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ABSTRACT: Glycolyl-CoA carboxylase (GCC) is a new-to-nature enzyme that
catalyzes the key reaction in the tartronyl-CoA (TaCo) pathway, a synthetic
photorespiration bypass that was recently designed to improve photosynthetic
CO2 fixation. GCC was created from propionyl-CoA carboxylase (PCC)
through five mutations. However, despite reaching activities of naturally evolved
biotin-dependent carboxylases, the quintuple substitution variant GCC M5 still
lags behind 4-fold in catalytic efficiency compared to its template PCC and
suffers from futile ATP hydrolysis during CO2 fixation. To further improve upon
GCC M5, we developed a machine learning-supported workflow that reduces
screening efforts for identifying improved enzymes. Using this workflow, we
present two novel GCC variants with 2-fold increased carboxylation rate and
60% reduced energy demand, respectively, which are able to address kinetic and
thermodynamic limitations of the TaCo pathway. Our work highlights the
potential of combining machine learning and directed evolution strategies to
reduce screening efforts in enzyme engineering.
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■ INTRODUCTION
Photosynthesis plays a crucial role in the global carbon cycle by
converting CO2 to organic compounds that feed virtually all
life on Earth. However, one limiting factor in photosynthesis is
the carbon conversion efficiency of the Calvin−Benson−
Bassham cycle and in particular its key enzyme ribulose-1,5-
bisphosphate carboxylase/oxygenase (Rubisco). Besides fixing
CO2, Rubisco also captures O2 as a side reaction.

1 This
undesired reaction with O2 yields 2-phosphoglycolate, which
needs to be recycled in a process called photorespiration,
resulting in the loss of previously fixed carbon.
To circumvent the loss of carbon during photorespiration,

we recently developed the tartronyl-CoA (TaCo) pathway, a
synthetic carboxylation module, which additionally fixes CO2
during photorespiration.2 Theoretical and experimental data
show that the TaCo pathway indeed improves carbon yield
during photosynthesis.2−4 The key enzyme in the TaCo
pathway is a new-to-nature enzyme, glycolyl-CoA carboxylase
(GCC), that we established through structure-guided
approaches and large-scale screening of mutagenesis libraries
of propionyl-CoA carboxylase (PCC) from Methylorubrum
extorquens.2 PCC is a biotin-dependent carboxylase that
consists of two subunits. The α-subunit comprises a biotin

carboxylase domain and a biotin-carboxyl-carrier protein
(BCCP) domain. The β-subunit comprises only a carboxyl
transferase domain. The enzyme forms an α6β6 dodecameric
complex, where the β-subunits arrange in a central core of two
trimeric layers, while the α-subunits sit on top of the core and
face outward.5 The biotin cofactor that is essential to catalysis
is covalently linked to a lysine residue in the BCCP domain of
the α-subunit and acts as a flexible arm that transfers the
carboxyl group derived from HCO3− between the active sites
of the α- and β-subunits.6 In iterative rounds, we introduced
five mutations into PCC to create variant GCC M5. This
quintuple substitution variant carboxylates glycolyl-CoA at a
catalytic rate of 5.6 ± 0.3 s−1, which is comparable to that of
natural biotin-dependent carboxylases.
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Despite a more than 1000-fold improvement in activity, the
catalytic efficiency of GCC M5 still lags about 4-fold behind
that of native PCC.2 Additionally, the enzyme catalyzes some
futile ATP hydrolysis: while for PCC the stoichiometric ratio
of consumed ATP per carboxylation (ATP/CO2) equals 1,
GCC M5 hydrolyzes about 4 ATP per carboxylation, which is
likely caused by a release of CO2 from the carboxybiotin
cofactor without a fruitful carboxylation event.2 For the further
engineering of the enzyme, a workflow exists that builds on the
testing of (randomly) generated variants of GCC M5 in plate-
reader based assays.2 However, this setup is limited by the
number of screenings that can be performed per iteration,
which makes it difficult to exhaustively screen the sequence
space of GCC in this workflow without additional guidance.
In the last two decades, a variety of machine learning tools

have been developed that support enzyme engineering by
allowing simplification of the approaches and reduction of
screening efforts.7 Machine learning (ML) is a statistical
methodology that uses algorithms to learn from data for
prediction and/or decision-making. ML perceives information
about the sequences and properties of enzymes, processes
those, and infers novel information that likely provides
improved or refined properties.8 These algorithms are used
in synthetic biology for many applications ranging from the
optimization of genetic or metabolic networks9 over the
directed evolution of enzymes10,11 to the prediction of kinetic
properties for uncharacterized enzymes12 and even the de novo
design of whole proteins.13

ML-assisted enzyme engineering workflows generally
comprise the generation of data sets of variants of enzymes,

either collected experimentally or from a database, representa-
tion of those variants in descriptor space, assigning enzyme
properties to variants, and splitting data sets into training,
validation, and test subsets. The final training model of variants
is subsequently used for the prediction of novel or improved
enzyme properties that are then validated experimentally.7 For
example, Madani et al. trained a transformer model on 280
million protein sequences from >19,000 families to derive a de
novo member of the lysozyme family with a wild-type catalytic
rate but a maximum sequence identity of only 40% compared
to lysozymes in the training data.14 Similarly, Ma et al. explored
the use of a random forest regressor to predict activity and
guide directed evolution of an imine reductase by training with
a set of experimentally characterized enzyme variants.15

Voutilainen et al. applied a novel machine learning model
utilizing Gaussian processes and featured learning for the third
mutagenesis of a 2-deoxy-D-ribose 5-phosphate aldolase
leading to a strong improvement in enzyme performance.16

Here, we present an advanced engineering workflow for
GCC that we complemented by a ML algorithm to reduce the
screening effort for the directed evolution of GCC toward
higher carboxylation rates and reduced ATP demand. We
demonstrate the successful application of the workflow by
presenting two improved GCC variants. One variant shows an
almost 2-fold increase in turnover rate for the carboxylation of
glycolyl-CoA, while the other variant has a more than 2-fold
decreased ATP per carboxylation ratio. Cryogenic electron
microscopy (cryo-EM) structures combined with additional
biochemical characterizations provide insights into the role of
these mutations.

