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A B S T R A C T   

Cell-free production systems are increasingly used for the synthesis of industrially relevant chemicals and bio-
pharmaceuticals. Cell-free systems often utilize cell lysates, but biocatalytic cascades based on recombinant 
enzymes have emerged as a promising alternative strategy. However, implementing efficient enzyme cascades is 
a non-trivial task and mathematical modeling and optimization has become a key tool to improve their per-
formance. In this work, we introduce a generic framework for the model-based optimization of cell-free enzyme 
cascades based on a given kinetic model of the system. We first formulate and systematize seven optimization 
problems relevant in the context of cell-free production processes including, for example, the maximization of 
productivity or product yield and the minimization of overall costs. We then present an approach that accounts 
for parameter uncertainties, not only during model calibration and model analysis but also when performing the 
actual optimization. After constructing a kinetic model of the enzyme cascade, experimental data are used to 
generate an ensemble of kinetic parameter sets reflecting their variabilities. For every parameter set, systems 
optimization is then performed and the resulting solution subsequently cross-validated for all other parame-
terizations to identify the solution with the highest overall performance under parameter uncertainty. We 
exemplify our approach for the cell-free synthesis of GDP-fucose, an important sugar nucleotide with various 
applications. We selected and solved three optimization problems based on a constructed dynamic model and 
validated two of them experimentally leading to significant improvements of the process (e.g., 50% increase of 
titer under identical total enzyme load). 

Overall, our results demonstrate the potential of model-driven optimization for the rational design and 
improvement of cell-free production systems. The developed approach for systems optimization under parameter 
uncertainty could also be relevant for the metabolic design of cell factories.   

1. Introduction 

Using genetically modified cells as ‘cell factories’ for the production 
of value-added chemicals is a traditional method in the field of 
biotechnology. However, cell-based methods are often limited by 
several factors, including (1) a narrow range of process conditions that 
ensures the viability of the cells, (2) potential accumulation of cytotoxic 
metabolites, and (3) reduced product yields due to substrate demands 
for cell growth and maintenance. Additionally, cellular metabolism is a 
complex system featuring redundancies and various interconnected 
regulatory mechanisms making it difficult to identify and implement 

suitable intervention strategies to maximize the flux to the desired 
product. Therefore, cell-free methods are increasingly used as an alter-
native based on isolated cellular parts to create in vitro synthetic reaction 
networks. In particular, cell-free systems enable a modular and open 
design and are easier to modify than entire cells. On the other hand, 
implementation of cell-free production systems, especially for industrial 
processes, has been hampered primarily by the comparatively high cost 
of preparative steps such as the production, isolation and purification of 
pathway enzymes (for a detailed comparison of cell-based and cell-free 
methods see Claassens et al., 2019). Accordingly, there is an increasing 
interest in experimental and mathematical optimization methods to 
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enhance the efficiency of cell-free production systems (a comprehensive 
review can be found in (Siedentop et al., 2021)). Experimentally, 
cell-free systems can be optimized by a multitude of approaches 
including process and cascade design strategies, improved enzyme se-
lection and identification of optimal reaction parameters such as sub-
strate and cofactor concentrations, reaction temperature and pH value, 
and the selection of appropriate solvents. However, experimental opti-
mization can be time-consuming as well as labor- and cost-intensive. 
Therefore, model-based mathematical optimization can be used as a 
systemic approach to generate qualitative and quantitative predictions 
for an improved operation of the cell-free system. 

In this work, we consider a cell-free enzyme cascade for the synthesis 
of the nucleotide sugar GDP-fucose, the combination of guanosine 
diphosphate (GDP) and the hexose sugar fucose. Nucleotide sugars are 
the main substrates for Leloir glycosyltransferases that act as energeti-
cally activated building blocks for the synthesis of glycans. The latter are 
oligosaccharides that are often conjugated to other biomolecules such as 
proteins and lipids. This process is called glycosylation and it is a crucial 
post-translational modification for the bioactivity of some enzymes. A 
nucleotide sugar consists of a nucleotide such as cytidine or guanosine 
connected through one or two phosphate groups to a monosaccharide, 
the latter being the group that is transferred by the glycosyltransferases. 
GDP-fucose is a nucleotide sugar acting as donor for fucosylation re-
actions. Its relevance concerns, for example, the immune system, 
fertilization and development of mammals (Schneider et al., 2017). In 
bacteria, fucosylated carbohydrates are part of the synthesis of lipo-
polysaccharides of cell walls (Ma et al., 2006). Fucose is transferred by 
fucosyltransferases from its donor GDP-fucose to acceptor biomolecules 
such as proteins, lipids, or oligosaccharides (Rexer et al., 2021). Such 
fucosylated biomolecules have many industrial applications, which 
require a large-scale and cost-efficient synthesis of GDP-fucose. For 
example, human milk oligosaccharides (HMOs) can be added to infant 
formula, where they are highly sought after because it has been shown 
that they play an important role in the healthy development of infants 
that cannot be breastfed (Bode, 2012). 

There have been significant research activities on the synthesis of 
GDP-fucose including cell-based approaches (Koizumi et al., 2000; 
Mattila et al., 2000; Ruffing and Chen, 2006; Byun et al., 2007; Lee et al., 
2011; Chin et al., 2013; Zhai et al., 2015) and cell-free systems, either 
with cell lysate (Prohaska and Schenkel-Brunner, 1975; Yamamoto 
et al., 1984; Stiller and Thiem, 1992) or with purified enzymes (Wang 
et al., 2009; Zhao et al., 2010; Mahour et al., 2021; Frohnmeyer et al., 
2022). In particular, Mahour et al. established a cell-free multi-enzyme 
cascade for the production of GDP-fucose from the inexpensive sub-
strates fucose, guanosine (or guanosine monophosphate (GMP); see 
below) and polyphosphate. Polyphosphate, together with a poly-
phosphate kinase, enables the regeneration of ATP (necessary for the 
phosphorylation of fucose and guanosine or GMP) avoiding the costly 
addition of large amounts of ATP (Mahour et al., 2021). In this work, we 
aimed to use mathematical optimization techniques to improve the ef-
ficiency of this cascade with respect to different objectives. As starting 
point, we considered a slightly modified version of the cascade of 
Mahour et al. (Fig. 1) where GMP instead of guanosine was chosen as 
substrate to avoid experimental difficulties related to the solubility of 
guanosine. 

