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Abstract The land sink of anthropogenic carbon emissions, a crucial component of mitigating climate
change, is primarily attributed to the CO2 fertilization effect on global gross primary productivity (GPP).
However, direct observational evidence of this effect remains scarce, hampered by challenges in disentangling
the CO2 fertilization effect from other long‐term confounding drivers, particularly climatic changes. Here, we
introduce a novel statistical approach to separate the CO2 fertilization effect on photosynthetic carbon uptake
using eddy covariance (EC) records across 38 extratropical forest sites. We find the median stimulation rate of
GPP to be 3.2± 0.9 gCm− 2 yr− 1 ppm− 1 (or 16.4± 4.2% per 100 ppm) under increasing atmospheric CO2 across
these sites, respectively. To validate the robustness of our findings, we test our statistical method using factorial
simulations of an ensemble of process‐based land surface models. We address additional factors, including
nitrogen deposition and land management, that may impact plant productivity, potentially confounding the
attribution to the CO2 fertilization effect. Assuming these site‐specific effects offset to some extent across sites
as random factors, the estimated median value still reflects the strength of the CO2 fertilization effect. However,
disentanglement of these long‐term effects, often inseparable by timescale, requires further causal research. Our
study provides direct evidence that the photosynthetic stimulation is maintained under long‐term CO2

fertilization across multiple EC sites. Such observation‐based quantification is key to constraining the long‐
standing uncertainties in the land carbon cycle under rising CO2 concentrations.

Plain Language Summary Through photosynthesis, plants convert CO2 and water into sugars and
oxygen using solar energy, one of the most important chemical reactions on Earth. Human‐made carbon
emissions are increasing atmospheric CO2 levels, impacting global photosynthesis. The additional carbon is
believed to have a fertilizing effect on photosynthesis, causing vegetation to absorb a significant portion of the
emitted CO2. However, the strength of this CO2 fertilization effect on photosynthesis is uncertain, but is a
crucial factor in determining the future trajectory of atmospheric CO2 concentrations. In this study, we introduce
a new statistical method to quantify the increase in photosynthetic carbon uptake, stimulated by rising CO2,
based on measurements from 38 forest sites. Our results reveal that a 100 ppm increase in CO2 enhances
photosynthesis by approximately 16%. Testing the statistical method with artificial model experiments supports
the robustness of our findings. Our study improves the understanding of the impacts of human‐made CO2

emissions on the global carbon cycle.

1. Introduction
Forests play a crucial role in the global carbon cycle, acting as a significant sink for anthropogenic carbon
emissions. Approximately 25% of annual carbon emissions are estimated to be sequestered and stored by forests
via photosynthesis, with boreal and temperate forests making substantial contributions (Pan et al., 2011). The
physiological effects of increasing atmospheric carbon dioxide (CO2) on plant productivity, known as the CO2

fertilization effect, are expected to stimulate photosynthesis and drive the enhanced carbon uptake. However,
obtaining observational evidence for these effects in natural ecosystems and understanding how this process has
changed historically remains a key knowledge gap.

Multiple lines of evidence support an enhancement in photosynthesis (or gross primary production; GPP) in
response to an increase in CO2: CO2 enrichment experiments (Norby et al., 2010; Walker et al., 2021), ecosystem
monitoring (Fernández‐Martínez et al., 2017; Keenan et al., 2013; Mastrotheodoros et al., 2017) and indirect
proxies based on long‐term atmospheric carbonyl sulfide records (Campbell et al., 2017) or isotopomer signal
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(Ehlers et al., 2015). Process‐based land surface models, which simulate the physiological responses of vegetation
to environmental changes, also predict a stimulation of photosynthesis with increasing CO2 levels (Sitch
et al., 2015). However, multi‐model projections of the CO2 effect on long‐term GPP diverge considerably due to
uncertainties in process parameterizations and feedback mechanisms, particularly in response to meteorological
extremes and climatic changes associated to rising CO2 (De Kauwe et al., 2013; Rogers et al., 2014; Zaehle
et al., 2005). Constraining the CO2 fertilization effect in models through direct observational evidence is a long‐
called‐for necessity to advance our understanding of carbon cycling and essential for more reliable future pro-
jections of carbon sequestration.

The global network of eddy covariance (EC) flux towers observing the exchange of CO2 at the ecosystem scale
provides a valuable resource, as it has accumulated sufficiently long time series data to potentially provide direct
evidence of the CO2 fertilization effect (Baldocchi, 2020; Knauer et al., 2017; Zhan et al., 2022). Previous studies
have attempted to attribute the CO2 fertilization effect on GPP by utilizing EC records (Table 1). Chen
et al. (2022) used an eco‐evolutionary optimality framework to reproduce EC‐inferred GPP and subsequently
attribute the CO2 fertilization effect on GPP. Their analysis estimated a global GPP enhancement of
2.24 gC m− 2 yr− 1 ppm− 1 from 2001 to 2014 due to rising CO2. Similarly, Ueyama et al. (2020) utilized a model
constrained with data from 104 EC towers and estimated a 0.43 gC m− 2 yr− 1 ppm− 1 increase in GPP. These
studies only relied on an indirect use of measurements for attribution, such as using EC data to calibrate a pre‐
defined model. These pre‐defined models explicitly incorporate known biological processes, such as the
photosynthesis and stomata response to elevated CO2. The model structure determines the model's capacity to
capture complex patterns in the ecosystems and could influence the interpretability. Data‐driven methods such as
machine learning algorithms are highly flexible and can adapt to complex relationships (e.g., non‐linear re-
lationships) present in the data with fewer assumptions. Fernández‐Martínez et al. (2017) employing a data‐driven
method, that is, generalized mixed linear models, attributed an increase of 4.49 ± 0.75 gC m− 2 yr− 1 ppm− 1 in the
GPP from 1995 to 2011 at 23 forest sites to CO2. The contribution of CO2 was calculated as the difference in the
GPP trend by maintaining the temporally varying predictors but constant CO2. The co‐linearity among predictors
still affects the estimation to an extent with this approach. These variations in CO2 fertilization estimations
emphasize the importance of disentangling the CO2 effect on GPP directly, that is, not using pre‐defined model
structures, and by carefully considering confounding drivers in leveraging the continuously growing EC records.

