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Abstract.— Conservation laws are one of the most generic and useful concepts in physics. In nonlinear optical parametric processes, 
conservation of photonic energy, momenta and parity often lead to selection rules, restricting the allowed polarization and 
frequencies of the emitted radiation. Here we present a new scheme to derive conservation laws in optical parametric processes in 
which many photons are annihilated and a single new photon is emitted. We then utilize it to derive two new such conservation 
laws. Conservation of reflection-parity (RP) arises from a generalized reflection symmetry of the polarization in a superspace, 
analogous to the superspace employed in the study of quasicrystals. Conservation of space-time-parity (STP) similarly arises from 
space-time reversal symmetry in superspace. We explore these new conservation laws numerically in the context of high harmonic 
generation and outline experimental set-ups where they can be tested. 

In parametric nonlinear optics (e.g., harmonic generation and parametric amplification), the medium 
returns to its initial state at the end of the interaction, hence the total radiation energy, momentum and parity 
are conserved [1]. This leads to so-called photonic conservation laws that are very powerful for analyzing 
processes in nonlinear optics, especially deriving selection rules that determine which photonic channels 
are allowed/forbidden, where the allowed channels satisfy all the photonic conservation laws 
simultaneously [2–8]. (note that the term photon is used, even though these conservation laws do not 
originate from the quantum nature of light, but from discrete symmetries. That is, they can be derived within 
a classical theory, as shall be done below) For example, in harmonic generation, energy conservation 
coerces the energy of a generated photon to equate exactly to the total energy of the annihilated photons. 
Thus, if the pump consists of only photons at angular frequency ω then emission of non-integer harmonics 
is forbidden. In another example, the simultaneous conservation of energy, parity and spin angular 
momentum leads to the selection rule of high harmonic generation driven by co-propagating, bi-chromatic 
ω-2ω pump fields that are circularly-polarized with opposite helicity [7,9,10]. 

Another approach for deriving selection rules in nonlinear optics is by analyzing the static and dynamical 
symmetries (DSs) of the light-matter system. In the field of nonlinear optics, symmetries are standardly 
used to determine whether a particular nonlinear process is allowed or forbidden according to the medium’s 
point-group [1,11]. Recently, a more general group theory was developed describing the symmetries of the 
EM field’s time-dependent polarization [12], and its interaction with matter [10]. Recent studies utilized 
DSs to predict many new selection rules, both due to microscopic symmetries [13,14], microscopic-
macroscopic symmetries [15–19], and symmetries in synthetic dimensions [20,21]. Such DSs and their 
associated selection rules have been applied to shaping the waveforms of EUV and X-ray radiation emitted 
from HHG [8,22–24] and have enabled ultrafast symmetry-breaking spectroscopy of molecular [25,26] and 
solid orientation [27], molecular symmetries [26], chirality [28–30], imaging of microscopic electric field 
distributions [31], and detection of topological phase transitions [32]. While the photonic conservation laws 
approach for deriving selection rules is often more intuitive, the symmetry approach is more general, i.e., 
it leads to selection rules that cannot be derived by photonic conservation laws. Such examples include 
reflection DSs that lead to linearly polarized only harmonics, and elliptical DSs that leads to conservation 
of the polarization ellipticity [10]. We are motivated to bridge this gap by deriving new photonic 
conservation laws.  
 
Here we present a new method to derive photonic conservation laws, associated with DSs of the pump, in 
parametric nonlinear optical processes (this derivation cannot be based on Noether’s theorem as Floquet 
DSs are discrete [10]). Our approach is based on superspace representation concept (a representation 



standardly used in the context of quasicrystals [33], see section 5 of the SI) and the recent multiscale 
dynamical symmetries concept [15]. Then, we employ this methodology to derive two new conservation 
laws: reflection parity (RP) and space-time parity (STP). These two conservation laws predict the direction 
and phase, respectively, of emitted linearly polarized harmonics according to the parity of the harmonic 
generation process. Finally, we explore these conservation laws numerically in high harmonic generation. 

