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The value of fundamental physical constants is affected by the coupling of matter to the electromagnetic
vacuum state, as predicted and explained by quantum electrodynamics. In this work, we present a
millikelvin magnetotransport experiment in the quantum Hall regime that assesses the possibility of the von
Klitzing constant being modified by strong cavity vacuum fields. By employing a Wheatstone bridge,
we measure the difference between the quantized Hall resistance of a cavity-embedded Hall bar and the
resistance standard, achieving an accuracy down to one part in 105 for the lowest Landau level. While our
results do not suggest any deviation that could imply a modified Hall resistance, our work represents
pioneering efforts in exploring the fundamental implications of vacuum fields in solid-state systems.
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I. INTRODUCTION

In condensed-matter physics, the vacuum fields refer
to the quantum fluctuations of the ground-state electro-
magnetic field, which owing to Heisenberg’s uncertainty
principle, possess zero average but finite variance [1].
Although energy conservation prevents the direct probing
of their virtual excitations, vacuum fields manifest their
physical reality via the interaction with matter systems,
leading to experimentally accessible modifications of their
energy spectra, such as the Lamb shift [2], or fundamental
properties, such as the electron magnetic moment [3]. Both
effects are very well understood within quantum electro-
dynamics (QED) [4,5]. In recent years, the possibility
of shaping the vacuum fields inside cavities has been
proposed [6,7] as a means of engineering matter
properties, such as the electron-phonon coupling [8] and
the molecular structure [9], altering matter phases, such as

superconductivity [10] and ferroelectricity [11], or
affecting nonequilibrium phenomena like chemical reac-
tions [12] and charge transport [13]. Experimental progress
has been made particularly in showing the cavity-altered
ground-state chemical reactivity [14,15], and recently we
experimentally showed how cavity vacuum fields can
destroy the topological protection of the integer quantum
Hall states [16]. The breakdown manifests in the cavity-
induced backscattering of the otherwise zero-resistance
edge states, which yields a finite longitudinal resistivity
accompanied by a loss of quantization of the transverse
(Hall) resistivity. The backscattering mechanism, which
is attributed to a cavity-assisted hopping term in the
Hamiltonian [17], affects, in particular, edge states at high
odd integer filling factors ν ¼ nsh=eB, where ns indicates
the two-dimensional (2D) electron density, h is Planck’s
constant, e the electron charge, and B the magnetic flux
density in the direction orthogonal to the 2D electron
system (2DES).
Quantum Hall states at high filling factor, i.e., at low

magnetic field, are more prone to be affected by cavity
vacuum fields since the extent of the electronic wave
functions scales with the square of the magnetic length
lB ¼ ffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB
p

; thus, at lower magnetic fields it will be
easier for the cavity-induced hopping to couple states
which are more spatially overlapped. Equivalently, the
energy gap in the Landau-level density of states scales
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with B; hence, at lower B the edge states will be
energetically closer to the disordered bulk states into which,
according to the picture developed in Ref. [17], they are
eventually scattered. This is particularly the case for odd
integer filling factors, which involve spin-resolved Landau
levels separated by the Zeeman energy splitting, which is
generally lower than the cyclotron gap.
Increasing the magnetic field, i.e., going to lower integer

filling factors, quantization is indeed fully recovered
(as evident when looking at the data of Ref. [16] in the
high-magnetic-field region B > 3 T), with the longitudinal
resistivity going to zero and the Hall resistivity developing
plateaux. In 2D electron systems not embedded in cavity
vacuum fields, the value of these plateaux is given by
reciprocal-integer multiples of von Klitzing’s constant
RK ¼ h=e2, the equality being supported by theoretical
gauge [18,19] and topological [20,21] arguments, and
experimentally verified down to eight parts in 1011 [22].
For this reason, the integer quantum Hall effect (IQHE) [23]
remains essential in the foundation of the standard electrical
resistance even after the changes in the International System
of Units [24,25]. On the other hand, a precise measurement
of the quantized values of the Hall plateaux for 2D electron
systems embedded in cavities has not yet been performed,
and one may inquire if these values show deviations from
the value of RK , that is if cavity vacuum fields can modify
the value of RK . Indeed, a tiny 10−20 correction due to the
coupling to the free-electromagnetic field was already
calculated within QED [26], and given the recent advances
in the engineering of electromagnetic environments which
can nonperturbatively couple to Landau electrons [27–30], it
is reasonable not only to investigate if a modification arises
in such conditions, but also to employ a simple and
controlled experimental platform like the 2DES to gain
general physical insights into vacuum-induced phenomena
in condensed-matter systems.
Although they share a common origin in the vacuum

