, i.e. K0, can be moved out of the trace and the
remaining expression in the trace is equal to R(θm)

1 /(2m). For the second term in Eq. (6.2.30)
we only have to keep the electron mass m from (p̂+m) in Eq. (6.2.29), since otherwise the p̂
combines with the other p̂ in the anti-commutator to p̂2 = m2 and the n̂ of Eqs.(6.2.15) and
(6.2.16) can anti-commute yielding n̂2 = 0. According to a similar reason we have to keep for
the third term only the p̂ from (p̂+m). Finally, the last term in the anti-commutator, which
is proportional to n̂, vanishes due to an other n̂ from the last squared bracket. We obtain

R
(θM)
1 =

K0

2m
R

(θm)
1 +

2∑
i=1

1

4
Tr

{[
m+ Π̂(x′−)

]
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[
m+ Π̂′(x′−)
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×
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]
Λ̂i
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2p−

×
[

r

u+ r
∆̂A(φr) +

r

u

2u+ r

u+ r

∫ 1

0

dw∆̂A(φwr)∆̂A(φr)

]}
.

(6.2.33)

Again Eq.(6.2.23) is used to rewrite all four square brackets. Similar considerations as dis-
cussed below Eq. (6.2.23) can be made to reduce the number of combinations. At the end 16
of them are non-zero and the corresponding traces can be calculated using anti-commutation
relations. The result can be further simplified with Eq.(6.2.19) and we finally obtain

R
(θM)
1 =

R
(θm)
1

2m

[
K0 +

r

u
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(
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0
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)]
.

(6.2.34)

5th Trace: R(δm)
2

We move over to the first part of the trace from P̃
(δ)
2 which is

R
(δm)
2 =

2∑
i=1

1

4
Tr

{
(p̂+m)

[
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n̂Â(x′−)

2p−

]
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[
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[
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n̂Â(x−)
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]}
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(6.2.35)

The trace can be solved analogous to R(δm)
1 or can be obtained directly from it by changing

p− ↔ p′−. We therefore only present the result which is

R
(δm)
2 = m

(
p−
p′−
− 1

)
. (6.2.36)
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6th Trace: R(δM)
2

The second part of the trace from P̃
(δ)
2 is

R
(δM)
2 =
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i=1

1

4
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{
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[
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(6.2.37)

It can be solved analogous to R(δM)
1 or can be obtained directly from it with the substitutions

p− ↔ p′−, Π↔ Π′, and φr,wr → φ̃r,wr. The final result is

R
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r
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(
q
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(6.2.38)

7th Trace: R(θm)
2

The first part of the trace from P̃
(θ)
2 is

R
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1

4
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(6.2.39)

This trace turns out to be equal to R(θm)
1 as (p̂′ +m)2 = 2m(p̂′ +m), thus

R
(θm)
2 =R

(θm)
1 . (6.2.40)

8th Trace: R(θM)
2

Finally the second part of the trace from P̃
(θ)
2 is

R
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1

4
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(6.2.41)
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Also this trace can be solved analogous to R(θM)
1 or can be obtained directly from it by changing

p− ↔ p′−, Π↔ Π′, and φr,wr → φ̃r,wr. The final result is

R
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R
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(6.2.42)

where we introduced the quantity

K̃0 =− u+ 2r
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∆A(φ̃r)
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+ 2
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(6.2.43)

6.2.2. The final expression of the correction to the probability

With the expressions of the traces we have everything together to present the total correction
to the probability from the mass operator. After adding the four probabilities in Eqs.(6.2.6)-
(6.2.9) to P̃ = P̃1 + P̃2 = P̃ δ

1 + P̃ θ
1 + P̃ δ

2 + P̃ θ
2 and inserting the corresponding results for

the traces, we obtain for the correction proportional to α2 stemming from the one-loop mass
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operator to the probability of nonlinear Compton scattering

P̃ =Re

{∫
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(6.2.44)
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where we introduced the quantities

K1 =− u+ 2r
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) (6.2.45)

and
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(6.2.46)

Note that this probability only contains the corrections contributing to the physical amplitude
whereas terms canceling with contributions from the vertex correction were neglected. For the
total correction in leading order α also contributions from the polarization operator and the
vertex correction have to be considered.