Figure 1. Workflow of machine learning-supported directed evolution of GCC M5. The workflow comprises the creation and transformation of
randomly mutagenized GCC M5 plasmids into E. coli BL21-birA, the precultivation in 384-well plates, the protein overproduction in 96-deep well
plates, chemical cell lysis, and a plate-reader based enzyme activity assay to determine kinetic properties. Based on the screening results, a subset of
screened samples is selected for sequencing. Screening and sequencing data are fed to the ML model that processes the data and infers a list of
promising mutations for in vitro testing ranked by predicted efficiency. Based on the list, the number of samples to screen can be reduced. Finally, a
new iteration of the workflow can be executed, or biochemical characterization of the selected variants is started.
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■ RESULTS AND DISCUSSION
The field of protein engineering has recently witnessed a
growing use of ML methods. These methods have been
employed to predict protein structures and enhance enzyme
properties, such as stability, function, and solubility. To
facilitate the engineering of GCC M5 and other proteins, we
developed and assessed ML algorithms and designed a
customized two-step workflow. The first step in our approach
involves the utilization of ML models to predict how protein
sequence corresponds to function without relying on data
regarding secondary, tertiary, or quaternary protein structures.
This enables us to infer the functional properties of proteins
solely based on their amino acid sequences. In the second step,
our prediction algorithm is integrated within a black-box
Bayesian optimization loop. This loop serves as a decision-
making process to select the most promising candidates for the
subsequent batch of wet lab experiments. By employing this
optimization loop, we can simultaneously optimize various
parameters of interest, such as stability, catalytic speed, and
substrate specificity. This allows for a more efficient and
comprehensive optimization process in protein engineering.
We developed our ML algorithm using reproducing kernel

Hilbert space methods as a basis for a Gaussian Process (GP)
regression model to predict enzymatic properties such as
catalytic speed and ATP efficiency.17 We compared it to
Unirep 1900 embeddings combined with a random forest
regressor developed by Ma et al.15 in a cross validation scheme
and selected the GP model based on the performance in terms
of rank correlation between predicted and measured properties
on the validation sets (GP ρ = 0.42, Unirep + random forest ρ
= 0.39). The GP was subsequently used to rank candidate
sequences for synthesis.
A data set to train the ML algorithm was prepared by using a

directed evolution workflow of GCC M5 described before
(Figure 1).2 We first created an error-prone PCR-based
plasmid library of randomly mutagenized GCC M5. For this
library, we neglected the PccA subunit, which is involved in the
ATP-dependent carboxylation of biotin and has not been
mutagenized before. We instead focused the library exclusively
on the PccB subunit that interacts with glycolyl-CoA and
catalyzes the release of CO2 from carboxybiotin and its actual
transfer onto the substrate.
We performed lysate-based enzyme screens for over 3000

variants but did not observe a significant improvement of
either the carboxylation rate or the ATP per carboxylation ratio
(Figure S1 in the Supporting Information). From the obtained
data, a subset of 161 representative candidates covering the
range from inactive to most active candidates was sequenced
and used to train the ML model for the prediction of beneficial
enzyme variants (Supplementary file 1).
The two ML models (a GP-based model comparing

positions and a Unirep-random forest model) were evaluated
in a 10-fold cross validation scheme (90% train, 10% test
splits) on the data set of 161 unique enzyme sequences with
measured carboxylation rates and ATP per carboxylation
ratios. The GP based model showed higher rank correlation
(Spearmans ρ = 0.42) between the upper confidence bound of
the GP and the measurements and was thus chosen for
subsequent in silico evaluation of mutants (Figure S2). The
upper confidence bound is a principled approach to black-box
optimization based on GP regression models. We generated all
single mutations based on GCC M5 and sorted them by the

upper confidence bound criterion calculated from the GP
regression model to obtain a list with ranked mutations.
The ML algorithm returned a list of all possible single

mutations in the β-subunit (i.e., PccB) of GCC M5 ranked by
their predicted efficiency. This list was used as a template for
further in silico investigation and assessment of candidates that
in our view might show promise for improved kinetic
properties. From the top 1% (covering 105 predictions;
Supplementary file 2), we created homology models based on
PDB 6YBQ2 and further investigated the structure of these
variants. Variants with substitutions in the His-tag were
excluded as well as substitutions that were likely to cause
major steric clashes. We further considered variants which we
assumed to have an impact on enzymatic activity and/or whose
substitution sites had a high frequency (i.e., were presented
multiple times) in the top 1% predictions. Based on these
considerations, we selected seven variants to be tested in vitro.
Additionally, we selected three variants that were ranked in the
top 5% of predictions and whose positions had already been
targeted during the development of GCC M5 in the past.
Table S4 in the Supporting Information lists the ten candidate
enzymes that were selected for biochemical characterization in
vitro.
In the next step, we used our workflow, to screen the ten

