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Introduction  

This supporting information provides 1) the estimation of 𝛽 and γ effects using different 
statistical models; 2) tables for information about eddy covariance sites and TRENDY 
simulations; 3) tests of the statistical method to incorporate the cumulative effect of nitrogen 
deposition (Ndep) to the 𝛽 estimation. 
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Figure S1. Validation of the statistical method with QUINCY simulations. Analogous to Figure 2 
but 𝛽 is estimated by multivariate regression model. 
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Figure S2. Validation of the statistical method with QUINCY simulations. Analogous to Figure 2 
but 𝛽 is estimated by a simple multivariate regression model. 
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Figure S3. Estimation of 𝛽 from eddy covariance dataset. Analogous to Figure 3 but nitrogen 
deposition data from the forcing database for CMIP6 models in included as a predictor of GPP 
(Methods). Sites in the panel (a) are shown the same order as Figure 3. 
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Figure S4. Estimation of 𝛽 from eddy covariance dataset. Analogous to Figure 3 but 𝛽 is 
estimated by a multivariate linear regression model. Sites in the panel (a) are shown the same 
order as Figure 3.  
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Figure S5. Estimation of 𝛽 from eddy covariance dataset. Analogous to Figure 3 but 𝛽 is 
estimated by the simple multivariate linear regression model (Methods). Sites in the panel (a) are 
shown the same order as Figure 3. 
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Figure S6. The performance of (a) the random forest model (Out of Bag; OOB score), (b) the 
multivariate regression model (R squared) and (c) the simple multivariate regression model (R 
squared) against estimated annual 𝛽 at each site. 
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Figure S7. Histogram plots of 𝛽 estimated for (a) evergreen needleleaf forest (b) deciduous 
broadleaf forest and (c) mixed forest in eddy covariance dataset. The vertical dashed lines denote 
the median 𝛽 estimated from three methods (random forest model in yellow, multivariate 
regression model in green, simple multivariate regression model in blue). The shaded area 
indicates the bootstrap estimates for the uncertainty of 𝛽 correspondingly. 
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Figure S8. Scatter plot (with best-fitting regression line) and correlation between 𝛽 and (a) forest 
age, (b) mean temperature in growing seasons, (c) mean vapor pressure deficit in growing seasons 
and (d) maximum leaf area index. The shaded area represents the 95% confidence interval around 
the regression line. Circles, squares and cross represent mixed forest, evergreen needle-leaved 
forest, deciduous broadleaf forest.
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Figure S9. Scatter plot (with best-fitting regression line) and correlation between 𝛽 and nitrogen 
deposition data from (a) the European Monitoring and Evaluation Programme (EMEP) 
Meteorological Synthesizing Centre - West (MSC-W) model, and (b) the forcing database for 
CMIP6 models. The orange, green, and blue circles represent mixed forest, evergreen needle-
leaved forest, and deciduous broadleaf forest, respectively. The best-fitting regression lines for 
different forest types are depicted in corresponding colors. The shaded area represents the 95% 
confidence interval around the regression line fitted across all sites. 
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Figure S10. Temporal evolution of Nitrogen deposition (Ndep) near the 38 forest sites from 1996 
to 2020, using data from (a) the European Monitoring and Evaluation Programme (EMEP) 
Meteorological Synthesizing Centre - West (MSC-W) model, and (b) the forcing database for 
CMIP6 models. In instances where the annual Ndep remains below 24 KgN ha-1 yr-1 (Methods) 
throughout the entire period in panel (a), the lines are depicted in grey. Conversely, when the Ndep 
exceeds this threshold, the lines are presented in different colors. Specifically, Ndep data near the 
sites BE-Bra, BE-Vie, CH-Lai, DE-Hzd, DE-Tha, and IT-Lav are distinguished by unique colors. 
Although the annual Ndep values in panel (b) consistently fall below 24 KgN ha-1 yr-1, the color 
scheme is maintained in panel (a) for consistency.  
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Figure S11. Comparing 𝛽 estimated from eddy covariance data and the TRENDY model 
ensemble. Analogous to Figure 5 but 𝛽 is estimated as the relative change in GPP per 100 ppm 
increase in atmospheric CO2 concentration (Methods).   
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Figure S12. Estimation of γ from eddy covariance dataset using the GPP residual method with a 
random forest model. Analogous to Figure 6 but γ is estimated for NEPmax. 
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Figure S13. Estimation of γ from TRENDY ensemble mean. Analogous to Figure 6 but γ is 
estimated from the TRENDY ensemble. 
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Figure S14. Estimation of γ from the TRENDY ensemble. The medians and interquartile ranges 
of 𝛾 are shown for each model, as horizontal lines within boxes, the upper and bottom lines of the 
box, respectively. Box plots for individual models are ordered according to the median 𝛾 across 
models. The points represent the mean 𝛾 at grid-cells containing the 38 considered eddy 
covariance sites for each model. 
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Table S1. List of eddy covariance sites used in this study. Plant functional type (IGBP class), 
coordinates, and data citation are reported.  