6.3. Comparison with the probability including the decay
of particle states

In Chapter 4 the probability of nonlinear Compton scattering including the decay of the par-
ticle states was derived, which corresponds to a resummation of an infinite series of Feynman
diagrams. This series also includes the two Feynman diagrams of the corrections calculated in
this chapter. Hence, within some further approximations, the probability with damping in Eq.
(4.1.6) should implicitly include the new result in Eq. (6.2.44) and we want to compare both
probabilities in the following. As the steps of comparing the probability P̃ with Eq. (4.1.6)
is similar for its two parts P̃1 and P̃2, we will first restrict us to the comparison of P̃1, where
the incoming electron is corrected by the mass operator (see Fig. 6.2), and will briefly present
the case of P̃2 at the end.
In order to do so we first have to extract in Eq. (4.1.6) the contribution coming from the

considered Feynman diagram and apply for both probabilities, the one in Eq. (4.1.6) and P̃1,
the same approximations.

6.3.1. Rewriting the probability of nonlinear Compton scattering
with damping

For the comparison we start from the probability including the particle states decay given in
Eq. (4.1.6) on page 41 which is

P
(e−→e−γ)
j,s,s′ =

∫
d3q

16π2

α

p−p′−ω

∫
dφ+e

2Im
{
m
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]}
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∫
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2
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{
[1+π2

⊥,e(φ+)]φ−+
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φ3
−

12

}
Tj,s,s′ .

(6.3.1)
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As mentioned already we first have to extract the part of the expression corresponding to
the correction of the incoming electron by one mass operator. This is achieved by neglecting
the damping of the electron and photon out-state and expressing the remaining exponential
damping of the electron in-state as a series, i.e.

e
2Im

{
m
p−

∫ φ+
−∞ dϕMs(p,ϕ)

}
→ 1 + 2Im

[
m

p−

∫ φ+

−∞
dϕMs(p, ϕ)

]
+ · · · . (6.3.2)

Now the first summand, i.e. 1, corresponds to the leading order diagram without correc-
tions (see Fig. 6.1). The second summand, i.e. 2Im

[
m
p−

∫ φ+

−∞ dϕMs(p, ϕ)
]
, corresponds to

the Feynman diagram we are looking for, where the incoming electron is corrected by one
mass operator (see Fig. 6.2). Higher order summands instead correspond to diagrams with
corrections by multiple mass operators on the incoming electron state. Hence we only keep
the second summand for our considerations. Further, we have to sum (average) over the final
(initial) quantum numbers in order to compare the probability with the new result, i.e. we
have to consider the probability

1

2

∑
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(6.3.3)

The sum over the final spin and polarization can be performed straight forward, where for the
trace the expressions in Eqs. (4.3.1) and (4.3.2) on page 47 are used. We obtain
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2
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(6.3.4)

The sum over the initial spin includes the trace and the imaginary part of the mass operator.
With the one-loop mass operator presented in Eq. (3.2.19) on page 33 this sum yields∑
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(6.3.5)

Now we replace this expression into Eq. (6.3.3) and observe the following: The only depen-
dence on φ− is in the exponential phase term, where it depends on an odd power of φ−, and
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in the trace. In the trace in Eq. (6.3.5) we see that there are two terms, the first one (in the
second and third line) depending on an even power of φ− (more explicit on φ0

− = 1 and φ2
−)

and the second one (in the fourth line) depending on an odd power of φ− (linearly on φ−).
Since the overall integrand of the integral in dφ− in Eq. (6.3.3) has to be even, only the real
part of the phase contributes to the first part of the trace and only the imaginary part of the
phase contributes to the second part of the trace. With this observation we conclude that the
final expression of the probability is
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(6.3.6)