Apart from empirical and statistical modeling and optimization ap-
proaches (Chen et al., 2013; Onyeogaziri and Papaneophytou, 2019), 
mechanistic (kinetic) models have been frequently utilized for the 
model-based optimization of cell-free production systems and will also 
be used herein. Kinetic models are based on first principles and usually 
comprise a set of ordinary differential equations (ODEs) describing the 
dynamics of metabolite concentrations by rate laws being functions of 
reaction stoichiometries and reaction kinetics. Generally, model-based 
optimization requires four steps: 1) model construction, 2) model 
parameterization, 3) optimization, and 4) validation. One common 
challenge is the selection of proper parameters. Some parameters can be 

derived from literature and databases or must be estimated from 
experimental data. However, parameters are often neither available 
from knowledge bases nor precisely identifiable from available experi-
mental data and tackling the associated uncertainties should therefore 
be a crucial part of model parameterization. Suitable approaches to deal 
with those uncertainties are, for example, Bayesian modeling (Wilkin-
son, 2007; Linden et al., 2022), ensemble modeling (Tran et al., 2008; 
Jia et al., 2012; Tan and Liao, 2012; Villaverde et al., 2022), robust 
optimization (Bertsimas et al., 2011; Gabrel et al., 2014; García and 
Peña, 2018; Puschke et al., 2018) or combinations thereof (Liu and 
Gunawan, 2017). However, to the best of our knowledge, those methods 
have not been used in the context of cell-free enzyme cascades so far. 
Once an appropriate kinetic model has been constructed and parame-
terized, the model is utilized to identify possible interventions to opti-
mize the process. In the majority of previous works, this was based, for 
example, on in silico experiments (e.g., simulation of selected changes of 
enzyme and substrate concentrations (Korman et al., 2017; Česnik et al., 
2020)) or on an analysis of parameter sensitivities (e.g., by means of 
metabolic control analysis (Shen et al., 2020)) to identify promising 
optimization targets. An alternative to those manual optimization ap-
proaches is a rigorous systematic mathematical optimization featuring 
well-defined objective functions (e.g., maximization of titer or of pro-
ductivity or minimization of costs) subject to certain various constraints 
in the design variables (e.g., bounded concentrations of substrates or 
enzymes). With some exceptions (e.g., Ardao and Zeng, 2013; Rollin 
et al., 2015; Hold et al., 2016; Finnigan et al., 2019, Paschalidis et al., 
2022), those rigorous directed optimization approaches have been 
rarely applied in the context of cell-free processes and we could not find 
any study in this field that took parameter uncertainties into account 
when optimizing the system. 

Due to these reasons, in this work we present a general workflow for 
(a) setting up relevant optimization problems in the context of cell-free 
enzyme cascades that (b) enables the consideration of parameter un-
certainties when performing the actual optimization. As a showcase we 
employed our approach for optimizing the enzyme cascade of GDP- 
fucose synthesis: we constructed a kinetic model of this cascade and 
parameterized it repeatedly with experimental time course data 

Fig. 1. Enzyme cascade for the production of GDP-fucose (adapted from 
Mahour et al., 2021). Enzymes are shown in red, metabolites in black. Abbre-
viations: Fuc: fucose; Fuc-1P: fucose-1-phosphate; ATP: adenosine triphosphate; 
ADP: adenosine diphosphate; PPi: inorganic pyrophosphate; GMP: guanosine 
monophosphate; GDP: guanosine diphosphate; GTP: guanosine triphosphate; 
PolyPn: polyphosphate of chain length n; Pi: inorganic phosphate; FKP: 
bifunctional fucokinase/L-fucose-1-P-guanylyltransferase; PPA: inorganic 
diphosphatase; GMPK: guanylate kinase; PPK3: polyphosphate kinase. 
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resulting in an ensemble of models each associated with one estimated 
parameter set. This model ensemble then served as basis for the opti-
mization of the enzyme cascade, again accounting for uncertainty 
arising when optimizing the ensemble of models. We selected three of 
seven proposed objective functions to optimize efficiency and/or costs of 
the system under parameter uncertainty and validated two of the three 
predictions experimentally leading to significant improvements in the 
performance of the cascade. 

2. Methods 

2.1. Recombinant protein expression 

All enzymes were produced as described previously in Mahour et al. 
(2021). Briefly, each enzyme’s DNA sequence was cloned into a 
pET28a (+) vector (pET100/D-TOPO for FKP), modified with a 6x 
His-tag at the N-terminus for ease of purification and codon optimized 
for expression in E. coli by BioCat GmbH. The host chosen for recom-
binant expression was an E. coli BL21 (DE3) strain from New England 
Biolabs GmbH and their recommended high efficiency transformation 
protocol was used. 

Protein expression was carried out in 1 L shake flasks containing 200 
mL media supplemented with antibiotics. When an OD600 of 0.8–1 was 
observed, protein expression was induced by adding isopropyl β-d-1- 
thiogalactopyranoside (IPTG) to the shaker. The culture was harvested 
after 8–12 h. The biomass was separated from the media by centrifu-
gation at 6000×g for 10 min. 

2.2. Enzyme purification 

Cells were collected and lysed by a high-pressure homogenizer. Cell 
debris was removed by centrifugation and the supernatant was sub-
jected to affinity chromatography for target protein purfication. To 
remove imidazole, standard buffer exchanges were carried out using 
centrifugal filters. All enzyme stocks were stored at − 20 ◦C with 50% 
glycerol. 

SDS-PAGE (BIORAD Laboratories Inc.) was carried out to identify 
presence and purity of enzymes. The Pierce™ BCA Protein Assay Kit 
(Thermofisher Scientific) was used to estimate protein concentration. 

2.3. Enzyme cascade reactions 

All enzyme cascade reactions were set up by mixing MgCl2, GMP, 
fucose, ATP and polyphosphate with the corresponding amount of en-
zymes (GMPK, PPK3, FKP and PPA). The reactions were performed in 
biological triplicates at 37 ◦C Thermoblock (Eppendorf AG). The reac-
tion volume was 200 μL in 1.5 mL Eppendorf micro tubes. Sampling was 
done by recovering 6 μL from the reaction and diluting it with 1500 μL 
Ultra-pure Milli-Q water, the samples were analyzed by HPAEC-UV 
shortly after and stored at − 20 ◦C. 

