
PHYSICAL REVIEW RESEARCH 6, L042034 (2024)
Letter
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Conservation laws are some of the most generic and useful concepts in physics. In nonlinear optical parametric
processes, conservation of photonic energy, momenta and parity often lead to selection rules, restricting the
allowed polarization and frequencies of the emitted radiation. Here we present a scheme to derive conservation
laws in optical parametric processes in which many photons are annihilated and a single photon is emitted.
We first rederive with it the known nonlinear optical conservation laws, and then utilize it to predict and
explore conservations of reflection parity and space-time parity. Conservation of reflection-parity arises from
a generalized reflection symmetry of the polarization in a superspace, analogous to the superspace employed in
the study of quasicrystals. Conservation of space-time parity similarly arises from space-time reversal symmetry
in superspace. We explore these conservation laws numerically in the context of high-harmonic generation and
outline experimental setups where they can be tested.
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Photonic conservation laws (PCLs) are very powerful for
analyzing processes in nonlinear optics [1], especially deriv-
ing selection rules that determine which photonic channels are
allowed/forbidden, where the allowed channels satisfy all the
PCLs simultaneously [2–8]. For example, in harmonic gener-
ation, energy conservation coerces the energy of a generated
photon to equate exactly to the total energy of the annihi-
lated photons. Thus, if the pump consists of only photons at
angular frequency ω then emission of noninteger harmonics
is forbidden. In another example, the simultaneous conserva-
tion of energy, parity, and spin angular momentum leads to
the selection rule of high-harmonic generation driven by co-
propagating, bichromatic ω-2ω pump fields that are circularly
polarized with opposite helicity [7,9,10].

Another approach for deriving selection rules in nonlinear
optics is by analyzing the static and dynamical symmetries
(DSs) of the light-matter system. In the field of nonlinear
optics, symmetries are standardly used to determine whether a
particular nonlinear process is allowed or forbidden according
to the medium’s point group [1,11]. Recently, a more gen-
eral group theory was developed describing the symmetries
of the electromagnetic (EM) field’s time-dependent polariza-
tion [12], and its interaction with matter [10]. Recent studies
utilized DSs to predict many new selection rules, both due
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to microscopic symmetries [13,14], microscopic-macroscopic
symmetries [15–19], and symmetries in synthetic dimen-
sions [20,21]. Such DSs and their associated selection rules
have been applied to shaping the waveforms of extreme ul-
traviolet and x-ray radiation emitted from high harmonic
generation (HHG) [8,22–24] and have enabled ultrafast
symmetry-breaking spectroscopy of molecular- [25,26] and
solid orientation [27], molecular symmetries [26], chirality
[28–32], imaging of microscopic electric-field distributions
[33], and detection of valley asymmetry [34,35] and photocur-
rents [36]. While the PCL approach for deriving selection
rules is often more intuitive, the symmetry approach is more
mathematically based and more general, i.e., it leads to se-
lection rules that cannot be derived by PCLs. Such examples
include reflection DSs that lead to linearly polarized-only
harmonics, and elliptical DSs that lead to conservation of the
polarization ellipticity [10]. We are motivated to bridge this
gap by deriving more PCLs.

Here, we present a method to derive PCLs, associated with
DSs of the pump, in parametric nonlinear optical processes.
Note that the term photon is used, even though these PCL
do not originate from the quantum nature of light, but from
discrete symmetries of the classical field. Our approach is
based on superspace representation concept (a representation
standardly used in the context of quasicrystals [37]; see Sec. 5
of the Supplemental Material (SM) [38]) and the recent mul-
tiscale dynamical symmetries concept [15]. Then, we employ
this methodology to derive two more PCLs that were not pre-
viously known: reflection parity (RP) and space-time parity
(STP). These two PCLs predict the direction and phase, re-
spectively, of emitted linearly polarized harmonics according
to the parity of the harmonic generation process. Finally, we
explore these PCL numerically in high-harmonic generation.
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TABLE I. PCL in parametric nonlinear optical processes,∑
n qnγn → γ f . Rows 1 to 5 present known PCLs while rows 6 and

7 present reflection parity and space-time parity PCLs. The PCLs in
rows 1-3 and 6-7 are derived below, and the PCLs in rows 4-5 are
derived in the SM.

