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S1. Methods 

The high harmonics (HHs) were measured in the reflection geometry. A schematic image of the 

experimental setup is shown in Fig. S1. The sample was undoped bulk GaAs with a (100) crystal 

surface. Mid-infrared (MIR) pulses with an energy of 0.37-eV (3.4 m in wavelength) and pulse 

duration of ~ 70 fs were used for the excitation. The MIR pulses were generated by an optical 

parametric amplifier with a Ti:Sapphire regenerative amplifier (center wavelength: 800 nm, pulse 

energy: 2 mJ, duration: 35 fs, repetition rate: 5 kHz) as the pump source. The excitation pulses 

irradiated the sample almost normally, at about 5º angle of incidence. The pulses were focused 

onto the sample surface; the spot size was ~100 m in diameter. The intensity of the excitation 

pulses was controlled by a pair of wire-grid (WG) polarizers, with another WG polarizer placed 

after the WG pair to ensure the linear polarization of the transmitted pulses. Note that the Eexc-field 

strengths described in this paper are the values inside the GaAs crystal. The polarization state of 

the excitation pulses was controlled by rotating a quarter-wave plate (QWP). The relation between 

the QWP angle and the excitation polarization, i.e., εexc and major-axis direction, was carefully 

measured. The angle  between the major-axis direction of Eexc and the [100] crystal axis was 

controlled by rotating the GaAs crystal. While measuring the εexc dependence,  was actively 

controlled so that it stayed constant. The polarization state of the HHs was measured by rotating 

the wire grid polarizer before the detection by the spectrometer and CCD. The difference of 

detection efficiency between the vertically- and horizontally-polarized HHs were taken into 

account. 

 

 

 

FIG. S1. Schematic experimental setup. OPA: optical parametric amplifier. WG: wire grid 

polarizer. QWP: quarter-wave plate. AOI: angle of incidence. CCD: charge coupled device. 
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S2. εexc dependence of HHG at  = 0º, i.e., when the major axis of the excitation polarization 

is along the [100] direction 

At strong Eexc fields around 7-8 MV/cm, the most efficient HHG by linear Eexc occurs at  = 22.5º, 

as shown in Fig. 3 in the main text. On the other hand, at lower Eexc fields around 4-5 MV/cm, the 

most efficient HHG by linear Eexc occurs at  = 0º. As a supplement to the data at  = 22.5º shown 

in Fig. 2 in the main text, we show here the εexc dependence of HHG at  = 0º, where the major 

axis of the Eexc polarization is along the [100] direction. 

As shown in Figs. S2(a) and S2(b), at a weak Eexc of 4.8 MV/cm, the elliptical Eexc yields smaller 

HH intensities compared with the linear Eexc. On the other hand, at a strong Eexc of 8.1 MV/cm, 

while the elliptical Eexc yields smaller intensities for the 5th, 7th and 13th HHs, it yields larger 

intensities for the 9th and 11th HH. More detailed εexc dependences are shown in Figs. S2(c) and 

S2(d). Fig. S2(c) shows the εexc dependence of the 11th HH at different Eexc-field strengths. As the 

Eexc-field strength increases, the magnitude of the elliptical enhancement becomes larger until it 

takes a maximum at 7.6 MV/cm. However, applying a further stronger Eexc field of 8.5 MV/cm 

leads to suppression of the elliptical enhancement. Figure S2(d) shows the εexc dependence of the 

7th, 9th and 11th HH at an Eexc field of 7.4 MV/cm. A clear HH-order dependence can be identified 

in Fig. S2(d). These behaviors are the same as those observed at  = 22.5º in the main text. 

 

 

FIG. S2. (a,b) HH spectra generated by linear (εexc = 0) and elliptical (εexc = 0.3) excitations at 

Eexc-field strengths of (a) 4.8 MV/cm and (b) 8.1 MV/cm. (c) εexc dependence of the 11th HH yield, 

normalized by the value at εexc = 0 for different Eexc-field strengths. (d) εexc dependence of the 7th, 

9th and 11th HH yield at Eexc = 7.4 MV/cm normalized by the value at εexc = 0. 
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S3. εexc dependence of HH yields for different  

The emergence of the elliptical enhancement is accompanied by nonlinear optical activity, as 

shown in Fig. 3 in the main text. For another view of the nonlinear optical activity, we show the 

εexc dependence of the 9th- and 11th-HH intensities at Eexc = 8.0 MV/cm, measured at different , 

in Fig. S3. When the major axis of Eexc is oriented to a high-symmetry crystal direction, i.e.,  = 

0º and 45º, the εexc dependence forms a symmetric curve for positive and negative helicities. On 

the other hand, when the major axis of Eexc is not along these high-symmetric crystal orientations, 

i.e.,  is somewhere between 0º and 45º, the εexc dependence becomes asymmetric with a 

pronounced enhancement at one side of helicity. This is a clear evidence of nonlinear elliptical 

dichroism, and it provides a complementary view to that of Fig. 3 in the main text. 

