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The theory of entropic gravity conjectures that gravity emerges thermodynamically rather than
being a fundamental force. One of the main criticisms of entropic gravity is that it would lead to
quantum massive particles losing coherence in free fall, which is not observed experimentally. This
criticism was refuted in [Phys. Rev. Res. 3, 033065 (2021)], where a nonrelativistic master equation
modeling gravity as an open quantum system interaction demonstrated that in the strong coupling
limit, coherence could be maintained and reproduce conventional free-fall dynamics. Moreover, the
nonrelativistic master equation was shown to be fully compatible with the qBounce experiment for
ultracold neutrons. Motivated by this, we extend these results to gravitationally accelerating Dirac
fermions. We achieve this by using the Dirac equation in Rindler space and modeling entropic gravity
as a thermal bath thus adopting the open quantum systems approach as well. We demonstrate
that in the strong coupling limit, our entropic gravity model maintains quantum coherence for
Dirac fermions. In addition, we demonstrate that spin is not affected by entropic gravity. We use
the Foldy-Wouthysen transformation to demonstrate that it reduces to the nonrelativistic master
equation, supporting the entropic gravity hypothesis for Dirac fermions. Also, we demonstrate how
antigravity seemingly arises from the Dirac equation for free-falling antiparticles but use numerical
simulations to show that this phenomenon originates from zitterbewegung thus not violating the
equivalence principle.

I. INTRODUCTION

One of the greatest challenges in modern physics is
arguably the unification of gravity and quantum mechan-
ics. Due to the enormous theoretical and experimental
success of quantizing three of the four fundamental forces,
it is widely assumed that gravity can be quantized as well.
However, current hypothetical theories of quantum gravity
are plagued with a multitude of problems. This motivates
the development of alternative theories of gravity, with
entropic gravity being one of them.

Verlinde’s theory of entropic gravity [1] proposes that
gravity is an entropic force that arises as a consequence
of a system moving toward the direction of maximal en-
tropy, essentially making gravity a thermodynamically
emergent, rather than a fundamental, force. If true, this
theory would topple the long-standing cherished assump-
tion that gravity has a quantum origin. However, this
theory has been criticized for various reasons [2–5], with
one of the most prominent criticisms being that entropic
gravity would couple too strongly and thus destroy quan-
tum coherence [5]. This argument, however, was refuted in
[6], where a nonrelativistic decoherence-free entropic grav-
ity (DFEG) Lindblad master equation was proposed that
modeled entropic gravity as an external reservoir coupled
to a massive particle with a free dimensionless coupling
constant σ [6, Eq. (5)]. The DFEG model predicts that
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in the strong coupling limit σ → ∞, quantum coherence
was still maintained while also recovering Newtonian grav-
ity. This was further supported with an entropic gravity
interpretation of the qBounce experiment [6, Eq. (18)]
and demonstrating that the DFEG model reproduced
the results of the qBounce experiment [7] for ultracold
neutrons as long as the coupling constant σ ≳ 250.

In this paper, emboldened by the success of the nonrel-
ativistic theory, we extend the DFEG to Dirac fermions.
Our motivation is based on the simple fact that neutrons,
a primary subject for experimental gravitational studies,
are spin half fermions which are best described by the
Dirac equation. Simultaneous description of gravity and
Dirac fermions is currently best captured in the ad hoc
formalism of quantum physics in curved spacetime; thus,
a Dirac DFEG model employing this formalism would
provide a deeper insight into entropic gravity. We find
that spin is not changed in our Dirac DFEG model; thus
our model does not conflict with the weak equivalence
principle.

As explained in [5] and demonstrated in [6], the theory
of entropic gravity allows for gravity to be modeled as an
external thermal reservoir and its interaction with massive
particles can be modeled as an open quantum system. To
this end, we model entropic gravity by utilizing the theory
of open quantum systems via the Lindblad master equa-
tion approach. The sheer versatility and success of the
Lindblad master equation in nonrelativistic open quan-
tum systems is exemplified by the breadth of applications
such as in quantum information [8–10], condensed matter
physics [11–13], quantum to classical transition [14–19],
and even in the study of quark-gluon plasmas [20, 21]. The
theory of open quantum systems also provides a natural
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framework for studying quantum decoherence, particu-
larly gravitational decoherence [22–27] (see Ref. [19] for
a thorough review); thus this framework is ideal for our
work in studying decoherence in Dirac fermions.

The obtained Dirac DFEG model is physically validated
by the fact that in the nonrelativistic limit, it reduces to
the aforementioned nonrelativistic DFEG model [6]. Since
the latter is compatible with the qBounce experiment,
so is the Dirac model.

The rest of the paper is organized as follows: In Sec. II,
for completeness and self-consistency, we rederive the ge-
ometry of physics in accelerated frames, which we use to
derive the Dirac equation in Rindler space. In Sec. III,
we derive the Ehrenfest theorems for the Dirac equation
in the Rindler space and discuss anti-gravity which au-
tomatically follows for antiparticles. We use numerical
simulations to show that this anti-gravity phenomenon
originates from zitterbewegung and that the equivalence
principle is not violated. Then in Sec. IV, we use the
Dirac equation in Rindler space (2.43) from Sec. II and
the Ehrenfest theorems from Sec. III to formulate the
DFEG master equation for Dirac fermions (4.19), which
is the main result of this work. We demonstrate that by
increasing the coupling constant σ, the master equation
(4.19) can achieve arbitrarily low decoherence and reduces
to the Dirac equation in a linear gravitational potential
in the σ → ∞ limit. In addition, we show that the spin is
preserved by entropic gravity. In Sec. V, we choose and
rederive the boundary conditions from Ref. [28] which
will be used to model the qBounce experiment and give
some insight into the difficulty of formulating boundary
conditions for the Dirac equation. In Sec. VI, we rel-
ativistically model the qBounce experiment using the
Ehrenfest theorems of the Dirac equation in Rindler space
and the adopted boundary condition. We then use the
results of Sec. IV to construct the relativistic DFEG mas-
ter equation for the qBounce experiment. In Sec. VII,
we demonstrate that in the nonrelativistic limit, our rel-
ativistic results correctly reduce to their nonrelativistic
counterparts in [6]. In Appendix A, we prove that our
entropic gravity model is decoherence-free. In Appendix
B, we solve the Dirac equation in Rindler space to find its
spin-dependent energy levels and eigenspinors. Then in
Appendix C, we calculate the normalization constant. We
also provide a brief discussion of the nature of spin-gravity
coupling and recent experiments on it.

Throughout this paper, we adopt the usual Einstein
summation convention with Greek indices running from
the temporal and spatial indices 0–3 and Latin indices
running only the spatial indices 1–3, unless stated oth-
erwise. The binary operations [·, ·] and {·, ·} denote the
commutator and anticommutator, respectively. We use
the “mostly negative” metric signature (+,−,−,−) and
denote the Minkowski and curved metrics as ηµν and
gµν ≡ gµν(x), respectively. We let 1n and σi denote the
n× n identity and 2× 2 Pauli matrices, respectively. Un-
less stated otherwise, we use the 4× 4 gamma matrices

γµ in the Dirac representation

γ0 =

(
12 0
0 −12

)
, γi =

(
0 σi

−σi 0

)
, (1.1)

which obeys the Clifford algebra in Minkowski space

{γµ, γν} = 2ηµν . (1.2)

Then we have γ5 = iγ0γ1γ2γ3, αi = γ0γi and β = γ0.
We choose the z-direction for our linear equations.

II. QUANTUM PHYSICS IN ACCELERATED
FRAMES

We begin with a re-derivation of the geometry of physics
in an accelerated frame that will be used to derive the
spin connection in an accelerated frame. Then we proceed
to derive the Dirac equation in an accelerated frame. We
shall show that by various coordinate transformations,
the metric and coordinates we derive are equivalent to
previous formulations. The results developed in this sec-
tion provide the necessary background for formulating
the entropic gravity model for Dirac fermions.

A. Rindler Space

The qBounce experiment [7] measured the effect of
Earth’s gravity on ultracold neutrons by using gravity
resonance spectroscopy to induce transitions between the
quantum states of the bouncing ball via a vibrating mirror.
In the nonrelativistic regime, this is physically modeled as
a neutron bouncing in the z-direction on a fixed surface
due to the influence of a linear gravitational potential
mgẑ, where g is the gravitational acceleration near Earth’s
surface. To get the particle to “bounce,” one imposes the
Dirichlet boundary condition and finds that the energy
levels of the bouncing particle are proportional to the
Airy function zeros [29].

In our relativistic interpretation of the qBounce ex-
periment, we imagine a relativistic massive Dirac fermion
moving with uniform acceleration in the z-direction under
the influence of the Earth’s gravity, hitting a vibrating mir-
ror, and achieving a similar “bouncing ball” state [30, 31].
This means that we are working with accelerated frames,
and thus we cannot simply use the usual Dirac equation
in Minkowski space since this equation is only valid for
inertial frames. Hence, following Refs. [32, 33], we return
to the geometric foundations and rederive the appropri-
ate metric tensor gµν to describe physics in accelerated
frames.

Suppose that in an inertial frame with Minkowski co-
ordinates xµ

′
= (x0

′
, x1

′
, x2

′
, x3

′
), an observer moves

with an arbitrary, finite proper three-acceleration a(τ)
parametrized by their proper time τ . Additionally, let uµ

′

be the four-velocity of the observer relative to the inertial
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frame. In this inertial frame, the accelerated observer
carries a tetrad frame eα(τ) such that

e0 = c−1uµ
′
, (2.1)

eµ · eν = ηµν , (2.2)

namely, the observer’s basis vectors form a rest frame at
each instant, and the tetrads are orthonormal, respectively.
We also demand that the tetrads be nonrotating in the
sense that only the timelike plane of the four-velocity
and four-acceleration is rotated while all other planes are
excluded from rotation [32]. Then the orthonormal tetrad
frame eα is Fermi-Walker transported according to

deα
dτ

= Ω · eα, (2.3)

where

Ωµν =
(aµuν − aνuµ)

c2
, (2.4)

is the antisymmetric rotation tensor with aµ being the
observer’s four-acceleration. Now let zµ

′
(τ) be the dis-

placement vector from the inertial frame to the observer’s
position P(τ). At each point P(τ) on the observer’s
worldline, let the observer have the spacelike basis vec-
tors ei′ , and then these spacelike basis vectors define
a spacelike hyperplane with the spatial components of
the tetrad being ei′ = ei [32]. We then use the spatial
tetrads ei to construct the observer’s “local coordinates”
xµ = (x0, x1, x2, x3) at the origin where xi ≡ x are the
Cartesian coordinates in the hyperplane and x0 ≡ ct ≡ cτ
[32, 33]. Then each event on the hyperplane has coordi-
nates

xµ
′
(τ) = xi(ei(τ))

µ′
+ zµ

′
(τ). (2.5)

Suppose now the observer moves in the x3-direction
with uniform acceleration a = (0, 0, g) and x1

′
= x2

′
= 0

in the inertial frame. Then the observer’s four-velocity
and four-acceleration, relative to the inertial frame, satisfy

uµ
′
uµ′ = c2, aµ

′
aµ′ = −g2, uµ

′
aµ′ = 0. (2.6)

The third equation in Eqs. (2.6) implies that a0
′
= 0 in

the observer’s rest frame, i.e., e0 = c−1uµ
′
at that instant.

Solving Eqs. (2.6) for x0
′
and x3

′
yields

x0
′
=
c2

g
sinh (gτ/c), x3

′
=
c2

g
cosh (gτ/c), (2.7)

then the displacement vector is

zµ
′
(τ) =

(
c2

g
sinh (gτ/c), 0, 0,

c2

g
cosh (gτ/c)

)
. (2.8)

To find the tetrad basis carried by the observer, we note
that since e1 and e2 are invariant under Lorentz transfor-
mations in the x3-direction, e1 = e1′ and e2 = e2′ must
be the unit basis vectors. Since e0 = c−1uµ

′
, we use the

orthonormality (2.2) and nonrotating conditions to find
that e3 = g−1aµ

′
, namely, e3 is parallel to the acceler-

ation. Thus the tetrad basis carried by the observer is
[32]

(e0)
µ′

= (cosh (gτ/c), 0, 0, sinh (gτ/c)),

(e1)
µ′

= (0, 1, 0, 0),

(e2)
µ′

= (0, 0, 1, 0),

(e3)
µ′

= (sinh (gτ/c), 0, 0, cosh (gτ/c)). (2.9)

It can be shown that tetrads (2.9) are nonrotating and
obey conditions (2.1)-(2.2). By using Eq. (2.5) with vector
(2.8) and tetrads (2.9), we get the components of xµ

′

x0
′
=

(
x3 +

c2

g

)
sinh(gτ/c),

x1
′
= x1,

x2
′
= x2,

x3
′
=

(
x3 +

c2

g

)
cosh(gτ/c), (2.10)

with the Minkowski line element

ds2 = ηµ′ν′dxµ
′
dxν

′

=

(
1 +

gx3

c2

)2

(dx0)2 − (dx1)2 − (dx2)2 − (dx3)2.