We begin by considering a general nonlinear optical process in which the nonlinear medium is isotropic 
and stationary and its initial and final states are identical. The driving field consist of 𝑁 photon-types 𝛾  
where 𝑛 = 1, … , 𝑁, and each photon type corresponds to a particular frequency and polarization. The type 
of the emitted photon is denoted by 𝛾  (where 𝛾  is different from all 𝛾 ). Within this picture the nonlinear 
process may be represented by the following photonic reaction equation:  

𝑞 𝛾  → 𝛾  (1) 

in which 𝑞  is the number of driver photons of type 𝛾  that are annihilated (or generated when 𝑞  is 
negative) in the generation of a photon of type 𝛾 . 

The known photonic conservation laws of these processes are given in rows 1-5 in table 1. Rows 6 and 7 
present new conservation laws. All seven conservation laws will be derived below or in the SI. 

 Quantity 
Photonic 

conservation law 
Constraints 

1 energy 𝜔 = Σ 𝑞 𝜔  𝑞 ∈ ℤ 
2 linear momentum 𝑘 = Σ 𝑞 𝑘  |𝑘| = 𝑛 𝜔/𝑐  
3 orbital angular momenta 𝑙 = Σ 𝑞 𝑙  𝑙 ∈ ℤ 
4 spin angular momenta 𝑠 = Σ 𝑞 𝑠  𝑠 = ±1 
5 parity 𝑝 = Π 𝑝  𝑝 = −1 
6 reflection parity 𝑟 = Π 𝑟  𝑟 = ±1 
7 space-time parity 𝑢 = Π 𝑢  𝑢 = ±1 

Table 1. Photonic conservation laws in the generation process, ∑ 𝑞 𝛾  → 𝛾  . Rows 6 and 7 present new 
conservation laws that are derived below. 

 

Figure 1. Schematic illustrations of (a) conservation of reflection parity that is shown in row 6 in table 1 and (b) space-
time parity that is shown in row 7 in table 1.  

The constraints on 𝜔 , 𝑘 , 𝑙 , and 𝑠  are given in the right column of Table 1. This set of equations leads 
to the selection rules of nonlinear optics processes. The constraint on the spin, 𝑠 = ±1, leads to selection 
rules on the polarization of the emitted photons [16,34–36], and the constraint of phase matching is 
important for interaction regions thicker than the coherence length. We shall now present a method to derive 



the photonic conservation laws, starting with the known ones and then two novel laws. The method is based 
on the superspace representation, which was developed in the context of quasicrystals [5]. The first step is 
to represent the driving field to superspace of N dimensions (as the number of 𝑁 photon-types 𝛾 ). Now, 
in the provided high enough dimensionality, a DS is guaranteed. Using this DSs, we derive the selection 
rule. This selection rule is general since it is applicable for any driving field. We then formulate the general 
selection as an intuitive photonic conservation law.  

We derive the selection rules from the symmetries according to [15] which reported a theory for multi-scale 
dynamical symmetries and their selection rules. These multi-scale symmetries consist of operations in time 

and in both microscopic and macroscopic space scales. Such a symmetry of the electric field, �⃗�, can be 
described by: 

�⃗� �⃗� = 𝛾�⃗� Γ�⃗� + �⃗�  (2) 

where �⃗� is the space-time vector, �⃗� is the macro-space time translation vector. �⃗� and �⃗� can be vectors in 
the physical space or in the superspace (see section 5 of SI). 𝛾 is a microscopic operation, and Γ is a point-
group operation in macro-space time. As shown in [15], harmonic generation in an isotropic medium with 
a pump exhibiting the above multi-scale dynamical symmetry, exhibits the following selection rule in 
Fourier domain (if �⃗� includes translation along the propagation axis then re-absorption of the harmonics is 
neglected):  

𝛾�⃗� Γ𝑘 exp 𝑖𝑘 ∙ �⃗� = �⃗�(𝑘) (3) 

where 𝑘 is the space-time wavevector and �⃗�(𝑘) is the Fourier coefficient of the generated field, which is a 
complex-valued vector. In case of a discrete symmetry, eq. (3) leads to: 