fluctuations, we remark that the hypothetical modification
of RK, which we aim to test in the present work, is
markedly different from the vacuum-induced scattering
reported in Ref. [16]. The distinction is clear both in the
measurement scheme and in the physical mechanism which
is investigated. As discussed above, the experiment of
Ref. [16] deals with edge states at high integer filling
factors, and shows how vacuum fields act as a source of
finite longitudinal resistivity; i.e., edge states are no more
immune to backscattering [31]. In contrast, the present
work deals with fully quantized states—with zero longi-
tudinal resistivity—at low integer filling factors, and
assesses if the quantized transverse resistivity shows
deviations from the value obtained without considering
any impact of the cavity electromagnetic field. High
accuracy is achieved only for low enough filling factors,
since it is necessary to take averages of the transverse
resistivity over Hall plateaux which extend over a wide

magnetic field range. Furthermore, as is addressed below,
in the present work the placement of the electrical contacts
is different from the one of Ref. [16], being aimed at
probing a different phenomenon. Nevertheless, as we
discuss at the end, we can observe an effect of the
cavity on the quantization accuracy by means of a temper-
ature study.
Recently, it has been theoretically predicted [32] via a

simplified approach that the quantized Hall resistance of
a cavity-embedded 2D electron system should display a
deviation from RK proportional to the square of the light-
matter coupling. The result is obtained under the assump-
tions that the 2DES is infinite and homogeneous and that
the single-mode cavity frequency ωcav is much smaller than
any other energy scale involved (and thus the limit of zero
cavity frequency is taken). Under these assumptions, and
disregarding electron-electron interactions which do not
play a role in the IQHE, the theory predicts that the plateau
of filling factor ν should possess a quantized value
RH ¼ RKν

−1ð1þ η2Þ. Being the cavity frequency negli-
gible, the dimensionless collective light-matter coupling is
more properly quantified via the ratio η ¼ ωd=ωcyc of the
diamagnetic frequency, which originates [33] from the
squared cavity vector potential Â2 (and its definition is
reported in Sec. V of the Supplemental Material [34]) to
the cyclotron frequency, as opposed to the customary
definition via the ratio χ ¼ g=ωcyc, where g is the collective
vacuum Rabi frequency defined as Ω in Ref. [33]. Via the
Thomas-Reiche-Kuhn sum rule, one can prove [35] that
ωd ¼ 2g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ωcav=ωcyc
p

; indeed, in the ultrastrong-coupling
regime the diamagnetic term in the Hamiltonian is not
negligible. In this work, we show experimentally that
cavity vacuum fields bear no impact on the value of the
quantized Hall resistance down to one part in 105 for ν ¼ 1,
hence setting a clear limit on the validity of the theoretical
assumptions.

II. RESULTS

The geometry of the experiment is centered on a 40-μm-
wide Hall bar placed in the capacitor gap of a comple-
mentary split-ring resonator (CSRR) [36] resonant at
ωcav ¼ 2π × 140 GHz, which we refer to as the cavity in
the following [see Fig. 1(a), where the cavity-embedded
Hall bar is labeled by number 4]. CSRRs have the ability to
strongly enhance vacuum fields E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏωcav=2ϵ0ϵsVeff