6.3.2. Rewriting the new probability P̃1

Now we modify the probability in Eq. (6.2.44) in order to make it comparable with the one
in Eq. (6.3.6). As mentioned before, we first consider only the part of the probability corre-
sponding to P̃1. We assume to have a linearly polarized background field with four-potential
(times electron charge) Aµ(φ) = (0,A(φ)) and A(φ) = A0ψ(φ)a1, such that the last term
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containing the double sum can be neglected. Therefore the probability under consideration is
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(6.3.7)

where R(θm)
1 is given in Eq. (6.2.27) and K1 in Eq. (6.2.45). The initial and final particles

are on-shell and their momenta fulfill the relations p− = p′− + q− and p⊥ = p′⊥ + q⊥, such
that we can rewrite the second exponential function as presented in Eq. (4.1.3). Further, we
have to apply the LCFA in order to be able to compare the result with Eq. (6.3.6). As the
LCFA is only valid in the case of ξ0 � 1 [9,39] we assume this in the following and also expect
that χ0 ∼ 1. Similar as in the case of the probability with damping, we perform the LCFA
here in two steps: First we transform the terms corresponding to contributions from the mass
operator, and after that we transform the remaining part of the expression. The first part,
the transformation of the mass operator contributions, is similar to Section 2.9.3 and we use
Eqs. (2.9.19)-(2.9.26) to perform it [9, 38]. With that we obtain the expression
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(6.3.8)
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where now the variable K1 reduced to

KL
1 =

[
12 + 16

r

u
+ 4

r2

u2

]
u3r2m6

3(u+ r)3
χ2
p(φ), (6.3.9)

eT1 to
eT1,L = exp

[
−i u

2r4m6

3(u+ r)3
χ2
p(φ)

]
, (6.3.10)

and analogously exp(T
x−
1,L) = exp[−iu2r4m6χ2

p(x−)/(3(u+ r)3)]. Before we continue with the
second step of the transformation according to the LCFA, we perform some term transfor-
mations to simplify the intermediate expression. Similar as in Section 2.9.3 we can per-
form a series of substitutions, first v = r/u and ũ = um2/(1 + v), and then u = ũv2

[49]. After this substitutions we make use of Eq. (B.0.18). Additionally we note that[
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(6.3.11)

At this stage we apply the LCFA to the remaining part of the equation, similar to Chapter 4
below Eq. (4.1.4). We perform the substitution φ+ = (x− + x′−)/2 and φ− = x− − x′−, such
that x− = φ+ + φ−/2, x′− = φ+ − φ−/2, and dx−dx′− = dφ+dφ− [39]. According to the LCFA
we expand now all the terms around φ− → 0 in the following way:
Since the mass operator is already in the LCFA we keep only the zero order for its con-

tributions, i.e. x− → φ+. This applies in Eq. (6.3.11) to the function χp(x−) and to the
integration boundary of the integral in dφ. The remaining functions depending on x− and x′−
in the pre-exponential have to be expanded up to first order (notice that the quantity R(θm)

1

depends on φ−, too). Finally we split the exponential phase in the second line of Eq. (6.3.11)
into two parts like in Eq. (4.1.5) and expand one part linearly in φ− and the other up to cubic
order in φ− as discusses below Eq. (4.1.5) [38, 39].
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We obtain for the expression of P̃1 in the LCFA

P̃ LCFA
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(6.3.12)

where we have the trace

R
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1,LCFA =− 4m3 −m
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(6.3.13)

and where π⊥,e(φ+) is defined in Eq. (4.1.9). Now the second line in Eq. (6.3.13) is propor-
tional to the derivative in φ− of the exponent in the second line of Eq. (6.3.12), such that it
vanishes when integrating over φ− according to a property of the Airy function presented in
Eq. (B.0.6). Also the term depending on π⊥,e(φ+) in the fourth line of Eq. (6.3.12) does not
contribute as the corresponding integrand is odd in the integral over d2q⊥. Neglecting both
terms the expression of the probability in the LCFA reduces to
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(6.3.14)