Site code PFT Latitude Longitude Data citation 

BE-Bra MF 51.3092 4.5206 https://doi.org/10.18160/YVBQ-K6WF 

BE-Vie MF 50.3051 5.9981 https://doi.org/10.18160/DF9X-QMRK 

CA-Ca3 ENF 49.5346 -124.9004 https://doi.org/10.17190/AMF/1480302 

CA-Cbo DBF 44.3167 -79.9333 https://doi.org/10.17190/AMF/1854365 

CA-Gro MF 48.2167 -82.1556 https://doi.org/10.17190/AMF/1902823 

CA-LP1 ENF 55.1119 -122.8414 https://doi.org/10.17190/AMF/1832155 

CA-TP4 ENF 42.7102 -80.3574 https://doi.org/10.17190/AMF/1246012 

CA-Oas DBF 53.6289 -106.1978 https://doi.org/10.17190/AMF/1375197 

CA-Obs ENF 53.9872 -105.1178 https://doi.org/10.17190/AMF/1375198 

CH-Dav ENF 46.8153 9.8559 https://doi.org/10.18160/1JA9-VJEV 

CH-Lae MF 47.4781 8.3650 https://doi.org/10.18160/51Z6-S5XF 

CZ-BK1 ENF 49.5021 18.5369 https://doi.org/10.18160/2X51-1SD0 

CZ-Stn DBF 49.0360 17.9699 https://doi.org/10.18160/0JY0-ZCD6 

DE-Hai DBF 51.0792 10.4522 https://doi.org/10.18160/CR66-PJ24 

DE-Hzd DBF 50.9638 13.4898 https://doi.org/10.18160/2G60-ZHAK 

DE-Obe ENF 50.7836 13.7196 https://doi.org/10.18140/FLX/1440151 

DE-Tha ENF 50.9636 13.5669 https://doi.org/10.18160/8FBV-1K18 

FI-Hyy ENF 61.8475 24.2950 https://doi.org/10.18160/XTBV-XCJV 

FI-Let ENF 60.6418 23.9595 https://doi.org/10.18140/FLX/1440227 

FR-FBn MF 43.2408 5.6787 https://doi.org/10.18160/KGN6-K1CX 

FR-Fon MF 48.4764 2.7801 https://doi.org/10.18160/X1J0-H684 

IL-Yat ENF 31.3450 35.0520 https://doi.org/10.18160/MAGT-CWRW 

IT-Lav ENF 45.9553 11.2812 https://doi.org/10.18160/HZSQ-G19C 

IT-Ren ENF 46.5869 11.4337 https://doi.org/10.18160/WMCA-8P4P 

RU-Fyo ENF 56.4617 32.9239 https://doi.org/10.18160/XMER-D4NR 

US-Bar DBF 44.0646 -71.2881 https://doi.org/10.17190/AMF/2006969 

US-GLE ENF 41.3665 -106.2399 https://doi.org/10.17190/AMF/1871136 
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US-Ha1 DBF 42.5378 -72.1715 https://doi.org/10.17190/AMF/1871137 