p

in
a subwavelength volume Veff ¼ 2.7 × 105 μm3, ϵ0 being
the vacuum permittivity, and ϵs ¼ 12.69 the effective
permittivity of GaAs, the material in which the 2D electron
system is hosted (more details are provided in the
Supplemental Material [34]). As a result, the interaction
between enhanced cavity vacuum fields and the electrons
occupying the last filled Landau level is pushed into the
ultrastrong-coupling regime [35], leading to a normalized
coupling g̃=ωcav ≈ 0.3, where g̃ is the collective vacuum
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Rabi frequency g at zero detuning (i.e., when ωcav ¼ ωcyc).
We point out that in the experiment, the Hall bar, together
with the contacts to the 2D electron system, is completely
inside the spatial gap of the cavity (at variance with the
experiment of Ref. [16]), as can be seen in Fig. 1(b), where
a microscope picture of the sample and an enlargement of
the cavity-embedded Hall bar are shown. The design reason
follows from the following argument [37]: All systems
which are adiabatically connected (i.e., by varying some
external parameters, they can be transformed into one
another without closing their spectral gap) to any system
exhibiting a topological invariant must then also—at zero
temperature—have that same topological invariant. The

quantized transverse resistivity RK=ν is a topological
invariant for the IQHE. Since the predicted modification
of the transverse resistivity due to cavity vacuum fields is
not necessarily topological in nature, putting the whole Hall
bar structure, together with its contacts, inside the cavity
prevents the system from relapsing into its exactly quan-
tized state at the contacts lying outside of the cavity. At the
same time, two gapped systems with different Hall resis-
tivities must have a gap closing between them, a require-
ment which is fulfilled via the metal contacts connecting
the Hall bars both in series and in parallel. Again, even if
the deviation from the quantized value introduced by cavity
vacuum fields in the Hall bar is not a topological invariant,
we can preserve and access it experimentally. Finally,
placing the contacts inside the Hall bar has the side effect
of reducing the scattering processes arising due to the
vacuum field gradients at the boundary between the cavity
capacitor gap and the etched lateral sides of the Hall bar.
These field gradients amplify the effect that backscatters
the edge states, which is not what we are investigating in
the present work, since we want to preserve the quantiza-
tion of the Hall resistance, and assess whether the quan-
tization value is changed.
To highlight deviations in standard Hall quantization

compared to a Hall bar in the presence of cavity vacuum
fields, we arrange three 200-μm-wide bare Hall bars [i.e.,
not embedded in a cavity; see Fig. 1(a), where they are
labeled by numbers 1–3] and the aforementioned 40-μm-
wide cavity-embedded Hall bar (number 4) in aWheatstone
bridge configuration [22]. This allows for the measurement
of unknown resistances by detecting the unbalance voltage
VUB at the junction between the two resistors of each arm
[see Fig. 1(a)]. By using three bare Hall bars as reference
resistors, we take advantage of the fact that at the plateaux
they possess the same resistance RK=ν, while the deviation
of the cavity-embedded Hall bar resistance from the
quantized value will be proportional to the unbalance
voltage via

ΔRH

RH
¼ 4

hVUBi
I

e2

h
ν; ð1Þ

where I ¼ 10 nA is the source-drain current that flows in
the Wheatstone bridge, and hVUBi is the unbalance voltage
averaged at the integer plateau ν [a derivation of Eq. (1) is
given in Sec. I of the Supplemental Material [34] ]. The low
injection current is in contrast to standard metrological
measurement methods, since here we aim at achieving very
low base temperatures in order to stay as close as possible
to the regime for which the renormalization is predicted
(close to T ¼ 0) [32]. At the plateaux, in the case in which
no deviation due to cavity vacuum fields occurs, the voltage
drop across both resistors in each arm will be the same;
thus, the unbalance voltage will be zero [see Fig. 1(a),
where the pale color shadings indicate regions with equal

(a)

(b)