90



The above equation only depends on the derivative of the background field and is therefore
manifestly gauge invariant.
Now, comparing the third line of the expression with the fourth and fifth line, we observe that

the first term in the third line is comparable to the one in the fifth line and the second term in
the third line is comparable to the one in the fourth line. An important difference is, however,
that taking into account an overall factor of 1/p−, the terms in the third line are proportional
to q−/p− and p′−/p−, whereas the fourth and fifth line scale with 2(m2/p−)(q−/p−)

∫ φ+

−∞ dφ

and 2(m2/p−)
∫ φ+

−∞ dφ, respectively. Employing the substitution φ̃ = ω0φ in order to make the
integral in φ dimensionless, the last two lines receive an additional factor 1/ω0 and, due to the
relation m2/(ω0p−) = ξ0/χ0, we conclude that they scale with the factor ξ0/χ0. This factor is
large as within the LCFA ξ0 � 1 and we further approximate χ0 ∼ 1. On the other hand the
factors q−/p− and p′−/p− are bound to positive values between zero and unity. Therefore, the
contribution of the third line in the above equation is negligible within the LCFA and we can
approximate the probability by
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(6.3.15)

With the remaining expression we perform analogous transformations as in the discussion
below Eq. (6.3.5) and obtain the final equation
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(6.3.16)

which precisely coincide with Eq. (6.3.6). We thus proved that the new probability P̃1,
considering a linearly polarized plane wave and the LCFA, is included in the probability of
nonlinear Compton scattering with damping.
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6.3.3. Comparison of P̃2 with the probability including the damping

So far we only compared half of P̃ in Eq. (6.2.44), namely the part corresponding to P̃1.
Now we briefly present the main steps of the comparison of the other half, P̃2, with the
probability of nonlinear Compton scattering including the particles states decay, which is
performed analogously to the previous one.
We start with rewriting the probability including the damping. This time the exponential

damping term is expanded as

e
DNC
j,s,s′ → 1 + 2Im

[
m

p′−

∫ ∞
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dϕMs(p
′, ϕ)

]
+ .... (6.3.17)

Keeping only the first order of the expansion and summing (averaging) over the final (initial)
quantum numbers gives us finally the expression of the probability
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(6.3.18)

Next, we have to adapt the expression of P̃2 following an analog procedure and using the
same assumptions as in the previous Subsection. For this, first we derive the expression of
P̃2 in the LCFA in a linearly polarized plane wave. Instead of recalculating all steps, we can
alternatively obtain the expression P̃ LCFA

2 directly from P̃ LCFA
1 in Eq. (6.3.12) by symmetry

considerations. As we can observe in Eq. (6.2.44) apart from some different signs and different
integration boundaries in the integral in dφ, both P̃1 and P̃2 are similar under the exchange
of p ↔ p′, Π(x′−) ↔ Π′(x′−), φr ↔ φ̃r, and φwr ↔ φ̃wr. Now, when performing the LCFA
for the mass operator an important difference is however that in φr and φ̃r, and similarly
in φwr and φ̃wr, the correction to the phase φ has a different relative sign. This results
into the replacement χp(φ) → −χp′(φ) in Eq. (6.3.12) for the LCFA expression of P̃2. The
two terms that vanish with the integrals in φ− and d2q⊥ vanish in this case, too (note that(
p′⊥ −

p′−
q−
q⊥ −A⊥(x′−)

)
=
(
p⊥ − p−

q−
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)
). Hence we obtain for the probability P̃2
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in a linearly polarized plane wave and in the LCFA
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(6.3.19)

With the same argumentation as below Eq. (6.3.14) the third line of the above equation can
be neglected within the LCFA since its contributions are smaller by an factor of 1/ξ0 � 1 in
comparison to the remaining expression. Therefore, we obtain for the probability P̃2 within
the LCFA the expression
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(6.3.20)

After rewriting the expression as discussed below Eq. (6.3.5), it precisely coincides with Eq.
(6.3.18). Therefore we conclude that the complete probability P̃ is, for a linear polarized plane
wave and within the LCFA, included in the probability of nonlinear Compton scattering with
damping.