US-Me2 ENF 44.4523 -121.5574 https://doi.org/10.17190/AMF/1854368 

US-MMS DBF 39.3232 -86.4131 https://doi.org/10.17190/AMF/1854369 

US-MOz DBF 38.7441 -92.2000 https://doi.org/10.17190/AMF/1854370 

US-NR1 ENF 40.0329 -105.5464 https://doi.org/10.17190/AMF/1871141 

US-Oho DBF 41.5545 -83.8438 https://doi.org/10.17190/AMF/1246089 

US-Slt DBF 39.9138 -74.5960 https://doi.org/10.17190/AMF/1246096 

US-SP3 ENF 29.7548 -82.1633 https://doi.org/10.17190/AMF/1246102 

US-Uaf ENF 64.8663 -147.8555 https://doi.org/10.17190/AMF/1480322 

US-UMB DBF 45.5598 -84.7138 https://doi.org/10.17190/AMF/2204882 

US-Vcp ENF 35.8624 -106.5974 https://doi.org/10.17190/AMF/1246122 
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Table S2. Variables from eddy covariance dataset used in this study. 

Variables Description Time 
scale 

Unit 

NEE_VUT_U
STAR50 

Net Ecosystem Exchange, using Variable Ustar Threshold 
(VUT) for each year, from 50 percentile of USTAR threshold, 
half-hourly data 

Half-
hourly 

umol m-2 s-1 

GPP_NT_VU
T_USTAR50 

Gross Primary Production, from Nighttime partitioning 
method, based on NEE_VUT_USTAR50, calculated from half-
hourly data 

daily gC m-2 day-1 

TA_F_DAY  Averaged daytime air temperature daily deg C 

VPD_F_MDS  Vapor Pressure Deficit, gapfilled using MDS method, average 
from half-hourly data 

daily hPa 

P_F  Sum of precipitation from half-hourly data daily mm day-1 

LE_F_MDS Latent heat flux, gapfilled using MDS method, average from 
half-hourly data 

daily W m-2 

SW_IN_F_M
DS 

Shortwave radiation, incoming, gapfilled using MDS (negative 
values set to zero, e.g., negative values from instrumentation 
noise), average from half-hourly data 

daily W m-2 
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Table S3. Simulations from TRENDY v9 used in this study. 

Simulations CO2 concentration Climate LULCCs forcing 

S0 Pre-industrial Pre-industrial Pre-industrial 

S1 Observed Pre-industrial Pre-industrial 

S2 Observed Observed Pre-industrial 

S3 Observed Observed LUH2/HYDE 
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Supplementary text S1. Testing the statistical method to incorporate the cumulative effect 
of nitrogen deposition (Ndep) to the 𝛽 estimation 
 
We develop the so-called GPP residual method that statistically captures the sensitivity of GPP to 
CO2 and climate variables at different time scales to account for co-linearities among the drivers 
(Methods). We note that the GPP residual may also include other long-term effects specific to 
individual sites, such as signals related to nitrogen deposition (Ndep). Similar to the increasing 
CO2 effect, the response to Ndep change is likely a long-term phenomenon and might even show 
some degree of hysteresis, associated with the slow-turnover pools of nitrogen (N) in wood and 
soil (Gilliam et al., 2019). The input of Ndep could be taken up by vegetation and microbes and 
subsequently redistributed within the plant-soil system, or be retained or stored in the soil or 
biomass for extended periods before being released or lost through various processes (Galloway 
et al., 2004). Thus, it’s crucial to account for the cumulative effect of Ndep that undergoes cycling 
within the natural system. Assuming a long residence time of reactive nitrogen in the system 
(Gruber & Galloway, 2008), the accumulated Ndep at year t in this analysis can be considered as:  

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑁!"#$ =/	𝑁!"#%

$

%&'

(1) 

Where 𝑁!"#% is the mean Ndep at year i. We also explored applying a low-pass filter to the input 
data when calculating accumulated Ndep at a later stage (Equation 2, 3), to capture the dynamic of 
N cycling. Our statistical method aims to separate the short-term responses (e.g., temperature, 
VPD, etc.) from long-term responses (e.g., CO2). There may be an opportunity to take one more 
step to further isolate the effects of CO2 and accumulated Ndep from these long-term responses. 
However, this is challenging as CO2 and accumulated Ndep may be correlated at a long-term scale, 
which complicates the task of separating these two factors using the linear regression models. We 
assess the feasibility of integrating accumulated Ndep into our GPP residual method using both 
synthetic data and eddy covariance record.  
 