(2.11)

If we now define the new timelike and spacelike comoving
coordinates

v =
gτ

c
, u = x3 +

c2

g
, (2.12)

respectively, we get

x0
′
= u sinh(v),

x1
′
= x1,

x2
′
= x2,

x3
′
= u cosh(v), (2.13)

where v = artanh(x0
′
/x3

′
) with u ∈ [0,∞) and v ∈

(−∞,∞). These new comoving coordinates xµ =
(v, x1, x2, u) are the famous Rindler coordinates and due
to the bounds on u and v, we are specifically working
with the right Rindler wedge in Minkowski space [31, 34].
The trajectory of the uniformly accelerated observer is
then

(x3
′
)2 − (x0

′
)2 = u2 =

(
x3 +

c2

g

)2

, (2.14)

thus the observer’s worldline is a hyperbola in Minkowski
space [31, 32]. The Minkowski line element in the Rindler
coordinates is

ds2 = gµνdx
µdxν

= u2dv2 − (dx1)2 − (dx2)2 − du2, (2.15)
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which gives the Rindler space metric tensor

gµν = diag(u2,−1,−1,−1). (2.16)

To aid our work in the next subsection, we find the tetrads
eα in terms of the Rindler coordinates (2.13). Using the
Rindler metric (2.16) and the orthonormality relation

eµ · eν = gµν , (2.17)

we find that

(e0)
µ = u−1δµ0 , (ei)

µ = δµi , (2.18)

where δµν is the Kronecker delta function.
It should be noted that coordinates (2.13) are the orig-

inal Rindler coordinates [35] while the coordinates (2.10)
that we used to derive the actual Rindler coordinates are
called the Kottler-Møller coordinates [32, 36, 37]. There
exist many other equivalent coordinate systems for de-
scribing uniform acceleration in Minkowski space that,
of course, also lead to hyperbolic trajectories. Another
popular choice of coordinates describing the dynamics of
a uniformly accelerated observer can be shown by a coor-
dinate transformation on the Rindler position variable u
to

u =
c2

g
egξ/c

2

, (2.19)

where ξ is a spatial variable, which turns coordinates
(2.13) into

x0
′
=
c2

g
egξ/c

2

sinh(gτ/c),

x1
′
= x1,

x2
′
= x2,

x3
′
=
c2

g
egξ/c

2

cosh(gτ/c), (2.20)

where we have opted to use the explicit form of the Rindler
temporal variable v. This choice (2.20) is called the Radar
or Lass coordinates [38], and it gives the Radar or Lass
line element and metric

ds2 = e2gξ/c
2

(dx0)2 − (dx1)2 − (dx2)2 − e2gξ/c
2

dξ2,
(2.21)

gµν = diag(e2gξ/c
2

,−1,−1,−e2gξ/c
2

), (2.22)

respectively, (and ultimately the Dirac equation) used
in other literature (see Refs. [30, 34, 39]). Conversely,
one could start with the spatial Radar coordinate (2.19)
and in the weak gravitational limit, namely, gξ/c2 ≪ 1,
expand the coordinate up to first order egξ/c

2

= 1 +
gξ/c2 + . . . to get the Kottler-Møller coordinates (2.10)
and ultimately the Rindler coordinates (2.13). At the
end of the following subsection, we explain our rationale
for choosing coordinates (2.12) as the preferred Rindler
coordinates.

B. Dirac Equation in Rindler Space

With the geometric preliminaries firmly established, we
now turn our attention to the Dirac equation. Recall that
the (inertial) Dirac equation in Minkowski space is

(iℏγµ∂µ −mc)Ψ = 0. (2.23)

To incorporate the geometric information encoded in
the Rindler space metric tensor (2.16), we use the mini-
mal coupling and Einstein equivalence principles [40] on
Eq. (2.23) to get the Dirac equation in curved spacetime
[41]

(iℏγµR∇µ −mc)Ψ = 0, (2.24)

with the covariant derivative

∇µ = ∂µ + Γµ, (2.25)
∂µ ≡ (∂0, ∂1, ∂2, ∂3) ≡ (∂v, ∂1, ∂2, ∂u), (2.26)

and spin connection [42, 43]

Γµ =
1

4
γRν

(
∂γνR
∂xµ

+ Γν
λµγ

λ
R

)
=

1

4
γRνDµγ

ν
R, (2.27)

where

γµR ≡ γµR(x) = (eν)
µγν , (2.28)

are the “curved” gamma matrices which obey the curved
Clifford algebra

{γµR(x), γ
ν
R(x)} = 2gµν(x). (2.29)

To express the curved gamma matrices γµR in terms of
the “flat” gamma matrices γµ, we use Eq. (2.28) with the
Rindler tetrads (2.18) and the curved Clifford algebra
(2.29) to get

γ0R =
1

u
γ0, γR 0 = uγ0, (2.30)

γiR = γi, γR i = γi. (2.31)

Then the spin connection in Rindler space is

Γµ =

(
1

2
γ0γ3, 0, 0, 0

)
, (2.32)

and the Dirac equation in Rindler space is[
iℏγ0∂v + iℏuγi∂i +

iℏ
2
γ3 −mcu

]
Ψ = 0. (2.33)

Multiplying by γ0 on the left of Eq. (2.33) and rearranging
terms yields the full Rindler space Dirac equation

iℏ∂vΨ =

[
−iℏuαi∂i −

iℏ
2
α3 + βmcu

]
Ψ ≡ ĤRΨ. (2.34)
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From the Rindler coordinates (2.12), we deduce that the
Rindler position and momentum operators are

x̂ = (x̂1, x̂2, û) → x = (x1, x2, u),

p̂ = (p̂1, p̂2, p̂u) → −iℏ∂i = (−iℏ∂1,−iℏ∂2,−iℏ∂u),
(2.35)

respectively, which obey the canonical commutation rela-
tions

[x̂a, p̂b] = iℏδa,b, [û, p̂u] = iℏ, a, b = 1, 2, (2.36)

so the full Rindler Hamiltonian in operator form is

ĤR = αaûp̂a + α3ûp̂u − iℏ
2
α3 + βmcû. (2.37)

Since we are considering linear gravity in the z-direction,
we drop the other directional terms in Eqs. (2.33) and
(2.37) to get the linear Rindler Dirac equation and Hamil-
tonian

iℏ∂vΨ =

[
−iℏuα3∂u − iℏ

2
α3 + βmcu

]
Ψ ≡ ĤRΨ,

(2.38)

ĤR = α3ûp̂u − iℏ
2
α3 + βmcû, (2.39)

respectively.
To express the full Rindler Hamiltonian (2.37) in the

observer’s coordinates, we first use the Rindler coordinates
(2.12) to get the inverse operator transformations

x̂a = x̂a, û = x̂3 +
c2

g
,

p̂a = p̂a, p̂u → −iℏ∂u = −iℏ∂3 → p̂3,

Êv → iℏ∂v =
iℏc
g
∂t →

c

g
Êt, (2.40)

then use the inverse transformations (2.40) on Hamilto-
nian (2.37) to get our desired result

ĤG = cα · p̂+ βmc2 + βm(a · x̂) + 1

2c
{(a · x̂), (α · p̂)},

(2.41)

where a = (0, 0, g). Note that Hamiltonian (2.41) is the
nonrotational version of the Hamiltonian in Hehl and Ni
[33, Eq. (16)]. The linear version of Hamiltonian (2.41) is

ĤG = cα3p̂3 + βmc2 + βmgẑ +
g

2c
α3{ẑ, p̂3}. (2.42)

Since our work is concerned with low energy effects, we
disregard the negligible fourth redshift term in Eq. (2.42),
which leaves us with the low energy gravitational Dirac
Hamiltonian

Ĥg = cα3p̂3 + βmc2 + βmgẑ. (2.43)

0 1 2 3 4 5 6
t (natural units)

1.0

0.5

0.0

0.5

1.0 Positive Energy State
Negative Energy State
Mixed Energy State

FIG. 1. Time evolution of ⟨β⟩ for matter, antimatter,
and a mixture of both. We see that ⟨β⟩ rapidly goes to
zero for both the matter and antimatter states.

With the Rindler metric (2.16), the Rindler space Dirac
inner product is〈

ΨΩ,s,k⊥

∣∣∣ΨΩ′,s′,k′
⊥

〉
=

∫
Σ

dΣµ ΨΩ,s,k⊥γ
µ
RΨΩ′,s′,k′

⊥

= δ(Ω− Ω′) δs,s′ δ(k⊥ − k′
⊥)
(2.44)

where dΣµ = dΣnµ is the spatial volume element on the
v = constant Cauchy hypersurface Σ, nµ is the unit vector
normal to Σ, s = ± is the spin orientation, Ω = ωc/g is
the dimensionless frequency, k⊥ ≡ ka = (k1, k2, 0) is the
wavevector perpendicular to the direction of acceleration,
and ΨΩ,s,k⊥ = Ψ†

Ω,s,k⊥
γ0 is the adjoint spinor [34, 39, 41].

It is worth mentioning that had we derived Hamiltonian
(2.41) in the context of a rotating frame with rotation
frequency ω(τ), we would introduce the rotation-angular
momentum coupling term −ω · Ĵ in Hamiltonian (2.41)
which represents the coupling of the frame’s rotation
ω(τ) to the observer’s total angular momentum Ĵ =

L̂+S [33]. The rotation-orbital momentum coupling ω · L̂
creates an effect very reminiscent of the Sagnac effect and
induces a phase shift. This Sagnac-like effect has been
experimentally verified for neutrons [44]. The rotation-
spin angular momentum coupling ω · S induces a phase
shift smaller than the Sagnac-like effect ω · L̂ and was
recently observed in neutron interferometry experiments
[45].

As mentioned previously, the choice of the Rindler coor-
dinates will lead to slightly different forms of the Rindler
Dirac Hamiltonian, and this is most pronounced when
the Rindler Hamiltonian is brought to its nonrelativis-
tic limit (see, e.g., Refs. [30, 34, 39, 46]). Our choice of
Rindler coordinates (2.12) is desirable due to the fact that
the observer’s local coordinate system (2.10) is what is
actually used in the laboratory [33]. Most importantly,
such a choice of Rindler coordinates leads to Hamilto-
nian (2.41) whose terms (along with the rotation-angular
momentum coupling terms) have been experimentally ver-
ified for neutrons. This gives Hamiltonian (2.41), and the
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2

1

0

1

2
z

(a)

Positive Energy State
Negative Energy State
Mixed Energy State

0 1 2 3 4 5 6
t (natural units)

2

1

0

1

2

p 3

(b)

B

FIG. 2. Time evolution of the average position (a) and
momentum (b) for matter, antimatter, and a mixture of
both. We see in Fig. 2a that the matter and antimatter
follow the same trajectory, as prescribed by the
equivalence principle.

methodology used in its derivation, both theoretical and
experimental validity in accurately modeling the behavior
of a Dirac fermion in noninertial frames. Since our rela-
tivistic interpretation of the qBounce experiment uses
Dirac fermions, we believe that Hamiltonian (2.41), and
its linear version (2.42), is the physically most appropriate
choice.

III. ZITTERBEWEGUNG ANTI-GRAVITY AND
EHRENFEST THEOREMS

In this section, we derive the Ehrenfest theorems from
the low energy Rindler Hamiltonian (2.43) which will
be used to construct the dissipator that models entropic
gravity in Sec. IV. We provide numerical simulations of
the dynamics of a Dirac fermion with Hamiltonian (2.43)
and its physical interpretation. In addition, we elaborate
on the effect of a zitterbewegung induced anti-gravity from
our simulations.