In this study, we aim to disentangle the CO2 fertilization effect on photosynthetic uptake directly and exclusively
from long‐term multi‐site flux measurements and accompanying meteorological data. Several factors, such as
CO2, climate changes, land‐use and land‐cover changes (LULCCs), affect ecosystem productivity and are
correlated and confounded on the multi‐decadal time‐scale. We introduce the so‐calledGPP residual method that
statistically captures the sensitivity of GPP to CO2 and climate variables at different time scales to account for co‐
linearities among the drivers. Instead of treating all potential drivers at once, by separating the long‐term and
short‐term signals and deriving the sensitivity of GPP to climate at short‐term scales, ideally the effect of climate
variables could be eliminated at the long‐term scales. First, we detrend the GPP time series to separate the long‐
term variability of GPP (the trend) primarily driven by CO2 and climate, from the shorter‐term variability
(anomalies) primarily driven by climate variabilities. The method estimates the sensitivity of GPP to climate
based on these anomalies. Analogous to Arora et al. (2020), the carbon‐climate feedback parameter (γ) can be
defined as the change in CO2 flux (here GPP, where Arora et al. uses the total carbon pool) in response to change
in temperature, where the temperature is used as a proxy to encapsulate all climatic changes. Next, we can
quantify the γ effect based on long‐term changes assuming the sensitivity remains consistent over the time scales
of a few decades. The difference between the original observed GPP trend and the inferred GPP trend due to
climate changes yields the unexplained GPP residual, which can be attributed to the long‐term CO2 effect on GPP,
here referred to as the β effect. Specifically, we define the β factor as the sensitivity of GPP to increasing CO2

concentration (gC m− 2 yr− 1 ppm− 1), and the γ factor as the sensitivity of GPP to surface air temperature
(gC m− 2 yr− 1 K− 1). The standardized β (% per 100 ppm) and γ (% per Kelvin degree) are reported to account for
different baseline levels of productivities across ecosystems. It's important to note that the GPP residual may also
include other long‐term effects specific to individual sites, such as signals related to nitrogen deposition or land
management, which we test in a later section of the paper. First, we test the robustness of theGPP residual method
using site‐level simulations with the QUINCY model (QUantifying Interactions between terrestrial Nutrient
CYcles and the climate system; Thum et al., 2019). We use theGPP residual method to further estimate the β and
γ effects in both GPP and daily maximum net ecosystem production (NEE) (NEPmax) using long‐term EC records.
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At last, we compare the results based on the EC records to factorial simulations from a set of land surface models
(TRENDY version 9; Sitch et al., 2015). Additionally, we test and discuss the relevance of other potential long‐
term impacts on GPP in more detail.

2. Materials and Methods
2.1. Eddy Covariance Data

This study comprises 38 forested EC sites (Table S1 in Supporting Information S1), where CO2 flux data and
meteorological data are collected by flux towers from Integrated Carbon Observation System (ICOS; Rebmann
et al., 2018), and AmeriFlux (Novick et al., 2018). We focus on tree‐dominated ecosystems due to the strong
sensitivity of grass‐dominated ecosystems to short‐term climate variability, adding complexity to the disentan-
glement of their response to CO2 (Hovenden et al., 2014; Reich et al., 2018). The sites span geographically across
Europe and North America. The forest types can be broadly classified into: deciduous broadleaf forest (DBF; 12
sites), evergreen need‐leaved forest (ENF; 20 sites), and mixed deciduous–coniferous forest (MF; 6 sites).

We obtain long‐term recorded (≥10 years) EC data at daily scale and NEE at half‐hourly scale from 1994 to 2022
(Table S2 in Supporting Information S1). GPP is estimated from the nighttime partitioning algorithm (Reichstein
et al., 2005). Meteorological variables used in this study include temperature, incoming shortwave radiation and
vapor pressure deficit (VPD). Growing degree days (GDD) are calculated as the sum of daily temperature above
zero degree to estimate the timing of various phenological events. Due to the limited depth of soil moisture
measurements (Yu et al., 2022), we calculate a water availability index (WAI; Tramontana et al., 2016) following
a bucket model approach. The maximum cumulative water deficit (Aragão et al., 2007) represents the available
water content (awc). WAI is calculated as the balance of precipitation recharge and observed evapotranspiration
as follows:

input(t) = min(Precipitation(t), awc − WAI(t)) (1)

WAI (t + 1) = max((WAI(t) + input(t) − Evapotranspiration(t)), 0) (2)

where t represents the timestep t.

At the half‐hourly resolution, the quality flags (QF) indicate if the data record is measured (QF = 0) or the quality
level of the gap‐filling applied to the data record (e.g., QF= 1 better, QF= 3 worse quality). At the daily scale, the
quality control indicators represent the percentage of measured or high‐quality gap‐filled records (i.e., QF = 0 or
1). We exclusively include data with daily quality control indicators for NEE and meteorological variables
surpassing 0.6, denoting a 60% or higher percentage of measured and high‐quality gap‐filled. In summary, EC
sites are selected for this study based on three criteria: (a) only sites dominated by tree‐ecosystems are selected;
(b) there has to be a long‐term record of EC observations (≥10 years) after the quality control when (c) at least
60% data per day is measured or gap‐filled with good quality. In total we estimate β and γ for 228 site‐months.

Maximum leaf area index (LAI) (LAImax, m
2 m− 2), forest age (years), site‐specific disturbance or management

information are collected from the literature (Besnard et al., 2018; Flechard et al., 2020; Migliavacca et al., 2021;
Musavi et al., 2017), the BADM product, and/or site principal investigators.

Table 1
Estimation of CO2 Effect on Gross Primary Productivity (Unit: gC m

− 2 yr− 1 ppm− 1) From Eddy Covariance Sites Across Previous Studies

Study Method Vegetation type(s) Site numbers Start year End year β

Fernández‐Martínez et al. (2017) Generalized Linear Mixed Models Forests 23 1995 2011 4.49 ± 0.75

Ueyama et al. (2020) Canopy photosynthesis model constrained by EC data Multiple biomes 104 2000 2014 0.43

Chen et al. (2022) Eco‐evolutionary optimality framework Multiple biomes 68 2001 2014 2.24

This study Data‐driven method (the GPP residual method) Forests 38 1994 2022 3.18 ± 0.92
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2.2. Atmospheric CO2 Data

Due to the systematic biases (e.g., sensor calibrations) of the atmospheric CO2 concentration measurements in the
EC data, for consistency, we replace the CO2 concentration measurement with the CO2 product CAMS CF‐1.6
(Chevallier et al., 2005, 2010) from the nearest pixel to each EC site. The CO2 reanalysis data spans from 1994 to
2022 with daily resolution, thus sufficient to match the time period of the EC data.