We conduct three sets of tests (Table S4) to integrate the cumulative effect of Ndep (𝜂) into the 
linear regression model of GPPresidual after eliminating the climate effect using the GPP residual 
method (Figure 1d and Methods). Within each set of tests, we employ five linear regression 
models to examine the influence of co-linearity among independent variables and to determine if 
the cumulative effect of Ndep can be effectively isolated. Specifically, the five linear regression 
models are designed as: (1) M1: GPPresidual ~ CO2. The linear model M1 is used to calculate the 
CO2 fertilization effect (𝛽) as the slope in the main text; (2) M2: GPPresidual ~ CO2 + Ndep calculates 
both 𝛽 and 𝜂 that are coefficients associated with CO2 and accumulated Ndep (referred to as Ndep in 
the linear models for simplicity), respectively; (3) M3: GPPresidual ~ CO2 + years is employed to 
calculate the coefficient 𝛽 amidst a linear sequence (here years) within the linear regression 
model. This is an examination of whether the linear regression model accurately attributes effects 
when co-linearity among independent variables is anticipated; (4) M4: GPPresidual ~ Ndep attributes 
all long-term effects on GPP to accumulated Ndep as 𝜂. We assess whether accumulated Ndep, as 
the sole independent variable, explains the majority of the variance in GPPresidual; (5) M5: 
GPPresidual ~ years calculates the trend of GPPresidual as the slope. The accumulated Ndep (Equation 
1) is used in M2 and M4 linear regression models in all three tests. 
 
The distinctions among the three sets of tests lie in the derivation of the GPPresidual. In Test #1, the 
dependent variable GPPresidual is modeled by the terrestrial biosphere model QUINCY, which is 
used in the main text to develop and evaluate the GPP residual method (Methods). GPPresidual is 
calculated as the difference between simulations forced with transient CO2 and constant CO2, 
reflecting the theoretical comprehension of the CO2 fertilization effect. Consequently, within the 



 11 

test set, 𝛽 in M1, M2 and M3 should be comparable if the linear regression models can 
successfully isolate the CO2 effect, even with different combinations of independent variables. 
The R2 in M4 is expected to be low since no Ndep effect is encoded in the QUINCY GPPresidual. 
 
In Test #2, GPPresidual is derived from the QUINCY simulation forced with transient CO2 using 
the GPP residual method (Methods). Given that the GPP residual method can only separate the 
short-term climate effect with other long-term effects, the GPPresidual may encompass other long-
term effects (such as long-term GPP acclimatation to climate) besides the CO2 effect. These 
effects are likely to be attributed to CO2 or other drivers exhibiting a trend by the linear 
regression model. However, since nitrogen dynamics are not accounted in these simulations, the 
R2 in M4 is anticipated to be low. 
 
In Test #3, GPPresidual is derived from the eddy covariance (EC) dataset using the GPP residual 
method. Potentially, there could be other long-term effects present in GPPresidual aside from CO2, 
such as the impact of Ndep. 
 
Test #1 and Test #2 involve 166 synthetic sites in the QUINCY experiments, serving as the 
proof-of-concept as discussed in the main text. Test #3 incorporates 38 EC sites used for 
estimating 𝛽 and γ, also discussed in the main text. 
 
Table S4. Linear regression models of the GPPresidual used to test the cumulative effect of Ndep 
calculated by equation 1 

Test #1 GPPresidual modeled by QUINCY 
Linear regression models Median 𝛽 

(gC m-2 yr-1 ppm-1) 
Median 𝜂 

(KgC KgN-1) 
Median trend 
(gC m-2 yr-2) 

Mean 
R2 

M1: GPPresidual ~ CO2 5.78 - - 0.718 
M2: GPPresidual ~ CO2 + Ndep 4.32 4.55 - 0.727 
M3: GPPresidual ~ CO2 + years 3.95 - 3.37 0.728 

M4: GPPresidual ~ Ndep - 25.88 - 0.715 
M5: GPPresidual ~ years - - 12.14 0.717 

Test #2 GPPresidual derived by the GPP residual method in QUINCY simulation 
Linear regression models Median 𝛽 

(gC m-2 yr-1 ppm-1) 
Median 𝜂 

(KgC KgN-1) 
Median trend 
(gC m-2 yr-2) 