To describe the dynamics of a Dirac fermion in a grav-
itational potential, it is natural to utilize the Ehrenfest
theorems of the low energy Rindler Hamiltonian (2.43),

0 1 2 3 4 5 6
t (natural units)

4

2

0

2

a 3
=

d2
z

/d
t2

Positive Energy State
Negative Energy State
Mixed Energy State

FIG. 3. Time evolution of the average acceleration for
matter, antimatter, and a mixture of both. We see that
the acceleration for antimatter aligns with matter thus
demonstrating that antimatter obeys the equivalence
principle.

which are calculated as [47]

d

dt
⟨ẑ⟩ =

〈
∂Ĥg

∂p̂3

〉
= c ⟨α3⟩ , (3.1)

d

dt
⟨p̂3⟩= −

〈
∂Ĥg

∂ẑ

〉
= −mg ⟨β⟩ . (3.2)

Unlike the nonrelativistic Ehrenfest theorems for a linear
gravitational potential, Eqs. (3.1)-(3.2) depend on the α3

and β matrices, highlighting the incorporation of anti-
matter free fall dynamics. To see a Dirac fermion’s spin
dynamics under Eq. (2.43), we also calculate its Ehrenfest
theorem. Recall that the 4× 4 spin observables are

S =
ℏ
2
Σ =

ℏ
2

(
σ 0
0 σ

)
, (3.3)

which have the commutation relations

[αi, Sj ] = iℏεijkαk, [β, Sj ] = 0, (3.4)

where εijk is the Levi-Civita tensor. The first commuta-
tion relation in Eqs. (3.4) can be deduced using

[σi, σj ] = 2iεijkσk. (3.5)

Then the Ehrenfest theorem is

d

dt
⟨S3⟩ =

1

iℏ
⟨[S3, Ĥg]⟩ = 0, (3.6)

thus the spin is conserved. We note that the full Rindler
Hamiltonian (2.42) conserves spin as well.

Using the propagator [48], we numerically solve the
Dirac equation (2.43) to understand fermion’s free fall
dynamics. We considered three different initial conditions
of the Dirac fermion: positive energy, negative energy,
and mixed energy wave packets. To get the positive
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energy initial state, we first take the Gaussian wave packet
(see, e.g., Fig. 2(a) in [47]) centered at zero momentum
and position zinit = 2 (natural units ℏ = c = m = 1
and g = 0.5 are employed) and apply the projector [47,
Eq. (37)] to eliminate negative energy components (i.e.,
antiparticles). The negative energy initial state, entirely
made of antimatter, is obtained similarly by projecting
out the positive energy components (i.e., matter). The
mixed energy state, centered at the position of z = 2.38,
is made in equal proportion of matter and antimatter.
Numerically obtained time evolution of ⟨β⟩, ⟨ẑ⟩, ⟨p̂3⟩, and
⟨â3⟩ = d2 ⟨ẑ⟩ /dt2 are shown in Figs. 1, 2a, 2b, and 3,
respectively.

In the momentum Ehrenfest theorem (3.2), the de-
pendence on ⟨β⟩ superficially seems to suggest that the
equivalence principle is violated. This conundrum is com-
pounded when considering that the sign of ⟨β⟩ for matter
and antimatter is positive and negative, respectively. How-
ever, our numerical simulations reveal that this is not the
case. In Fig. 1, we see that ⟨β⟩ rapidly vanishes for both
matter and antimatter, thus the dependence on ⟨β⟩ in
Eq. (3.2) is effectively negligible especially given the short
time scales. Additionally, in Figs. 2a and 3, we see that
both matter and antimatter follow the same dynamics un-
der the influence of gravity, thus obeying the equivalence
principle.

To fully demystify the results of the mixed energy states
in our simulations, we delve into the internal dynamics
of the Dirac spinor itself. It is known that during time
evolution, the internal degrees of freedom, i.e. matter
and antimatter components, of a Dirac spinor can lead
to nontrivial physical consequences [49–51]. The quantity
that encodes this form of internal dynamics is the Yvon-
Takabayashi angle θ [52, 53] which is defined using the
pseudoscalar Θ and scalar Φ bilinear covariant quantities

Θ = iΨγ5Ψ = 2φ2 sin θ, Φ = ΨΨ = 2φ2 cos θ, (3.7)

θ = tan−1

(
Θ

Φ

)
, (3.8)

where the module φ measures the density of the material
distribution [54–56]. Rather than an explicit calculation,
we can infer the value of the Yvon-Takabayashi angle for
free-falling Dirac fermions via the Ehrenfest theorem of
γ5 which is

d

dt
⟨γ5⟩ =

1

iℏ
⟨[γ5, Ĥg]⟩

=
2m

iℏ
(
⟨c2γ5β⟩+ ⟨γ5βgẑ⟩

)
, (3.9)

where we used

[γ5, β] = 2γ5β, [γ5, αi] = 0. (3.10)

Since ⟨γ5⟩ is not conserved, the Yvon-Takabayashi angle
is nonzero thus the spinor will undergo jittering motion
or zitterbewegung, the interference of the positive and
negative energy states, even in the rest frame [56]. The

zitterbewegung time scale is tzitt ∼ ℏ/(2mc2), which in
the adopted natural units tzitt ∼ 1/2. We note that
tzitt is the shortest time interval for which the single-
particle interpretaion of the Diract equation is valid since
the corresponding uncertainty in energy ℏ/tzitt ∼ 2mc2

is sufficient to create an electron-positron pair, thereby
entering into the realm of quantum electrodynamics.

Figures 2a and 3 show that the position and acceler-
ation rapidly fluctuates at the onset of free fall. These
oscillations look as if the gravity and anti-gravity are
interchanging. Such transient effects are due to zitterbe-
wegung because of the time scale and the fact that the
oscillations have the largest magnitude for the mixed en-
ergy state for which the particle-antiparticle interference
is the strongest. We would like to name this observation
as zitterbewegung-induced anti-gravity. However, Figs. 2a
and 3 confirm that for longer non-transient times both
matter and antimatter obey the equivalence principle.

IV. ENTROPIC GRAVITY FOR DIRAC
FERMIONS

In this section, we formulate the DFEG Lindblad master
equation for Dirac fermions. We use the formalism of
open quantum systems and reservoir engineering [57] to
construct a reservoir that simulates entropic gravity. We
demonstrate that our DFEG model for Dirac fermions is
decoherence-free and provide a physical analysis of our
results. In addition, we find that entropic gravity does
not affect spin. The results of this section will be crucial
in developing the results in Sec. VI.

Let ρ̂ be the density matrix that represents the state of
a mixture of Dirac fermions. A free-falling Dirac fermion
in a linear gravitational potential

V (ẑ) = βmgẑ, (4.1)

is then described by the Liouville equation

dρ̂

dt
= − i

ℏ

[
ĤS + βmgẑ, ρ̂

]
, (4.2)

ĤS = cα3p̂3 + βmc2, (4.3)

and its dynamics follow the free-fall Ehrenfest theorems
(3.1)-(3.2) which can be shown using Eq. (4.2) and the
density matrix expectation value

⟨Ô⟩ = Tr
[
Ôρ̂
]
, (4.4)

where Ô ≡ O(ẑ, p̂3) is an arbitrary observable. Eq. (4.2)
is the conservative gravity master equation for Dirac
fermions. Quantum coherence is encapsulated by the
purity Tr[ρ̂2], which is being conserved by Eq. (4.2).

There exists an infinite number of master equations
that satisfy Eqs. (3.1)-(3.2). This means that we can find
a master equation that mimics conservative gravity by
utilizing a dissipator instead of using a potential. By
carefully engineering an environment, a quantum system
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can obey the dynamics governed by the Ehrenfest-like
equations [6]

d

dt
⟨ẑ⟩ = ⟨A(p̂3)⟩ ,

d

dt
⟨p̂3⟩ = ⟨B(ẑ)⟩ . (4.5)

For our purpose of modeling entropic gravity, we wish to
engineer an environment that simulates the linear gravita-
tional potential (4.1) and follows the dynamics according
to Eqs. (3.1)-(3.2). To achieve that, the paradigm of Op-
erational Dynamical Modeling (ODM) [58] for spin-1/2
relativistic particles [47] is to be employed.

We use the simplest scenario of a single dissipator
coupled to the closed system of a free Dirac fermion.
In the formalism of open quantum systems theory, the
Dirac fermion’s density matrix ρ̂ evolves according to the
Lindblad master equation [59]

dρ̂

dt
= − i

ℏ

[
ĤS , ρ̂

]
+D[ρ̂], (4.6)

D[ρ̂] =
σ

ℏ

(
Âρ̂Â† − 1

2
{Â†Â, ρ̂}

)
. (4.7)

where the free parameter σ ≥ 0 is the dimensionless
coupling constant that quantifies the coupling strength
and Â ≡ A(ẑ, p̂3) is the unknown jump operator [57, 60,
61]. To find the correct choice of Â such that master
equation (4.6) simulates an entropic gravity environment,
we insert ẑ and p̂3 into the Ehrenfest equation

d

dt
⟨Ô⟩ = i

ℏ

〈[
ĤS , Ô

]〉
+ ⟨D†[Ô]⟩,

⟨D†[Ô]⟩ = σ

ℏ
Tr
[(
Â†ÔÂ− 1

2
{Â†Â, Ô}

)
ρ̂

]
, (4.8)

and set them equal to Eqs. (3.1) and (3.2), respectively,
which yields

Tr

[(
Â† ∂Â

∂p̂3
− ∂Â†

∂p̂3
Â

)
ρ̂

]
= 0, (4.9)

Tr

[(
Â† ∂Â

∂ẑ
− ∂Â†

∂ẑ
Â

)
ρ̂

]
= −2img

σ
Tr [βρ̂] , (4.10)

where we have used the cyclic invariance property of the
trace operation and

[A(ẑ, p̂3), ẑ] = −iℏ ∂Â
∂p̂3

, [A(ẑ, p̂3), p̂3] = iℏ
∂Â

∂ẑ
. (4.11)

We demand that identities Eqs. (4.9)-(4.10) hold for any
arbitrary initial state, thus we drop the averaging and get
the following constraint equations for Â

Â† ∂Â

∂p̂3
− ∂Â†

∂p̂3
Â = 0, (4.12)

Â† ∂Â

∂ẑ
− ∂Â†

∂ẑ
Â = −2img

σ
β. (4.13)

Any jump operator Â that satisfies Eqs. (4.12)-(4.13) will
yield Eqs. (3.1)-(3.2) when using Eq. (4.6), thus creating
an entropic gravity environment that simulates the free-
fall dynamics of conservative gravity.

Our choice of Â is narrowed by the fact that Â is
not unique. Other than satisfying Eqs. (4.12)-(4.13), the
choice of jump operator Â must yield a master equa-
tion that is translationally invariant. This would make
the master equation obey the strong equivalence princi-
ple [40] since the dynamics induced by the homogeneous
gravitational field are independent of the choice of ori-
gin. According to Refs. [62–67], the following form is
guaranteed to be translationary invariant

A(ẑ, p̂3) = e−iCẑh(p̂3), C† = C, (4.14)

where C is a Hermitian matrix. Inserting the ansatz (4.14)
into Eqs. (4.12)-(4.13) yields

ĥ†
dĥ

dp̂3
− dĥ†

dp̂3
ĥ = 0, (4.15)

ĥ†Cĥ =
mg

σ
β. (4.16)

There are many ways to satisfy Eqs. (4.15)-(4.16) but for
our work, we choose h(p̂3) =

√
mgx014 such that ĥ is a

constant matrix. The value of the characteristic length
x0 will be determined in Sec. VII. Then the Hermitian
matrix (4.16) is

C =
1

x0σ
β, (4.17)

and the jump operator is

A(ẑ, p̂3) ≡ A(ẑ) =
√
mgx0e

−iβẑ/(x0σ). (4.18)

Finally, the DFEG equation for Dirac fermions is

dρ̂

dt
= − i

ℏ
[
cα3p̂3 + βmc2, ρ̂

]
+D[ρ̂], (4.19)

D[ρ̂] =
mgx0σ

ℏ

(
e−iβẑ/(x0σ)ρ̂e+iβẑ/(x0σ) − ρ̂

)
. (4.20)

We shall refer to master equation (4.19) as the Dirac
DFEG master equation or model. As mentioned before,
the Dirac DFEG model (4.19) is translationally invariant
hence it obeys the strong equivalence principle.