2.3. Nitrogen Deposition Data

We use annual nitrogen deposition (Ndep) data collected from the European Monitoring and Evaluation Pro-
gramme (EMEP) Meteorological Synthesizing Center—West (MSC‐W) model and the CMIP6 forcing database
(Hegglin et al., 2016). Both Ndep data set includes four components: dry oxidized nitrogen, dry reduced nitrogen,
wet oxidized nitrogen and wet reduced nitrogen. To be consistent with the EC records (Table S1 in Supporting
Information S1), we extract the Ndep data during 1994–2020. We further select the nearest pixel to each EC site.
The Ndep data is used in this study to investigate the possible influence of Ndep on estimated β in three ways: (a) we
test whether the inter‐annual variability of Ndep influences GPP by including Ndep as a predictor together with
climate variables; (b) we consider the cumulative effect of Ndep on the long‐term trend of GPP, and test if it is
separable with the CO2 signal (supplementary Text S1 in Supporting Information S1); (c) we conduct spatial
analysis to investigate the relationship between spatial variation of β and Ndep. The underlying assumption is that
vegetation could benefit from elevated Ndep in nitrogen‐limited regions (De Vries et al., 2006). An emerging
relationship between Ndep and β suggests a bias in the estimated β due to the influence of Ndep. However, several
studies indicate that the beneficial effects of Ndep can transition into adverse impact on productivity once Ndep

surpasses a certain threshold, leading to a non‐linear response of vegetation growth to Ndep (Etzold et al., 2020;
Kint et al., 2012; Schmitz et al., 2019; Schulte‐Uebbing & de Vries, 2018; Tian et al., 2016). When analyzing the
relationship between Ndep and β, we exclude pixels near sites where annual Ndep values exceed the certain
threshold (i.e., 24 KgN ha− 1 yr− 1) in Etzold et al. (2020).

2.4. Estimating β and γ Using the GPP Residual Method

We develop theGPP residual method (Figure 1) to isolate the CO2 fertilization effect (β) from other confounding
factors (e.g., climate). β is inferred for each site and each month‐of‐year separately, using the median values of
GPP and hydro‐meteorological data across 5‐day intervals within the considered months to filter out synoptic
weather variability and its impact on GPP dynamics. The calculation of β consists of three steps: (a) Data
preparation (Figure 1b). The growing season when plant photosynthesis is active is defined based on the mean
seasonal cycle of GPP (averages by day‐of‐year) across the time series. A month is considered within the growing
season, if there are more than 20 days when GPP is greater than 25% of the maximum of GPP as inferred from the
mean seasonal cycle. Within each month, the median values of all variables are retrieved for every 5‐day interval.
We then calculate anomalies using the median values by subtracting the long‐term trend of the linear‐fit for each
month‐of‐year (e.g., July in 1999, …,2020). These anomalies are only used to train the model in step (2). We
rescale the anomalies of all variables by adding the average value across the considered time period. The rescaling
allows the random forest model in step (2) is trained and applied at an identical magnitude to extrapolate; (b)
Model training and predicting climatic effects on GPP (Figure 1c). We train a random forest regression model for
GPP anomalies using anomalies of hydro‐meteorological variables (i.e., temperature (Temp), incoming short-
wave radiation (SWin), vapor pressure deficit (VPD), water availability index (WAI), growing degree days
(GDD)). We use the model to predict GPP using the actual hydro‐meteorological data (including both trends and
anomalies) at each month‐of‐year. The predicted GPP (GPPclimatic) thus only reflects the effect of climate. Next to
the random forest regression model, we call a multivariate linear regression model to test the robustness of the
results from the random forest regression model (Figure S1 in Supporting Information S1); (c) Isolating non‐
climatic effects on GPP (Figure 1d). At each month‐of‐year, the non‐climatic effects on GPP (GPPresidual) are
derived by removing the GPPclimatic from the actual GPP time series (GPPresidual = GPP—GPPclimatic). The
change of GPP in response to CO2 (i.e., β) is derived as the trend of the linear‐fit between CO2 concentration and
GPPresidual. Similarly, the sensitivity of GPP to temperature (i.e., γ) is derived as the trend of linear‐fit between
temperature and GPPclimatic:

β =
∆GPPresidual

∆CO2
(3)
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γ =
∆GPPclimatic

∆Temp (4)

Absolute change in GPP might not accurately reflect the response of ecosystems to CO2 increase because eco-
systems have different baseline levels of productivity. Considering that, we alternatively calculate relative change
in GPP in response to increasing CO2 and temperature, to allow for better standardization across different eco-
systems, locations, and studies:

Figure 1. Schematic of the statistical GPP residual method to isolate the CO2 fertilization effect and climatic effect in
observational data of GPP. (a) Hypothesis. The overall goal of the GPP residual method is to isolate the CO2 fertilization
effect on GPP by removing long‐term climate effects inferred from short‐term variability. (b) Data preparation. All the time
series of climate variables and GPP are detrended and individually rescaled to the long‐termmean of each variable. The black
lines denote the actual time series for each variable, and the red line denotes the detrended time series. (c) A random forest
model or multivariate linear regression model is trained to learn the sensitivity of GPP to the climate variables based on the
detrended time series, that is, interannual variability. (d) The trained model predicts the long‐term changes in GPP caused by
climate changes using the original time series of climate predictors, including the long‐term trend. The non‐climate‐induced
effect on GPP is therefore estimated from the residual of absolute GPP minus climate‐induced GPP, shown as the red line.
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βrelative =

∆GPPresidual
GPPbaseline

∆CO2
× 100% × 100 (5)

γrelative =

∆GPPclimatic

GPPbaseline
∆Temp

× 100% (6)

where βrelative is in the unit of % per 100 ppm, and γrelative in the unit of % per Kelvin degree. GPPbaseline is
calculated as the mean GPP over the first 2 years at a specific month.