candidates in cell lysate for activity (Figure S3). In this screen,
all candidates except variant M64R were still active,
corresponding to a fraction of active variants of 90%. This
90% positive hit rate already marked a dramatic improvement
to our prior screening efforts of random mutagenesis libraries,
in which only less than 20% of variants showed measurable
activities.2 Thus, the enrichment of active variants based on
ML and manual filtering proved the benefit of combining
conventional screening methods with computational tools. To
quantify carboxylation rates and the ATP per carboxylation
stoichiometry, we purified the remaining nine active variants
and measured their activities using a spectrophotometric assay
(Table S6). Among the tested candidates, variant G20R stood
out with a specific activity for glycolyl-CoA carboxylation of
2.6 ± 0.4 μmol min−1 mg−1 at a concentration of 0.5 mM
glycolyl-CoA, which corresponded to a 2.8-fold improvement
of the carboxylation rate compared to that of GCC M5 (Figure
2, Table S6). We then performed more in detail biochemical
characterizations determining Vmax, kcat, and KM values for this
enzyme variant using LC-MS assays, which underscored the
catalytic improvement over GCC M5 (Table 1). While the
apparent KM value for glycolyl-CoA slightly increased, the Vmax
was 1.8-fold higher than that of GCC M5 and thus the G20R
variant with a kcat of 9.8 ± 0.2 represents a very promising
candidate for GCC-based applications. In this variant, the
substitution of Gly by Arg on a surface loop of the β-core
strongly increased the carboxylation rate, whereas the ATP per
carboxylation ratio changed only marginally (Figure 2B).
Besides G20R, we also identified variant L100N that showed a
significantly decreased ATP to carboxylation ratio of 1.7 ± 0.1
ATP, lowering the energy demand for the reaction by 60%
compared to GCC M5 (4.0 ± 0.0 ATP per glycolyl-CoA
carboxylation). In this variant, Leu100 in the active site
periphery (second shell) was replaced by Asn. This
substitution had been investigated already early on during
GCC development, but only with the focus on the
carboxylation rate and also not in the context of the M5
variant.2 Therefore, the benefit of this substitution had
remained hidden then. All other tested variants showed similar
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catalytic properties compared to those of GCC M5, resulting
in a discovery ratio of 20% of variants with improved kinetic
properties. This number represents a great improvement
compared to conventional directed evolution approaches
without the support of ML algorithms, where in our previous
experiments less than 0.1% of screened enzymes exhibited
significantly improved properties. To evaluate whether other
mutations at positions 20 and 100 showed beneficial impacts
on the GCC’s catalytic properties, we tested site-saturation
libraries for both positions and applied the lysate-based screen.
However, we could not detect any other beneficial
substitutions apart from G20R and L100N or the L100S
variant from our earlier work.2 This observation underlines the
reliability of the ML-model in predicting the best performing
mutations.
To identify structural changes that might be responsible for

the catalytic improvements of the G20R or L100N variants, we
solved their cryo-EM structures at 2.05 and 2.31 Å, respectively
(Figure 3, Figures S4 and S5). The G20R substitution is
located ∼8 Å away from the 3′-phosphate of coenzyme A and
has no obvious interactions with other residues or the substrate
(Figure 3C). The lack of defined contact points in the cryo-
EM structure is reflected in only weak electron density
observed for the side chain of Arg20, indicating a high degree
of side chain flexibility. Arg20 is positioned in a flexible loop,
where it is preceded by two glycine residues, which add to its
increased flexibility. Based on G20R’s position on the top rim
of the β6 core of GCC, we suspected that it might help stabilize
the interaction with the α-subunit and indirectly also facilitate

CoA positioning (Figure 3C). Indeed, in mass photometry
(MP) measurements, the G20R variant formed more higher
mass complexes relative to GCC M5, indicating a more stable
complex formation (Figure 3D,E). Thus, the higher fraction of
α-subunits bound to the β6 core likely explains the higher in
vitro activity of the G20R mutant.
The L100N substitution is located in the periphery of the

active site, at a position that had previously been targeted
during engineering efforts of GCC M5, in which this position
was engineered to be serine. The Asn100 substitution is in
close proximity to His143, which was proposed to coordinate
the hydroxyl group of glycolyl-CoA (Figure 3F). While active
site overlays of the L100N variant and GCC M5 look almost
identical, we assume that Asn100 forces His143 into a more
favorable rotamer conformation for substrate binding and
catalysis, enabling carboxylation to occur more efficiently. This
is supported by the fact that His143 is categorized as a rotamer
outlier in all subunits of the L100N cryo-EM structure, which
is not the case for the GCC M5 or G20R variant structures.
Such minor movements of the His143 side chain toward
glycolyl-CoA might facilitate improved substrate orientation/
positioning and thus reduce the unfruitful decarboxylation of
carboxybiotin (i.e., the release of CO2 from carboxybiotin
without a transfer onto the substrate). This in turn decreases
the reaction’s energy requirement in ATP. While the L100N
variant exhibits a slightly increased proportion of higher mass
oligomeric complexes in MP experiments (Figure 3G), the
complex distribution remained similar to that of GCC M5 and
PCC (Figure 3D,H). All investigated variants, including the
PCC wild-type (Figure 3H), formed a stable β6 core with
variable amounts of α-subunits bound in MP measurements.