2.4. HPAEC-UV 

High Performance Anion-Exchange Chromatography with UV 
detection (HPAEC-UV) was used for detection and quantification of the 
UV-active components of the reaction. A Dionex IC5000 chromatog-
raphy system (ThermoFisher Scientific Inc.) was used with a CarboPac 
PA200 analytical (3 mm × 250 mm) and guard column (3 mm × 50 
mm). An elution gradient reaching 1 M NaOAc and 1 mM NaOH over 18 
min was used with an injection volume of 25 μL. Analytical standards 
were prepared for identification and quantification of GMP, GDP, GTP, 
AMP, ADP, ATP and GDP-fucose in the range of 2–100 μM. 

2.5. Model and simulation 

The kinetic model and its implementation are described in the 

Appendix. Model building, simulation, parameter estimation, and opti-
mization have been performed using the COPASI software (version 4.35, 
build 258) (Hoops et al., 2006) available at www.copasi.org. For model 
simulation we used COPASI’s deterministic LSODA method (Hindmarsh, 
1983), a single-shooting approach that selects between Adams and BDF 
methods depending on the detected stiffness of the system. For param-
eter estimation and for solving the formulated optimization problems, 
we used COPASI’s implementations of Evolutionary Strategy (SRES) 
(Runarsson and Yao, 2000) and Genetic Algorithm (Bäck and Schwefel, 
1993; Michalewicz, 1994; Mitchell, 1998), respectively. Both numerical 
methods attempt to find the global minimum of a given objective 
function and their calculation schemes are inspired by the eponymous 
biological phenomena and feature stochastic elements that facilitate the 
escape of local minima during the search. Due to the stochastic nature of 
the parameter estimation algorithm different optimal parameter sets are 
generated in different runs (even when starting with the same seed). 

All model files and scripts relevant to this work and enabling 
reproduction of the calculated results can be found in the following 
repository: https://github.com/klamt-lab/GDP-Fucose_OptMet2023_Pa 
per. 

3. Results 

In the following, we present an integrated framework for the model- 
based optimization of cell-free systems under parameter uncertainty and 
exemplify each step with the enzyme cascade for GDP-fucose synthesis 
as an example. 

3.1. Model construction and first round of parameter estimation 

We implemented the cell-free reaction network for synthesis of GDP- 
fucose (Fig. 1) as a kinetic (ODE) model ẋ(t) = f(x(t), t), which is 
described in detail in the Appendix. The model consists of 14 state 
variables (x(t) ∈ R14) and 29 parameters. Several parameter values were 
obtained from databases and literature, but only three equilibrium 
constants were considered to be certain and fixed, while the other 26 
parameter values were estimated from a parameter fitting procedure 
where parameter values found in literature or databases served as start 
values for the estimation. For the latter we used data of time course 
measurements from multiple one-pot assays with varying initial con-
centrations of substrates and enzymes (for available experimental data 
see Supplementary Table 1). Notably, we did not perform exhaustive 
experimental characterizations of the kinetics of individual enzymes due 
to time and cost limitations and the fact that the kinetics of a single 
enzymes often change when operating in an enzyme cascade (e.g., due 
to substrate channeling, molecular crowding, protein/protein in-
teractions, allosteric modifications of enzymes by pathway in-
termediates etc.). Parameter estimation and all model simulations were 
performed with the COPASI software (Hoops et al., 2006); also see 
section 2.5. 

3.2. Exploration of model variability due to parameter uncertainty 

Kinetic models with a large set of (mainly unknown) kinetic pa-
rameters fitted against experimental data often hold uncertainties due to 
the non-identifiability of some parameters. To deal with this problem, 
we pursued an ensemble modeling approach. We derived an ensemble of 
kinetic model parameter sets from 100 repeated parameter estimations 
from the available time course data. Due to the stochastic nature of the 
used global solution algorithm (see section 2.5) this led to 100 different 
optimal parameter sets (Fig. 2). The sum of squared residues (SSR), 
which is the objective to be minimized during the estimation (see Ap-
pendix), is shown in the last histogram in Fig. 2 indicating that all 
identified parameter sets are relatively close to the optimal SSR value of 
90.2; we therefore considered all parameter sets as equally relevant. 
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Overall, most distributions of the estimated kinetic parameters 
cluster around well-defined values, which are in many (but not all) cases 
close to the respective literature values (if the latter were available). 
After the 100 rounds of parameter estimations, the model was simulated 
with each of the 100 parametrizations. For these simulations, the initial 
substrate and enzyme concentrations were set according to experiment 
5, one of the five experiments included in the parameter estimation 
procedure (see Supplementary Table 1 and Supplementary Fig. 5) and 
which was selected as representing the (non-optimized) baseline per-
formance (Fig. 3). The qualitative trends of the simulated time courses 
correspond well to the experimental data for all measured species, 
especially for the initial substrate GMP and the final product GDP- 
fucose. A larger deviation can be observed for ADP and ATP. This can 
be attributed to the fact that the sum of ADP and ATP is fixed in the 
model, while we found that some AMP occurs as an unintended by- 
product of the cascade affecting the adenosine balance. The spread 
across all 100 simulated trajectories per species is greatest for fucose and 
fucose-1-P, which was to be expected since they have not been measured 
causing non-identifiability of their trajectories. Despite these un-
certainties, the model provides a good description of the underlying 

process (in particular for the relevant readout of product GDP-fucose) 
and as such it was later utilized for model-based optimization. 

3.3. Model-based optimization of cell-free systems: a zoo of relevant 
optimization problems 

Similar to traditional chemical processes, cell-free synthesis can be 
optimized with respect to certain objectives such as the maximization of 
production rate (productivity; in [mmol/L/h] or [g/L/h]), product titer 
(e.g. [mM]) or [g/L]) and product yield (e.g., mmol product per mmol 
substrate), or the minimization of certain costs. There are often various 
constraining factors, which limit the space of available solutions. For 
example, the productivity can usually be enhanced by increasing the 
enzyme concentrations but this will in turn increase the costs for which 
an upper bound might be given. The formulation of mathematical 
optimization problems can help clarify the exact objectives and con-
straints and these problems can be solved numerically to identify the 
changes necessary to get the optimal objective value. Due to the many 
possible combinations of objectives, optimization variables, and con-
straints, a plethora of relevant optimization problems can theoretically 

Fig. 2. Distributions of the 26 unknown parameter values of the kinetic model derived from repeated global parameter estimations (n = 100). Parameter estimations 
were carried out using the Evolutionary Strategy (SRES) global solution algorithm as implemented in COPASI with default settings (see section 2.5). Red lines show 
literature values, which, if available, were used as start values for the estimations. Histogram x-axes of parameters where estimated values cover multiple orders of 
magnitude were logarithmized to improve legibility. The sum of squared residues (SSR) is the objective value of the least-squares parameter estimation to be 
minimized (see Appendix). Y-axes show absolute frequency, x-axes show parameter values with different units according to parameter type (Km, ki: [mM], kcat : [1/h], 
Keq: dimensionless quantity). 
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be constructed. In the following section, we formulate and systematize 
optimization problems (operating on a given kinetic model of the re-
action network), which we consider most relevant for improving the 
performance of cell-free systems operating in a batch process. In a later 
section, we then compute solutions of selected problems within the 
specific context of the GDP-fucose model and test the obtained pre-
dictions experimentally. 