6.4. Probability corrections in the LCFA

We derived the expressions of P̃1 and P̃2 for a linearly polarized plane wave and within the
LCFA in Eqs. (6.3.15) and (6.3.20), respectively, and here we will perform the remaining
integrals in d2q⊥ and dφ− for both expressions. For this we follow the same procedure as
in Section 4.3. First we transform the integral in the photon momentum to light-cone co-
ordinates via dq3 = (ω/q−)dq−d

2q⊥ [39] and use Eq. (4.3.4) to perform the integral in the
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perpendicular photon momentum which is Gaussian. After that we employ the substitution
φ̃ =

[
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φ− and define z =
[
q−/(p

′
−χp(φ+))

]2/3. With Eqs. (B.0.2)-
(B.0.4) the integral in φ− can be expressed in terms of Airy-functions and we finally obtain
the expressions
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and
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(6.4.2)

where sgn(ψ′(φ+)) denotes again the sign of the pulse shape function ψ′(φ+). As discussed in
the previous Section these probability corrections are included in the probability with damping
in Eq. (4.3.6).
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7. Conclusions

Throughout this thesis we investigated corrections to the first order strong field QED processes
nonlinear Compton scattering and nonlinear Breit-Wheeler pair production. Our first goal was
to derive probabilities for both, nonlinear Compton scattering and nonlinear Breit-Wheeler
pair production, which stay valid in the limit of large phase length of a pulsed plane wave
background field.
For this in Chapter 3 we investigated which Feynman diagrams of the corrections to non-

linear Compton scattering and nonlinear Breit-Wheeler pair production have to be considered
in order to obtain useful results in the limit of a long pulse duration of the laser pulse. We
observed that the summation of these corrections is precisely included when calculating the
S-matrix with the exact states obtained from the Schwinger-Dyson equations for the elec-
tron, positron, and photon. As it was already shown in Refs. [48, 64, 65], this exact electron,
positron and photon states are not stable inside a plane wave background field, but "decay",
meaning that electrons and positrons emit photons and photons decay into electron-positron
pairs. Their expressions were obtained within the LCFA and in leading order of α (see also
Refs. [48, 64,65]).
In Chapters 4 and 5 we used these exact electron, positron, and photon states to calculate the

probabilities for nonlinear Compton scattering and nonlinear Breit-Wheeler pair production,
respectively. This probabilities contain corrections due to the particles states decay in form of
an exponential damping term and, in contrast to the expressions without corrections, they are
valid for long pulse durations of the background field, too. The new exponential damping scales
with the pulse duration and depends on the particles momenta and their spin/polarization
quantum numbers. It becomes important when the product αξ0ΦL & 1, with ΦL being the
phase length of the laser pulse and considering that χ0 ∼ 1 and κ0 ∼ 1. When neglecting
the damping, the results reduce to the probabilities without radiative corrections. For all the
calculations a particular spin and polarization basis was chosen. We proved however, that the
results for the total probability are independent of the choice of this basis after summing over
the corresponding spin/polarization quantum number. Further we verified that the result of
nonlinear Compton scattering is in agreement with that of a Poissonian distribution in the
classical limit, as it was found in Ref. [42].
Finally, we investigated in Chapter 6 the first order in α corrections to nonlinear Compton

scattering coming from Feynman diagrams where the mass operator is acting either on the
incoming or on the outgoing electron state. This calculation was performed in a more general
case without employing the LCFA and for a plane wave background field with arbitrary trans-
verse polarization. The corrections to the probability of nonlinear Compton scattering were
summed (averaged) over the quantum numbers of the outgoing (incoming) particles and inte-
grated over the outgoing particles momenta. At the end they were compared to the probability
including the particles states decay computed in Chapter 4. Here we observed that within the
approximations in Chapter 4 the contributions of the new probability corrections are included
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in the probability with damping. In this context also the expressions of the new probability
corrections within the LCFA and for a linearly polarized plane wave were presented.
In order to obtain the complete first order in α correction to the probability of nonlinear