The advantage of the GPP residual method is that we separate the confounding factors at different time scales,
thus, it can solve the issue of multicollinearity to some extent, when the independent variables are highly
correlated to one another. To show the different results yield from the GPP residual method and a multivariate
regression method, we adopt a simple multivariate regression model as the following:

GPP = β × CO2 + ρTemp × Temp + ρVPD × VPD + ρWAI ×WAI

+ ρGDD × GDD + ρSWin
× SWin

(7)

where β is the sensitivity of GPP to CO2. After obtaining β values for each site‐month, we calculate the median β.
This approach helps to mitigate the influence of outliers. We further estimate the uncertainty of the median β using
the bootstrap method. By repeatedly sampling from the considered β distribution, we create multiple bootstrap
samples. Each sample is then used to calculate the median β. The standard deviation across these bootstrap es-
timates provides an estimate of the uncertainty associated with median β. We calculate the median γ and its
uncertainty in the same way.

To consider the seasonal and spatial variation of GPP, we further calculate annual β and γ by aggregating monthly
β and γ weighted by monthly GPPbaseline:

Annual β =∑
n

i=1
βmonthi ×

GPPbaselinei
GPPgs

(8)

Annual γ =∑
n

i=1
γmonthi ×

GPPbaselinei
GPPgs

(9)

where i represents a specific month, and n is the total number of months. GPPgs is the sum of baseline GPP across
the considered growing season. Similarly, the annual β and γ at each site can be further aggregated across space:

mean β =∑
n

i=1
Annual βi ×

GPPgsi
GPPsum

(10)

mean γ =∑
n

i=1
Annual γi ×

GPPgsi
GPPsum

(11)

where i represents a specific site, and n is the total number of sites. GPPsum is the sum of baseline GPP across all
sites. To assess the robustness of the median β or γ values and determine if they are influenced by site selection,
we compare the mean β or γ calculated across all sites, weighted by baseline GPP, with the median β or γ derived
from the distribution of monthly β or γ values. If the median value remains relatively stable and comparable to the
mean value across all sites, it suggests that the selection of sites does not significantly impact the robustness of the
median β or γ estimations.

The EC technique allows for direct measurement of NEE, which is the difference between GPP and ecosystem
respiration (RECO):
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NEE = RECO − GPP (12)

The maximum net ecosystem production (NEPmax) is defined as the negative sign of the minimum NEE during a
day from half‐hourly measurement:

NEPmax = − NEEmin (13)

In addition to GPP, we further estimate β or γ for NEPmax following the same method.

2.5. Test the GPP Residual Method With Synthetic Data: A Proof‐Of‐Concept Analysis

We use the terrestrial biosphere model QUINCY (QUantifying Interactions between terrestrial Nutrient CYcles
and the climate system; Thum et al., 2019), which has been evaluated against a subset of FLUXNET sites across
large geographical ranges and different ecosystem types, to test the GPP residual method. The use of model
experiments works as an integral part of our iterative development process, guiding refinements and ensuring that
the method is well‐prepared for subsequent application in real‐world ecosystems. We perform two simulations
with identical climate but varying CO2 concentrations (transient CO2 as observed, and constant CO2 at levels of
the year 1988) at 166 forested sites randomly distributed across the globe. The 166 sites are synthetic sites in the
QUINCY model world that, unlike real FLUXNET sites, are well distributed across different biomes and climate
zones. We use this comprehensive collection of simulated QUINCY model sites to provide the proof‐of‐concept
for our statistical. The model setup and model simulations are identical with the “freeze‐CO2 experiment” in Zhan
et al. (2022). For better comparison with EC records, we take the last 20 years (1999–2018) in the simulations as
the time period of the validation.

The advantage of this method is that we can compare the β estimated by theGPP residual method (βestimated) with
β modeled by QUINCY (βQUINCY), which represents theory of photosynthetic responses to CO2, climate and
water availability. βQUINCY is calculated as the sensitivity of the CO2‐induced change in GPP to CO2 concen-
tration, in which GPP is calculated as the difference between simulations forced with transient CO2 and constant
CO2 during the considered time period. β is calculated for each site and each month‐of‐year. The selection of
months follows the same rule as the data preparation in the previous section. βestimated is calculated using the GPP
residual method elaborated in the previous section from the simulation forced with transient CO2.

We evaluate the agreement of βestimated and βQUINCY for each synthetic forested site (166 sites in total) in the
model. We use the root‐mean‐square error (RMSE) to measure the difference between βestimated and βQUINCY
across the growing season. The RMSE of β estimation per site is calculated as:

RMSE( β) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∑n
i=1(βestimatedi − βQUINCYi)

2

n

√
√
√
√ (14)

where n is the number of months when β is estimated; βestimatedi and βQUINCYi
is the β estimated and modeled at

month i, respectively. In this study, we use the validated GPP residual method to estimate β in tree‐dominated
ecosystems based on measured meteorological data and the CO2 atmospheric inversion product.

2.6. Determining β and γ in Simulations of the TRENDY v9 Model Ensemble

We use simulations from twelve process‐based global dynamic vegetation models (DGVM) within the TRENDY
projects (Le Quéré et al., 2018; Sitch et al., 2015) to derive the modeled β and γ. We use four simulations (called
S0, S1, S2, S3 in the TRENDY v9 protocol; see Table S3 in Supporting Information S1) with and without
LULCCs under both transient (historically observed) and pre‐industrial (constant) environmental conditions. CO2

effect on GPP modeled by TRENDY (βS1‐S0) is calculated as the difference between output from S1 and S0, to
avoid the effect from climate recycling. To test the robustness of the GPP residual method and the potential
LULCCs effect, we apply the same statistical method (i.e., theGPP residual method) on simulations in S2 and S3,
respectively. We derive γ from S2 simulations by calculating the sensitivity of GPP in S2 to temperature. We
select grid‐cells containing the 38 considered EC sites in all models. β and γ is calculated for the same site‐months
as data analyzed in EC records.
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3. Results and Discussion
3.1. Evaluating the GPP Residual Method With a Land Surface Model: A Proof‐Of‐Concept Analysis