A parameterized kinetic model of a cell-free enzyme cascade can be 
used to solve dynamic optimization problems with the following general 
formulation: 

max
x0

or min
x0

F
(
x0, x(tend)

)
(1a)  

s.t.

ẋ(t) = f (x(t), t), ∀t ∈ [t0, tend], x(t0) = x0 (1b)  

lbi ≤ x0
i ≤ ubi, ∀i = 1,…, nx (1c)  

gj
(
x0

i , x(tend)
)
≤ αj, ∀j = 1,…, ng (1d)  

F is the actual objective function that is either maximized or mini-
mized (e.g., maximization of product titer at the end of the process). 
The vector x(t) represents the state variables of the system at time 
point t determined by the kinetic model (differential equations) 
together with the initial state x0 at the predefined starting time t0. In 
our context, x(t) typically comprises the enzymes xE(t) and 
substrates xS(t). Importantly, the initial values x0 are the free (design) 
variables of the entire optimization problem, which can be adjusted 
to optimal values minimizing/maximizing the objective function F. 
The latter is a function of the initial concentrations x0 (as cost values) 
and the final concentrations x(tend), which themselves depend on the 
start values x0. The initial values are usually constrained by lower 
(lbi) and upper (ubi) bounds for each of the nx entries in x0 as 
formulated by the inequalities in (1c). In the following, we split the 
boundary constraints for enzymes and substrate concentrations: 

lbEi ≤ x0
Ei
≤ ubEi , ∀i = 1,…, nE (2)  

lbSj ≤ x0
Sj
≤ ubSj , ∀j = 1,…, nS (3)  

Without specifying upper bounds, the optimization solver will, in many 
cases, choose infinite substrate and enzyme concentrations when 
maximizing, for example, product titer or yield. Furthermore, there are 
often natural or experimental limitations for substrate and enzyme 
concentrations that can be used to specify the boundary values. 

Apart from the starting time t0, the second relevant time point is tend, 
the predefined endpoint of the process. Accordingly, x(tend) contains the 
values of x at the end of the process which are obtained by simulating the 
ODE system with a given x0 for the time interval [t0, tend]. During the 
optimization, the solver will use this information to adjust the free 
optimization variable x0 eventually optimizing the system. Although the 
discrete set of optimization variables contained in x0 are time-invariant, 
it should be noted that the optimization problem itself is usually clas-
sified as a dynamic optimization problem since it includes the dynamic 
(ODE) model as dynamic constraint (Biegler, 2010). 

Importantly, apart from allowed ranges for the initial concentration 
values specified by (2) and (3), additional constrains on these design 
variables as well as on the states at the end of the process (x(tend)) can be 
included. In eq. (1d), this is indicated by ng many functions gj of x0 and 
x(tend), whose values must lie below specified bounds αj. Constraints that 
are often additionally (or alternatively) used to the boundary constraints 
(2) and (3) are the maximal overall enzyme (or biocatalyst) load Etot. 

Etot =
∑nE

i=1
kix0

Ei
≤ Etot,max (4)  

as well as the maximal substrate load Stot. 

Stot =
∑nS

j=1
kjx0

Sj
≤ Stot,max. (5) 

Clearly, the specific upper bounds in (2) and (3) may already define 

Fig. 3. Model simulations based on the ensemble of 100 estimated sets of kinetic parameters. Black dots represent the measured concentrations of the baseline 
experiment 5 (see Supplementary Table 1) as averages of triplicates with error bars showing the associated standard deviation. Grey lines: individual simulation 
trajectories, central blue line: average across all simulation trajectories, outer blue lines: average trajectory plus and minus associated standard deviation respec-
tively. X-axes show time in hours, y-axes show concentration in mM. 
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an implicit upper bound for the overall substrate and enzyme loads, but 
often more constrained overall bounds are used in (4) and (5), e.g., to 
reflect available substrate and enzyme budgets. The weights ki and kj can 
either all be set to 1 so that the sum describes the total amount of enzyme 
or substrate, respectively, or they may represent known costs. We denote 
constraints (2)–(5) as basic capacity constraints as they are relevant for all 
optimization problems (though possibly only a (non-empty) subset of 
them may be active). 

Other often relevant constraints are a demanded minimum final 
concentration (titer) of product P 

xP(tend) ≥ xP,min (6)  

and/or a minimum demanded product yield 

YP/SY ≥ YP/SY ,min, (7)  

where the product yield YP/SY is defined as the ratio of the product 
concentration at the given endpoint of the process and the initial con-
centration of the relevant (reference) substrate xSY : 

YP/SY =
xP(tend)

x0
SY

. (8)  

Instead of a single reference substrate, a (weighted) sum of substrates 
could be used in the denominator. Note that a multiplication of in-
equalities (6) and (7) with − 1 transforms these constraints to the form 
gj(x0

i , x(tend)) ≤ αj used in (1d). 
In the following, we will now formulate seven relevant optimization 

problems for cell-free enzyme cascades, which are all characterized by 
their specific objective functions and constraints. 

3.3.1. Objective O1: maximization of product titer (and productivity) 
A common objective of any (bio)chemical production system is to 

maximize the final amount (usually concentration) of the target com-
pound, i.e., the final titer of the product (xP(tend)). In the context of a cell- 
free enzyme cascade, the possible titer primarily depends on the initial 
concentrations of substrates and enzymes and on the chosen time point 
tend where the cascade is stopped and the product harvested. Depending 
on the kinetic and regulatory mechanisms of the system, an increase of 
the initial concentration of a substrate could increase the titer linearly 
but also lead to a reduction of the titer, e.g., due to substrate inhibition. 
Using the base constraints as only relevant side conditions, the optimi-
zation problem for maximizing the product titer thus reads: 

max
x0

E ,x
0
S

xP(tend) (9)  

s.t.ODE model (eq. (1b)) and basic capacity constraints (eqs. (2)–(5)). 
It should be noted that, due to the fixed endpoint of the process (tend), 

the solution found for the maximization of the titer xP(tend) always 
corresponds to the solution for maximization of the productivity 
(volumetric rate or space-time yield) given by xP(tend)/tend. 