To verify that our Dirac DFEG model (4.19) repro-
duces the conservative gravity model (4.2) in the strong
coupling limit σ → ∞, we expand the exponential in dissi-
pator (4.20) using the Baker-Campbell-Hausdorff (BCH)
formula in the limit σ → ∞ to get

dρ̂

dt
= − i

ℏ
[
cα3p̂3 + βmc2 + βmgẑ, ρ̂

]
+

mg

x0ℏσ

(
ẑβρ̂βẑ − 1

2
{ẑ2, ρ̂}

)
+O(σ−2). (4.21)

The O(σ−2) term in Eq. (4.21) quickly vanishes thus our
Dirac DFEG model (4.19) reproduces the dynamics of a
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Dirac fermion subject to a linear gravitational potential,
namely, master equation (4.2).

As proved in Appendix A, the purity equation for the
Dirac DFEG model in the strong coupling limit (4.21) is

d

dt
Tr[ρ̂2] = − 2mg

x0ℏσ
Tr
[
ρ̂2ẑ2 − (ρ̂βẑ)2

]
+O(σ−2), (4.22)

with Tr[ρ̂2ẑ2−(ρ̂βẑ)2] ≥ 0. Thus Eq. (4.22) monotonically
decreases as σ → ∞ and larger σ values, i.e. stronger
coupling, can be chosen to preserve more purity lead-
ing to quantum coherence being maintained. Therefore,
our Dirac DFEG model lives up to its namesake and is
decoherence-free thus the argument that entropic gravity
destroys quantum coherence is refuted for Dirac fermions.

If we insert the low energy Hamiltonian (2.43) into the
Dirac DFEG equation in the strong coupling limit (4.21),
we get

d

dt
⟨Ĥg⟩ = −2mgc

x0ℏσ
⟨α3ẑp̂3ẑ⟩+O(σ−2). (4.23)

We see that the expected energy rate is dependent on the
state due to the position and momentum operators present
in (4.23). This is in stark contrast to the nonrelativistic
DFEG model’s constant expected rate of energy change
gℏ/(2x0σ) [6, Eq. (24)].

To see the spin dynamics in our entropic gravity model
(4.19), we calculate its Ehrenfest theorem. We see that
inserting the spin (3.3) into dissipator (4.20) yields

D[Sj ] = D†[Sj ] = 0, (4.24)

where we have used Eqs. (3.4), so the spin Ehrenfest
theorems are

d

dt
⟨Sj⟩ =

i

ℏ
〈[
cα3p̂3 + βmc2, Sj

]〉
+
〈
D†[Sj ]

〉
= −⟨ε3jkcαkp̂3⟩ , (4.25)

or explicitly,

d

dt
⟨S1⟩ = −⟨cα2p̂3⟩ ,

d

dt
⟨S2⟩ = ⟨cα1p̂3⟩ , (4.26)

d

dt
⟨S3⟩ = 0. (4.27)

We see from Eqs. (4.24) and (4.27) that the dissipator
(4.20) preserves the spin along the direction of the accel-
eration. Thus our entropic gravity model implies that the
free-fall dynamics of spin-1/2 Dirac fermions are the same
as spinless particles therefore our model does not conflict
with the equivalence principle. This is in agreement with
recent experiments of the equivalence principle on spin-
1/2 atoms which have demonstrated that an atom’s spin
[68] and its orientation [69] does not affect its free-fall
dynamics, based on current sensitivity levels.

We end this section by pointing out that while relativis-
tic dissipative phenomena exist, there currently does not
exist an accepted relativistic Lindblad master equation.

Díosi [70] argued that it might be impossible to construct
a relativistic Lindblad master equation. Nevertheless,
there have been several proposals, such as covariant den-
sity matrix formulations [48, 71], which have seen varying
degrees of success in formulating relativistic open quan-
tum systems. Since we are working in the low energy
regime by using Hamiltonian (2.43), our Dirac DFEG
model (4.19) is a low energy model and is within the
range of applicability of nonrelativistic open quantum
systems. Therefore, our model avoids the ambiguity of
relativistic open quantum systems. We will see later in
Sec. VII that our model (4.19) successfully reduces to
the nonrelativistic DFEG model which makes our master
equation (4.19) a satisfactory, ad-hoc model for Dirac
fermions.

V. BOUNDARY CONDITION OF BOUNCING
DIRAC FERMION

In this section, we choose the boundary condition from
Ref. [28] and present its re-derivation, which will be cru-
cial in modeling the relativistic qBounce experiment in
Sec. VI. We give the rationale for such a choice along with
some brief insight into the difficulty of imposing boundary
conditions on the Dirac equation.

The boundary condition, modeling the vibrating mirror
in the qBounce experiment, must satisfy two criteria if
we are to relativistically generalize the qBounce Hamil-
tonian in [6]: (1) the (relativistic) boundary condition
should reduce to J3|u=u0

= 0, i.e., a vanishing probability
current at the mirror’s location u0 ensuring that the Dirac
fermions are reflected after hitting the mirror; and (2)
the (relativistic) boundary condition should reduce to the
Dirichlet condition in the nonrelativistic limit.

Choosing appropriate boundary conditions that sat-
isfy the criteria is rather complicated. The most logical
choice is to utilize the Dirichlet condition, as is done for
the nonrelativistic linear gravitational potential [29] and
the Rindler space Klein-Gordon equation [72], but impos-
ing the Dirichlet condition on the Rindler Hamiltonian’s
(2.39) eigenspinors (Eq. (B22) in Appendix B) leads to
the trivial solution when calculating the energy levels
[28, 30], which is clearly undesirable. Treading around
this problem and directly using the vanishing probability
current condition J3|u=u0

= 0 on the eigenspinors leads
to the trivial solution as well [28, 30]. The commonly
used MIT boundary condition [73] satisfies our first crite-
rion and also leads to energy quantization for the Rindler
Hamiltonian (2.39) (see Ref. [30] and Appendix B for
the energy levels) but does not reduce to the Dirichlet
condition in the nonrelativistic limit [74]. Thus we rule
out the MIT condition.

To avoid these issues and satisfy our criteria, we elect
to utilize the boundary condition in [28] where we model
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the mirror as a scalar potential

ϕ(z) =

{
0, z > 0,

V0 ≫ mc2, z ≤ 0,
(5.1)

or in Rindler coordinates,

ϕ(u) =

{
0, u > u0,

V0 ≫ mc2, u ≤ u0,
(5.2)

where u0 = c2/g is the mirror’s location. Incorporating
potential (5.1) essentially amounts to the replacement

mc2 → mc2 = mc2 + V0, (5.3)

at the level of the Lagrangian [28] leading to the Rindler
Hamiltonian (2.37) to instead use the mass term (5.3).
We now closely follow Ref. [28] and rederive the boundary
condition that we will impose on the spinors of the Rindler
Hamiltonian (2.37).

We begin with the derivation of a modified form of
the Rindler Hamiltonian (2.37) from which we find the
differential equation for the spinor. For any positive
frequency, spin-dependent spinor Ψs that satisfies Hamil-
tonian (2.37), we use the modified plane wave ansatz
[28]

Ψs(x) = e−iΩveikxu−1/2ψs(u), Ω > 0, (5.4)

x ≡ xµ = (v, x1, x2, u),

x ≡ xa = (x1, x2, u), a = 1, 2,

kx ≡ k⊥ · x = −kaxa = k1x1 + k2x2,

k = |k⊥| =
√

(k1)2 + (k2)2,

where Ω = ωc/g is the dimensionless frequency. Note
that ansatz (5.4) differs from the usual plane wave ansatz
(B3) in Appendix B. Inserting ansatz (5.4) into Eq. (2.33)
yields [

Ωγ0 + /ku+ iuγ3∂u − ℓu
]
ψs = 0, (5.5)

where /k = kaγ
a = −(k1γ1 + k2γ2) and ℓ = mc/ℏ. Then

we use another ansatz that decomposes the spatial spinor
ψs as

ψs(u) = F (u)Us +G(u)γ3Us, (5.6)

where the spin-dependent spinor Us obeys

U†
sUs′ = δs,s′ , γ0Us = Us, /̂kγ3Us = isUs, (5.7)

and /̂k = /k/k [28]. Note that Eqs. (5.7) also imply that

U†
sγ

3Us = 0. (5.8)

Using the ansatz decomposition (5.6) on Eq. (5.5) then
decouples Eq. (5.5) into{

D−F − iksG− i(∂uG) = 0,

−D+G− iksF + i(∂uF ) = 0,
(5.9)

where we have used the linear independence of Us and
γ3Us to decouple F and G and

D± =
Ω

u
± ℓ. (5.10)

We can use the first and second equations from Eqs. (5.9)
to get

F =
i

D−
(∂u + ks)G, (5.11)

G =
i

D+
(∂u − ks)F, (5.12)

respectively, thus we can find G from F and vice versa.
We choose to focus on F and use identity (5.12) on the
first equation in Eqs. (5.9) to get[

∂2u − (∂uD+)

D+
(∂u − ks) +D+D− − k2s2

]
F = 0,

(5.13)

which we simplify further using

F (u) = D
1/2
+ f(u), (5.14)

which leads to our desired differential equation[
∂2u +D+D− − k2s2 +

(∂uD+)

D+
ks+

(∂2uD+)

2D+

−3(∂uD+)
2

4D2
+

]
f = 0. (5.15)

With Eq. (5.15), we can now find the boundary condi-
tion for spinor (5.6) by analyzing the asymptotic behavior
of the function f(u) based on the mirror potential (5.2).
In the region u > u0, ϕ(u) = 0 so m = m and we are left
with the Rindler Hamiltonian (2.37) thus there are no
continuity rules to impose on spinor (5.6). In the region
u < u0, ϕ(u) = V0 ≫ mc2 so if we take the limit V0 → ∞,
we have

D± ≈ ±V0
ℏc
, (5.16)

which leads to Eq. (5.15) asymptotically reducing to

(∂2uf) ≈
(
V0
ℏc

)2

f. (5.17)

Solving Eq. (5.17) yields

f(u) ≈ NeV0u/ℏc, (5.18)

where N is a normalization constant. Then we use identi-
ties (5.14) and (5.12) to find that

F (u) ≈ NeV0u/ℏc, G(u) ≈ iNeV0u/ℏc, (5.19)

respectively, in the u < u0 region. The wave function
must be continuous at the mirror’s location u = u0 which
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we can impose by assuming from Eq. (5.19) the Robin
boundary condition

F
∣∣∣
u=u0

= −iG
∣∣∣
u=u0

. (5.20)

Thus we finally have our boundary condition for the
wave function. To explicitly see why condition (5.20) is a
Robin condition, we use identities (5.11)-(5.12) to rewrite
condition (5.20) for F and G as

(D+ + ks)F
∣∣∣
u=u0

= (∂uF )
∣∣∣
u=u0

, (5.21)

−(D− + ks)G
∣∣∣
u=u0

= (∂uG)
∣∣∣
u=u0

, (5.22)

respectively.
For subsequent sections, it would prove far more fruitful

to have boundary condition (5.20) in spinor form Ψs. To
achieve this, we simply impose condition (5.20) on the
decomposition ansatz (5.6) and use Eqs. (5.7) to get

iγ3Ψs

∣∣∣
u=u0

= Ψs

∣∣∣
u=u0

, (5.23)

which is the MIT boundary condition for chiral angle
θM = 0 [73, 75]. The difference between the MIT condition
and condition (5.23) is that the MIT condition focuses
only on the spinor Ψs, making no explicit assumption
as to the form of the spinor, while our condition (5.23)
focuses on the functions F and G that the spinor Ψs is
composed of.