Quantity PCL Constraints

1 Energy ω f = �nqnωn qn ∈ Z

2 Linear momentum �k f = �nqn�kn |�k| = nωω/c

3 Orbital angular momenta l f = �nqnln l ∈ Z

4 Spin angular momenta s f = �nqnsn s = ±1

5 Parity pf = �n pn
qn p = −1

6 Reflection parity r f = �nrn
qn r = ±1

7 Space-time parity uf = �nun
qn u = ±1

We begin by considering a general nonlinear optical pro-
cess in which the nonlinear medium is isotropic and stationary
and its initial and final states are identical. The driving field
consists of N-photon types γn, where n = 1, . . . , N , and each
photon type corresponds to a particular frequency and po-
larization. The type of the emitted photon is denoted by γ f

(where γ f is different from all γn). Within this picture the non-
linear process may be represented by the following photonic
reaction equation: ∑

n

qnγn → γ f , (1)

in which qn is the number of driver photons of type γn that are
annihilated (or generated when qn is negative) in the genera-
tion of a photon of type γ f .

The known PCLs of these processes are given in rows 1–5
in Table I. Rows 6 and 7 present our derived PCL. All seven
PCLs will be derived below or in the SI.

The constraints on ωn, �kn, ln, and sn are given in the
right column of Table I. This set of equations leads to the
selection rules of nonlinear optics processes. The constraint
on the spin, s = ±1, leads to selection rules on the polariza-
tion of the emitted photons [16,39–41], and the constraint of
phase matching is important for interaction regions thicker
than the coherence length. We shall now present a method to
derive the PCLs, starting with the known ones and then two
laws. The method is based on the superspace representation,
which was developed in the context of quasicrystals [5]. The
first step is to represent the driving field to superspace of N
dimensions (as the number of N-photon types γn). Now, in
the provided high enough dimensionality, a DS is guaranteed.
Using this DS, we derive the selection rule. This selection
rule is general since it is applicable for any driving field. We
then formulate the general selection as an intuitive photonic
conservation law.

We derive the selection rules from the symmetries ac-
cording to Ref. [15], which reported a theory for multiscale
dynamical symmetries and their selection rules. These mul-
tiscale symmetries consist of operations in time and in both
microscopic and macroscopic space scales. Such a symmetry
of the electric field, �E , can be described by

�E ( �X ) = γ̂ �E (�̂ �X + �a), (2)

where �X is the space-time vector and �a is the macrospace-time
translation vector. �X and �a can be vectors in the physical
space or in the superspace (see Sec. 5 of SM [38]). γ̂ is a
microscopic operation, and �̂ is a point-group operation in
macrospace-time. As shown in Ref. [15], harmonic generation
in an isotropic medium with a pump exhibiting the above
multiscale dynamical symmetry, exhibits the following selec-
tion rule in Fourier domain (if �a includes translation along
the propagation axis, then reabsorption of the harmonics is
neglected):

γ̂ �F (�̂�k) exp(i�k · �a) = �F (�k), (3)

where �k is the space-time wave vector and �F (�k) is the Fourier
coefficient of the generated field, which is a complex-valued
vector. In case of a discrete symmetry, Eq. (3) leads to

φi(�k) = �k · �a + αi + φi(�̂�k) − 2πQ, (4)

where exp(iαi ) is the ith eigenvalue of the microscopic oper-
ation, Q is an integer, and φi(�k) is the phase of the Fourier
coefficient �F (�k). In case of a continuous symmetry that in-
volves microscopic rotation of δα, macroscopic rotation of
δ2π lm/n, and δ�a translation for any real number δ, Eq. (3)
leads to

�k · �a ± α + 2π lm/n = 0, (5)

where l is the allowed winding number that characterizes the
orbital angular momentum of the emitted �k harmonic. Next,
we apply the proposed method for deriving the selection rules
in rows 1–3 in Table I. Consider a general field composed of
superposition of monochromatic plane waves:

�E (t, X1, X2, . . . , XM ) =
N∑

n=1

�En =
N∑

n=1

�anei(ωnt+∑M
m=1 kn,mXm ),

(6)
where Xm are M different orthogonal space dimensions (phys-
ically, it is always the case that M = 3; however, M is
effectively smaller in most experimental realizations, e.g., for
plane-wave M = 1), and ωn and kn,m are the angular frequency
and wave vector of �En, respectively. For transforming into a
superspace representation, we add more dimensions such that
the field will be periodic for any combinations of ωn and kn,m.
The field in superspace is given by