3.3.2. Objective O2: maximization of product yield 
Another relevant performance measure of cell-free systems is the 

product yield YP/SY (eq. (8)) quantifying the conversion efficiency. As for 
objective O2, the base constraints of eqs. (2)–(5) are relevant here as 
well, but in addition we demand a minimum product titer (eq. (6)). As 
the yield is a quantity relative to the initial substrate concentration, high 
yields do not automatically guarantee high titers. Without this 
constraint, it may happen that a high product yield is reached but with a 
very low titer because only little substrate has been converted. The 
optimization problem for maximizing the product yield thus reads: 

max
x0

E ,x
0
S

YP/SY (10)  

s.t. ODE model (eq. (1b)), basic capacity constraints (eqs. (2)–(5)), and 

minimum product titer (eq. (6)). 

3.3.3. Objective O3: minimization of enzyme load 
A major cost factor of cell-free production processes relates to the 

preparative procedures necessary to supply cell lysate or purified en-
zymes. Hence, there is an interest to minimize the total enzyme amount 
of the process, i.e., the enzyme load, for a minimum required product 
titer xP,min and/or yield YP/SY ,min: 

min
x0

E ,x
0
S

Etot =
∑nE

i=1
kix0

Ei
(11)  

s.t. ODE model (eq. (1b)), basic capacity constraints (eq. (2), (3), (5)), 
minimum product titer (eq. (6)) and/or yield (eq. (7)). 

The objective function represents the enzyme load when all ki are set 
to 1, but alternative weights (e.g., reflecting enzyme costs) can be used. 
The basic capacity constraint (4) is not usually needed here since the 
total enzyme load is minimized by the objective function. 

3.3.4. Objective O4: combined maximization of product yield and titer 
Optimization of product yield and titer (or productivity) may lead to 

different solutions due to some inherent trade-offs. Therefore, it might 
be of interest to optimize a combination of both in a multi-objective 
optimization problem. A suitable objective function could be a 
weighted sum of both individual targets and the weights w1 and w2 can 
be chosen according to which goal is deemed to be more important. In 
order for the weights to be effective, the value ranges of the objectives 
need to be accounted for. 

max
x0

E ,x
0
S

w1⋅YP/SY + w2⋅xP(tend) (12)  

s.t.ODE model (eq. (1b)) and basic capacity constraints (eqs. (2)–(5)). 
In principle, a weighted sum in the objective function can be applied 

to any combination of optimization targets. Another approach to multi- 
objective optimization is based on Pareto optimization, where a set of 
best compromises between different objectives is identified (Paschalidis 
et al., 2022). 

3.3.5. Objective O5: minimization of overall costs 
The high prices of many components necessary for cell-free pro-

duction makes minimizing the process costs a crucial target in industrial 
applications. A suitable cost term could be defined as follows 

C =

(
∑nE

i=1
pEi ⋅x0

Ei

)

+

(
∑nS

j=1
pSj ⋅x0

Sj

)

+ ϵ (13)  

where pE and pS are the prices of enzymes and substrates, respectively, 
and ϵ represents additional fixed process costs. A minimum titer xp,min 

needs to be defined to exclude the trivial solution of an inactive process. 
Accordingly, the costs then refer to this amount of product synthesized. 
The overall optimization problem reads: 

min
x0

E ,x
0
S

C (14)  

s.t.ODE model (eq. (1b)), basic capacity constraints (eqs. (2)–(5)), and 
minimum product titer (eq. (6)). 

3.3.6. Objective O6: minimization of overall costs normalized by product 
titer 

An extension of the cost optimization O5 is to normalize the costs by 
the obtained product titer in the objective function: 

min
x0

E ,x
0
S

C
xP(tend)

(15)  

s.t. ODE model (eq. (1b)), basic capacity constraints (eq. (2), (3), (5)), 
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minimum product titer (eq. (6)) and yield (eq. (7)). 
In addition to the constraints used for objective O5 (eq. (14)), a 

minimal product yield should be demanded. Without the latter, a solu-
tion may be found where the minimum demanded titer is reached by 
adding a large amount of an inexpensive substrate leading to an unde-
sirably low conversion rate. 

3.3.7. Objective O7: maximization of profit 
The goal of this optimization problem is to maximize the overall 

profit of the process Pf , which can be defined as 

Pf = (I − C)⋅V (16)  

with income I = pP⋅xP(tend) , costs C (according to eq. (13)) and the 
volume of the reaction vessel V. The complete optimization problem 
reads: 

max
x0

E ,x
0
S

Pf (17)  

s.t.ODE model (eq. (1b)), basic capacity constraints (eq. (2), (3), (5)), 
minimum product titer (eq. (6)) and yield (eq. (7)). 

3.4. Solving optimization problems under parameter uncertainty and 
experimental validation 

We selected three of the optimization problems defined above and 
solved them for our enzyme cascade for the synthesis of GDP-fucose. As 
a conceptual contribution, we propose a method how to deal with 
parameter uncertainties when determining the optimal solution. For two 
of the three optimizations we compare the predictions with data from 
validation experiments. 

3.4.1. Maximization of product titer (objective O1) 
In the first optimization we used objective O1 (eq. (9)) to maximize 

the product titer in our cascade for a given maximal enzyme load. As 
mentioned earlier, with a fixed end time tend this is equivalent to 
maximizing the productivity. We used the following specifications: the 
end time tend was set to 24 h and all initial substrate concentrations were 
considered fixed according to the initial conditions of the baseline 
experiment (25.7 mM fucose, 25.7 mM GMP, 6 mM ATP). Finally, the 
enzyme concentrations were used as free optimization variables 
(Table 1). Note that, in our setup, the enzyme concentrations remain 
constant over the course of the process, hence, the initial enzyme con-
centrations correspond to the enzyme concentrations throughout the 
process. In the following, we will thus only refer to “enzyme concen-
trations”. The maximal total enzyme concentration Etot,max was fixed to 
0.0469 mM, which corresponds to the total enzyme load of the baseline 
experiment. All weights in the total enzyme load constraint (4) where set 
to 1. With this setting, what is actually optimized is the enzyme ratio to 
obtain the maximal product titer. 