■ CONCLUSIONS
In this work, we demonstrated the successful application of a
ML algorithm as a filtering tool to reduce the screening efforts
of a random mutagenesis library of glycolyl-CoA carboxylase,
GCC M5. Having trained the algorithm with 161 selected data
points helped to reduce the initial sequence space of more than
10,000 sequences to only 10 candidates to screen. From these
ten candidates, nine were still active in lysate-based enzyme
assays and two even showed improved kinetic properties,
demonstrating how screening efforts can be successfully
reduced through ML-assisted strategies while increasing the
fraction of positive hits at the same time.
The two newly identified GCC variants are of direct benefit

for the TaCo pathway that turns photorespiration from a CO2-
releasing into a carbon-fixing process. The reduced ATP
demand of the GCC M5 L100N variant further increases the
thermodynamic advantage of the TaCo pathway as a
photorespiratory bypass. Note that the TaCo pathway based
on the GCC M5 variant has already a minimal energy demand
compared with all other natural and synthetic photosynthetic

Figure 2. Spectrophotometric measurements of GCC M5 variants
G20R and L100N. (A) Specific activities for glycolyl-CoA
carboxylation were determined photometrically in a coupled enzyme
assay with CaMCR and 0.5 mM glycolyl-CoA. (B) ATP per
carboxylation ratios were determined by measuring specific activities
for glycolyl-CoA carboxylation under ATP-limited conditions. Bars
represent mean ± SD, n = 3−6. For significance analysis, an unpaired
t test was performed. ****p < 0.0001, **p < 0.007, *p = 0.0216.

Table 1. Kinetic Properties of GCC M5 Variants G20R and L100Na

enzyme substrate Vmax [nmol min−1 mg−1] kcat [s−1] app. KM [mM] kcat/KM [s−1 M−1] ref

GCC M5 glycolyl-CoA 2590 ± 130 5.6 ± 0.3 0.15 ± 0.03 3.63 × 104 2
G20R glycolyl-CoA 4520 ± 90 9.8 ± 0.2 0.27 ± 0.02 3.64 × 104 this work

acetyl-CoA 2250 ± 200 4.9 ± 0.4 0.38 ± 0.10 1.30 × 104 this work
L100N glycolyl-CoA 790 ± 40 1.7 ± 0.1 0.32 ± 0.05 5.36 × 103 this work

acetyl-CoA 174 ± 12 0.38 ± 0.03 0.63 ± 0.10 5.96 × 102 this work

aThe data represent means ± SD, as determined from n = 18 independent measurements using nonlinear regression.
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bypasses. Yet, an additional 60% reduction in ATP per
carboxylation by the L100N variant would free additional ATP
for biosynthetic purposes and thus further increase photo-
synthetic yield.2 We also assessed the potential side reactivity
of our new GCC variants with the alternative substrate acetyl-
CoA. We found that the L100N variant had a strongly
decreased efficiency with that substrate (Table 1), which could
be competing with glycolyl-CoA in in vivo settings, thus
providing an additional benefit for future applications. On the
other hand, the improved catalytic activity of the G20R variant
provides an increased kinetic advantage. This advantage could
be either direct (in case the CO2-fixing reaction provides a
kinetic bottleneck in the TaCo pathway) or indirect (in case
other enzymes of the pathway are rate limiting and require
higher resource allocation). The latter advantage might

generally benefit host organisms in which the burden of
protein production poses a limitation. In these cases, the GCC
M5 G20R variants offer the possibility to maintain a given
catalytic activity in vivo at 2-fold lower amounts of expressed
enzyme, freeing additional protein resources.
Beyond these direct effects on the TaCo pathway, we note

that our strategy of augmenting screening workflows with ML-
guided approaches provides an example of how enzyme and
pathway engineering can profit from machine learning
approaches, even for already well established (i.e., highly
engineered) targets. This strategy could be generally used to
develop novel biotin-dependent carboxylases (and other
enzymes) for different applications, widening the scope of
theoretically possible enzymes and pathways for synthetic
biology applications.18

Figure 3. Structural analyses of the new GCC variants. (A, B) Surface representations of the cryo-EM electron density maps for the G20R (EMD-
17777) and L100N (EMD-17778) variants, respectively. The β-subunits are depicted in blue tones, whereas the partial electron densities for the α-
subunits are colored in orange. (C) Location of the G20R substitution (PDB 8PN7) on the surface of the β-subunit core (left panel) and a close-up
showing the position of Arg20 with respect to the binding site for the adenosyl moiety of CoA (right panel). (D, E) MP experiments for the GCC
M5 and G20R variants, respectively. Both variants show a wide distribution of complexes with differing numbers of α-subunits attached to the β6-
core, highlighting a transient interaction. The G20R variant appears to favor the formation of β6α6 complexes. (F) Close-up of L100N variant active
site (PDB 8PN8) showing the environment of His143 and its assumed interaction with glycolyl-CoA. Glycolyl-CoA was modeled corresponding to
methylmalonyl-CoA in PDB 1ON3 with additional manual fitting that reflects the binding of CoA in the cryo-EM structures. A manually fitted
carboxybiotin is shown in its most likely position for carboxyl transfer to the substrate. His143 engages in polar interactions (gray) with the
glycolyl-CoA and Asp171. The amide group of L100N (yellow) is positioned parallel to the imidazole ring of His143 at a distance of 3.9 Å. (G) MP
experiment for the L100N variant. L100N appears to slightly favor β6α6 complex formation in comparison to GCC M5 (panel D). (H) MP
experiment for PCC from M. extorquens for comparison, demonstrating no clear favorability for any one oligomeric state.
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■ MATERIALS AND METHODS
Synthesis of CoA Esters. Glycolyl-CoA was synthesized

and purified as previously described.2,3 The concentration of
CoA esters was quantified by determining the absorption at
260 nm (ε = 16.4 mM−1 cm−1) or by performing
spectrophotometric substrate depletion assays.