We develop and test the GPP residual method with QUINCY model simulations (Methods) from which we
cannot only infer β with our method, but also directly compare with the modeled β. This approach offers a
systematic and transparent framework for evaluating the method's performance at 166 synthetic model sites under
known conditions, providing insights into its strengths and weaknesses. Overall, we find that our method can
satisfactorily estimate β, and can capture the seasonal variations of β across biomes. We find β in tropical forest is
overall well reproduced by our statistical method, supported by a mean root‐mean‐square error (RMSE) of
1.2 gC m− 2 yr− 1 ppm− 1. However, the performance in the cold northern high latitude regions, where part of the
boreal needle‐leaved forests and temperate forests are located, is slightly diminished, with a mean RMSE of
1.5 gC m− 2 yr− 1 ppm− 1 (Figures 2a and 2b). When evaluating different methods using the model simulations, the
GPP residual method with implemented random forests has the lowest RMSE (1.5 gC m− 2 yr− 1 ppm− 1), in
contrast to the other two methods (i.e., the two multivariate regression methods, Methods), both amounting to an
RMSE of 1.6 gC m− 2 yr− 1 ppm− 1. The RMSE in Figure 2a is notably lower at each forest type compared with
Figures S1a and S2a in Supporting Information S1. Particularly, the GPP residual method with implemented
random forests exhibits better estimation in temperate broadleaf summergreen trees (TeBS), compared with both
multivariate regression methods that estimate negative β in TeBS during the beginning and the late growing
season (Figures S1a, S2a in Supporting Information S1). Consequently, by testing all methods at 166 synthetic
forested sites, we find that theGPP residual method with implemented random forests exhibits relatively the best
performance compared to the GPP residual method based on the multivariate regression approaches. By iden-
tifying climate effects on shorter‐time scales and capturing their impact, including the rising CO2 effect at longer‐
time scales, we can more effectively isolate confounding factors affecting GPP drivers.

Additionally, we find a slight overestimation accompanied with higher RMSE, during summer months in boreal
needleleaf evergreen (BNE) forested sites and boreal needleleaf summergreen (BNS) forested sites. The
discrepancy between estimated β and modeled β can be attributed to the limitations associated with constructing a
statistical model to estimate the sensitivity of GPP to climate variables relying on interannual variabilities. This
means this statistical model does not account for vegetation acclimation on climatic variability in the long‐term,
such as phenological changes, which cannot be learned from interannual variabilities. Thus, the statistical method
exhibits decreased accuracy, particularly in ecosystems where seasonality exerts strong control.

In addition to the limitation of capturing vegetation phenology, we individually consider the effect of rising CO2

and the effect of changing climatic conditions. Thus, the synergetic effect of rising CO2 and temperature (Drake
et al., 1997) is not considered in our approach, where for example, increasing CO2 can modify plants' response to
temperature. This simplification could result in the overestimation of the CO2 fertilization effect on GPP. On the
other hand, the anomalies associated with extreme events can be theoretically reproduced by the statistical
method. However, given that only a few instances of extreme events are in the training data set, we acknowledge
that the non‐linear relationship between climate and GPP during extreme conditions can induce errors in the
estimation of β. Overall, we find encouraging consistency between the β estimated by the GPP residual method
and β modeled by QUINCY.

3.2. CO2 Fertilization Effect in Forested Ecosystems Inferred From Eddy Covariance Records

Using the GPP residual method, we estimate the strength of the CO2 fertilization effect on photosynthetic carbon
uptake as recorded in eddy covariance (EC) time series at 38 forested sites (Figure 3). We assess the sensitivity of
GPP to CO2, denoted β (Methods), separately for each individual month across the years of the time series to
account for seasonal variations. The median β value across all sites and months is 3.18± 0.92 gCm− 2 yr− 1 ppm− 1

(or 16.40 ± 4.27% increase in GPP per 100 ppm rise in atmospheric CO2). This is comparable to the β factor
reported in Fernández‐Martínez et al. (2017) and Chen et al. (2022), where β amounts to 4.49 ± 0.75 and
2.24 gC m− 2 yr− 1 ppm− 1 (Table 1). The difference among these estimates likely arises from differences in study
periods, vegetation types, or inherent methodological uncertainties. Notably, Ueyama et al. (2020) reported a β
factor of only 0.43 gC m− 2 yr− 1 ppm− 1, about one‐tenth of the value found in this study. While Ueyama
et al. (2020) utilized a photosynthesis model constrained by EC data, we employ a data‐driven method which does
not rely on pre‐defined model structures. The conceptually distinct approaches as well as different study periods
and sites likely result in these significant differences among the identified β factors.

Journal of Geophysical Research: Biogeosciences 10.1029/2023JG007910
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While β displays considerable variability across sites and months, positive β values are consistently observed in
61% of sites for at least 2 months in the record. The strongest enhancement of β occurs during the boreal summer
months (Figure 3a), although a selection of sites exhibits stronger effects in spring (e.g., CA‐Ca3) or autumn (e.g.,
US‐GLE).

Among the analyzed sites, the top seven sites listed from the top to the bottom in Figure 3a (DE‐Hzd, CA‐LP1,
CA‐TP4, US‐GLE, CA‐Ca3, CA‐Cbo, IT‐Ren) exhibit the most pronounced GPP enhancement, with their site‐

Figure 2. Testing theGPP residual methodwith QUINCYmodel simulations. (a) Seasonal variation of β across vegetation types estimated by theGPP residual method
with a random forest model in red and QUINCY in black (166 synthetic sites with 1220 site‐months). The red and black shaded area depicts one standard deviation
around the mean value of β across multiple site‐months (solid lines). (b) The map shows the root mean square error (RMSE) between estimated β and modeled β in the
growing season for each site in the QUINCY model. Brighter color indicates lower bias and thus a better performance of the GPP residual method.
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ZHAN ET AL. 9 of 17

 21698961, 2024, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JG

007910 by M
PI 322 C

hem
ical E

cology, W
iley O

nline L
ibrary on [11/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



specific annual mean β values surpassing the top 20% of all the sites. In addition to the median β value across all
sites and months, we aggregate monthly β based on the monthly baseline GPP, to represent the mean β across
selected sites. The aggregated mean β is 2.10 gC m− 2 yr− 1 ppm− 1, indicating the median β is representative and
not biased by the site selection, considering the variation in GPP across sites.