𝜙 𝑘 = 𝑘 ∙ �⃗� + 𝛼 + 𝜙 Γ𝑘 − 2𝜋𝑄 (4) 

where exp(𝑖𝛼 ) is the ith eigenvalue of the microscopic operation, 𝑄 is an integer and 𝜙 𝑘  is the phase 

of the Fourier coefficient �⃗�(𝑘). In case of a continuous symmetry that involve microscopic rotation of 𝛿𝛼, 
macroscopic rotation of 𝛿2𝜋𝑙𝑚/𝑛, and 𝛿�⃗� translation for any real number 𝛿, eq. (3) leads to: 

𝑘 ∙ �⃗� ± 𝛼 + 2𝜋𝑙𝑚/𝑛 = 0, (5) 
where 𝑙 is the allowed winding number that characterizes the orbital angular momentum (OAM) of the 

emitted 𝑘 harmonic.Next, we apply the proposed method for deriving the selection rules in rows 1-3 in 
Table 1. Consider a general field composed of superposition of monochromatic plane waves: 

�⃗�(𝑡, 𝑋 , 𝑋 , … , 𝑋 ) = �⃗� = �⃗� 𝑒 ∑ , ∙  (6) 

where 𝑋  are 𝑀 different orthogonal space dimensions (physically, it is always the case that 𝑀 = 3, 
however, 𝑀 is effectively smaller in most experimental realizations, e.g., for plane wave 𝑀 = 1), 𝜔  and 

𝑘 ,  are the angular frequency and wavevector of �⃗� , respectively. For transforming into a superspace 
representation, we add more dimensions such that the field will be periodic for any combinations of 𝜔  and 
𝑘 , . The field in superspace is given by:  

�⃗� 𝑡 , 𝑡 , … , 𝑡 , 𝑋 , , 𝑋 , , … , 𝑋 , , 𝑋 , , … , 𝑋 , = �⃗� 𝑒 ∑ , ∙ ,  (7) 

This field is periodic with respect to 𝑡  with periodicity 2𝜋/𝜔 . Inserting the symmetry 𝑡 → 𝑡 + 2𝜋/𝜔  

to eq.(4) with the translation vector  �⃗� = �̂�  where �̂�  is a unit vector along the 𝑡  axis and using the 



superspace wave-vector 𝑘 = ∑ 𝜔
( )

�̂� + ∑ ∑ 𝑘 ,
( )

𝑋 ,   where 𝜔( ) and 𝑘 ,
( )  are the generated 

temporal and spatial frequencies in superspace, gives : 

𝜙 𝑘 = 𝑘 ∙ �⃗� + 𝛼 + 𝜙 Γ𝑘 − 2𝜋𝑄 = 𝜔
( )

∙
2𝜋

𝜔
+ 𝜙 𝑘 − 2𝜋𝑄 

→ 𝜔
( )

= 𝑄𝜔 = 𝑞 𝜔  
 

(8) 

Thus the allowed frequencies along the �̂�  axis are harmonics of 𝜔  with 𝑞  possible harmonics order. 
Hence, the allowed superspace temporal frequencies are any combination of 𝑞  integers  𝜔 ⃗ =

∑ 𝑞 𝜔 �̂� . Projecting 𝜔 ⃗ back to physical space (𝑡 = 𝑡), the allowed temporal frequencies are 𝜔 ⃗ =

∑ 𝑞 𝜔 . Similar symmetry appears for each spatial coordinates, 𝑋 , which lead to spatial harmonics, 
𝑘 ⃗ = ∑ 𝑞 ,  𝑘 , . Next, we will show that �⃗� = �⃗� by a symmetry that connects the spatial 

harmonics to the temporal harmonics. This is a continuous symmetry of 𝑡 → 𝑡 +  and 𝑋 , → 𝑋 , −