We now verify that boundary condition (5.23) satisfies
our criteria. To test the first criterion, we calculate the
probability current which is

J3
∣∣∣
u=u0

= Ψsγ
3Ψs

∣∣∣
u=u0

=
i

D+
(F (∂uF )

∗ − F ∗(∂uF ))
∣∣∣
u=u0

. (5.24)

Now F and (∂uF ) are determined up to an arbitrary com-
plex coefficient thus we choose them to be real functions
which make the probability current (5.24) vanish at the
boundary [28]

J3
∣∣∣
u=u0

= Ψsγ
3Ψs

∣∣∣
u=u0

= 0. (5.25)

We can also prove Eq. (5.25) by using condition (5.23),
and its adjoint form

−iΨsγ
3
∣∣∣
u=u0

= Ψs

∣∣∣
u=u0

, (5.26)

to get [30]

J3
∣∣∣
u=u0

= Ψsγ
3Ψs

∣∣∣
u=u0

= ΨsΨs

∣∣∣
u=u0

= −ΨsΨs

∣∣∣
u=u0

= 0. (5.27)

Thus our first criterion is satisfied. In the nonrelativistic
limit, we can expand the exponentials in Eqs. (5.19) up
to O(c−1) then impose condition (5.20) to get

F
∣∣∣
u=u0

≈ N = −iN ≈ G
∣∣∣
u=u0

, (5.28)

which implies that [28]

F
∣∣∣
u=u0

≈ 0, G
∣∣∣
u=u0

≈ 0. (5.29)

In spinor form, conditions (5.29) trivially lead to

Ψs

∣∣∣
u=u0

≈ 0, (5.30)

thus boundary condition (5.20) nonrelativistically reduces
to the Dirichlet condition, satisfying our second criterion.

We now derive a crucial identity that will be used in
the next section. We take the first derivative of ansatz
(5.6) and impose the boundary condition (5.20) to get

(∂uψs)
∣∣∣
u=u0

= (∂uF )Us + (∂uG)γ
3Us

∣∣∣
u=u0

= Ωu

(
FUs −Gγ3Us

)
+ ℓψs

∣∣∣
u=u0

= Ωu

(
Fγ0Us −Gγ3(γ0)2Us

)
+ ℓψs

∣∣∣
u=u0

=
(
Ωuγ

0 + ℓ
)
ψs

∣∣∣
u=u0

, (5.31)

Ωu =
(
Ωu−1 + ks

)
, (5.32)

where we used identities (5.11)-(5.12), (γ0)2 = 1, and (5.7)
in the second, third, and fourth equalities, respectively.
Then we have

ψs(∂uψs)
∣∣∣
u=u0

= ψs

(
Ωuγ

0 + ℓ
)
ψs

∣∣∣
u=u0

= (∂uψs)ψs

∣∣∣
u=u0

, (5.33)

therefore

(∂uΨs)Ψs

∣∣∣
u=u0

= Ψs(∂uΨs)
∣∣∣
u=u0

, (5.34)

or equivalently in the observer’s coordinates,

(∂3Ψs)Ψs

∣∣∣
z=0

= Ψs(∂3Ψs)
∣∣∣
z=0

. (5.35)

VI. RELATIVISTIC qBOUNCE HAMILTONIAN

In this section, we relativistically model qBounce ex-
periment by using the boundary condition from Sec. V to
find the surface term that arises from the Rindler Hamil-
tonian’s Ehrenfest theorems. Although we will ultimately
use the low energy Hamiltonian (2.43), we first use the
linear high energy Rindler Hamiltonian (2.39) to not miss
any low-order terms. We will remove the high-order terms
and modify the low energy Hamiltonian (2.43) with the
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surface term. Then, we will apply the results of Sec. IV to
formulate the relativistic master equations that reproduce
the qBounce experiment.

We follow the methodology in [6] and modify the Ehren-
fest theorems of the high-energy, linear Rindler Hamil-
tonian (2.39). We require a temporal variable which we
easily identify from Eqs. (2.12) as v, so the Ehrenfest the-
orems for the Rindler position and momentum operators
(2.35) are

d

dv
⟨û⟩ = ⟨α3û⟩,

d

dv
⟨p̂u⟩ = −⟨α3p̂u⟩ −mc⟨β⟩, (6.1)

respectively. However, the above equations do not in-
corporate the contribution of boundary condition (5.20),
i.e. the vibrating mirror, so we integrate by parts with
the Dirac inner product (2.44) to find the surface term
generated by condition (5.20). Following this prescription
for the Rindler momentum operator p̂u yields

d

dv
⟨p̂u⟩ = −⟨α3p̂u⟩ −mc⟨β⟩ − iℏc2

g
Ψγ3(∂uΨ)

∣∣∣
u=u0

= −⟨α3p̂u⟩ −mc⟨β⟩+ ℏc2

g
Ψ(∂uΨ)

∣∣∣
u=u0

= −⟨α3p̂u⟩ −mc⟨β⟩+ ⟨fR(û)⟩ , (6.2)

where we used condition (5.23) in the second equality and
have identified the Rindler statistical force

⟨fR(û)⟩ =
ℏc2

2g
⟨βδ′(û− u0)⟩ , (6.3)

where u0 = c2/g, as the surface term that arises from
boundary condition (5.20). The 1/2 factor comes from
identity (5.34) and the Dirac delta function δ(x) is defined
as ∫ ∞

−∞
dx δ(n)(x− x′)f(x) = (−1)nf (n)(x′). (6.4)

Note that we have suppressed the spin subscript s. Similar
calculations for the Rindler position operator û yields

d

dv
⟨û⟩ = ⟨α3û⟩+

(
c4

g2
J3

) ∣∣∣
u=u0

= ⟨α3û⟩, (6.5)

where we used the vanishing probability current condition
(5.25). Thus the Ehrenfest theorems for the Rindler posi-
tion and momentum operators with boundary condition
(5.20) are

d

dv
⟨û⟩ = ⟨α3û⟩, (6.6)

d

dv
⟨p̂u⟩ = −⟨α3p̂u⟩ −mc⟨β⟩+ ⟨fR(û)⟩ , (6.7)

respectively. Using Eqs. (2.12) on Eqs. (6.6)-(6.7) yields
the Ehrenfest theorems in the observer’s local coordinates
(t, z)

d

dt
⟨ẑ⟩ =

g

c
⟨α3ẑ⟩+ c⟨α3⟩, (6.8)

d

dt
⟨p̂3⟩ = −g

c
⟨α3p̂3⟩ −mg⟨β⟩+ ⟨fS(ẑ)⟩ , (6.9)

which, in the low energy regime, reduces to
d

dt
⟨ẑ⟩ = c⟨α3⟩, (6.10)

d

dt
⟨p̂3⟩ = −mg⟨β⟩+ ⟨fS(ẑ)⟩ , (6.11)

where

⟨fS(ẑ)⟩ =
ℏc
2

⟨βδ′(ẑ)⟩ , (6.12)

is the surface term (6.3) in the observer’s coordinates.
We add the surface term (6.12) to the system Hamilto-

nian (4.3) to get the relativistic qBounce Hamiltonian

Ĥq = cα3p̂3 + βmc2 + Vq(ẑ)−
ℏc
2
βδ(ẑ), (6.13)

where

Vq(ẑ) =

{
βmgẑ, conservative gravity,
0, entropic gravity.

(6.14)

To make the boundary oscillate, we add a sinusoidal term
in the argument of the delta function as follows

Ĥq = cα3p̂3 + βmc2 + Vq(ẑ)−
ℏc
2
βδ(ẑ − am sinωmt),

(6.15)

where am and ωm are the vibrating mirror’s oscillation
strength and frequency, respectively. We can now apply
the Dirac DFEG model (4.19) to Hamiltonian (6.15) to get
the relativistic qBounce experiment’s master equations
for conservative and entropic gravity

dρ̂

dt
= − i

ℏ

[
cα3p̂3 + βmc2 + βmgẑ

−ℏc
2
βδ(ẑ − am sinωmt), ρ̂

]
, (6.16)

dρ̂

dt
= − i

ℏ

[
cα3p̂3 + βmc2

−ℏc
2
βδ(ẑ − am sinωmt), ρ̂

]
+D[ρ̂], (6.17)

respectively.
Compared to the qBounce Hamiltonian’s boundary

term in [6, Eq. (16)] which was proportional to the first
derivative of the Dirac delta function, the relativistic
Hamiltonian’s (6.15) boundary term is ∝ the Dirac delta
function. In addition, the appearance of the β matrix
captures the effect of the mirror on both matter and
antimatter as well.

VII. NONRELATIVISTIC LIMIT

With our master equations fully developed, we now
present the nonrelativistic limit of our results. We use the
Foldy-Wouthysen (FW) transformation [76] to find the
nonrelativistic approximation of our Hamiltonians then
use the FW Hamiltonians to construct their corresponding
nonrelativistic master equations.
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A. Hamiltonian

We begin with a brief overview of the FW transfor-
mation. Let Ψ(x, t) be an arbitrary Dirac spinor that
satisfies the general Dirac equation

iℏ∂tΨ = ĤDΨ, (7.1)

ĤD = cα · p̂+ βmc2 + VD(x̂) +K(p̂), (7.2)

where VD(x̂) and K(p̂) are matrix-valued functions of
operators x̂ and p̂, respectively. Following the standard
convention, we define the even and odd components of
Hamiltonian (7.2) as [76, 77]

Ê =
1

2
(ĤD + βĤDβ), Ô =

1

2
(ĤD − βĤDβ), (7.3)

respectively, where

[β, Ê ] = {β, Ô} = 0. (7.4)

We also define the following operators

Ŝ1 = − iβÔ
2mc2

, Û1 = eiŜ1 , (7.5)

which are Hermitian and unitary, respectively, where the
subscript denotes the number of FW transformations
applied. Then Hamiltonian (7.2) can be written as

ĤD = Ô + Ê , (7.6)

and applying the first FW transformation on Hamiltonian
(7.6) yields [76]

Ĥ1 = Û1ĤDÛ
†
1 , (7.7)

Ψ1 = Û1Ψ, (7.8)

which turns Eq. (7.1) into

iℏ∂tΨ1 = Ĥ1Ψ1. (7.9)

We can then evaluate Eq. (7.7) up to a desired order via
the BCH expansion and subsequent FW transformations
can be performed using

Ŝn = − iβÔn−1

2mc2
, Ûn = eiŜn , (7.10)

which yields

iℏ∂tΨFW = ĤFWΨFW , (7.11)

ĤFW ≡ Ĥn = ÛnĤn−1Û
†
n, (7.12)

ΨFW ≡ Ψn = ÛnΨn−1, (7.13)

where n = 1, 2, . . .. For most of our Hamiltonians, we
require three FW transformations thus applying the FW

transformation three times to remove all odd operators
yields [33]

ĤFW ≡ Ĥ3 = β

(
mc2 +

Ô2

2mc2
− Ô4

8m3c6

)
+ Ê

− 1

8m2c4
[Ô, [Ô, Ê ]], (7.14)

which turns Eq. (7.1) into

iℏ∂tΨFW = ĤFWΨFW , (7.15)

ΨFW = Ψ3 ≡ Û3Ψ2, (7.16)

where we have replaced the subscripts with FW for clarity.
For the system Hamiltonian (4.3), a single FW trans-

formation is sufficient and yields [76]

ĤFW,S ≡ Ĥ1,S = β
√
c2p̂23 +m2c4 ≈ β

(
mc2 +

p̂23
2m

)
,

(7.17)

where we have dropped terms of order O(c−2) and higher.
By using Eq. (7.14), the low energy Hamiltonian’s FW
version is

ĤFW,g = β

(
mc2 +

p̂2

2m
− p̂4

8m3c2
+m(a · x̂)

+
ℏ

2mc2
Σ · (a× p̂)

)
, (7.18)

a = (0, 0, g). (7.19)

Note that we have used the three spatial dimensional ver-
sion of the low energy Hamiltonian (2.43) to incorporate
the spin contribution. The linear case with no high-energy
corrections is

ĤFW,g = β

(
mc2 +

p̂23
2m

+mgẑ

)
. (7.20)

Reducing the relativistic qBounce Hamiltonian (6.13)
to its nonrelativistic limit requires a rather different ap-
proach due to the nature of the surface term (6.3). Recall
that the surface term is dependent on the choice of the
boundary condition and since our surface term (6.3) was
derived using the relativistic boundary condition (5.20)
and the Rindler Hamiltonian (2.39), our term (6.3) is
inherently relativistic. Naively applying the FW trans-
formation on the three spatial dimensional version of
Hamiltonian (6.13) would yield (for Vq(ẑ) = βm(a · x̂))

ĤFW,q = β

(
mc2 +

p̂2

2m
− p̂4

8m3c2
+m(a · x̂)− ℏc

2
δ(x̂)

+
ℏ

2mc2
Σ · (a× p̂)

)
, (7.21)

but we have only transformed the Hamiltonian while the
boundary term

−ℏc
2
βδ(x̂), (7.22)
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is still relativistic since we have not changed the boundary
condition. Also, we should be able to reproduce the
boundary term (7.22) from the momentum Ehrenfest
theorem of Hamiltonian (7.18) using the nonrelativistic
limit of boundary condition (5.20), i.e. the Dirichlet
condition (5.30), but a quick calculation will show that
this is not the case. Thus, these issues force us to rule
out FW Hamiltonian (7.21) as the correct nonrelativistic
version of Hamiltonian (6.13).