The presented approach lacks the ability to isolate additional hidden long‐term effects stemming from human
activities, and these effects may manifest in an over‐ or under‐estimation of β derived at individual sites. Notably,
certain sites (e.g., DE‐Obe, CH‐Dav, FI‐Let, DE‐Hai) exhibit negative β values consistently throughout the
growing months. Following by carefully checking the data and our statistical method, we propose three hy-
potheses for the occurrence of negative and potential over‐ or under‐estimations of β: (a) Disturbance or man-
agements. For instance, the negative β identified at the “CH‐Dav” site may be associated with a disturbance event,
specifically a harvest conducted in the year 2006. Similarly, the thinning activity at the “FI‐Let” site in 2016
induced a declining of GPP trend, leading to a negative β estimate throughout the year. (b) Forest age. The forest
at the “DE‐Hai” site, for example, is considered of old age (around 150 years) and is recovering from a severe
drought. (c) Biases introduced by our method. Although the method has been thoroughly tested with represen-
tative synthetic data (Figure 2), we acknowledge that the method has limitations and do not perfectly capture the
GPP response to CO2, thus introducing errors. Conversely, other drivers, mainly nitrogen deposition (Ndep) at
nitrogen‐limited sites (De Vries et al., 2006, 2014; Sutton et al., 2008) or forests undergoing succession (Pugh
et al., 2019), can induce a long‐term increase of GPP, potentially resulting in an overestimation of β. Using Ndep

Figure 3. Estimation of the CO2 fertilization factor β from eddy covariance (EC) data using the GPP residual method with a random forest model. (a) Plot showing the
estimated β for each EC site across months in the growing season. The size of circles represents the magnitude of monthly baseline GPP. Sites are shown in descending
order of the annual mean β (Methods). Site‐codes marked by a star are presented separately at the end of the list, indicating that disturbances have been recorded at those
specific sites. Site‐codes shown in blue and black color locate in Europe (c) and North America (d). (b) The 10%–90% distribution of β values shown in panel (a). The
gray (yellow) vertical dashed lines denote the median β (Methods) estimated from all sites and months (excluding the disturbed sites). The gray (yellow) shaded area
indicates the bootstrap estimates for the uncertainty of median β from all sites (excluding the disturbed sites). Maps (c) and (d) display the annual mean β values at each
site.
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data at daily scale, we test its influence and incorporate Ndep into theGPP residual method following two different
strategies, (a) by including Ndep as a predictor of GPP alongside climate variables (Figures 1b and 1c); (b) by
accounting for the cumulative effect of Ndep in the GPPresidual as a long‐term factor, and assessing its separability
from the CO2 signal using a linear regression model (Supplementary Text S1 in Supporting Information S1). The
β estimated in the first strategy (Figure S3 in Supporting Information S1) exhibits no significant difference from
Figure 3, indicating that the Ndep effect is negligible at short‐term scales. The response to Ndep change is likely a
long‐term and cumulative phenomenon and might even show some degree of hysteresis, associated with the slow‐
turnover pools of nitrogen (N) in wood and soil (Gilliam et al., 2019), and the redistribution of N within the plant‐
soil system (Gruber & Galloway, 2008). In the second strategy, that is, incorporating the cumulative Ndep effect,
we do not arrive at definitive results (details in Supplementary Text S1 in Supporting Information S1), as the
uncertainties of the cumulative Ndep effect and its time scales rooted in uncertainties of the nitrogen balance
within the ecosystems, are too high (Davies‐Barnard et al., 2020; Galloway et al., 2004; Sokolov et al., 2008;
Zaehle & Dalmonech, 2011). In Section 3.3, we further investigate whether one could use spatial heterogeneity to
estimate the nitrogen deposition effect and analyze spatial variations in β and their relationships with patterns of
Ndep.

Overall, these trends in the potential other drivers are rather site‐specific and vary in magnitude and even sign,
while CO2 is rising uniformly with no distinct spatial signature. With a well‐distributed and sufficiently large
sample, the effects of other drivers may offset each other, so that the median value of β across all sites predom-
inantly reflects the widespread CO2 fertilization effect. This notion is supported by excluding known disturbance
sites (e.g., forest thinning) from the analysis, resulting in amedian β (2.96± 0.99 gCm− 2 yr− 1 ppm− 1) that does not
significantly differ from the β estimated using all sites (Figure 3b).

The dailymaximumNEE (NEPmax) provides insights into the peak photosynthetic activity of the ecosystem during
optimal conditions within a day. It is valuable for understanding the ecosystem's contribution to carbon seques-
tration. In addition to GPP, we identify the CO2 fertilization effect on NEPmax as 9.45 ± 2.38 gC m− 2 yr− 1 ppm− 1

(or 17.16 ± 3.69% per 100 ppm). The temporal and spatial variation of β in NEPmax is consistent with β in GPP
(Figures 3 and 4), adding additional observational evidence of the CO2 fertilization effect for better understanding
of the global carbon cycle dynamics.

Next, we assess the robustness of our findings by testing multiple regression methods in estimating the GPP
sensitivity to climatic changes, and evaluate their statistical performance. Testing a multivariate linear regression
instead of a random forest regressor, we find that the median β yields a slightly different estimate of
2.99 ± 0.94 gC m− 2 yr− 1 ppm− 1(Figure S4 in Supporting Information S1). If we however apply the multivariate
regression model without accounting for confounding drivers of rising CO2 and climatic changes (Methods), the
median β is notably lower and amounts to 2.38 ± 0.87 gC m− 2 yr− 1 ppm− 1(Figure S5 in Supporting Informa-
tion S1). We utilize the “Out‐of‐Bag” (OOB) score to estimate the performance of the random forest regressor on
unseen data without the need for a separate validation set (Methods). Although there are instances of relatively
low OOB score at certain sites and months, no clear relationship emerges between estimated β values and model
performances (Figure S6 in Supporting Information S1).