To account for the parameter uncertainty, we solved the optimiza-
tion problem for each of the 100 parameter sets determined in section 
3.2 resulting in 100 predictions representing optimal sets of enzyme 
concentrations (optimization was performed using the genetic algorithm 
as implemented in COPASI; see section 2.5). The distributions of the 
identified optimal enzyme concentrations are shown in Fig. 4. 

All predicted solutions feature a strong increase of the FKP 

concentration to its upper boundary. To allow for this substantial in-
crease in FKP concentration while satisfying the maximum enzyme load 
constraint, the optimization algorithm chose to reduce the concentra-
tions of GMPK (all solutions at or close to the lower boundary of GMPK) 
and PPA (with varying concentrations within the boundaries). Predicted 
optimization results of PPK3 are more ambiguous yet a trend is visible 
with most solutions recommending an increase and only few recom-
mending a slight reduction. These suggested optimizations of the 
enzyme concentrations are in line with the importance of the enzymes 
for the performance of the cascade. In particular, the bifunctional 
enzyme FKP is involved in both the phosphorylation of fucose and the 
formation of the final product GDP-fucose. Therefore, it has a strong 
influence on the flux of the entire sugar branch of the cascade and as 
such directly on the product titer. The enzyme PPK3 is responsible for 
maintaining a sufficiently high level of ATP by regenerating it from ADP 
and polyphosphate while also being involved in the phosphorylation of 
GDP thereby supplying GTP, a direct substrate of the product-forming 
reaction. 

While some trends can be observed from the results shown in Fig. 4, 
it still remains unclear which of the 100 optimal solutions (one for each 
of the 100 parameter sets) should be selected since it is not known which 
parameter set extrapolates the real systems dynamics best. In order to 
identify the most suitable solution for experimental testing, a cross 
validation was carried out: the performance of each optimal solution 
was tested across all 100 model instances associated with the ensemble 
of 100 estimated parameter sets. Thus, each optimal set of enzyme 
concentrations x0,h

E (obtained from titer optimization under parameter 
set with index h) was tested for all 100 parameterizations - including the 
parameter set h itself, for which the optimal enzyme concentration set 
x0,h

E was originally determined - and the resulting titer of GDP-fucose was 
determined by simulating the respective system. Accordingly, 100 by 
100 simulations were run and the obtained simulated GDP-fucose titers 
at 24 h are displayed in Fig. 5. 

Fig. 5 shows that the performance of the 100 parameter sets (rows) 
with respect to the optimal enzyme concentration sets (columns) is 
subject to a substantial amount of variance underlining the need to 
analyze the performance of optimization results across different 
parameter sets. The simulated titers also vary depending on the selected 
optimization result (column), albeit to a much lesser degree. We used 
the following scoring scheme to select the best result across all columns 
i: 

Score(i) =
Mi

Mmax
+

Ti

Tmax
+

Si

Smax
, (18)  

where Mi is the median titer of column i, which is normalized to the 
overall highest median titer Mmax, Ti is the minimum titer of column i, 
which is normalized by the overall highest minimum titer Tmax, and Si is 

Table 1 
Constraints for the enzyme concentrations used for optimization of product titer.   

Lower boundary [mM] Start value [mM] Upper boundary [mM] 

FKP 0.000210 0.00663 0.0149 
GMPK 0.00241 0.00636 0.507 
PPA 0.00319 0.0311 0.224 
PPK3 0.000180 0.00288 0.0129 
Etot [mM] – 0.0469 0.0469  

Fig. 4. Distribution of predicted optimal enzyme concentrations according to 
objective O1 for each of the 100 parameter sets contained in the ensemble 
computed in section 3.2. Box plots show 25%, 50%, and 75% quartiles, scatter 
plots show the complete set. Red lines mark the starting value for each enzyme 
(as used in the baseline experiment). 
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the sum over all titers of column i, which is normalize by the overall 
highest titer sum Smax. This score was calculated for each column of the 
heat map (Figure 5A) identifying the column with ID 53 as the optimi-
zation result performing best across all parameter sets. It uses the 
following enzyme concentrations: FKP 0.014910 mM, GMPK 0.002413 
mM, PPA 0.020148 mM, and PPK3 0.009456 mM. 

We used this optimal enzyme concentration set and simulated the 
time courses for all 100 estimated parameter sets (Fig. 6). We then 
performed an experiment where the enzyme concentrations were set to 
the identified optimal values. The corresponding measurements of this 
experiment are also shown in Fig. 6. As initial substrate concentrations 
in the simulations, we used the actual (measured) start concentrations of 
these compounds (fucose 22 mM, GMP 22 mM, ATP 5 mM). 

Note that the initial concentrations of the primary substrates fucose 
and GMP were not exactly the same for the unoptimized baseline 
experiment (e.g., 25.7 mM GMP) and the validation experiment (22 mM 
GMP) due to variations inherent to the experimental set-up. However, 
even with the reduced amount of the substrate GMP (− 14.4 %), the 
measured titer could be improved from 13.16 mM to 19.86 mM (+50.1 
%). Additionally, the yield with respect to the initial GMP concentration 
could be increased from 51.2 % to 90.3 %. 

3.4.2. Minimization of enzyme load (objective O3) 
Next, we selected optimization problem O3 to minimize the enzyme 

load according to eq. (11) using the following specifics. The factors kj 
were set to the molecular weights of each enzyme to convert the enzyme 
load from mM to grams per liter. A minimum titer of 15 mM was 
demanded, which is higher than the titer obtained in the baseline 
experiment (13.16 mM) and corresponds (with the initial fucose 

concentration of 25.7 mM in the baseline experiment) to a minimum 
yield of 58 %. The start value as well as the lower and upper bounds of 
the enzyme concentrations were the same as in Table 1 (in the changed 
units, the start value of the total enzyme load corresponds to 1.55 g/l 
and no bounds were given for the enzyme load for this optimization). As 
in the previous scenario, the initial substrate concentrations were fixed 
(25.7 mM fucose, 25.7 mM GMP, and 6 mM ATP) and the end time of the 
process was again set to 24 h. 

As before, we solved the optimization problem for each of the 100 
estimated parameter sets of the ensemble leading again to 100 optimal 
predictions visualized in Fig. 7 (distribution of enzymes in the optimal 
solutions) and Fig. 8C (resulting optimal total enzyme load for each of 
the 100 parametrizations). 