Mean 
R2 

M1: GPPresidual ~ CO2 5.82 - - 0.356 
M2: GPPresidual ~ CO2 + Ndep 3.01 10.40 - 0.368 
M3: GPPresidual ~ CO2 + years 2.84 - 6.67 0.369 

M4: GPPresidual ~ Ndep - 26.77 - 0.356 
M5: GPPresidual ~ years - - 12.28 0.356 

Test #3 GPPresidual derived by the GPP residual method in EC dataset 
Linear regression models Median 𝛽 

(gC m-2 yr-1 ppm-1) 
Median 𝜂 

(KgC KgN-1) 
Median trend 
(gC m-2 yr-2) 

Mean 
R2 

M1: GPPresidual ~ CO2 3.18 - - 0.100 
M2: GPPresidual ~ CO2 + Ndep -3.33 20.30 - 0.168 
M3: GPPresidual ~ CO2 + years -3.69 - 24.23 0.168 

M4: GPPresidual ~ Ndep - 11.77 - 0.145 
M5: GPPresidual ~ years - - 13.85 0.144 
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We find that the mean R2 in M1, M4 and M5 are comparable in all three sets of tests (Table S4). 
That means all predictors, here CO2, accumulated Ndep and years explain an equal proportion of 
the variance in the GPPresidual. This implies that either all predictors are equally important, or the 
collinearity between predictors create redundance in the model. As we priorly know that the 
GPPresidual in Test #1 is modeled by QUINCY simulations and only include the CO2 effect, the 
latter implication is valid. Or in another word, this suggests that the linear regression is likely to 
misattribute the cumulative Ndep effect even when there is no actual influence of Ndep on the 
dependent variable, simply because CO2 and accumulated Ndep exhibit strong correlation, as any 
other linear sequence (e.g., years). Statistics in Test #2 show consistency with Test #1, where the 
misattribution to Ndep exist when there is no effect of Ndep in the GPPresidual. These findings 
challenge the linear regression model’s capability to effectively handle co-linearity issues. In Test 
#3, the estimation of 𝛽 by M2 become negative after incorporating accumulated Ndep into the 
linear regression model. While it's possible that the Ndep effect influences the relevance of GPP in 
Test #3, the accuracy of the 𝛽 estimation is likely compromised due to collinearity issues 
identified in the previous two tests with QUINCY simulations. 
 
As Ndep might not have an immediate effect, we adjusted the method of accumulating Ndep to 
assign less importance to Ndep in the current time step, while accounting for a higher impact of 
Ndep accumulated in past years. Following this logic, we calculated accumulated Ndep to account 
for the total amount of nitrogen that has been deposited over a specific period (here the window 
size is set as ten years): 

𝐴𝑐𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑒𝑑	𝑁!"#$ =/	𝑁!"#$(% ×𝑊𝑒𝑖𝑔ℎ𝑡%

)

%&*

(2) 

Where t denotes year t, and Weight+ is the weight assigned to the Ndep value at time step t-i 
following the formula: 

𝑊𝑒𝑖𝑔ℎ𝑡% = 𝑒(,∙()(%) (3) 
 
Where α is the decay rate parameter controlling the rate of decay and is set as a constant value of 
0.1. i ranges from 0 to 9, representing the past ten time steps within the window. This 
characteristic of the exponential decay allows for a balance between considering recent values 
and incorporating historical data in the accumulation process. 
 
Using the same sets of tests as Table S4, but only changing the method of accumulated Ndep 
(Equation 2, 3), the results shown in Table S5 are different.  
 
The low R2 in M4 in all three tests highlights the inadequacy of solely using accumulated Ndep as 
a predictor to explain the variance of GPPresidual. However, unlike the 𝜂 in Test #1 and Test #2, 𝜂 
in Test #3 shows negative sign (Table S5). This discrepancy can be attributed to the declining 
trend of Ndep near most EC sites (Figure S10a). This decline aligns with reported trends in Ndep in 
Europe and the eastern U.S. (Ackerman et al., 2019; Gilliam et al., 2019; Nopmongcol et al., 
2019; Schmitz et al., 2019). The declining trend of annual Ndep will also lead to declining 
accumulated Ndep calculated by equations 2 and 3, as they consider the accumulated Ndep over the 
past ten years. It's worth noting that the 166 synthetic sites in QUINCY are randomly distributed 
across the globe, thus exhibiting both positive and negative trend in Ndep.  
 