3.3. Exploring the Spatial Variation of the CO2 Fertilization Effect

We further explore the spatial variability in estimated β. Thereby, we assess the roles of plant functional types
(PFTs), forest age, temperature, VPD, maximum LAI and Ndep. Past studies have found stronger stomatal
responsiveness to changes in CO2 in deciduous trees versus conifers (Brodribb et al., 2009; Klein & Ramon, 2019;
Medlyn et al., 2001; Saxe et al., 1998), although variability exists when assessing their different responses in
photosynthesis (Saxe et al., 1998). Overall, we find a greater enhancement in GPP in evergreen needle‐leaved
forest (ENF) in response to increasing CO2 (Figure S7 in Supporting Information S1), compared with DBF.
The difference in GPP responses to increasing CO2 across PFTs may vary with scales, or complex environmental
conditions (e.g., under stress or not). Future work may focus on this difference in more detail. An open question is
whether mature forests, which may be approaching a quasi‐equilibrium state, are responding to CO2 and climate
in the same fashion as younger stands (Kira & Shidei, 1967; Luyssaert et al., 2008; Odum, 1969). We find no
significant relationship between β and forest age, but we show a tendency of GPP enhancement to decline toward
older stands (Figure S8a in Supporting Information S1). Theoretically, the enhancement in GPP would relate to
differences in growing season temperature and VPD, with greater enhancement at warmer growth temperatures
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(suppression of photorespiration; Baig et al., 2015). However, we find no significant but slight negative trend in
the relationship between β and temperature as well as VPD (Figures S8b and S8c in Supporting Information S1).
This trend may be attributed to the combined impact of temperature and VPD. We find a positive tendency of β
with increasing site maximum LAI (Figure S8d in Supporting Information S1), which could be an interaction
between rising CO2 and growth phase (i.e., regrowth). Photosynthetic carbon sequestration is expected to increase
with elevated Ndep, since nitrogen is considered to be usually the limiting nutrient in forests (De Vries
et al., 2006). Both Ndep and CO2 effects are supposed to simultaneously act as long‐term stimulator of GPP. Given
that Ndep and CO2 are often correlated over time, it is challenging to isolate one from the other (Supplementary
Text S1 in Supporting Information S1). We analyze the site‐level GPP response to increasing CO2 β against the
Ndep data derived frommodels (Methods). If a discernible relationship emerges, showing higher β values at higher
Ndep levels, or vice versa, it suggests that the β estimation might be largely biased by the nitrogen deposition effect
and misattributed to increasing CO2 effect. We find no significant relationship between estimated β and site‐mean
Ndep across all sites excluding disturbed sites (Figure S9 in Supporting Information S1). This analysis suggests
that a misattribution, if existent, appears to be negligible. However, we acknowledge that the disparity between
local and modeled Ndep, stemming from intricate deposition processes (Lamarque et al., 2013), may introduce
biases into the comparison between site‐level estimation and gridded data sets simulated by models. Moreover,
while the relationship between nutrient availability and GPP is highly complex, evidence suggests that higher
nutrient availability may be more beneficial for woody biomass increase rather than GPP in forest ecosystems
(Vicca et al., 2012).

3.4. Comparing the CO2 Fertilization Effect Inferred From Eddy Covariance Sites and TRENDY
Ensemble

We compare our EC based β estimates with an ensemble of twelve process‐based global dynamic vegetation
models (DGVM) following the TRENDY simulation protocol (Le Quéré et al., 2018; Sitch et al., 2015). The
TRENDY ensemble consists of four experiments (Table S3 in Supporting Information S1): the pre‐industrial

Figure 4. Estimation of β from eddy covariance data using the GPP residual method with a random forest model. Analogous to Figure 3 but β is estimated for NEPmax.
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control run (S0), the run considering only CO2 changes (S1), the run considering CO2 and climate change forcings
(S2), and the latter with additional prescribed LULCCs (S3). To conduct the comparison, we extract model time
series from the individual grid‐cells containing the 38 considered eddy‐covariance sites. The modeled CO2

fertilization effect inferred by calculating the difference βS1‐S0, exhibits a large spread among the TRENDY
models. The median βS1‐S0 across the grid‐cells and models is 2.07 gC m− 2 yr− 1 ppm− 1, which is remarkably
close to the median β obtained through the GPP residual method using EC records. Except for the ISBA‐CTRIP
and the CLM5.0 models, all of the other 10 models exhibit lower value for β than the median β estimated from
observations (Figure 5). As different models and ecosystems have different baseline levels of productivity, we
also compare the standardized β, which is the relative change in GPP in response to increasing CO2 (βrelative;
Methods). We find that seven models fall within the bootstrapped uncertainty range of the median βrelative
estimated from observations (Figure S11 in Supporting Information S1). We acknowledge the limitation of this
comparison, as it involves contrasting site‐level estimates with grid‐level results, which is influenced by the
heterogeneity within each grid‐cell. Nevertheless, we argue that the median values across the sites and grid‐cells
provide a more aggregated perspective that helps mitigate the influence of sub‐grid heterogeneity.

Other factors, such as nitrogen deposition, disturbances, and particularly land management, can influence
ecosystem productivity as recorded in EC data. These factors potentially influence the estimation of β using the
GPP residual method. To assess the effect of LULCCs on β estimation, we compare β derived from the TRENDY
S2 and S3 simulations using the GPP residual method. The ensemble mean of βS2 closely aligns with βS3
(Figure 5), suggesting that the neglected effects of LULCCs do not substantially affect the β estimation.
Furthermore, in line with testing the method using QUINCY simulations, the GPP residual method tends to
slightly overestimate β when comparing βS2 with βS1‐S0 derived from TRENDY. This further emphasizes that the
method cannot account for long‐term vegetation acclimation and phenological changes; however, these effects
are minor within the considered time period.