Despite the important role of the enzyme in removing pyrophosphate 
(the inhibitor of the guanylyltransferase activity of FKP), all predicted 
optimal PPA concentrations are reduced, in many cases significantly 
(Fig. 7). Even more apparent, GMPK is reduced in all cases to its lower 
boundary. The predicted optimal enzyme concentration of FKP is 
increased in the vast majority of cases, though to a lower extent 
compared to the objective of titer optimization (cf. Fig. 4), and the 
concentration of PPK3 is mostly close to the start value with a clear trend 
towards a slight reduction. Overall, these results underline the impor-
tance of FKP for the production of GDP-fucose since it is the only 
enzyme, which is not decreased when attempting to minimize the 
overall enzyme load despite its significantly higher molecular weight 
compared to the other enzymes (molecular weights: FKP 105,660 g/mol, 
GMPK 23,592 g/mol, PPA 19,313 g/mol, PPK3 34,740 g/mol). 

We simulated the model with all combinations of (100) optimized 
enzyme concentrations and (100) kinetic parameter sets which resulted 
in the heat map in Fig. 8B showing the obtained product titers at 24 h. 
The simulated titers vary with the selected parameter set and with the 
selected optimization result. In order to identify the best prediction, 
which should take into account the enzyme load as well as the achiev-
able titer, the following score was calculated for each column i 

Score(i) = 10⋅
Emin

Ei
+ 1⋅(Ti − 15), (19)  

where Emin is the lowest of all optimized enzyme loads, Ei is the enzyme 
load of column i of the enzyme load heatmap, and Ti is the minimum 
titer of column i of the titer heat map compared to the titer constraint of 
the optimization setup (15 mM). This comparison is reasonable because 
titers of the heat map are not guaranteed to fulfill the minimum titer 
constraint of the preceding optimization since the model is now simu-
lated with combinations of enzyme concentrations and kinetic param-
eters for which no optimization was performed. Since identifying a low 
enzyme load was the main objective of this optimization and because a 
minimum titer was already demanded in the optimization problem, the 
first term of the scoring was weighted ten times higher than the second. 
Computation of the score for each column revealed the optimization 
result with ID 88 to be the best choice. Indeed, it combines a low enzyme 
load of 0.98 g/l with product titers at 24 h ranging between 11.3 and 15 
mM, depending on the chosen parameter set (see Fig. 9). This highest 
scoring optimization result was then tested experimentally. Fig. 9 dis-
plays the simulations and the measurements of the validation experi-
ment. Both validation experiment and simulations used the following 
initial substrate concentrations: 22 mM fucose, 22 mM GMP, 5 mM ATP. 

The validation experiment reached a GDP-fucose titer of 11.26 mM 
which is lower than the titer of the baseline experiment (13.16 mM). 
However, again, the initial concentrations of the most cost-relevant 
substrate GMP was different between the unoptimized baseline experi-
ment (25.7 mM GMP) and the validation experiment (22 mM; the same 
stock solution as for the validation experiment for O1 was used) 
complicating a comparison of the two processes. Despite its lower value, 
the obtained titer of the validation experiment corresponds to a yield 
that is almost identical to the one obtained in the baseline experiment 

Fig. 5. (A) Scores of the columns of the titer heatmap shown in (B) according to 
equation (18). The best (highest) scoring column (optimization result ID 53) is 
highlighted in (B). (B) Heatmap of simulated GDP-fucose titers resulting from 
subsequent simulations of the model with (a) enzyme concentrations set to the 
optimized enzyme concentrations determined for each of the 100 parameter 
sets (x-axis) and (b) the kinetic parameters set to the 100 parameter sets of the 
estimated ensemble (y-axis). As an example, the color of the matrix element in 
row 32 and column 49 indicates the obtained titer when using the optimization 
result (optimal enzyme concentrations) calculated with the model set to 
parameter set 49 in a model parameterized with parameter set 32. The coloring 
is based on the simulated GDP-fucose titer at 24 h in mM. 
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(51.2 %) while using an enzyme load that is reduced by 36.2 % (from 
1.55 g/l to 0.98 g/l). Model simulations across all estimated parameter 
sets using the optimized enzyme concentrations together with the 
(higher) baseline initial substrate concentrations (25.7 mM GMP) 
revealed an average GDP-fucose titer of 13.16 mM, which exactly equals 
the titer of the baseline experiment despite its significantly higher 
enzyme load. 

3.4.3. Minimization of overall costs normalized by product titer (objective 
O6) 

In a third application example we aimed to minimize the (relative) 
overall costs of the process normalized by the product titer, i.e., we 
optimized the cascade based on objective O6 defined in eq. (15). In 
contrast to the previous examples, both the enzyme and substrate con-
centrations were included as optimization variables and can thus be 
adjusted to minimize the relative costs. Start and boundary values of the 
enzyme concentrations were the same as listed in Table 1 with the only 
difference that the upper boundary of FKP was increased from 0.0149 to 

Fig. 6. Time courses of model simulations for the ensemble of 100 sets of estimated kinetic parameters using the identified set (ID 53) of optimal enzyme con-
centrations (maximizing the titer of GDP-fucose). For comparison, measurements from validation experiments are shown: black dots represent the measured con-
centrations of the validation experiment (Exp. 6; see Supplementary Table 1 and Supplementary Fig. 6) as averages of triplicates with error bars showing the 
associated standard deviation. Grey lines: individual simulation trajectories, central blue line: average across all simulation trajectories, outer blue lines: average 
trajectory plus and minus associated standard deviation respectively. X-axes show time in hours, y-axes show concentration in mM. 

Fig. 7. Distribution of predicted optimal enzyme concentrations for objective 
O3 for each of the 100 parameter sets of the ensemble. Box plots show 25%, 
50%, and 75% quartiles, scatter plots show the complete set. Red lines mark the 
starting values for each enzyme (as used in the baseline experiment). 