 

 

FIG. S3. εexc dependence of the 9th and 11th HH yield at Eexc = 8.0 MV/cm, at  of 0º, 15º, 22.5º, 

30º and 45º. 
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S4. Magnitude of elliptical enhancement for different  

A quantity called the “enhancement ratio” is used to describe the magnitude of the elliptical 

enhancement: it is the ratio between the maximum HH intensity reached in the εexc dependence 

and the HH intensity at εexc = 0. In other words, the enhancement ratio corresponds to the maximum 

value of the εexc dependence curves, such as in Figs. 2(c) and 2(d) and in Fig. S3. A complete 

dataset of this enhancement ratio for 5th-13th HHs, measured at  = 0º and 22.5º, is shown in Fig. 

S4. 

 

 

FIG. S4. Eexc-field-strength dependence of the enhancement ratio measured at (a)  = 0º and (b) 

 = 22.5º. 
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S5. Microscopic electron dynamics simulation 

Here, we briefly describe the numerical methods to describe the light-induced electron dynamics 

in GaAs for the analysis of HHG. The details of the methods are described in elsewhere [1,2]. To 

describe the light-induced electron dynamics under a homogeneous vector potential 𝑨(𝑡), we 

employ the following quantum master equation for the one-body density matrix 𝜌𝒌(𝑡) at each 

Bloch wavevector, 𝒌, 
 

𝑑

𝑑𝑡
𝜌𝒌(𝑡) =

[𝐻𝒌+𝑒𝑨(𝑡)/ℏ, 𝜌𝒌(𝑡)]

𝑖ℏ
+ 𝐷̂[𝜌𝒌(𝑡)], (𝑆1) 

where 𝐻𝒌(𝑡) is the one-body Hamiltonian with the wavevector shift with the acceleration theorem: 

𝑘 → 𝑘 + 𝑒𝑨(𝑡)/ℏ. To describe the electronic structure of GaAs, we employ the sp3d5s* tight-

binding model parameterized by the ab-initio simulations [3]. In the tight-binding model, each Ga 

and As atom consists of 10 atomic orbitals (one s-orbital + three p-orbitals + five d-orbitals + one 

s*-orbital, where s* is an additional s-orbital for the improved electronic structure description 

[4,5]), the GaAs primitive cell therefore consists of 20 atomic orbitals. The resulting electronic 

structure is described by four spin-degenerate valence bands and 16 spin-degenerate conduction 

bands. In Eq. (𝑆1 ), 𝐷̂[𝜌𝒌(𝑡)]  denotes the relaxation operator. In this work, we employ the 

relaxation time approximation for the relaxation operator. For practical calculations, we employ 

the following form for the relaxation operator: 
 

𝐷̂[𝜌𝒌(𝑡)] = − ∑
𝜌𝑏𝑏,𝒌(𝑡) − 𝑓𝑏

𝑟𝑒𝑓

𝑇1
𝑏

|𝑢𝑏𝒌
𝐻 (𝑡)⟩⟨𝑢𝑏𝒌

𝐻 (𝑡)| − ∑
𝜌𝑏𝑏′,𝒌(𝑡)

𝑇2
𝑏≠𝑏′

|𝑢𝑏𝒌
𝐻 (𝑡)⟩⟨𝑢𝑏′𝒌

𝐻 (𝑡)|, (𝑆2) 

where 𝑏  is the band index, and  |𝑢𝑏𝒌
𝐻 (𝑡)⟩  is an instantaneous eigenstate of the Hamiltonian, 

𝐻𝒌+𝑒𝑨(𝑡)/ℏ, as 𝐻𝒌+𝑒𝑨(𝑡)/ℏ|𝑢𝑏𝒌
𝐻 (𝑡)⟩ = 𝜖𝑏𝒌

𝐻 (𝑡)|𝑢𝑏𝒌
𝐻 (𝑡)⟩. The matrix elements, 𝜌𝑏𝑏′,𝒌(𝑡), is defined as 

𝜌𝑏𝑏′,𝒌(𝑡) = ⟨𝑢𝑏𝒌
𝐻 (𝑡)|𝜌𝒌(𝑡)|𝑢𝑏′𝒌

𝐻 (𝑡)⟩. Here, 𝑓𝑏
𝑟𝑒𝑓

 is a reference occupation factor, and it is one for 

the valence bands (𝑏 = 𝑣), and zero for the conduction bands (𝑏 = 𝑐). The first term of the 

relaxation operator in Eq. (𝑆2) describes the longitudinal relaxation, and the corresponding decay 

constant is given by 𝑇1 . The second term describes the transverse relaxation, or namely the 

decoherence, and its decay time is given by 𝑇2. In this work, we set 𝑇1 to 3 ps, and 𝑇2 to 20 fs.  