Random Mutagenesis Library Generation. To produce
a data set to feed the ML algorithm, random mutagenesis
libraries of GCC M5 were constructed. Plasmid libraries of
randomly mutagenized GCC M5 were created by mega
primer-based whole-plasmid PCR (MEGAWHOP).19 To
generate randomized fragments of the β subunit of GCC M5
(pTE3101), error-prone PCR was performed using 2.5 U of
Taq-polymerase with Mg-free buffer (New England Biolabs;
M0320), 7 mM MgCl2, 0.4 mM dGTP and dATP each, 2 mM
dCTP and dTTP each, 0.4 μM primer PccB_fw_P1 and
primer PccB_rv_P1 each, 10% (v/v) dimethyl sulfoxide, 50 ng
of template DNA of pTE3101 (see Table S2 in the Supporting
Information), and 200−500 μM MnCl2 in a 50 μL reaction.
The randomized fragments were digested with DpnI (NEB,
R0176), purified by agarose gel electrophoresis, and used as
mega primers for a whole-plasmid PCR, as described
elsewhere,19 or subjected to another error-prone PCR reaction
to further increase the mutation rate. The MEGAWHOP
reaction (50 μL) contained 1× KOD Hot Start reaction buffer
(Novagen), 0.2 mM dNTPs, 1.5 mM MgSO4, 500 ng of mega
primer, 50 ng of template plasmid (GCC M5; pTE3101), and
2.5 U of KOD Hot Start DNA polymerase (Novagen). The
MEGAWHOP product was purified, digested with DpnI, and
transformed into ElectroMAX DH5α (Invitrogen) to ensure a
high number of transformants in the resulting libraries. To
estimate the mutation rate for the different concentrations of
MnCl2 used in the error-prone PCR, the plasmids of ten
randomly picked clones after MEGAWHOP were purified,
sequenced, and analyzed for nucleotide exchanges.

Protein Production and Purification. For the produc-
tion and purification of GCC M5 and its variants, the
corresponding plasmid was transformed into chemically
competent E. coli BL21-birA cells (see Table S1 in the
Supporting Information). Cells were grown on lysogeny broth
(Miller recipe) agar plates containing 100 μg/mL ampicillin
and 50 μg/mL spectinomycin at 25 °C overnight. Eight liters
of lysogeny broth (Miller recipe) containing 5 g/L yeast
extract, 10 g/L tryptone, 10 g/L NaCl, 17 mM KH2PO4, 72
mM K2HPO4, and 0.4% glycerol were inoculated from the agar
plate and incubated at 37 °C and 140 rpm. At OD600 = 0.4−
0.6, protein expression was induced with 500 μM IPTG and
cells were incubated overnight at 25 °C. Cell harvesting at
8000g and 4 °C for 12 min and lysis by French Pressing at 137
MPa was followed by centrifugation at 100,000 g and His-Trap
purification using an Äkta Start (GE Healthcare) with a
HisTrap FF column (GE Healthcare). The purification buffer
contained 50 mM HEPES, pH 7.8, and 500 mM KCl, and the
elution was done with 500 mM imidazole. Protein desalting
occurred via gel filtration chromatography using a HiLoad 16/
600 Superdex 200 pg column (GE Healthcare) and a buffer
containing 50 mM HEPES, pH 7.8, and 150 mM KCl. Protein
quantification occurred by an absorbance measurement at 280
nm. Protein purity was validated by SDS-PAGE using 15 μg of
purified protein on a 4−20% Mini-Protean TGX Precast
Protein Gel (Biorad).

Enzyme Assays. Enzyme activity assays were performed in
three different ways. Screening of randomly mutagenized GCC
to produce a data set to train an ML algorithm occurred via
lysate-based measurements in plate readers. Prescreening of
variants that were predicted by the ML algorithm and selected
by homology modeling and structural analysis was done with
the same assay. The determination of carboxylation rates and
ATP per carboxylation (ATP/CO2) ratios occurred via
spectrophotometric measurements with purified enzymes.

Lysate-Based Measurements of Carboxylation Rate
and ATP-Hydrolysis. GCC-encoding constructs, random-
mutagenesis libraries of GCC, or site-saturation mutagenesis
libraries of GCC were transformed into E. coli BL21_birA (see
Table S1 in the Supporting Information), and colonies were
picked into 96-deep-well plates (PlateOne) with lysogeny
broth (Miller recipe) containing 100 μg/mL ampicillin and 50
μg/mL streptomycin. The plates were incubated overnight at
37 °C with subsequent transfer into fresh 96-deep-well plates
with lysogeny broth (Miller), 100 μg/mL ampicillin, 50 μg/mL
spectinomycin, and 2 μg/mL biotin to an OD600 of 0.1. Protein
expression was induced with 0.25 mM isopropyl β-D-1-
thiogalactopyranoside (IPTG) at an OD600 of 0.4−0.6, and
the cells were incubated overnight at 25 °C. The cells were
lysed using CelLytic B (Sigma−Aldrich) and stored in 20%
glycerol at −80 °C. The enzyme activity was measured in a
plate reader by the coupled enzyme assay with purified
malonyl-CoA reductase from Chlorof lexus aurantiacus (later
referred to as CaMCR; E.C. 1.1.1.298 and E.C. 1.2.1.75) as
described earlier.2 We used small-volume 384-well plates
(Greiner Bio-One) with 2 μL of cell extract, 100 mM 3-(N-
morpholino)propanesulfonic acid (MOPS), pH 7.8, 1 mM
ATP, 50 mM KHCO3, 500 μg/mL CaMCR, 1 mM NADPH,
10 mM MgCl2, and 1 mM glycolyl-CoA in a reaction volume
of 10 μL. The absorbance of NADPH was measured at 340 nm
and 37 °C for 5 h with intervals of 47 s in a plate reader
(Tecan Infinite M Plex).