To resolve these problems and find the FW form of
Hamiltonian (6.13), we follow the same procedure in de-
riving surface term (6.3) except we must use the FW
Hamiltonian (7.20) and the nonrelativistic Dirichlet condi-
tion (5.30). Thus we take inspiration from the Heisenberg
and Schrödinger pictures from nonrelativistic quantum
mechanics and use the FW unitary operator (7.10) to
define the FW picture. We will first derive the surface
term with conservative gravity and then generalize to
include the entropic case. Let |Ψ(t)⟩ and Q̂ be a general
Dirac four-component state and observable, respectively,
then the expectation value can be expressed as

⟨Q̂⟩ = ⟨Ψ|Û†
nÛnQ̂Û

†
nÛn|Ψ⟩

= ⟨ΨFW |Q̂FW |ΨFW ⟩
= ⟨Q̂FW ⟩FW , (7.23)

where the averaging is now taken with respect to the FW
Dirac state |ΨFW ⟩ = Ûn|Ψ⟩. Then an operator in the
FW picture is [76, 78]

Q̂FW = Û†
nQ̂Ûn, (7.24)

and its equation of motion is

dQ̂FW

dt
=
i

ℏ
[ĤFW , Q̂FW ]. (7.25)

The FW operator Q̂FW can be evaluated using the BCH
expansion in a similar fashion to an FW Hamiltonian, but
such an expansion will often have a complicated expression
due to the form of Ŝn and the number of times an FW
transformation has been applied. However, if Q̂ is of order
O(c0) or less, we can use the BCH expansion up to the
first order

Q̂FW = eiŜnQ̂e−iŜn

= Q̂+ i[Ŝn, Q̂] +
i2

2!
[Ŝn, [Ŝn, Q̂]] + . . .

≈ Q̂, (7.26)

as a sufficient approximation since the lowest order term
in Ŝn is O(c−1). Analogously, we must use the same cutoff
order O(c0) for the FW Hamiltonian if we are to maintain
symmetry in calculating the Ehrenfest theorems.

For our work, we use Û3 so the approximated FW
position and momentum operators are

ẑFW ≈ ẑ, p̂3,FW ≈ p̂3, (7.27)

respectively, with their FW Ehrenfest theorems being

d

dt
⟨ẑFW ⟩FW ≈ d

dt
⟨ẑ⟩FW

=
1

m
⟨βp̂3⟩FW − iℏ

2m
ΨFWΨFW

∣∣∣
z=0

, (7.28)

d

dt
⟨p̂3,FW ⟩FW ≈ d

dt
⟨p̂3⟩FW

= −mg ⟨β⟩FW − ℏ2

2m
ΨFW (∂23ΨFW )

∣∣∣
z=0

+
ℏ2

2m
(∂3ΨFW )(∂3ΨFW )

∣∣∣
z=0

, (7.29)

where we used Eq. (7.15) and FW Hamiltonian (7.20).
To evaluate the surface terms in Eqs. (7.28)-(7.29), recall
that the boundary condition (5.20) nonrelativistically
reduced to the Dirichlet condition (5.30) so the boundary
condition for the FW spinor is simply

ΨFW

∣∣∣
u=u0

≈ 0, (7.30)

so we get

d

dt
⟨ẑ⟩FW =

1

m
⟨βp̂3⟩FW , (7.31)

d

dt
⟨p̂3⟩FW = −mg ⟨β⟩FW +

ℏ2

4m
⟨βδ′′(ẑ)⟩FW . (7.32)

Then the FW qBounce Hamiltonian with conservative
gravity is

ĤFW,q = β

(
mc2 +

p̂23
2m

+mgẑ − ℏ2

4m
δ′(ẑ)

)
, (7.33)

and more generally,

ĤFW,q = β

(
mc2 +

p̂23
2m

+ VFW,q(ẑ)−
ℏ2

4m
δ′(ẑ)

)
,

(7.34)

where we have included the entropic case by using

VFW,q(ẑ) =

{
mgẑ, conservative gravity,
0, entropic gravity.

(7.35)

Without the rest energy, Hamiltonian (7.34) is

ĤFW,q = β

(
p̂23
2m

+ VFW,q(ẑ)−
ℏ2

4m
δ′(ẑ)

)
, (7.36)

which is the qBounce Hamiltonian in [6, Eq. (15)]. Since
the boundary term in (7.33) was derived using the nonrel-
ativistic condition (5.30) and (7.20), Hamiltonian (7.33)
is mathematically and physically symmetric. Thus we
can definitively interpret FW Hamiltonian (7.33) as the
nonrelativistic approximation of (6.13).
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B. Master Equation

To find the nonrelativistic limit of master equations
(4.19), (6.16), and (6.17), we first find the nonrelativistic
limit of the jump operator Â. Since the β matrix is diag-
onal, the jump operator Â can be analytically evaluated
to get

Â =
√
mgx0e

−iβẑ/(x0σ)

=
√
mgx0

(
e−iẑ/(x0σ)12 0

0 e+iẑ/(x0σ)12

)
, (7.37)

then dissipator (4.20) in the nonrelativistic limit is simply

DNR[ρ̂] =
mgx0σ

ℏ

(
e−iβẑ/(x0σ)ρ̂e+iβẑ/(x0σ) − ρ̂

)
=
mgx0σ

ℏ

(
R1e

−iẑ/(x0σ)ρ̂e+iẑ/(x0σ)

+R2e
+iẑ/(x0σ)ρ̂e−iẑ/(x0σ) − 14ρ̂

)
, (7.38)

where

R1 =

(
12 0
0 0

)
, R2 =

(
0 0
0 12

)
. (7.39)

In a more compact form, dissipator (7.38) in component
form is

D±[ρ̂±] =
mgx0σ

ℏ

(
e∓iẑ/(x0σ)ρ̂±e

±iẑ/(x0σ) − ρ̂±

)
,

(7.40)

where the sign subscript denotes the positive and negative
frequency components of the density matrix. Then master
equations (4.19), (6.16), and (6.17) in the nonrelativistic
limit are

dρ̂

dt
= − i

ℏ

[
β

(
mc2 +

p̂2

2m

)
, ρ̂

]
+DNR[ρ̂], (7.41)

dρ̂

dt
= − i

ℏ

[
ĤFW,g − β

ℏ2

4m
δ′(x̂− am sinωmt), ρ̂

]
, (7.42)

dρ̂

dt
= − i

ℏ

[
β

(
mc2 +

p̂2

2m
− ℏ2

4m
δ′(x̂− am sinωmt)

)
, ρ̂

]
+DNR[ρ̂], (7.43)

respectively, where we have used the three spatial di-
mensional Hamiltonians to incorporate the spin. For the
positive frequency linear case with no rest energies and
O(c−2) terms, we get

dρ̂+
dt

= − i

ℏ

[
p̂23
2m

, ρ̂+

]
+D+[ρ̂+], (7.44)

dρ̂+
dt

= − i

ℏ

[
p̂23
2m

+mgẑ − ℏ2

4m
δ′(ẑ − am sinωmt), ρ̂+

]
,

(7.45)
dρ̂+
dt

= − i

ℏ

[
p̂23
2m

− ℏ2

4m
δ′(ẑ − am sinωmt), ρ̂+

]
+D+[ρ̂+]. (7.46)

which are the DFEG, conservative gravity, and entropic
master equations [6, Eqs. (5), (17) and (18)], respectively.
Thus we conclude that the Dirac DFEG model (4.19)
is the appropriate relativistic generalization, for Dirac
fermions, of the nonrelativistic DFEG model. We are then
able to identify the characteristic length x0 as the same
characteristic length value used in [6, Eq. (7)], namely,

x0 =

(
ℏ2

2m2g

)1/3

. (7.47)

Therefore, our Dirac DFEG model (4.19) is physical.

VIII. DISCUSSION AND OUTLOOK

We have presented a generalized version of the DFEG
model for Dirac fermions via the open quantum systems
approach. In addition, we have presented a relativistic
model of the qBounce experiment with conservative
and entropic gravity. In the nonrelativistic limit, our
Dirac DFEG (4.19) and qBounce models (6.16)-(6.17)
correctly reduced to their nonrelativistic counterparts in
[6].

We have shown that the derived Dirac DFEG model
(4.19) maintains the quantum purity of a Dirac fermion
in the strong coupling limit σ → ∞. In the same limit,
we have shown that conservative gravity (4.2) for Dirac
fermions is reproduced as well. Our model predicts that
a Dirac fermion’s spin does not affect its free-fall dy-
namics nor couple with gravity therefore our model does
not conflict with the equivalence principle. Thus, we
have refuted entropic gravity’s decoherence argument for
Dirac fermions and demonstrated that entropic gravity is
compatible with conservative gravity.

From numerical simulations of Hamiltonian (2.43) and
its Ehrenfest theorems (3.1)-(3.2), we demonstrated that
antimatter obeys the equivalence principle. In addition,
we numerically found that the nonzero Yvon-Takabayashi
angle led to a transient zitterbewegung-induced anti-
gravity effect during the early stages of a mixed en-
ergy state’s time evolution. The already ephemeral
zitterbewegung-induced anti-gravity effect quickly dimin-
ishes for larger g values thus we concluded that mixed
energy states obeyed the equivalence principle as well.

We aim to conduct numerical simulations of the Dirac
DFEG model to see how it compares with its nonrelativis-
tic counterpart. Although the nonrelativistic qBounce
experiment [7] is the best for measuring neutron free
fall, our relativistic qBounce model (6.17) may poten-
tially provide further refinements to the value of σ. Re-
cent proposals [79–81] and developments [82–84] in next-
generation, space-based quantum experiments will poten-
tially provide experimental data to test our work in the
near future (see Ref. [85] for a thorough review). We hope
that our work, backed by new data, will shed further light
on whether gravity is truly quantum or not and spark
further research into alternative theories of gravity such
as entropic gravity.
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Appendix A: Decoherence-Free Property of Dirac
DFEG Model

In this section, we closely follow Ref. [57] and show that
the Dirac DFEG model (4.19) is decoherence-free in the
strong coupling limit σ → ∞ by proving that

Tr
[
ρ̂2ẑ2 − (ρ̂βẑ)2

]
≥ 0, (A1)

in the purity equation (4.22).
We first expand the exponential term in jump operator

(4.18) in the limit σ → ∞ to get

e±iβẑ/(x0σ) = 1± iβẑ

x0σ
+

1

2!

(
±iβẑ
x0σ

)2

+O(σ−3)

= ± iβẑ

x0σ
− ẑ2

2x20σ
2
+O(σ−3), (A2)

where we used both positive and negative signs for gener-
ality. Then in the limit σ → ∞, master equation (4.19)
is

dρ̂

dt
= − i

ℏ
[
cα3p̂3 + βmc2 + βmgẑ, ρ̂

]
+

mg

x0ℏσ

(
βẑρ̂ẑβ − 1

2
{ẑ2, ρ̂}

)
+O(σ−2), (A3)

and the purity equation is

d

dt
Tr
[
ρ̂2
]
= − 2mg

x0ℏσ
Tr
[
ρ̂2ẑ2 − (ρ̂βẑ)2

]
+O(σ−2). (A4)

Now for any two arbitrary operators Ĉ1 and Ĉ2, we have
by the Cauchy-Schwartz inequality

Tr
[
Ĉ†

1Ĉ1

]
Tr
[
Ĉ†

2Ĉ2

]
≥
∣∣∣Tr
[
Ĉ†

1Ĉ2

]∣∣∣2, (A5)

so if we let Ĉ1 = βẑρ̂ and Ĉ2 = ρ̂βẑ, we get

Tr
[
ρ̂2ẑ2

]
≥
∣∣Tr
[
(ρ̂βẑ)2

]∣∣, (A6)

where we have used the cyclic property of the trace. Since
Tr[(ρ̂βẑ)2]∗ = Tr[(ρ̂βẑ)2], we have that Tr[(ρ̂βẑ)2] ∈ R
thus we get our desired result

Tr
[
ρ̂2ẑ2 − (ρ̂βẑ)2

]
≥ 0. (A7)

Appendix B: Rindler Dirac Equation: Eigenfunctions
and Eigenenergies

In this section, we solve the full Rindler Hamiltonian
(2.37) by following Refs. [30, 31] (see also Refs. [28, 39,
46, 87] and Ref. [34] for a thorough review on solving the
Rindler Dirac equation in all wedges of Minkowski space).
Although we ultimately use the low energy Rindler Dirac
Hamiltonian (2.43), the exact solution and eigenenergies
of the full Rindler Hamiltonian (2.37) will prove fruit-
ful to our later discussion. Note that solving the full
Rindler Hamiltonian (2.37) is equivalent to solving the
full observer’s Hamiltonian (2.41).