Compton scattering also the correction by the polarization operator and the vertex correction
have to be considered. The polarization operator correction was investigated in parallel by an
other student, whereas the vertex correction has still to be computed in future. Especially the
contribution of the vertex correction is of interest, as it is not included in the resummation
corresponding to the probability with damping.
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A. Dirac matrices

The Dirac matrices are generated by the two-dimensional unity-matrix and the Pauli-matrices
[11,46]

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (A.0.1)

and they have the following form:

γ0 =

(
12×2 0

0 −12×2

)
, γj =

(
0 σj

−σj 0

)
, (A.0.2)

with j = 1, 2, 3. They fulfill the conditions (γ0)2 = 14×4, (γj)2 = −14×4, (γµ)† = γ0γµγ0, and
the anti-commutator is given by

{γµ, γν} = γµγν + γνγµ = 2ηµν . (A.0.3)

A product of three γ-matrices can be rewritten by the following identity [49,78]

γµγνγρ = ηµνγρ + ηνργµ − ηµργν − iετµνργτγ5, (A.0.4)

where ε0123 = +1 and we will introduce γ5 shortly in Eq. (A.0.8). Further the following
relations can be helpful when calculating traces:

Tr[γµ] = 0 = Tr[γµ1 ...γµj ] for j being an odd number, (A.0.5)
Tr[γµγν ] = 4ηµν , (A.0.6)
Tr[γµγνγργσ] = 4(ηµνηρσ − ηµρηνσ + ηµσηνρ). (A.0.7)

The 5th Dirac matrix is defined as [11,46]

γ5 = iγ0γ1γ2γ3 =

(
0 12×2

12×2 0

)
. (A.0.8)

Its square is equal to the identity matrix and it anti-commutes with the other Dirac matrices,
i.e. (γ5)2 = 1 and {γ5, γµ} = 0. Useful for traces with γ5 are the following identities:

Tr[γ5] = 0 = Tr[γ5γµ] = Tr[γ5γµγν ] = Tr[γ5γµγνγρ], (A.0.9)
Tr[γ5γµγνγργσ] = −4iεµνρσ, (A.0.10)
Tr[γ5γµ1 ...γµj ] = 0 for j being an odd number, (A.0.11)
Tr[γ5γµγνγργαγβγδ] = −4i(ηµνεραβδ + ηνρεµαβδ − ηµρεναβδ

− ηβδεαµνρ + ηαδεβµνρ − ηαβεδµνρ).
(A.0.12)
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Another useful matrix when dealing with γ-matrices is their commutator [11,46]

σµν =
i

2
(γµγν − γνγµ). (A.0.13)

This matrix is anti-symmetric (σµν = −σνµ) and commutes with γ5, i.e. [σµν , γ5] = 0. For the
product of both matrices there exists the relation

γ5σµν =
i

2
εµναβσαβ. (A.0.14)

Traces with σµν can be solved with the following identities:

Tr[σµν ] = 0, (A.0.15)
Tr[σµνγµ1 ...γµj ] = 0 for j being an odd number, (A.0.16)
Tr[σµνγργτ ] = 4i(ηµτηνρ − ηµρηντ ), (A.0.17)
Tr[γ5σµνγργτ ] = 4εµνρτ , (A.0.18)
Tr[γ5σµνγργαγβγδ] = 4(ηνρεµαβδ − ηµρεναβδ − ηβδεαµνρ

+ ηαδεβµνρ − ηαβεδµνρ),
(A.0.19)

Tr[γ5γµσνργαγβγδ] = 4(ηµνεραβδ − ηµρεναβδ − ηβδεαµνρ

+ ηαδεβµνρ − ηαβεδµνρ).
(A.0.20)

Together the matrices 14×4, γ5, γµ, iγµγ5, σµν form a complete set in the sense that an
arbitrary matrix M can be decomposed into a linear combination of those matrices [3,48], i.e.