  By employing the time-dependent density matrix 𝜌𝒌(𝑡), one can evaluate the electric current with 

the following expression 
 

𝑱(𝑡) = −
𝑒

𝑚𝑒ℏ(2𝜋)3
∫ 𝑑𝒌

𝐵𝑍

Tr [
𝜕𝐻𝒌+𝑒𝑨(𝑡)/ℎ

𝜕𝒌
𝜌𝒌(𝑡)] . (𝑆3) 

Furthermore, by applying the Fourier transform to the induced current, 𝑱(𝑡), one can evaluate the 

yield of the emitted harmonics as 
 

𝐼𝐻𝐻𝐺(𝜔) = 𝜔2 |∫ 𝑑𝑡 𝑱(𝑡)
∞

−∞

𝑒𝑖𝜔𝑡|

2

. (𝑆4) 

  For practical simulations in this work, we employ the following form for the vector potential 
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𝑨(𝑡) = −
𝐸0

𝜔0

1

√1 + 𝜖𝑒𝑥𝑡
2

𝒆𝑝 sin(𝜔0𝑡) cos4 [
𝜋

𝑇0
𝑡] −

𝐸0

𝜔0

𝜖𝑒𝑥𝑡

√1 + 𝜖𝑒𝑥𝑡
2

𝒆̅𝑝 cos(𝜔0𝑡) cos4 [
𝜋

𝑇0
𝑡] (𝑆5) 

in the domain −𝑇0/2 < 𝑡 < 𝑇0/2, and zero outside this domain. Here, 𝐸0 is the peak electric field 

strength, 𝜔0 is the mean frequency, and 𝑇0 is the full duration of the pulse. In this work, we set 𝐸0 

to 8 MV/cm, 𝜔0 to 0.365 eV/ℏ, and 𝑇0 to 200 fs. Note that the full duration of 200 fs corresponds 

to 52 fs as the full-width-of-half-maximum of the laser intensity, which is consistent with the 

experimental pulse width of 70 fs. The polarization vector 𝒆𝑝 is set to the direction of  = 22.5º, 

while 𝒆̅𝑝  is set to the direction of  = 112.5º. Hence, the parameter 𝜖𝑒𝑥𝑡  corresponds to the 

ellipticity of the light. 

 

To investigate the HHG from GaAs, we compute the electron dynamics under the vector potential 

given in Eq. (𝑆5) by solving the quantum master equation, Eq. (𝑆1), and evaluate the induced 

current with Eq. (𝑆3), resulting in the emitted harmonic intensity via Eq. (𝑆4). Furthermore, we 

evaluate each harmonic intensity by integrating 𝐼𝐻𝐻𝐺 (𝜔) within the finite photon energy range as 
 

𝐼𝐻𝐻𝐺
𝑛 = ∫ 𝑑𝜔

𝜔0(𝑛+
1
2

)

𝜔0(𝑛−
1
2

)

𝐼𝐻𝐻𝐺(𝜔). (𝑆6) 

Figure 8 in the main text shows the 9th order harmonic intensity as a function of the ellipticity, 

𝜖𝑒𝑥𝑡. 

 

Having described the numerical methods to analyze HHG from GaAs, we further introduce the 

band-freezing analysis method in order to elucidate contributions to HHG from each band. For this 

purpose, we first discuss the approximated propagator for Eq. (𝑆1). To propagate the density 

matrix, 𝜌𝒌(𝑡), from 𝑡 to 𝑡 + Δ𝑡, we take the following three steps: 

 

(First step) 

In the first step of the propagation, we approximately evaluate the contribution from the relaxation 

operator for the propagation from 𝑡 to 𝑡 + Δ𝑡/2. The resulting density matrix is given by 
 

𝜌̃𝒌(𝑡) = ∑|𝑢𝑗𝒌
𝐻 (𝑡)⟩𝜌̃𝑗𝑘,𝒌(𝑡)⟨𝑢𝑘𝒌(𝑡)|

𝑗𝑘

. (𝑆7) 

Here, the matrix elements, 𝜌̃𝑗𝑘,𝒌, in the instantaneous eigenbasis expression are given by 
 

𝜌̃𝑗𝑘,𝒌(𝑡) = {
𝑓𝑗 + (𝜌𝑗𝑘,𝒌(𝑡) − 𝑓𝑗)𝑒−Δ𝑡/2𝑇1    for  𝑗 = 𝑘

𝜌𝑗𝑘,𝒌(𝑡)𝑒−Δ𝑡/2𝑇2                            otherwise.
 