Spectrophotometric Measurements of Carboxylation
Rate. To measure the carboxylation rate of GCC, a coupled
spectrophotometric enzyme assay with CaMCR was per-
formed. 100 mMMOPS, pH 7.8, 50 mM KHCO3, 2 mM ATP,
0.3 mM NADPH, 5 mM MgCl2, 1.8 mg/mL CaMCR from
Chlorof lexus aurantiacus, and 0.01−1 mg/mL GCC were mixed
in a cuvette and incubated for 2 min at 37 °C. The reaction
was started with 0.5 mM glycolyl-CoA, and absorption was
measured over time at λ = 340 nm.

glycolyl CoA HCO ATP

tartronyl CoA ADP P (GCC)

tartronyl CoA 2NADPH

glycerate CoA 2NADP (CaMCR)

3

i

+ +

+ +
+

+ + +

Spectrophotometric Measurements of ATP Hydrol-
ysis. To measure the ratio between ATP consumption and
carboxylation of GCC, a coupled enzyme assay with CaMCR
under ATP-limited conditions was performed. 100 mM
MOPS, pH 7.8, 50 mM KHCO3, 0.15 mM ATP, 0.5 mM
NADPH, 5 mM MgCl2, 1.8 mg/mL CaMCR from
Chlorof lexus aurantiacus, and 0.05−3 mg/mL GCC were
mixed in a cuvette and incubated for 2 min at 37 °C. The
reaction was started with 0.5 mM glycolyl-CoA, and absorption
was measured over time at λ = 340 nm. The ATP per
carboxylation ratio for glycolyl-CoA carboxylation was
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calculated from the ratio between the ATP amount in the
reaction mixture and the consumed amount of NADPH that is
reflected by the absorbance drop during the reaction.

glycolyl CoA HCO ATP

tartronyl CoA ADP P (GCC)

tartronyl CoA 2NADPH

glycerate CoA 2NADP (CaMCR)

3

i

+ +

+ +
+

+ + +

Mass Spectrometry of CoA Esters. Quantitative
determination of CoA esters was performed using a LC-MS/
MS. The chromatographic separation was performed on an
Agilent Infinity II 1290 HPLC system using a Kinetex EVO
C18 column (150 mm × 2.1 mm, 3 μm particle size, 100 Å
pore size, Phenomenex) connected to a guard column of
similar specificity (20 mm × 2.1 mm, 3 μm particle size,
Phenomenex) a constant flow rate of 0.25 mL/min with
mobile phase A being 50 mM ammonium acetate in water at a
pH of 8.1 and phase B being 100% methanol (Honeywell,
Morristown, New Jersey, USA) at 25 °C.
The injection volume was 1 μL. The mobile phase profile

consisted of the following steps and linear gradients: 0−2 min
constant at 0% B; 2−5 min from 0 to 6% B; 5−8 min from 6 to
23% B; 8−10 min from 23 to 80% B; 10−11 min constant at
80% B; 11−12 min from 80 to 0% B; 12 to 18 min constant at
0% B. An Agilent 6495 ion funnel mass spectrometer was used
in positive mode with an electrospray ionization source and the
following conditions: ESI spray voltage 1000 V, nozzle voltage
1000 V, sheath gas 400 °C at 11 L/min, nebulizer pressure 20
psig, and drying gas 100 °C at 11 L/min. Compounds were
identified based on their mass transition and retention time
compared to standards. Chromatograms were integrated by
using MassHunter software (Agilent, Santa Clara, CA, USA).
Relative abundance was determined based on the peak area,
and absolute concentrations were determined based on an
external standard curve.
Mass transitions, collision energies, cell accelerator voltages,

and dwell times have been optimized using chemically pure
standards. Parameter settings of all targets are given in Table 2.

Machine Learning Model Creation and Training. We
developed a ML algorithm using reproducing kernel Hilbert
space methods. In particular, we encoded the jth sequence as a
vector vj residing in a reproducing kernel Hilbert space. These
vectors are the basis for a Gaussian Process (GP) regression
model to predict enzymatic properties such as catalytic speed
and ATP efficiency.17 To define the kernels used for encoding
an amino acid sequence into a vector, we considered both
classical sequence kernels such as kernels based on hamming
distance and alignment kernels.20 The final model uses a kernel
that compares positions of two sequences based on a

BLOSUM62 matrix and a regularization constant of 1.0 for
the inversion of the gram matrix for the GP.
As a comparison model and a baseline, we adopted the

approach of Ma et al.15 This approach uses the Uniref 1900
model (Unified Rational Protein Engineering with Sequence-
Based Deep Representation Learning) that embeds protein
sequences into a 1900-dimensional real vector space simply by
averaging the hidden unit activations of a Long Short-Term
Memory model. This model was pretrained on Uniref50
sequences in a language-modeling task, i.e., given the start of
the sequence, the next amino acid in the sequence had to be
predicted. The 1900-dimensional embedding as present in the
jax-unirep package was used as the basis for a random forest
regressor fitted with scikit-learn using default settings. This is
similar to the approach of Hsu et al., which also combines
model-based learning of the structure of evolutionary
conservation with a supervised learning approach.21