A general Dirac wave packet in Rindler space is com-
posed of positive and negative frequency states

Ψ(x) =

∫ ∞

0

dΩ

∫ ∞

−∞

d2k⊥

2π

∑
s=±

[
b(Ω, s,k⊥)Ψ

+
Ω,s,k⊥

(x)

+ d∗(Ω, s,k⊥)
(
Ψ+

Ω,s,k⊥
(x)
)C]

=

∫ ∞

0

dΩ

∫ ∞

−∞

d2k⊥

2π

∑
s=±

[
b(Ω, s,k⊥) Ψ

+
Ω,s,k⊥

(x)

+ d∗(Ω, s,k⊥)Ψ
−
Ω,−s,k⊥

(x)
]
, (B1)

d2k⊥ ≡ dk1 dk2,

where b(Ω, s,k⊥) and d∗(Ω, s,k⊥) are the positive and
negative energy wave amplitudes, respectively, and

x ≡ xµ = (v, x1, x2, u),

x ≡ xa = (x1, x2, u), k⊥ ≡ ka = (k1, k2, 0), a = 1, 2.

The negative energy states are computed using the charge
conjugation operator(

Ψ+
Ω,s,k⊥

(x)
)C

= iγ2
(
Ψ+

Ω,s,k⊥
(x)
)∗

= Ψ−
Ω,−s,k⊥

(x).

(B2)

We solve for the positive energy stationary states by using
the plane wave ansatz to separate the temporal and spatial
components of the positive energy Dirac spinor

Ψ+
Ω,s,k⊥

(x) = e−iΩvf+Ω,s,k⊥
(x), Ω > 0, (B3)

f+Ω,s,k⊥
(x) = eikxψ+

Ω,s,k⊥
(u), (B4)

kx ≡ k⊥ · x = −kaxa = k1x1 + k2x2,

k = |k⊥| =
√
(k1)2 + (k2)2,
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where Ω = ωc/g is the dimensionless frequency. Note
that we have separated the spatial components as well.
Inserting ansatz (B3) into Eq. (2.34) gives

ℏΩψ+
Ω,s,k⊥

=

[
ℏu(α1k

1 + α2k
2 − iα3∂u)−

iℏ
2
α3

+ βmcu

]
ψ+
Ω,s,k⊥

, (B5)

which after rearranging terms yields[
u(α1k

1 + α2k
2)− iα3u∂u − i

2
α3

+ βℓu− Ω

]
ψ+
Ω,s,k⊥

= 0, (B6)

where ℓ = 1/λ = mc/ℏ is the inverse reduced Compton
wavelength. Next, we define the operator

D1 ≡ u
(
α1k

1 + α2k
2
)
− iα3u∂u − i

2
α3 + βℓu− Ω,

(B7)

then Eq. (B6) can be written as

D1ψ
+
Ω,s,k⊥

= 0. (B8)

We then define a similar operator

D2 ≡ u
(
α1k

1 + α2k
2
)
− iα3u∂u +

i

2
α3 + βℓu+Ω,

(B9)

and multiply D2 on the left of Eq. (B8) to get

0 = D2D1ψ
+
Ω,s,k⊥

=

[
−u∂uu∂u + κ2u2 +

1

4
− Ω2 − iΩα3

]
ψ+
Ω,s,k⊥

,

which yields after rearrangement

u∂uu∂uψ
+
Ω,s,k⊥

=

[
κ2u2 +

1

4
− Ω2 − iΩα3

]
ψ+
Ω,s,k⊥

,

(B10)
where κ =

√
k2 + ℓ2. Now let χ1(u) and χ2(u) be the

two-component spinors such that

ψ+
Ω,s,k⊥

(u) =

(
χ1(u)
χ2(u)

)
, (B11)

and inserting spinor (B11) into Eq. (B10) yields the sys-
tem of equations

u∂uu∂uχ1 =

(
κ2u2 +

1

4
− Ω2

)
χ1 − iΩσ3χ2, (B12)

u∂uu∂uχ2 =

(
κ2u2 +

1

4
− Ω2

)
χ2 − iΩσ3χ1. (B13)

Subtracting and adding Eqs. (B12) and (B13) yields

u∂uu∂u(χ1 − χ2) =

(
κ2u2 +

1

4
− Ω2

)
(χ1 − χ2)

+ iΩσ3(χ1 − χ2), (B14)

u∂uu∂u(χ1 + χ2) =

(
κ2u2 +

1

4
− Ω2

)
(χ1 + χ2)

− iΩσ3(χ1 + χ2), (B15)

which can be expressed in a more compact form as

u∂uu∂u(χ1 ∓ χ2) =

(
κ2u2 +

1

4
− Ω2

)
(χ1 ∓ χ2)

± iΩσ3(χ1 ∓ χ2). (B16)

To fully decouple Eqs. (B12) and (B13), we let

χ1(u)∓ χ2(u) =

(
ξ±(u)
ζ±(u)

)
, (B17)

which leads to

u∂uu∂uξ
± =

[
κ2u2 +

(
iΩ∓ 1

2

)2
]
ξ±, (B18)

u∂uu∂uζ
± =

[
κ2u2 +

(
iΩ± 1

2

)2
]
ζ±. (B19)

These are Bessel’s differential equations thus the spin
state solutions are [31, 46, 87]

Ψ+
Ω,s,k⊥

(x) = e−iΩvf+Ω,s,k⊥
(x), (B20)

f+Ω,s,k⊥
(x) = NΩ,k⊥e

ikxψ+
Ω,s,k⊥

(u), (B21)

ψ+
Ω,s,k⊥

(u) = H+
ΩWs +

1

κ
(/k + ℓ)γ0H−

ΩWs, (B22)

/k = kaγ
a = −(k1γ1 + k2γ2),

where NΩ,k⊥ is the spin-independent normalization con-
stant [34, 87],

W+ =

 1
0

−1
0

 , W− =

0
1
0
1

 , (B23)

and

H±
Ω (u) = H

(1)
iΩ±1/2(iκu), (B24)

are the Hankel functions of the first kind H
(1)
ν (z) [88].

With the Rindler space Dirac inner product (2.44), the
normalization constant is (see Appendix C)

NΩ,k⊥ = NΩ,+,k⊥ = NΩ,−,k⊥ =
1

2π

(
κ cosh (πΩ)

8eπΩ

)1/2

,

(B25)
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and eigenspinor (B20) obeys

iℏ∂vΨ+
Ω,s,k⊥

= ℏΩΨ+
Ω,s,k⊥

. (B26)

Note that due to the form of the order ν and argument z
of our Hankel function (B24), we have

(H±
Ω )∗ = −H∓

Ω . (B27)

Also, if we let k⊥ = (0, 0, 0) and NΩ,k⊥ → 2πNΩ,k⊥=0

in eigenspinor (B20), the result is the solution for the
linear Rindler Hamiltonian (2.39) [34]. It should be noted
that the modified Bessel functions of the second kind
KiΩ±1/2(κu) (with its respective normalization constant)
can also be used as solutions (see Refs. [30, 34, 39, 87]).

To find the energy levels using boundary condition
(5.20), we use eigenspinor (B22) to identify F and G in
the spinor decomposition (5.6) which are [28]

F ∝ H−
Ω + sH+

Ω , G ∝ H−
Ω − sH+

Ω . (B28)

Then we use boundary condition (5.20) along with identity
(B27) to get the spin-dependent quantization condition

Re
[
H

(1)
iΩ+1/2(iµ)

]
+ sIm

[
H

(1)
iΩ+1/2(iµ)

]
= 0, (B29)

where µ = κu0 is fixed. Note that the quantization
condition (B29) can be derived using the MIT boundary
conditions with chiral angles θM = 0 and θM = π for
s = + and s = −, respectively [30]. Since µ≫ 1, we see
that the Ω-zeros of the Hankel function for a large, fixed
argument µ will satisfy the boundary condition. For the
case k = 0 and s = +, the zeros are given in [30] which
uses the numerical approximation scheme in [89] to get
an asymptotic expansion in µ0 = ℓu0

Ωn =
ωnc

g
≈ µ0 −

1

2
+ an+12

−1/3µ
1/3
0 +

a2n+1

60
21/3µ

−1/3
0

+
an+1

6
2−1/3µ

−2/3
0 +

(
1

70
−
a3n+1

700
− 1

12

)
µ−1
0

+O(µ
−4/3
0 ), (B30)

or

En =
ℏgΩn

c
≈ mc2 +mgx0an+1 −

ℏg
2c

+
mg2x20
30c2

a2n+1

+
ℏg2x0
6c3

an+1 +
2mg3x30
c4

(
1

70
−
a3n+1

700
− 1

12

)
+O(c−5), (B31)

for small an+1 where an+1 are the (n+ 1)-th zeros of the
Airy function for n = 0, 1, 2, . . .. For a neutron, we have
µ0 ∼ 1031 ≫ 1 so eigenenergies (B30) are an accurate
approximation for the zeros of the Hankel function [89, 90].

Following Ref. [30], we use the kinetic energy ED
n =

En−mc2 of Eq. (B31) up to O(c−3) to find the physically
measureable energy level difference ED

n′,n between the n-th

and n′-th eigenstates

ED
n′,n = ED

n′ − ED
n ≈ mgx0(an′+1 − an+1)

+
mg2x20
30c2

(
a2n′+1 − a2n+1

)
+

ℏg2x0
6c3

(an′+1 − an+1),

(B32)

then the transition frequency is

ωD
n′,n =

ED
n′,n

ℏ
≈ mgx0

ℏ
(an′+1 − an+1)

+
mg2x20
30ℏc2

(
a2n′+1 − a2n+1

)
+
g2x0
6c3

(an′+1 − an+1).

(B33)

To see the relativistic contributions to the nonrelativistic
bouncing ball energies

ENR
n = mgx0an+1, (B34)

we use the nonrelativistic transition frequency

ωNR
n+1,n =

ENR
n+1,n

ℏ
=
mgx0
ℏ

(an+2 − an+1) ,

to define the transition frequency difference ∆ωn+1,n be-
tween ωD

n+1,n and ωNR
n+1,n [30]

∆ωn+1,n = ωD
n+1,n − ωNR

n+1,n

≈ mg2x20
30ℏc2

(
a2n+2 − a2n+1

)
+
g2x0
6c3

(an+2 − an+1). (B35)

Now the neutron mass and gravitational acceleration on
Earth’s surface are, respectively, mn ≈ 0.94 GeV/c2 and
g ≈ 9.81 m/s2 so we find that

ωD
n+1,n, ∆ωn+1,n ∼ 10−20 Hz, (B36)

which is far too small to be detected using current technol-
ogy given the sensitivity level of ∆ω ∼ 10−1 Hz measured
in the qBounce experiment [7].

In Eq. (B31), the third term is interpreted to be the
energy contribution from spin-gravity coupling

1

c
S · g, (B37)

which does not appear in our FW Hamiltonian (7.18).
While we demonstrated in Sec. IV that our Dirac DFEG
model does not affect spin, it is worth noting that previ-
ous literature has proven inconclusive as to the physical
nature and relevance of the spin-gravity term. Initially,
Peres [91] proposed a simple ad-hoc model that modified
the Dirac Lagrangian to include a spin-gravity coupling
term with a dimensionless coupling constant k. Obukhov
[92] later identified that k = 1/2 by using an “exact” FW
transformation that reproduced the spin-gravity coupling
term (B37). However, subsequent work by Silenko and
Teryaev [93] demonstrated that one could choose uni-
tary transformations that could remove the term (B37)
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through repeated FW transformations. This mathemat-
ical technicality has brought into question whether the
FW transformation accurately provides physically rele-
vant results since different unitary operators yield different
results. Recent experiments on the equivalence princi-
ple using different spin orientations of spin-1/2 fermions
[69] yielded null results for spin-gravity coupling while
another experiment [68] provided an upper limit of 10−7

Hz for spin-1/2 fermions. Since the coupling term (B37)
is g/(2c) ∼ 10−8 Hz, experiments do not yet definitively
prove nor disprove the existence of spin-gravity coupling.
Coupled with the mathematical and physical ambiguity
of the FW transformation, the question of spin-gravity
coupling remains open, but we note that the appearance
of the spin-gravity coupling energy in the energy levels
(B31) of the full Rindler Hamiltonian (2.37) (and equiva-
lently the full observer’s Hamiltonian (2.41)) lends some
theoretical credence to its existence. Our work avoids
this ambiguity with the spin-gravity term since this term
only arises from the full Rindler Hamiltonian (2.37) while
our work uses the low energy gravitational Hamiltonian
(2.43).