Although the estimation of 𝛽 by M2 in Test #3 decreases after incorporating Ndep into the linear 
regression model (Table S5), the negative sign of 𝜂 suggests that it is likely a statistical spurious 
attribution, primarily due to the declining trend in Ndep. Experiments show that the positive effect 
of N addition on productivity persist for a long time even after ceasing the N load (Hrevušová et 
al., 2009; Meng et al., 2023). The duration for which the benefits of N retention persist after 
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adding it to the ecosystem is closely linked to the balance between N input from biological 
nitrogen fixation and Ndep, and N loss through processes such as leaching and denitrification 
(Sokolov et al., 2008; Zaehle & Dalmonech, 2011; Davies-Barnard et al., 2020). Uncertainties in 
the terrestrial N cycling such as the rate of denitrification, pose challenges in understanding the 
resident time of N, as various factors (e.g., climate, vegetation type, soil texture, pre-disturbance 
nutrient levels) can influence the processes (Galloway et al., 2004; Sokolov et al., 2008; Davies-
Barnard et al., 2020). Given these uncertainties and the scarcity of global data on terrestrial N 
cycling (Zaehle & Dalmonech, 2011), it is hard to conclude how to integrate Ndep to account for 
the cumulative effect of Ndep on vegetation productivity.  
 
Table S5. Linear regression models of the GPPresidual used to test the cumulative effect of Ndep 
calculated by equation 2 and 3 

Test #1 GPPresidual modeled by QUINCY 
Linear regression models Median 𝛽 

(gC m-2 yr-1 ppm-1) 
Median 𝜂 

(KgC KgN-1) 
Median trend 
(gC m-2 yr-2) 

Mean 
R2 

M1: GPPresidual ~ CO2 5.78 - - 0.718 
M2: GPPresidual ~ CO2 + Ndep 5.73 -1.40 - 0.724 
M3: GPPresidual ~ CO2 + years 3.95 - 3.37 0.728 

M4: GPPresidual ~ Ndep - 44.75 - 0.328 
M5: GPPresidual ~ years - - 12.14 0.717 

Test #2 GPPresidual derived by the GPP residual method in QUINCY simulation 
Linear regression models Median 𝛽 

(gC m-2 yr-1 ppm-1) 
Median 𝜂 

(KgC KgN-1) 
Median trend 
(gC m-2 yr-2) 

Mean 
R2 

M1: GPPresidual ~ CO2 5.81 - - 0.355 
M2: GPPresidual ~ CO2 + Ndep 5.67 1.25 - 0.366 
M3: GPPresidual ~ CO2 + years 2.68 - 6.72 0.369 

M4: GPPresidual ~ Ndep - 47.40 - 0.168 
M5: GPPresidual ~ years - - 12.22 0.369 

Test #3 GPPresidual derived by the GPP residual method in EC dataset 
Linear regression models Median 𝛽 

(gC m-2 yr-1 ppm-1) 
Median 𝜂 

(KgC KgN-1) 
Median trend 
(gC m-2 yr-2) 

Mean 
R2 

M1: GPPresidual ~ CO2 3.18 - - 0.100 
M2: GPPresidual ~ CO2 + Ndep 2.01 -18.59 - 0.143 
M3: GPPresidual ~ CO2 + years -4.07 - 22.24 0.166 

M4: GPPresidual ~ Ndep - -43.79 - 0.071 
M5: GPPresidual ~ years - - 13.84 0.142 

 
Isolating the long-term effects, including Ndep and CO2, poses great challenge. In our tests, we 
accumulated Ndep using two different methods: i) cumulative way (Equation 1); ii) accumulating 
by applying an exponential decay with sliding window (Equation 2, 3). The divergent results 
highlight the importance of future research in selecting appropriate time-scales, and employing 
causal inference methods to more effectively disentangle the long-term effects on GPP in 
ecosystems with tightly coupled carbon-nitrogen-climate interactions. 
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