,
 (i.e. 𝑘 ∙ �⃗� =

( )

− ,
( )

,
), which according to eq. (5) 

𝑘 ∙ �⃗� =
𝜔

( )

𝜔
−

𝑘 ,
( )

𝑘 ,
=

𝑞 𝜔

𝜔
−

𝑞 , 𝑘 ,

𝑘 ,
= 0 

gives the selection rule, 𝑞 − 𝑞 , = 0 → 𝑞 = 𝑞 , . This important selection rule implies that the 
numbers of annihilated photons of each driver, with respect to energy and linear momentum (when 𝑋  is 
in Cartesian coordinates) or orbital angular momentum (when 𝑋  is the cylindrical angle in cylindrical 
coordinates), conservation rules are the same. Hence, we obtained rows 1-3 in table 1.Therefore the allowed 
superspace wave-vector of the emitted field is of the form: 

𝑘 = 𝑞 𝜔 �̂� + 𝑞 𝑘 , 𝑋 , . (9) 

The spin angular momentum (parity) conservation law in row 4 (5) in table 1 is derived in section 1 (3) of 
the SI. 

Next, we derive the new conservation law that is shown in row 6 of table 1 (see also schematic illustration 
in Fig. 1a). Consider a general EM field with polarization in the x-y plane, written here as a superposition 
of waves with x or y linear polarization: 

�⃗�(𝑡, 𝑋 , 𝑋 , … ) = 𝑥 𝑎 𝑒 ∑ , ∙ + 𝑦 𝑎 𝑒
∑ , ∙  (10) 

This can be written in superspace as 

�⃗� 𝑡 , 𝑡 , … , 𝑡 , 𝑡 , 𝑡 , … , 𝑡 , 𝑋 , 𝑋 , … , 𝑋

= 𝑥 𝑎 𝑒 ∑ , ∙ + 𝑦 𝑎 𝑒
∑ , ∙  

(11) 

This field has two discrete symmetries: (I) 𝑡 → 𝑡 +  for all 𝑛 = 1 … 𝑁  𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦  , 𝜎  . (II) 

𝑡 → 𝑡 +   for all 𝑛 = 1 … 𝑁  𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦 , 𝜎 . 



Therefore, according to eq. (3) with �⃗� = ∑ �̂�  for symmetry (I) and �⃗� = ∑ �̂�  for 

symmetry (I) and 𝑘  of eq. (9), the Fourier domain of the generated field in the wave-mixing process must 
obey the following equations:  

𝜎 �⃗� 𝑘 exp 𝑖𝜋 𝑞 = �⃗� 𝑘  

𝜎 �⃗� 𝑘 exp 𝑖𝜋 𝑞 = �⃗� 𝑘  
(12) 

which dictates that harmonics with odd ∑ 𝑞  and even ∑ 𝑞  are x-polarized, harmonics with 

even ∑ 𝑞  and odd ∑ 𝑞  are y-polarized, and all other harmonics are forbidden. This result is a 

new photonic conservation law, which is an extension of parity conservation. We can associate this 
conserved quantity with the following conservation law: each photon carries a RP of 𝑟 = +1 for an x-
polarized photon or 𝑟 = −1 for a y-polarized photon. The RP (i.e., the x- or y-polarization) of the emitted 
photon is 𝑟 = ∏ 𝑟  which corresponds to the conservation of RP in the sixth row of table 1. Hence, all 
generated harmonic channels will be linearly polarized and will have phase differences between each other. 