Appendix C: Normalization of the Rindler Wave
Function

In this section, we calculate the normalization constant
NΩ,k⊥ of the eigenspinors (B22). We will focus on the
spin-up s = + constant NΩ,+,k⊥ then show that the
constant is spin-independent, i.e., NΩ,k⊥ = NΩ,+,k⊥ =
NΩ,−,k⊥ . We suppress the superscript + and later on,
we will also suppress the subscripts s and k⊥ such that
ψΩ ≡ ψ+

Ω,+,k⊥
(u) and NΩ,s,k⊥ ≡ NΩ.

If we use the spatial eigenspinor (B21) with the Dirac
inner product (2.44), we get

⟨fΩ,s,k⊥ |fΩ′,s′,k′
⊥
⟩ =

∫ ∞

0

du

∫ ∞

−∞
d2x f†Ω,s,k⊥

fΩ′,s′,k′
⊥

= NΩ,k⊥NΩ′,k⊥δ(k⊥ − k′
⊥)

∫ ∞

0

duψ†
Ω,s,k⊥

ψΩ′,s′,k⊥

= NΩ,k⊥NΩ′,k⊥δ(k⊥ − k′
⊥)δs,s′ ⟨ψΩ,s,k⊥ |ψΩ′,s,k⊥⟩ ,

(C1)

d2x = dx1 dx2,

NΩ,k⊥ = 2πNΩ,k⊥ ,

where we used∫ ∞

−∞
d2x ei(k

′−k)x ≡
∫ ∞

−∞
d2x ei(k

′
⊥−k⊥)·x

= (2π)2δ(k⊥ − k′
⊥), (C2)

NΩ′,k′
⊥
ψ†
Ω′,s′,k′

⊥
δ(k⊥ − k′

⊥)δs,s′

= NΩ′,k⊥ψ
†
Ω′,s,k⊥

δ(k⊥ − k′
⊥)δs,s′ . (C3)

Thus we only have to compute

⟨ψΩ,s,k⊥ |ψΩ′,s,k⊥⟩ =
∫ ∞

0

duψ†
Ω,s,k⊥

ψΩ′,s,k⊥ . (C4)

As mentioned earlier, we will compute the spin-up s = +
constant and suppress the subscripts s and k⊥ such that
ψΩ ≡ ψΩ,s,k⊥(u) and NΩ ≡ NΩ,k⊥ . Additionally, note
that ψΩ now satisfies the eigenvalue equation

ĤR,uψΩ = ℏΩψΩ, (C5)

ĤR,u = ℏu
(
α1k

1 + α2k
2 − iα3∂u

)
− iℏ

2
α3 + βmcu.

(C6)

We first derive the Lagrange-Green identity [94] which
will be crucial in calculating the normalization constant.
For any arbitrary four-component spinors Ψ1 ≡ Ψ1(u)
and Ψ2 ≡ Ψ2(u), consider the expression

(ĤR,uΨ1)
†Ψ2, (C7)

We expand the expression (C7) using Eq. (C6) to get

(ĤR,uΨ1)
†Ψ2 =

(
ℏu
(
α1k

1 + α2k
2
)
Ψ1

)†
Ψ2

+ (−iℏuα3∂uΨ1)
†
Ψ2 +

(
− iℏ

2
α3Ψ1

)†

Ψ2

+ (βmcuΨ1)
†Ψ2

= (−iℏuα3∂uΨ1)
†
Ψ2 +Ψ†

1

[
ℏu
(
α1k

1 + α2k
2
)

+
iℏ
2
α3 + βmcu

]
Ψ2. (C8)

If we use the identity

∂u(iℏΨ†
1α3uΨ2) = (∂uΨ

†
1)(iℏα3uΨ2)

+ Ψ†
1 (iℏα3∂u(uΨ2)) , (C9)

the first term in the second equality of Eq. (C8) is

(−iℏuα3∂uΨ1)
†
Ψ2 = ∂u(iℏΨ†

1α3uΨ2)

−Ψ†
1 (iℏα3∂u(uΨ2)) ,

= ∂u(iℏΨ†
1α3uΨ2) + Ψ†

1 [−iℏα3u∂u − iℏα3] Ψ2. (C10)

Combining our results then yields the differential
Lagrange-Green identity

(ĤR,uΨ1)
†Ψ2 = ∂u(iℏΨ†

1α3uΨ2) + Ψ†
1(ĤR,uΨ2), (C11)

which leads to the integral Lagrange-Green identity [94]∫ ∞

0

du (ĤR,uΨ1)
†Ψ2 = iℏΨ†

1α3uΨ2

∣∣∣∞
0

+

∫ ∞

0

duΨ†
1(ĤR,uΨ2), (C12)

when integrated according to the inner product (C4).
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Now let Ψ1 = ψΩ and Ψ2 = ψΩ′ then we have∫ ∞

0

du (ĤR,uψΩ)
†ψΩ′ = iℏψ†

Ωα3uψΩ′

∣∣∣∞
0

+

∫ ∞

0

duψ†
Ω(ĤR,uψΩ′). (C13)

Since ψΩ is an eigenfunction of ĤR,u, it obeys the eigen-
value equation (C5) so Eq. (C13) becomes

ℏΩ
∫ ∞

0

duψ†
ΩψΩ′ = iℏψ†

Ωα3uψΩ′

∣∣∣∞
0

+ ℏΩ′
∫ ∞

0

duψ†
ΩψΩ′ , (C14)

which yields after rearrangement [31, 46]

⟨ψΩ |ψΩ′⟩ =
∫ ∞

0

duψ†
ΩψΩ′

=
iu

Ω− Ω′ ψ
†
Ωα3ψΩ′

∣∣∣∞
0
. (C15)

To evaluate the right hand side of (C15), we first expand
the expression using the Hankel functions in spinor (B22)
to get

iu

Ω− Ω′ ψ
†
Ωα3ψ

†
Ω′

∣∣∣∞
0

=
2iu

Ω− Ω′

(
(H−

Ω )∗H−
Ω′ − (H+

Ω )∗H+
Ω′

)∣∣∣∞
0

=
2iu

Ω− Ω′

(
H

(2)
−iΩ−1/2(−iκu)H

(1)
iΩ′−1/2(iκu)

−H
(2)
−iΩ+1/2(−iκu)H

(1)
iΩ′+1/2(iκu)

)∣∣∣∞
0
, (C16)

where instead of using identity (B27), we have elected to
use [88] (

H(1)
ν (z)

)∗
= H

(2)
ν∗ (z∗), (C17)

with H
(2)
ν (z) being the Hankel functions of the second

kind. For large arguments z, the Hankel functions of the
first and second kind have the asymptotic expansion [88]

H(1)
ν (z) ∼

√
2

πz
e+i(z− 1

2νπ−
1
4π), (C18)

H(2)
ν (z) ∼

√
2

πz
e−i(z− 1

2νπ−
1
4π), (C19)

respectively, for z, ν ∈ C, which vanishes as z → ∞ so the
right hand side of Eq. (C15) vanishes as u → ∞. Thus
the only nontrivial limit to consider is u → 0. Due to
the Hankel function’s singularity at u = 0, we utilize the
modified Bessel functions of the second kind Kν(z) which
is related to the Hankel functions by [88]

Kν(z) =

{
iπ
2 e

+iνπ/2H
(1)
ν (ze+iπ/2), −π ≤ phz ≤ π

2 ,

− iπ
2 e

−iνπ/2H
(2)
ν (ze−iπ/2), −π

2 ≤ phz ≤ π,

(C20)

Then as z → 0, the modified Bessel functions of the second
kind Kν(z) have the asymptotic form [88]

Kν(z) ∼
Γ(ν)

2

(z
2

)−ν

=
2ν−1

zν
Γ(ν), (C21)

where Γ(z) is the gamma function. We will first evaluate
the second term in Eq. (C16). Using Eqs. (C20) and
(C21) in the limit u→ 0, we have

2iu

Ω− Ω′H
(2)
−iΩ+1/2(−iκu)H

(1)
iΩ′+1/2(iκu)

−−−→
u→0

(
4i

κπ2∆Ω

)(
2

κ

)−i∆Ω(
1

u

)−i∆Ω

eπ(Ω+Ω′)/2

Γ(−iΩ+ 1/2)Γ(iΩ′ + 1/2)

=

(
4i

κπ2

)(
2

κ

)−i∆Ω

eπ(Ω+Ω′)/2Γ(−iΩ+ 1/2)

Γ(iΩ′ + 1/2)

(
cos [(∆Ω)x]− i sin [(∆Ω)x]

∆Ω

)
, (C22)

where ∆Ω = Ω− Ω′, x = ln (1/u), and we have used the
identities(

1

u

)−i∆Ω

= e−i(∆Ω) ln(1/u) = e−i(∆Ω)x, (C23)

eiz = cos (z) + i sin (z). (C24)

Since x = ln (1/u) diverges rapidly as u→ ∞, we can use
the following identities

lim
x→∞

sin [(∆Ω)x]

∆Ω
= πδ(Ω− Ω′), (C25)

lim
x→∞

cos [(∆Ω)x]

∆Ω
= 0, (C26)

in Eq. (C22) to finally get

lim
u→0

(
2iu

Ω− Ω′H
(2)
−iΩ+1/2(−iκu)H

(1)
iΩ′+1/2(iκu)

)
= −

(
4

κπ

)(
2

κ

)−i∆Ω

eπ(Ω+Ω′)/2Γ(−iΩ+ 1/2)

Γ(iΩ′ + 1/2)δ(Ω− Ω′)

= −4eπΩ

κπ
|Γ(iΩ+ 1/2)|2δ(Ω− Ω′)

= − 4eπΩ

κ cosh (πΩ)
δ(Ω− Ω′), (C27)

where we used the identities

|Γ(1/2 + it)|2 =
π

cosh (πt)
, (C28)

f(y)δ(y − t) = f(t), y, t ∈ R, (C29)

in the last equality. Repeating the same procedure for
the first term in Eq. (C16) yields

lim
u→0

(
2iu

Ω− Ω′H
(2)
−iΩ−1/2(−iκu)H

(1)
iΩ′−1/2(iκu)

)
=

4eπΩ

κ cosh (πΩ)
δ(Ω− Ω′). (C30)
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Then the delta-normalized inner product is

⟨ψΩ |ψΩ′⟩ =
∫ ∞

0

duψ†
ΩψΩ′

=
8eπΩ

κ cosh (πΩ)
δ(Ω− Ω′), (C31)

so

∣∣NΩ

∣∣2 = (2π)2|NΩ|2 =
κ cosh (πΩ)

8eπΩ
, (C32)

thus the spin-up s = + normalization constant is

NΩ =
1

2π

(
κ cosh (πΩ)

8eπΩ

)1/2

. (C33)

Repeating the same procedure for the spin-down s = −
spinor yields the same constant NΩ,−,k⊥ = NΩ,+,k⊥ thus
the spin-independent normalization constant is

NΩ,k⊥ = NΩ,+,k⊥ = NΩ,−,k⊥ =
1

2π

(
κ cosh (πΩ)

8eπΩ

)1/2

.

(C34)

To calculate the normalization constant NK
Ω,k⊥

if one
had used the modified Bessel functions of the second kind
KiΩ±1/2(κu) in solution (B22), we use identity (C20) in
solution (B22) and absorb the introduced constant terms
into the normalization constant (C34) to get

NK
Ω,k⊥

= NK
Ω,+,k⊥

= NK
Ω,−,k⊥

=
1

2π

(
κ cosh (πΩ)

2π2

)1/2

.

(C35)
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