3.5. Influence of Climatic Changes on Plant Productivity Throughout the Season

Conventionally, the γ factor is defined as the sensitivity of land carbon storage to climate variations using
temperature change as the proxy (Arora et al., 2020; Friedlingstein et al., 2006; Gregory et al., 2009). Analo-
gously, we define γ as the change in the climate‐driven GPP component over temperature change, which is
already obtained in the GPP residual method (Methods). The median γ in GPP estimated from the EC data set is
39.44 ± 4.96 gC m− 2 yr− 1 K− 1 (Figure 6) or 1.78 ± 0.16% per Kelvin degree. Comparing this to the sensitivity of
GPP to CO2, assuming a 100 p.m. increase in atmospheric CO2 concentration is roughly equivalent to 1 K degree

Figure 5. Comparing β estimated from eddy covariance (EC) data and the TRENDY model ensemble. The medians and
interquartile ranges of β are shown for each model and for the ensemble mean, as horizontal lines within the boxes, and the
upper and bottom lines of the box, respectively. Each box includes grid‐cells containing the 38 considered EC sites. Box plots
for individual models are in an ascending order based to the median β. The dotted red line represents the median β derived
from EC records (as shown also in Figure 3), with the uncertainty showing in shaded area.
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temperature increase in the historical period, we find that γ is considerably lower than β, in line with previous
studies (Chen et al., 2022; Fernández‐Martínez et al., 2017). The median γ in NEPmax

(− 17.33± 12.15 gC m− 2 yr− 1 K− 1) is much lower than γ based onGPP, reflecting a negative response of NEPmax

to temperature variations, particularly at the peak of the growing season (Figure S12 in Supporting Informa-
tion S1). The median γ estimated from the TRENDY ensemble (S2 simulations) is 13.62± 2.46 gC m− 2 yr− 1 K− 1

(Figure S13 in Supporting Information S1). Also, γ exhibits a large spread among models compared to γ from EC,
suggesting a more pronounced uncertainty in the process representation in estimating ecosystem responses to
climate changes among the land surface models (Figure S14 in Supporting Information S1). A clear seasonality of
γ emerges in both observations and models (Figure 6, Figures S12 and S13 in Supporting Information S1).While γ
is higher at the beginning and the end of the growing season for most of the sites, most sites show negative γ in at
least one month of the growing season (26 out of 38 in the EC estimated GPP; 36 out of 38 in the EC measured
NEPmax; 33 out of 38 in the TRENDY ensemble mean). Our results indicate that warming may have a positive
effect on vegetation productivity at colder conditions at the shoulder seasons and a potential negative effect in
summer around the peak of the growing season. High temperatures are usually accompanied by a high VPD,
down‐regulates the stomatal conductance and limits plant productivity (Novick et al., 2016; Park Williams
et al., 2013). On the other hand, plant productivity can be stimulated by increasing temperature at conditions when
water is not limiting the ecosystem functioning (Fernández‐Martínez et al., 2019). These dynamics highlight the
complexity of climate‐vegetation interactions and underscore the need for further research to fully understand
their implications for ecosystem functioning and carbon dynamics.

Figure 6. Estimation of γ from eddy covariance (EC) data set using the GPP residual method with a random forest model. (a) Plot showing the estimated γ for each EC
site across months in the growing season. The size of circles represents the magnitude of monthly baseline GPP. Sites are shown in descending order of the annual mean
γ (Methods). Site‐codes marked by a star are presented separately at the end of the list, indicating that disturbances have been recorded at those specific sites. Site‐codes
shown in blue and black color locate in Europe (c) and North America (d). (b) The 10%–90% distribution of γ values shown in panel (a). The gray (yellow) vertical
dashed lines denote the median γ (Methods) estimated from all sites and months (excluding the disturbed sites). The gray (yellow) shaded area indicates the bootstrap
estimates for the uncertainty of median γ from all sites (excluding the disturbed sites). Maps (c) and (d) display the annual mean γ values at each site.
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Overall, we recognize the inherent limitations in EC‐based data acquisition, the assumptions of the GPP residual
method, and the potential influence of other long‐term factors such as human activities, which can introduce
biases in the estimation of β and γ from observations. Despite these challenges, theGPP residual method is tested
using synthetic data from a land surface model. The seasonality of β and γ aligns with vegetation functions
described in previous sections. Furthermore, utilizing the TRENDY simulations, we demonstrate that the
discrepancy in β estimation, influenced by LULCCs, remains within an acceptable range.

4. Conclusions
Our study isolates a robust, multi‐decadal enhancement in vegetation productivity (βGPP = 3.18 ± 0.92
gC m− 2 yr− 1 ppm− 1 or 16.40± 4.27% per 100 ppm, βNEPmax = 9.45± 2.38 gC m−2 yr−1 ppm−1 or 17.16± 3.71%
per 100 ppm) across Northern Hemisphere forests in response to the rising atmospheric CO2 concentration. We
further diagnose the median value of GPP sensitivity to temperature (γ; as proxy for climatic changes) of
39.44 ± 4.96 gC m−2 yr−1 K−1 or 1.78 ± 0.16% per Kelvin degree, and find evidence of a negative effect of
temperature on photosynthesis at the peak of the growing season. Assuming a 100 p.m. increase in CO2 con-
centration is equivalent to 1 K degree temperature increase, the negative temperature effect at summer months
potentially masks the positive increasing CO2 effect on GPP. The average values of the TRENDY ensemble range
at a lower β and a lower γ compared with those inferred from EC records. However, there is a large spread in β and
γ among the various land surface models. Further research should focus on identifying the origins of this inter‐
model spread and testing methods where process formulations can be directly informed by the growing number of
observations (e.g., ElGhawi et al., 2023). This study paves the way for future investigations into long‐term drivers
of change and ecosystem functioning. We anticipate that our approach could be readily applied to other eco-
systems (e.g., drylands), other data sets (long‐term satellite records of change, i.e., vegetation greenness, etc.),
and other variables that describe ecosystem function (e.g., evapotranspiration). This study, alongside the growing
body of studies determining large‐scale ecosystem responses to rising CO2 in observational data sets, build the
foundation to constrain the future land sink of anthropogenic carbon and thus the remaining carbon budget.

Data Availability Statement
The observational data used in this study are available in the ICOS warm winter 2020 product as Warm Winter
2020 Team, & ICOS Ecosystem Thematic Centre. (2022). (https://www.icos‐cp.eu/data‐products/2G60‐ZHAK)
and Ameriflux (Ameriflux Data Management Team, 2017, https://ameriflux.lbl.gov/), and the data set citations
for each site are provided in Table S1 in Supporting Information S1. The analyses scripts are available online:
https://doi.org/10.5281/zenodo.10125473.
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