FIG. 1. Layout of the sample. (a) Sketch of cavity sample S3,
where the measurement scheme is illustrated. The current I is
injected and extracted from the source-drain contacts, and the
unbalance voltage VUB is measured at the indicated voltage
probes. The gray color indicates metal contacts and leads. The
pale color shadings indicate regions having the same electric
potential, in the situation in which the cavity does not alter the
value of the quantized Hall resistance, so that the same current
circulates in each arm of the Wheatstone bridge. The thin black
lines indicate additional gold leads which connect contacts on
regions of the Hall bars having the same electric potential, in
order to ensure their equilibration. (b) Microscope picture of
cavity sample S3, with cavity-embedded Hall bar on the lower
right, which is enlarged on the right. Notice that the picture is
rotated by 90° counterclockwise with respect to (a).
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electric potential in the case of no deviation]. The finite
contact resistance RC of the metallic contacts to the 2DES
could hinder the measurement of VUB; hence, the quadruple
connection technique is employed [38]. This technique
involves introducing additional connections between
pairs of Hall bars [shown by the three thin black lines in
Fig. 1(a), in addition to the connection via the leads
depicted in gray], each possessing a resistance RC, which
bridge the equipotential sides of the Hall bars. We therefore
ensure the equilibration of the equipotential sides as the
relative contribution of the contact resistance of each
Ohmic contact is reduced to a factor of ðRC=RHÞ4 (i.e.,
to about 1.4 × 10−7 for filling factor 1). To assess potential
variations in the measurement result coming from sample-
specific properties (due, e.g., to inhomogeneities in the
material), we fabricate one chip comprising five samples.
Three of them (labeled S3–S5) possess the cavity-
embedded Hall bar resonator, as discussed above [a micro-
scope picture of sample S3 is displayed in Fig. 1(b)].
Samples S1 and S2 have instead the same configuration but
no resonator [only the bare 40-μm Hall bar indicated by
number 4 in Fig. 1(a)] and serve as references. All five
samples are processed from the same 2D electron system
obtained in a high-mobility GaAs/AlGaAs square quantum
well (see Appendix). Indeed, the impact of cavity vacuum
fields on transport has been shown on high-mobility
samples [16], although such high values would be in
contrast to standard metrological techniques. Fabrication
is performed via standard photolithography, with an inter-
mediate step where we deposit an insulating layer of Al2O3

that electrically separates the overlapping gold planes and
lines from each other. Vias in the insulating layer are
opened with hydrofluoric acid etching in order to achieve
the quadruple connection scheme.
In Fig. 2, we display the unbalance voltage evolution as a

function of the perpendicular magnetic field B for a
reference (S1) and for a cavity (S3) sample at an electronic
temperature below 20 mK. We remind that a meaningful
comparison between the two can be performed only at the
plateaux, since away from them the three reference Hall
bars have not a quantized resistance, and the unbalance
voltage is mostly determined by the material inhomoge-
neities over the sample area. Enlarging the plateaux regions
(insets of Fig. 2), we observe that both reference and cavity
traces oscillate around zero, within a range of �2 nV.
The main contribution to the noise comes from the ac
preamplifier voltage noise, which for a demodulation
frequency of 2.333 Hz amounts to about 2.6 nV=

ffiffiffiffiffiffi

Hz
p

(more details are given in the Appendix). The plateaux
regions are identified by the filling factor ν, and for the
purposes of the following analysis, their extension is
determined by taking 3.2 nV as threshold value for the
absolute value of VUB. In Fig. 3, we report the relative
deviation ΔRH=RH from the Hall resistance at the integer
plateaux as given by Eq. (1), where we estimate the
unbalance voltage as a weighted average for both reference
and cavity samples. Indeed, the main source of uncertainty

FIG. 2. Measurement of the unbalance voltage of the Wheat-
stone bridge as a function of the magnetic field for nominal value
of the current injected I ¼ 10 nA, in the case of a sample without
the cavity (black curve, S1) and with the cavity (blue curve, S3).
The insets show an enlargement near the plateaux ν ¼ 7 and
ν ¼ 2. Notice that the vertical axis values of the insets are
multiplied by 103.