(Second step) 

In the second step, the relaxation free propagation from 𝑡 to 𝑡 + Δ𝑡 is approximately evaluated as 
 

𝜌̃𝒌(𝑡 + Δ𝑡) = 𝑒−
𝑖Δ𝑡
2ℏ

𝐻𝒌+𝑒𝑨(𝑡+Δ𝑡)𝑒−
𝑖Δ𝑡
2ℏ

𝐻𝒌+𝑒𝑨(𝑡)𝜌̃𝒌(𝑡)𝑒+
𝑖Δ𝑡
2ℏ

𝐻𝒌+𝑒𝑨(𝑡)𝑒+
𝑖Δ𝑡
2ℏ

𝐻𝒌+𝑒𝑨(𝑡+Δ𝑡) 
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= ∑ |𝑢𝑙𝒌
𝐻 (𝑡)⟩⟨𝑢𝑚𝒌

𝐻 (𝑡)|𝑈𝑙𝑗,𝒌(𝑡)

𝑗𝑘𝑙𝑚

𝜌̃𝑗𝑘,𝒌(𝑡)𝑈𝑚𝑘,𝒌
∗ (𝑡), (𝑆8) 

where the matrix elements, 𝑈𝑙𝑗,𝒌(𝑡), are defined as 
 

𝑈𝑙𝑗,𝒌(𝑡) = ⟨𝑢𝑙𝒌
𝐻 (𝑡 + Δ𝑡)|𝑢𝑗𝒌

𝐻 (𝑡)⟩𝑒−
𝑖
2

(𝜖𝑙𝒌
𝐻 (𝑡+Δ𝑡)+𝜖𝒋𝒌

𝐻 (𝑡)). (𝑆9) 

Here, the matrix elements, 𝑈𝑙𝑗,𝒌(𝑡), describes the nonadiabatic coupling between different bands. 

Therefore, one can artificially truncate the interband transitions by the corresponding matrix 

elements to zero, omitting the nonadiabatic coupling. We will use this degree of freedom for the 

frozen-band analysis. 

 

(Third step) 

In the third step, the residual relaxation contribution is evaluated for the propagation from 𝑡 + Δ/2 

to 𝑡 + Δ𝑡. The resulting density matrix is given by 
 

𝜌𝒌(𝑡 + Δ𝑡) = ∑|𝑢𝑗𝒌
𝐻 (𝑡 + Δ𝑡)⟩𝜌𝑗𝑘,𝒌(𝑡 + Δ𝑡)⟨𝑢𝑘𝒌(𝑡 + Δ𝑡)|

𝑗𝑘

. (𝑆7) 

Here, the matrix elements, 𝜌𝑗𝑘,𝒌(𝑡 + Δ𝑡), in the instantaneous eigenbasis expression are given by 
 

𝜌𝑗𝑘,𝒌(𝑡 + Δ𝑡) = {
𝑓𝑗 + (𝜌̃𝑗𝑘,𝒌(𝑡 + Δ𝑡) − 𝑓𝑗)𝑒−Δ𝑡/2𝑇1    for  𝑗 = 𝑘

𝜌̃𝑗𝑘,𝒌(𝑡 + Δ𝑡)𝑒−Δ𝑡/2𝑇2                            otherwise.
 

  By employing the above three steps, the density matrix, 𝜌𝒌(𝑡), can be approximately propagated 

from 𝑡 to 𝑡 + Δ𝑡. Note that, this approximated propagation becomes exact in the small time step 

limit; Δ𝑡 → 0. 

  Among various approximated propagators, the above choice is suitable for analyzing the 

contribution to HHG from each band because dynamics of certain bands can be frozen by omitting 

the off-diagonal elements of 𝑈𝑙𝑗,𝒌(𝑡) and terminating the interband transitions. For example, by 

omitting all the off-diagonal elements of 𝑈𝑙𝑗,𝒌(𝑡), all the interband transitions are removed from 

the calculations. Similarly, by omitting all the off-diagonal elements except those among the top 

valence and bottom conduction bands, one can omit the contributions from all the bands except 

the top valence and bottom conduction bands. Figure 8 in the main text shows the 9th order 

harmonic intensity by including only a part of the bands in the simulation. 
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