M = m114×4 +m5γ
5 + cµγ

µ +m5µiγ
µγ5 +mµνσ

µν , (A.0.21)

where the coefficients are obtained by solving the following traces

m1 =
1

4
Tr [14×4M ] , (A.0.22)

m5 =
1

4
Tr
[
γ5M

]
, (A.0.23)

mµ =
1

4
Tr [γµM ] , (A.0.24)

m5µ =
1

4
Tr
[
iγµγ

5M
]
, (A.0.25)

mµν =
1

8
Tr [σµνM ] . (A.0.26)
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B. Airy functions

The so-called Airy-function solves the following differential equation [75]:

Ai′′(z) = zAi(z). (B.0.1)

Its integral representation is given by [79]

Ai(z) =

∫ ∞
−∞

dφ̃

2π
eizφ̃+i φ̃

3

3 (B.0.2)

and for the derivative by

Ai′(z) = i

∫ ∞
−∞

dφ̃

2π
φ̃eizφ̃+i φ̃

3

3 . (B.0.3)

Further, the integral over the Airy function can be expressed as

Ai1(z) =

∫ ∞
z

dxAi(x) = i

∫ ∞
−∞

dφ̃

2π

1

φ̃+ i0
eizφ̃+i φ̃

3

3 . (B.0.4)

Using partial integration one obtains for the integral∫ ∞
−∞

dφ̃

2π

1

(φ̃+ i0)2
eizφ̃+i φ̃

3

3 = zAi1(z) + Ai′(z). (B.0.5)

Another useful identity can be derived from the differential equation (B.0.1) and the integral
representation of the Airy function in Eq. (B.0.2). As can be seen in the following proof, the
derivative of the exponential function with respect to the integration variable in the integral
representation of the Airy function in Eq. (B.0.2) vanishes:∫ ∞

−∞

dt

2π

∂

∂t
eizt+i

t3

3 =

∫ ∞
−∞

dt

2π
[iz + it2]eizt+i

t3

3 =

∫ ∞
−∞

dt

2π

[
iz − i ∂

2

∂z2

]
eizt+i

t3

3

= i[zAi(z)− Ai′′(z)] = 0.

(B.0.6)

In the limit of small arguments (z � 1) the Airy function can be expanded to [80]

Ai(z)√
z

z�1
≈ 1

32/3Γ
(

2
3

)√
z

+O(
√
z), (B.0.7)

Ai′(z)

z

z�1
≈ − 1

31/3Γ
(

1
3

)
z

+O(z), (B.0.8)

Ai1(z)
z�1
≈ 1

3
+O(z), (B.0.9)
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where Γ(x) is the Gamma-function [75]. Contrary the expansion of the Airy functions for
large arguments (z � 1) is [80]

Ai(z)√
z

z�1
≈ e−

2
3
z3/2

[
1

2
√
π
z−

3
4 − 5

96
√
π
z−

9
4 +

385

9216
√
π
z−

15
4 +O

(
z−

21
4

)]
, (B.0.10)

Ai′(z)

z

z�1
≈ e−

2
3
z3/2

[
− 1

2
√
π
z−

3
4 − 7

96
√
π
z−

9
4 +

455

9216
√
π
z−

15
4 +O

(
z−

21
4

)]
, (B.0.11)

Ai1(z)
z�1
≈ e−

2
3
z3/2

[
1

2
√
π
z−

3
4 − 41

96
√
π
z−

9
4 +

9241

9216
√
π
z−

15
4 +O

(
z−

21
4

)]
. (B.0.12)

The Airy function and its derivative are related to the Bessel functions of second kind by [75]