FIG. 3. Weighted averages of the relative deviation from the
Hall resistance as a function of the integer filling factor, for
samples without the cavity (top panel) and with the cavity
(bottom panel). The error bars indicate a 99.7% confidence
interval of the values at the plateaux (i.e., 3 standard deviations).
The relative deviation is below one part in 105 for ν ¼ 1, as can be
seen in the insets, where the region between ν ¼ 1 and ν ¼ 3 is
enlarged, and it is below 1 × 10−4 for ν ¼ 12.
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is statistical for ν > 2, while for ν ≤ 2 sample-specific
uncertainties dominate, and we assess them by measuring
multiple reference and cavity samples (a more detailed
discussion about the nature of the uncertainties is given in
Sec. III of the Supplemental Material [34]). The error bars
display a 99.7% confidence interval (i.e., their length is equal
to 3 standard deviations) of the data distribution at each
plateau. We notice that both the cavity and the reference
samples show a deviation from the quantized Hall resistance
compatible with zero within this confidence interval.
Hence, we reject the possibility of a relative deviation

from the quantized value of the plateaux larger than 3
standard deviations, that is, below 1 × 10−5 for ν ¼ 1 and
below 2 × 10−4 for ν ¼ 12. For higher filling factors (that
is, lower magnetic fields), the relative uncertainty is larger
due to the smaller Hall resistance and the smaller extension
of the plateaux. Although the precision we achieve is far
from the one reported in Ref. [22], it constitutes an upper
bound to the effect that cavity vacuum fields may bear on
the value of RK. This result may be compared to the ratio of
the Lamb shift to the Dirac levels of the hydrogen atom,
which amounts to about 4 × 10−7, and which quantifies the
relative correction introduced by free vacuum fields to the
energy levels uncoupled from the electromagnetic field, or
to the relative contribution of about 10−3 of the radiative
corrections on the magnetic moment of the electron [1], or
also to the small 10−20 free-field radiative correction to RK
predicted in Ref. [26] within QED.

III. DISCUSSION AND CONCLUSION

We can now address the incompatibility of the exper-
imental result with the theoretical prediction of Ref. [32].
As discussed above, therein a renormalized value was
found in the limit of zero temperature and assuming that
the cavity frequency is so small that it can be neglected
and taken to zero. However, the latter assumption is too
crude for the system under study, which possesses,
due to the lateral confinement of the etched Hall bar, a
minimum energy scale given by the plasma frequency ωp ≃
2π × 90 GHz (for the 40-μm-wide Hall bar), which corre-
sponds to the longitudinal collective excitation of the free-
electron gas. This frequency sets a fundamental lower limit
for achieving light-matter hybridization [39], and indeed
our choice of ωcav ¼ 2π × 140 GHz > ωp was motivated
by this constraint. Theoretically, as shown in the
Supplemental Material [34], one can avoid setting the
cavity frequency to zero and still preserve the assumption
of homogeneity with an approach based on the Kubo
formalism [40,41], which shows indeed that for low enough
temperatures (i.e., below the excitation energy of the light-
matter hybrid states), one recovers the exact quantization
of the Hall resistivity even when cavity vacuum fields
are present. If the cavity frequency is considered to be
negligible as compared to the other energy scales in the

system, the lower polariton mode goes to zero (see also
Sec. Vof the Supplemental Material [34]). This is a singular
point for the system because the lower polariton gap closes,
and thus circumvents the Thouless flux insertion argument
which assumes a finite gap [21]. The gap closing would
lead to the deviation of the Hall resistivity from the precise
quantization RH ¼ RK=ν [32]. Finally, one may inquire
whether the cavity has an impact on the quantization
accuracy through a thermally activated deviation [42,43],
as was predicted in Ref. [41]. In Sec. IV of the
Supplemental Material [34], we provide data as a function
of the temperature, which indeed show a reduced activation
energy for the cavity samples as compared to the reference
ones, in the same fashion as shown in the Supplemental
Material of Ref. [16]. Further investigation is needed to
explain this behavior through the framework developed
in Ref. [41].
The present work serves as a foundation for investigating