Last, we derive the conservation law in row 7 of table 1 (see also schematic illustration in Fig. 1b). Consider 
a general EM field, written here as superposition of cosine and sine waves with a linear polarization: 

�⃗�(𝑡, 𝑋 , 𝑋 , … ) = �⃗� cos 𝜔 𝑡 − 𝑘 , ∙ 𝑋

+ �⃗� sin 𝜔 𝑡 − 𝑘 , ∙ 𝑋  

(13) 

where �⃗�  and �⃗�  are linearly polarized real-valued amplitudes. In superspace, we can write the field as: 

�⃗� 𝑡 , 𝑡 , … , 𝑡 , 𝑡 , 𝑡 , … , 𝑡 , 𝑋 , 𝑋 , … , 𝑋

= �⃗� cos 𝜔 𝑡 − 𝑘 , ∙ 𝑋

+ �⃗� sin 𝜔 𝑡 − 𝑘 , ∙ 𝑋  

(14) 

This field has a discrete symmetry, 𝑡 → 𝑡 +   for all 𝑛 = 1 … 𝑁  𝑠𝑖𝑚𝑢𝑙𝑡𝑎𝑛𝑒𝑜𝑢𝑠𝑙𝑦, 𝐼,where 𝐼 is the 

STP operator (i.e., 𝐼�⃗� �⃗� = �⃗� −�⃗� ). Hence, �⃗� = ∑ �̂�  and Γ𝑘 = 𝐼𝑘 = −𝑘. Thus inserting eq. (4), 

the symmetry 𝑡 → 𝑡 +  , 𝐼 gives:  

𝜙 𝑘 = 𝑘 ∙ �⃗� + 𝛼 + 𝜙 Γ𝑘 − 2𝜋𝑄 = 𝜋 𝑞 + 𝜙 −𝑘 − 2𝜋𝑄

→ 𝜋 𝑞 + 𝜙 −𝑘 − 𝜙 𝑘 = 2𝜋𝑄 
(15) 

where 𝜙 −𝑘 − 𝜙 𝑘 = 0 for a generated cosine mode, and 𝜙 −𝑘 − 𝜙 𝑘 = 𝜋 for a generated sine 
mode. Therefore, for a generated sine mode in the induced polarization, ∑ 𝑞  must be odd, and for a 

cosine mode, ∑ 𝑞  must be even.  



This result is a new photonic conservation law, which is another extension to parity conservation. We can 
describe this law by considering photons that carry a STP, 𝑢, that equals 1 for cosine modes or -1 for sine 
modes. This STP is conserved such that the 𝑢  of the emitted photon is: 𝑢 = ∏ 𝑢 , which corresponds 
to the conservation of the STP in the seventh row of table 1. Hence, all generated harmonic channels will 
be linearly polarized and will have phase differences between each other.  

Numerical investigations. — Below, we present numerical investigations of the selection rules that result 
from the new photonic conservation laws. These selection rules cannot result from the photonic 
conservation laws in rows 1-5 in table 1. The single-atom HHG spectra are calculated using the strong field 
approximation method [37] in two spatial dimensions, for an atom with a hydrogen-like dipole [38] and 
ionization potential of Argon (15.76 eV), with the use of saddle point approximation for momentum 
integrations and numerical integration in the ionization time domain. 

Reflection parity conservation law (row 6 in table 1). — Consider the driving field:  

�⃗�(𝑡) = 𝐼 𝐴(𝑡)[𝑥 cos(𝜔 𝑡) + 𝑦 cos(𝜔 𝑡 + 𝜙)] (16) 
The generated frequencies are 𝜔 = 𝑞 𝜔 + 𝑞 𝜔 . According to the RP conservation law, annihilation of 
odd 𝑞  and even 𝑞  photons leads to the emission of an 𝑥 polarized photon, while annihilation of even 𝑞  
and odd 𝑞  photons leads to the emission of a 𝑦 polarized photon. We test this prediction numerally with 

𝜔 = 2.35 ∙ 10  𝑟𝑎𝑑/𝑠 (λ=800nm) and 𝜔 = √2𝜔  (and 𝜙 = 1 𝑟𝑎𝑑), which allows us to easily identify 
the channel (𝑞 , 𝑞 ) corresponding to each spectral line in the emitted power spectrum. The amplitude 

envelope is 𝐴(𝑡) = exp −
∙

𝑡 , and the peak intensity is 𝐼  = 10  𝑊/𝑐𝑚 . 