�E (t1, t2, . . . , tN , X1,1, X1,2, . . . , X2,1, X2,2, . . . , XN,M )

=
N∑

n=1

�anei(ωntn+
∑M

m=1 kn,mXn,m ). (7)

This field is periodic with respect to tn with periodicity
2π/ωn. Inserting the symmetry tn → tn + 2π/ωn into Eq. (4)
with the translation vector �a = 2π

ωn
t̂n , where t̂n is a unit vector

along the tn axis, and using the superspace wave vector �kS =∑N
n=1 ω

(g)
n t̂n + ∑M

m=1

∑N
n=1 k(g)

n,mX̂n,m where ω
(g)
n and k(g)

n,m are
the generated temporal and spatial frequencies in superspace,
gives

φi(�k) = �kS · �a + αi + φi(�̂�k) − 2πQ

= ω(g)
n

2π

ωn
+ φi(�k) − 2πQ

→ ω(g)
n = Qωn = qnωn. (8)
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FIG. 1. Schematic illustrations of (a) conservation of reflection parity that is shown in row 6 in Table I and (b) space-time parity that is
shown in row 7 in Table I.

Thus, the allowed frequencies along the t̂n axis are har-
monics of ωn with qn possible harmonics order. Hence, the
allowed superspace temporal frequencies are any combina-
tion of qn integers �ω�q = ∑N

n=1 qnωnt̂n. Projecting �ω�q back
to physical space (tn = t), the allowed temporal frequencies
are ω�q = ∑N

n=1 qnωn. Similar symmetry appears for each
spatial coordinates, Xm, which leads to spatial harmonics,
km �qm

= ∑N
n=1 qn,m kn,m. Next, we will show that �qm = �q by

a symmetry that connects the spatial harmonics to the tem-
poral harmonics. This is a continuous symmetry of tn → tn +
δ
ωn

and Xn,m → Xn,m − δ
kn,m

(i.e., �k · �a = ω
(g)
n

ωn
− k(g)

n,m

kn,m
), which ac-

cording to Eq. (5),

�k · �a = ω
(g)
n

ωn
− k(g)

n,m

kn,m
= qnωn

ωn
− qn,mkn,m

kn,m
= 0

gives the selection rule, qn − qn,m = 0 → qn = qn,m. This im-
portant selection rule implies that the numbers of annihilated
photons of each driver, with respect to energy and linear
momentum (when Xm is in Cartesian coordinates) or orbital
angular momentum (when Xm is the cylindrical angle in cylin-
drical coordinates), conservation rules are the same. Hence,
we obtained rows 1–3 in Table I. Therefore, the allowed su-
perspace wave vector of the emitted field is of the form

�kS =
N∑

n=1

qnωnt̂n +
M∑

m=1

N∑
n=1

qnkn,mX̂n,m. (9)

The spin angular momentum (parity) conservation law in
row 4 (5) in Table I is derived in Sec. 1 (3) of the SM.

Next, we derive the conservation law that is shown in row
6 of Table I [see also schematic illustration in Fig. 1(a)].
Consider a general EM field with polarization in the x-y plane,
written here as a superposition of waves with x- or y-linear
polarization:

�E (t, X1, X2, . . .) = x̂
Nx∑

nx=1

anx e
i(ωnx t+∑M

m=1 knx ,mXm )

+ ŷ
Ny∑

ny=1

any e
i(ωny t+∑M

m=1 kny ,mXm ). (10)

This can be written in superspace as

�E (t1x , t2x , . . . , tNx , t1y , t2y , . . . , tNy , X1, X2, . . . , XM )

= x̂
Nx∑

nx=1

anx e
i(ωnx tnx +∑M

m=1 knx ,mXm )

+ ŷ
Ny∑

ny=1

any e
i(ωny tny +∑M

m=1 kny ,mXm ). (11)

This field has two discrete symmetries: (I) tnx → tnx + π
ωnx

for all nx = 1 . . . Nx simultaneously, σ̂x. (II) tny → tny + π
ωny

for all ny = 1 . . . Ny simultaneously, σ̂y.
Therefore, according to Eq. (3) with �a = ∑Nx

nx=1
π

ωnx
t̂nx

for symmetry (I) and �a = ∑Ny

ny=1
π

ωny
t̂ny for symmetry (I)

and �kS of Eq. (9), the Fourier domain of the generated
field in the wave-mixing process must obey the following
equations:

σ̂x �F (�k) exp

⎛
⎝iπ

Nx∑
nx=1

qnx

⎞
⎠ = �F (�k)

σ̂y �F (�k) exp

⎛
⎝iπ

Ny∑
ny=1

qny

⎞
⎠ = �F (�k), (12)

which dictates that harmonics with odd
∑Nx

nx=1 qnx and even∑Ny

ny=1 qny are x-polarized harmonics with even
∑Nx

nx=1 qnx and

odd
∑Ny

ny=1 qny are y polarized, and all other harmonics are
forbidden. This result is a photonic conservation law, which
is an extension of parity conservation. We can associate this
conserved quantity with the following conservation law: each
photon carries a RP of r = +1 for an x-polarized photon or
r = −1 for a y-polarized photon. The RP (i.e., the x- or y
polarization) of the emitted photon is r f = ∏

n rn
qn , which

corresponds to the conservation of RP in the sixth row of
Table I. Hence, all generated harmonic channels will be lin-
early polarized and will have phase differences between each
other.
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Last, we derive the conservation law in row 7 of Table I [see
also schematic illustration in Fig. 1(b)]. Consider a general
EM field, written here as superposition of cosine and sine
waves with a linear polarization:

�E (t, X1, X2, . . .) =
Nc∑

nc=1

�anc cos

(
ωnct −

M∑
m=1

knc,mXm

)

+
Ns∑

ns=1

�ans sin

(
ωnst −

M∑
m=1

kns,mXm

)
,

(13)

where �anc and �ans are linearly polarized real-valued ampli-
tudes. In superspace, we can write the field as

�E (t1c , t2c , . . . , tNc , t1s , t2s , . . . , tNs , X1, X2, . . . , XM )

=
Nc∑

nc=1

�anc cos

(
ωnctnc −

M∑
m=1

knc,mXm

)

+
Ns∑

ns=1

�ans sin

(
ωnstns −

M∑
m=1

kns,mXm

)
. (14)

This field has a discrete symmetry, tns → tns + π
ωns

for all

ns = 1 . . . Ns simultaneously, Î ,where Î is the STP operator
(i.e., Î �E ( �X ) = �E (− �X )). Hence, �a = ∑Ns

ns=1
π

ωns
t̂ns and �̂�k =

Î�k = −�k. Thus, inserting Eq. (4), the symmetry tns → tns +
π

ωns
Î gives

φi(�k) = �kS · �a + αi + φi(�̂�k) − 2πQ

= π
∑

ns

qns + φi(−�k) − 2πQ

→ π
∑

ns

qns + φi(−�k) − φi(�k) = 2πQ, (15)

where φi(−�k) − φi(�k) = 0 for a generated cosine mode, and
φi(−�k) − φi(�k) = π for a generated sine mode. Therefore, for
a generated sine mode in the induced polarization,

∑
ns

qns

must be odd, and for a cosine mode,
∑

ns
qns must be even.

This result is a photonic conservation law, which is another
extension to parity conservation. We can describe this law
by considering photons that carry a STP, u, that equals 1 for
cosine modes or −1 for sine modes. This STP is conserved
such that the u f of the emitted photon is u f = ∏

n un
qn , which

corresponds to the conservation of the STP in the seventh row
of Table I. Hence, all generated harmonic channels will be
linearly polarized and will have phase differences between
each other.

Numerical investigations. Below, we present numerical
investigations of the selection rules that result from the de-
veloped PCL. These selection rules cannot result from the
PCL in rows 1–5 in Table I. The single-atom HHG spectra
are calculated using the strong-field approximation method
[42] in two spatial dimensions, for an atom with a hydrogen-
like dipole [43] and ionization potential of argon (15.76 eV),
with the use of saddle-point approximation for momentum
integrations and numerical integration in the ionization time
domain.