Both used models were multitask models and predicted
three targets: carboxylation rate, ATP demand, and a
combination of both for the purpose of computing a unified
decision criterion for the suggestions. The Supporting
Information gives a more detailed description of the combined
performance measure. The two models were evaluated in a 10-
fold cross validation scheme on the 161 unique enzyme
sequences with measured carboxylation rates and ATP per
carboxylation ratios (90%−10% split, corresponding to 140
sequences in train, 16 in validation). The rank correlation
between the upper confidence bound of the GP and ground
truth was ρ = 0.42, and between the Unirep+random forest
prediction and ground truth, it was ρ = 0.39 (Kendalls rank
correlation was τ = 0.28 for GP, τ = 0.26 for RF). Typical
quality metrics for regression models such as mean squared
error are not of interest in our setting since we are looking to
prioritize candidates for subsequent experiments rather than
build a regression model with high accuracy. Rank correlation
is the metric that captures this best. It was not necessary to
employ hyperparameter search for the two models, since the
average rank correlation of ρ = 0.42 for the GP model already
promised strong improvements compared to the error-prone
PCR protocol used so far.
The basic premise of the upper confidence bound criterion

that we used for candidate prioritization is that a sequence (or
input coordinate) should be synthesized and measured
(chosen for evaluation) if it has a good chance of maximizing
measured activity and ATP efficiency (the property of
interest). The upper confidence bound of the jth candidate
sequence is computed as μj + βσj where μj and σj are the
predictive mean and standard deviation of the GP model, and
β is a parameter between 0 and 1 encoding the exploitation−
exploration trade off and was set to 0.5.

Table 2. Parameters for LC-MS/MS

name precursor ion product ion collision energy [V] fragmentor voltage [V] cell accelerator voltage [V] polarity

tartronyl-CoA 870.2 428.1 31 380 5 positive
tartronyl-CoA 870.2 319 40 380 5 positive
methylmalonyl-CoA 868.1 428.1 37 380 5 positive
methylmalonyl-CoA 868.1 317.1 41 380 5 positive
glycolyl-CoA 826.1 428.1 28 380 5 positive
glycolyl-CoA 826.1 319.1 33 380 5 positive
propionyl-CoA 824.1 428.1 28 380 5 positive
propionyl-CoA 824.1 317.1 31 380 5 positive

ACS Synthetic Biology pubs.acs.org/synthbio Letter

https://doi.org/10.1021/acssynbio.3c00403
ACS Synth. Biol. XXXX, XXX, XXX−XXX

G

https://pubs.acs.org/doi/suppl/10.1021/acssynbio.3c00403/suppl_file/sb3c00403_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acssynbio.3c00403/suppl_file/sb3c00403_si_001.pdf
pubs.acs.org/synthbio?ref=pdf
https://doi.org/10.1021/acssynbio.3c00403?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


In order to obtain a combined performance metric, the
training data for the carboxylation rate and ATP demand were
normalized to have zero mean and unit variance, ensuring
comparability between them. They were then added to create a
single performance metric encapsulating both properties.
Although this approach may not be ideal for multiobjective
Bayesian Optimization, it mimics standard techniques in
machine learning, where multiple loss functions and/or
regularizers are summed to address various objectives. The
Upper Confidence Bound (UCB) of this combined perform-
ance metric was employed to rank the candidate list.

Structural Modeling and Analysis. To assess mutations
that were predicted by the ML algorithm, homology modeling
of variants in the top 1% predictions was performed using
SWISS-MODEL. As a template for homology modeling of
GCC mutations, the structure of the engineered GCC M5
from Methylorubrum extorquens (PDB 6YBQ) was used.
Structural analysis of the models was done using PyMOL
(the PyMOL Molecular Graphics System; version 2.5.7;
Schrödinger). Modeling of glycolyl-CoA into the active site
of GCC was based on the positions of CoA in the GCC M5
structure and methylmalonyl-CoA in the structure of a
methylmalonyl-CoA carboxytransferase from Propionibacterium
f reudenreichii (PDB 1ON3; 52% amino acid identity). Manual
fitting of the glycolyl-CoA reflecting differences in active-site
architectures was done in the Coot (0.9.8.3) and PyMOL
programs.

Site-Directed Mutagenesis. Site-directed mutagenesis
was used to construct variants of GCC that were earlier
predicted by the ML algorithm and selected by homology
modeling and structural analysis. The introduction of novel
mutations was done by single mutagenic oligonucleotide PCR
as described elsewhere.22 A 25 μL reaction mixture containing
0.5 μM primer, 3% (v/v) dimethyl sulfoxide, 50 ng of template
DNA (pTE3101), and Phusion High-Fidelity PCR Master Mix
(NEB, M0531) was used for PCR and subsequently digested
with DpnI (NEB, R0176) by adding 20 U to the reaction
mixture and incubating 2 h at 37 °C. Five microliters were
transformed into chemically competent E. coli NEB Turbo
cells, which were streaked out on lysogeny broth (Miller) agar
plates with 50 μg/mL streptomycin. Three to six colonies were
picked and cultivated in 10 mL of lysogeny broth (Miller) with
50 μg/mL streptomycin for 12 h at 37 °C and 180 rpm, and
finally, the plasmids were isolated and sequenced to validate
the mutagenesis.

Site-Saturation Mutagenesis. Plasmid libraries of GCC
with defined residues to be saturated with all amino acids were
created by whole plasmid PCR with primer mixes containing
different base edits. Primers were designed with the 22c-trick
to have reduced codon redundancy.23 For the whole plasmid
PCR, forward primers were mixed in a 12:9:1 ratio to achieve
equal amounts of each primer (Table S3). A 50 μL reaction
mixture containing 0.5 μM primer, 3% (v/v) dimethyl
sulfoxide, 100 ng of template DNA (pTE3101), and Phusion
High-Fidelity PCR Master Mix (NEB, M0531) was used for
PCR and subsequently digested with DpnI (NEB, R0176) by
adding 20 U to the reaction mixture and incubating 2 h at 37
°C. After a PCR-clean up, 5 μL was transformed into
chemically competent E. coli NEB Turbo cells and streaked
out on lysogeny broth (Miller) agar plates with 50 μg/mL
streptomycin. Colonies were flushed from the plate and
plasmids were isolated. To ensure coverage of all plasmid
variants in the libraries, at least 1300 colonies were collected,

representing a 65-fold oversampling. Codon diversity was
confirmed by sequencing of the library.