 

Figure 2. a) The power spectrum of x (blue) and y (red) linearly polarized harmonics driven by the field in eq. (16), 
demonstrating the RP photonic law (row 6 in table 1) The polarization of the channels (𝑞 , 𝑞 ) predicted by the 

conservation law is displayed by the dashed lines. b) The normalized power spectrum of x (blue) and y (red) linearly 
polarized harmonics driven by the field in eq. (16) as a function of 𝑞  and 𝑞 . As shown, the numerical results 

correspond well to the prediction.  

As shown in fig. 2, the polarizations of the numerically generated high harmonics agree with the prediction 
of the conservation law. 

Space-time parity (row 7 in table 1). — Consider the driving field: 

�⃗�(𝑡) = 𝐼 𝐴(𝑡)(𝑥 cos(𝜔 𝑡) + 𝑦 sin(𝜔 𝑡) + (0.5𝑥 + 𝑦) cos(𝜔 𝑡)) (17) 



The generated frequencies are 𝜔 = 𝑞 𝜔 + 𝑞 𝜔 + 𝑞 𝜔 . According to the STP photonic law, when 
𝑞 + 𝑞  is odd and 𝑞  is even, the harmonic field is proportional to cos(𝜔 𝑡), while it is proportional to 

sin(𝜔 𝑡) when 𝑞 + 𝑞  is even and 𝑞  is odd. We test this prediction numerally with 𝜔 = 2.35 ∙

10  𝑟𝑎𝑑/𝑠 (λ=800nm), 𝜔 = 2𝜔  and 𝜔 = 3𝜔 .The peak intensity is 𝐼  = 10  𝑊/𝑐𝑚 . In this case, 
all of the odd harmonics (of 𝜔 ) are cosine functions, while all of the even harmonics are sine functions. 
We simulate the induced dipole as a function of time and then calculate the cosine (sine) harmonics by 
taking the real (imaginary) part of the Fourier transform of the induced dipole for both (arbitrary) orthogonal 
linear polarizations. The results are presented in fig. 3a), showing that harmonics in the plateau region 
indeed correspond to the predicted selection rule, up to deviations that are smaller than 0.1%.  

  

Figure 3. Numerical investigation of the STP photonic law. a) The lissajous curve of the pump is plotted in the top 
right inset and is given in eq. (17) with intensity, 𝐼 = 10  𝑊/𝑐𝑚 . The figure shows the power spectrum of high 
harmonics with cosine (blue) and sine (red) functions. The bottom plot shows the normalized relative power to the 
sine and cosine fields of each harmonic. As predicted by the conservation law, odd harmonics are cosine functions 
while even harmonics are sine. Harmonics beyond the cutoff exhibit significant deviations from the predicted 
conservation law. b) Numerical investigation of the STP photonic law at relatively large ionization: The pump is the 
same as in a), but with higher intensity, 𝐼 = 10  𝑊/𝑐𝑚 . The figure shows the power spectrum of high harmonics 
with cosine (blue) and sine (red) functions, showing that the STP is broken even for harmonics in the plateau. 

Notably, time reversal symmetry is broken by ionization process; hence, the STP photonic law, which 
results from time reversal symmetry, is sensitive to ionization and is not perfectly upheld. To test this 
assumption, we increased the intensity of the driver field to 𝐼 = 10  𝑊/𝑐𝑚 . Now, as shown in Fig. 3b, 
only harmonics 1-6 behave according to the conservation law, while the higher harmonics do not.  

Discussion. — To conclude, we explored here photonic conservation laws arising from symmetries in a 
superspace representation of the electromagnetic field interacting with matter, including two new 
conservation laws. These two laws describe the conservation of polarization-like properties of light, as well 
as its phase-like properties, and complement the well-established conservation of spin and orbital angular 
momentum law. Beyond the development of the methodology and the derivation of new photonic 
conservation laws, we highlight that our work assigns new photonic characters associated with the 

a) b) 



conservation laws to electromagnetic waves, which should motivate future research to identify their origin 
and connection to other photonic characteristics.  
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