the effect of cavity vacuum fields on fundamental constants
in solid-state systems. Using the 2DES as the simplest
solid-state experimental platform, and measuring the
impact of cavity vacuum fields on the Hall resistance
employing the high-accuracy Wheatstone bridge measure-
ment technique, we have assessed that no deviation from
von Kliting’s constant is present up to one part in 105 for
filling factor 1. We believe that at this stage the accuracy is
mainly limited by electron-density inhomogeneities present
across the sample. In a more advanced version of this
experiment, a further increase in precision can be achieved
by injecting direct current, or by employing a cryogenic
current comparator, hence investigating whether the
deviation is smaller in magnitude, or if it can arise due
to finite-temperature effects [41]. The proposed experi-
mental platform could also be employed to study the impact
of cavity vacuum fields on electron systems hosted in other
different two-dimensional materials.
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APPENDIX: MATERIALS AND METHODS

The 2DES is obtained in a GaAs/AlGaAs quantum
well grown via molecular-beam epitaxy. The quantum
well is 30 nm wide and modulation doped, with a
100-nm spacer. The electron density and mobility measured
at 1.3 K in the dark are ns ¼ 2.06 × 1011 cm−2 and μ ¼
1.59 × 107 cm2V−1 s−1, respectively. At mK temperatures
from the location of the integer filling factor plateaux,
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we extract a density ns ¼ 2.2 × 1011 to 2.4 × 1011 cm−2,
varying between different samples. In the figures of the
main text and the Supplemental Material [34], the magnetic
field scale for all samples but the first reference is thus
stretched to align the plateaux according to the different
densities. The samples are processed via standard photo-
lithography techniques in a clean-room environment.
The cavity consists of a CSRR, and it is designed to have

its fundamental mode at 145 GHz. The normalized cou-
pling strength between the cavity vacuum field and the
2DES depends on the effective cavity volume and the
electron density as g̃=ωcav ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ns=Veff

p

. To assess the
coupling dynamics of the system, finite-element simula-
tions are conducted using the CST Microwave Studio
software, obtaining a normalized coupling of g̃=ωcav ≈ 0.3
(see Fig. 4). The resonator is modeled using the standard
gold (lossy material) sourced from the material library. The
substrate is implemented as a block of GaAs. The 2DES is

modeled using a gyrotropic material with bias (i.e., the
magnetic field) oriented perpendicular to the surface. To
mitigate computational expenses, an effective layer thick-
ness is incorporated. Similar designs have been already
implemented in previous experiments, and for a detailed
examination of transmission spectra experiments describ-
ing a setup similar to the one of the present work, we direct
readers to Refs. [16,44].
The experiment is conducted with state-of-the-art meth-

ods for measurement of the quantum Hall effect in two-
dimensional electron systems [45]. We employ a Bluefors
dilution refrigerator capable of reaching temperatures down
to 10 mK. The voltage is measured with commercial MFLI
Zurich Instruments digital lock-in amplifiers. Current is
injected symmetrically in the Wheatstone bridge by apply-
ing an ac-modulated voltage of 2-V root-mean-square (rms)
at the demodulation frequency fdem ¼ 2.333 Hz to two
100-MΩ resistors in series with the Wheatstone bridge,
such that a current of 10-nA rms is circulating in the circuit.
Differential ac low-noise preamplifiers are employed
before the lock-in voltage input, so to amplify the signal
by a factor of 1000. The amplifier input voltage noise
density amounts to 2.6 nV=

ffiffiffiffiffiffi

Hz
p

at the demodulation
frequency fdem, while the input current noise is negligible
in the balanced detection scheme. Moreover, the common
mode amplification does not introduce any unwanted
offset, since in the balanced detection scheme with sym-
metric current injection the absolute voltages are close to
zero. To demodulate the lock-in input signal, we employ a
fourth-order low-pass filter with time constant of 1.0 s,
which corresponds to a noise-equivalent-power bandwidth
of 0.079 Hz, so that the input voltage noise is 0.7 nV.
The input noise of the lock-in signal input is negligible
with respect to the noise of the amplified signal. Before the
contacts to the sample, low-pass 100-kHz filters are
installed in order to minimize electric spikes or heating
effects from the measurement setup.
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