Mass Photometry. Mass photometry measurements were
carried out on microscope coverslips (1.5 H, 24 mm × 50 mm,
Carl Roth) with CultureWell Reusable Gaskets (CW-50R-1.0,
50 3 mm diameter × 1 mm depth) that had been washed by
three consecutive rinses of water and isopropanol, prior to
drying under a stream of pressurized air. Gaskets were
assembled on microscope coverslips and placed on the stage
of a TwoMP mass photometer (MP, Refeyn Ltd., Oxford, UK)
with immersion oil. Measurements were carried out in 1×
phosphate-buffered saline (PBS, 10 mM Na2HPO4, 1.8 mM
KH2PO4, 137 mM NaCl, 2.7 mM KCl (pH 7.4)). To this end,
18 μL of 1× PBS was used to focus the MP before 2 μL of
sample (1 μM protein) was added, rapidly mixed, and
measured. Shortly before measuring, samples were prepared
by diluting purified protein to 1 μM monomer concentration
in buffer (50 mM HEPES, pH 7.8, and 150 mM KCl), as
determined by absorption at 280 nm. Data acquisition was
done for 60 s at 100 frames per second using AcquireMP
(Refeyn Ltd., Oxford, UK). Mass photometry contrast was
calibrated to molecular masses using 50 nM in-house purified
protein mixture containing citrate-synthase complexes of
known molecular masses ranging from 86 to 430 kDa. Mass
photometry data sets were processed and analyzed using
DiscoverMP (Refeyn Ltd., Oxford, UK). Details of mass
photometry image analysis have been described previously.24

CryoEM Sample Preparation and Data Collection.
Three microliters of protein solution (1 mg/mL) in 50 mM
HEPES, pH 7.8, and 150 mM KCl containing 2 mM MgCl2, 1
mM ATP, and 4 mM glycolyl-CoA were applied to
QUANTIFOIL R2/1 300 copper mesh grids that were glow-
discharged for 90 s immediately before use and blotted for 3.5
s with blot force 4 at 100% humidity and 4 °C using a Vitrobot
Mark IV (Thermo Scientific). Grids were plunge frozen in
liquid ethane cooled by liquid nitrogen and used for data
collection immediately.
CryoEM data were acquired on a Titan Krios G3i electron

microscope (Thermo Scientific), operated at an acceleration
voltage of 300 kV and equipped with a BioQuantum-K3
imaging filter (Gatan). Data were measured in electron
counting mode at a nominal magnification of 105,000×
(0.837 Å/pixel) with a total dose of 55 e−/A2 (55 fractions),
using the aberration-free image-shift (AFIS) correction in EPU
(Thermo Scientific). Five images were acquired per foil hole,
and the nominal defocus range for data collection was −0.5 to
−2.0 μm.

CryoEM Data Processing. Data sets were processed
entirely in CryoSPARC (version 4.1 or 4.2).25 For all data sets
dose-fractionated movies were gain-normalized, aligned, and
dose-weighted using Patch Motion correction. The contrast
transfer function (CTF) was determined by using the Patch
CTF routine. Information regarding cryoEM data collection,
model refinement, and statistics are listed in Table S5.

Processing of GCC M5 G20R. Blob picker and manual
inspection of particles were used to extract an initial 837,101
particles with a box size of 256 pixels, which were used to build
2D classes. 2D classes with protein-like features were used to
initialize template picking. After inspection and extraction with
a box size of 256 pixels, this yielded 3,439,715 particles, which
were used to build 2D classes. A total of 1,845,969 candidate
particles were selected from 2D classes and used for ab initio
reconstruction and classification into 4 classes. Particles of the
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best-aligning class (647,870 particles) were subjected to
nonuniform with per-particle defocus optimization, per-group
CTF parameter optimization, and EWS correction. This
yielded a map with a 2.08 Å global resolution and a
temperature factor of 66.1 Å2, which was subsequently locally
refined to yield a map with 2.03 Å global resolution and a
temperature factor of 58.9 Å2. The resulting map was B-factor
sharpened by −40 Å2. Further classification did not yield
improved resolution.

Processing of GCC M5 L100N. Blob picker and manual
inspection of particles were used to extract an initial 620,147
particles with a box size of 500 pixels, which were used to build
50 2D classes. 2D classes with protein-like features were used
to initialize template picking. After inspection and extraction
with a box size of 500 pixels, this yielded 2,511,911 particles,
which were used to build 2D classes. A total of 324,129
candidate particles were selected and used for ab initio
reconstruction and classification into 5 classes. Particles of
the best-aligning class (113,824 particles) were subjected to
nonuniform refinement with per-particle defocus optimization,
per-group CTF parameter optimization, and EWS correction.
This yielded a map with a 2.36 Å global resolution and a
temperature factor of 66.9 Å2, which was subsequently locally
refined to yield a map with 2.31 Å global resolution and a
temperature factor of 60.6 Å2. The resulting map was B-factor
sharpened by −50 Å2. Further classification did not yield
improved resolution.

Model Building and Refinement. CryoEM map fitting
was initially performed in UCSF-ChimeraX (v1.6)26 using
GCC M5 (PDB 6YBQ) as template. The resulting model was
manually built further in Coot (v0.9.8.3).27 Automatic
refinement of the structure was performed using phenix.real_-
space_refine of the Phenix (v1.20.1) software suite.28 Manual
refinements and water picking were performed in Coot. The
model statistics are listed in Table S5.
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