Reflection parity conservation law (row 6 in Table I). Con-
sider the driving field:

�E (t ) = √
I0A(t )[x̂ cos (ω1t ) + ŷ cos (ω2t + φ)]. (16)

The generated frequencies are ω f = q1ω1 + q2ω2. Accord-
ing to the RP conservation law, annihilation of odd q1 and even
q2 photons leads to the emission of an x̂-polarized photon,
while annihilation of even q1 and odd q2 photons leads to
the emission of a ŷ-polarized photon. We test this predic-
tion numerally with ω1 = 2.35 × 1015 rad/s (λ = 800 nm)
and ω2 = √

2ω1 (and φ = 1 rad), which allows us to easily
identify the channel (q1, q2) corresponding to each spectral
line in the emitted power spectrum. The amplitude envelope

FIG. 2. (a) The power spectrum of x- (blue) and y- (red) linearly polarized harmonics driven by the field in Eq. (16), demonstrating the RP
photonic law (row 6 in Table I) The polarization of the channels (q1, q2) predicted by the conservation law is displayed by the dashed lines. (b)
The normalized power spectrum of x- (blue) and y- (red) linearly polarized harmonics driven by the field in Eq. (16) as a function of q1 and q2.
As shown, the numerical results correspond well to the prediction.
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FIG. 3. Numerical investigation of the STP photonic law. (a) The Lissajous curve of the pump is plotted in the top right inset and is given in
Eq. (17) with intensity, I0 = 1012 W/cm2. The figure shows the power spectrum of high harmonics with cosine (blue) and sine (red) functions.
The bottom plot shows the normalized relative power to the sine and cosine fields of each harmonic. As predicted by the conservation law, odd
harmonics are cosine functions while even harmonics are sine. Harmonics beyond the cutoff exhibit significant deviations from the predicted
conservation law. (b) Numerical investigation of the STP photonic law at relatively large ionization: The pump is the same as in (a), but
with higher intensity, I0 = 1014 W/cm2. The figure shows the power spectrum of high harmonics with cosine (blue) and sine (red) functions,
showing that the STP is broken even for harmonics in the plateau.

is A(t ) = exp(−( ω1
2π ·30 t )6), and the peak intensity is I0 =

1014 W/cm2.
As shown in Fig. 2, the polarizations of the numerically

generated high harmonics agree with the prediction of the
conservation law.

Space-time parity (row 7 in Table I). Consider the driving
field:

�E (t ) = √
I0A(t )[x̂ cos (ω1t ) + ŷ sin (ω2t )

+ (0.5x̂ + ŷ) cos (ω3t )]. (17)

The generated frequencies are ω f = q1ω1 + q2ω2 + q3ω3.
According to the STP photonic law, when q1 + q3 is odd and
q2 is even, the harmonic field is proportional to cos(ω f t ),
while it is proportional to sin(ω f t ) when q1 + q3 is even and
q2 is odd. We test this prediction numerally with ω1 = 2.35 ×
1015 rad/s (λ = 800 nm), ω2 = 2ω1 and ω3 = 3ω1.The peak
intensity is I0 = 1012 W/cm2. In this case, all of the odd
harmonics (of ω1) are cosine functions, while all of the even
harmonics are sine functions. We simulate the induced dipole
as a function of time and then calculate the cosine (sine)
harmonics by taking the real (imaginary) part of the Fourier
transform of the induced dipole for both (arbitrary) orthogonal
linear polarizations. The results are presented in Fig. 3(a),

showing that harmonics in the plateau region indeed corre-
spond to the predicted selection rule, up to deviations that are
smaller than 0.1%.

Notably, time-reversal symmetry is broken by ionization
process; hence, the STP photonic law, which results from
time-reversal symmetry, is sensitive to ionization and is not
perfectly upheld. To test this assumption, we increased the
intensity of the driver field to I0 = 1014 W/cm2. Now, as
shown in Fig. 3(b), only harmonics 1–6 behave according to
the conservation law, while the higher harmonics do not.

Discussion. To conclude, we explored here PCLs aris-
ing from symmetries in a superspace representation of the
electromagnetic field interacting with matter, including two
developed PCLs. These two laws describe the conservation of
polarization-like properties of light, as well as its phaselike
properties, and complement the well-established conservation
of spin- and orbital angular momentum law. Beyond the de-
velopment of the methodology and the derivation of PCLs, we
highlight that our work assigns photonic characters associated
with the PCL to electromagnetic waves, which should moti-
vate future research to identify their origin and connection to
other photonic characteristics.
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