Ai(z) =

√
z

π
√

3
K±1/3

(
2

3
z

3
2

)
, (B.0.13)

Ai′(z) = − z

π
√

3
K±2/3

(
2

3
z

3
2

)
. (B.0.14)

Other functions related to the Airy-function are (see Appendix C in [9] and Appendix F
in [48])

f(z) = i

∫ ∞
0

due
−i
(
uz+u3

3

)
, (B.0.15)

with its derivative
f ′(z) =

∫ ∞
0

du u e
−i
(
uz+u3

3

)
, (B.0.16)

and the function
f1(z) =

∫ ∞
0

du

u
e−iuz

(
e−i

u3

3 − 1
)
. (B.0.17)

Here the functions f1(z) and f ′(z) obey the following useful relation [48,49]:∫ ∞
0

dv
1 + 2v

(1 + v)3
f1

(
(v/χ0)

2
3

)
= −

∫ ∞
0

dv
1 + v − 3v2

3(1 + v)3

(χ0

v

) 2
3
f ′
(

(v/χ0)
2
3

)
. (B.0.18)
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C. Summary Notation

All calculations we performed using units, where ε0 = ~ = c = 1, with ε0 being the vacuum
permittivity, ~ the reduced Planck constant, and c the speed of light. Further, e is the electron
charge with e < 0 and m is the electron mass.
We use the metric tensor ηµν = ηµν = diag(1,−1,−1,−1), where Greek letters in indices

taking the values 0, 1, 2, 3. The Einstein notation is always assumed, meaning that indices
with identical Greek letters are summed.
An arbitrary vector is presented as v = (v1, v2, v3). Four-vectors have the components

vµ = (v0, v1, v2, v3) = (v0,v) and in the covariant form vµ = (v0, v1, v2, v3) = (v0,−v). Both
forms are related by the metric via vµ = ηµνvν . The scalar product of two arbitrary vectors
v and w is presented as v ·w = v1w1 + v2w2 + v3w3. A four-product of two arbitrary four-
vectors vµ and wµ is given by (vw) = vµwµ = v0w0−v ·w. For the square of a vector we have
v2 = v · v and for a four-vector v2 = vµvµ.
The space-time four-vector is defined as xµ = (t,x), where t is the time and x the space

vector. On-shell electrons and positrons with energy ε and momentum pµ = (ε,p) fulfill the
relation p2 = m2.

Some other definitions:
α = e2/(4π) fine structure constant
∂µ = ∂/(∂xµ) derivative operator
εµνρλ = +1 anti-symmetric four-tensor with ε0123 = +1
δ(x) Dirac delta function
[vµ, wν ] = vµwν − wνvµ commutator
{vµ, wν} = vµwν + wνvµ anti-commutator
...± i0 = lim

d→+0
...± id a small imaginary part to avoid divergences

γµ, γ5, σµν Dirac matrix and commutator (see Appendix A)
v̂ = vµγ

µ contraction of four-vector with Dirac matrix
ū = u†γ0 for a spinor u
M̄ = γ0M †γ0 for a matrix M
ξ0 = |e|E0/mω0 classical nonlinearity parameter (see Section 2.1)
χp(φ), κq(φ) quantum nonlinearity parameter (see Section 2.8)
A(φ), A0, Fµν(φ), ψ(φ) quantities of the background field (see Section 2.3)
∆Aµ(φr) = Aµ(φr)−Aµ(φ)
nµ, ñµ, aµj light-cone basis (see Section 2.4)
v−, v+, v⊥, φ light-cone coordinates (see Section 2.4)
Λµ
j (q), εµj polarization four-vector (see Section 2.5)

us(p), vs(p), E(p, x), ζµp quantities of the fermion (see Section 2.6)
Ai(z) Airy function (see Appendix B)
Πµ(φ) = Πµ

p(φ), Π′µ(φ) = Πµ
p′(φ) short notation, Πµ

p(φ) defined in Eq. (2.9.4)
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