Fig. 8. (A) Scores of the columns of the heatmap shown in (B) according to 
equation 19. (B) Simulated GDP-fucose titers in mM at 24 h. (C) Optimized 
enzyme loads in g/l. Titers result from model simulations that combine optimal 
enzyme loads determined for each of the 100 parameter sets (optimization 
result sets) with the 100 parameter sets of the estimated ensemble (see also 
Fig. 5 for further explanations). The best (highest) scoring column of heatmap B 
(optimization result ID 88) is highlighted. 
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0.05 mM to give the optimization more flexibility. Substrate start values 
were set to the initial concentrations of the baseline experiment 
(experiment 5) with all lower boundaries set to 0 mM and upper 
boundaries as follows: ATP 20 mM, fucose 40 mM, GMP 40 mM. The 
process end time was again set to 24 h. The enzyme and substrate prices 
of the cost term were based on cost estimates of our own enzyme pro-
duction process and market prices (taken from Biosynth, formerly Car-
bosynth) respectively. The cost estimates for the production of each 
enzyme were 200.45 €/g (FKP), 58.65 €/g (GMPK), 162.44 €/g (PPA), 
and 541.75 €/g (PPK3) resulting in an overall enzyme cost of 300.75 €/l 
given the start values used for the optimization. The substrate market 
prices were 0.25 €/g (GMP), 5.66 €/g (fucose), and 0.51 €/g (ATP) 
which led to substrate costs of 27.76 €/l for the chosen start values. The 
fixed cost term was set to an estimate of 500 €/l. Overall, the normalized 

process costs at the start of the optimization were 62.96 €/mmol for the 
baseline product titer of 13.16 mM at 24 h. The optimization results for 
the model ensemble with the 100 parameterizations are shown in 
Fig. 10. 

All optimization results predict an increase of the FKP concentration 
as well as reductions of the PPK3 and GMPK concentrations with the 
latter hitting its lower boundary in the vast majority of cases. PPA results 
are more ambiguous: most of them suggest reductions with various 
magnitudes while two results recommend a significant increase 
compared to the start value. Substrate predictions are in most cases 
hitting the upper boundaries with only some results staying below them. 
This was to be expected since substrate costs are relatively low 
compared to the enzymes and higher initial substrate concentrations 
enable higher product titers at 24 h and thus lower normalized process 

Fig. 9. Time courses of model simulations for the ensemble of 100 kinetic parameter sets when using the identified set (ID 88) of optimal enzyme concentrations 
(minimizing the enzyme load) and comparison with measurements from validation experiments. Black dots represent the measured concentrations of the validation 
experiment (Exp. 7, see Supplementary Table 1 and Supplementary Fig. 7) as averages of triplicates with error bars showing the associated standard deviation. Grey 
lines: individual simulation trajectories, central blue line: average across all simulation trajectories, outer blue lines: average trajectory plus and minus associated 
standard deviation respectively. X-axes show time in hours, y-axes show concentration in mM. 

Fig. 10. Distribution of predicted optimal enzyme and substrate concentrations when minimizing the relative costs of GDP-fucose production (objective O6) for each 
of the 100 parameter sets of the ensemble. Box pots show 25%, 50%, and 75% quartiles, scatter plots show the complete set. Red lines mark the starting values for 
each enzyme and substrate (as used in the baseline experiment). 
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costs. We used the following scoring scheme to select the best result 
across all columns i: 

Score(i) =
Mi

Mmin
+

Ci

Cmin
+

Si

Smin
, (20)  

where Mi is the median cost of column i, which is normalized to the 
overall lowest median cost Mmin, Ci is the minimum cost of column i, 
which is normalized by the overall lowest minimum cost Cmin, and Si is 
the sum over all costs of column i, which is normalize by the overall 
lowest costs sum Smin. Cross validation (Fig. 11) revealed the optimiza-
tion result with the ID 79 as best performing across the entire ensemble 
(FKP 0.011 mM, GMPK 0.0024 mM, PPA 0.0076, PPK3 0.0013 mM, ATP 
20 mM, fucose 40 mM, GMP 40 mM). Its average normalized process 
cost of 33.71 ± 4.71 €/mmol (min: 22.53 €/mmol, max: 46.57 €/mmol) 
is far below the costs of the baseline experiment (62.96 €/mmol). 

4. Discussion 

In the present work, we formulated a theoretical framework for 
constrained optimization of cell-free production systems operating on a 
kinetic model with parametric uncertainty (related to non- 
identifiabilities arising from parameter estimation). We demonstrated 
how this model-based optimization approach led to significant im-
provements in the efficiency of an enzyme cascade for the production of 
GDP-fucose. Several previously published works leveraged model-based 
optimization to improve the performance of cell-free enzyme cascades. 
In many of those studies, the constructed kinetic models were thor-
oughly analyzed, e.g., by means of sensitivity analysis (including 
metabolic control analysis; MCA) or by testing the effect of certain 
perturbations (e.g., altered initial substrate and enzyme concentrations) 
to eventually identify promising optimization targets. Some recent ex-
amples of such approaches include works of Korman et al. (2017), 

Česnik et al. (2020), Shen et al. (2020), and Martin et al. (2023), in 
which suitable enzyme levels were determined leading to higher yields 
and product titers. For example, Martin et al. (2023) utilized MCA re-
sults including local elasticities and global control coefficients to derive 
predictions about how to optimize the production of butanol in a 
cell-free version of the corresponding pathway from Escherichia coli. 
However, even if the model would represent the reality perfectly, such 
local analyses do not necessarily lead to the globally optimal solution. 
An alternative could be an exhaustive approach as followed by Dvorak 
et al. (2014), where the solution space is discretized and then evaluated 
at all possible value combinations of the optimization variables. While 
this approach will certainly find the optimal solution (or one that is close 
to it), such a brute-force strategy will only be possible in very small 
systems with few optimization variables (e.g., three enzymes in Dvorak 
et al., 2014). 

In contrast, herein we used rigorously defined mathematical opti-
mization problems, which are based on well-defined objective functions 
and constraints (the latter including the dynamic model). Available 
solvers can tackle these problems by repeatedly simulating the kinetic 
model to determine the output performance of the system for particular 
instances of the free variables to eventually identify the optimal solu-
tion. After providing a general form for such optimization problems for 
cell-free systems we formulated seven specific optimization problems 
which we deem most relevant in this context (but further optimization 
problems could easily be formulated in this way). We emphasize that 
there are few other works that indeed used a rigorous optimization 
approach (e.g., Ardao and Zeng, 2013; Hold et al., 2016; Finnigan et al., 
2019, Paschalidis et al., 2022), in most cases to optimize the enzyme 
ratio for maximizing the product titer, corresponding to our optimiza-
tion problem O1. However, we believe that other optimization problems 
as stated (and partially also applied) herein could be of high relevance as 
well, depending on the application. 

Furthermore, as a methodological development, we presented an 
approach to tackle parameter uncertainty (arising from non- 
identifiabilities during parameter estimation) not only during model 
construction and analysis but also in the subsequent model-based opti-
mization of the cell-free system. Since most of our model parameters are 
estimated from experimental data, issues of parameter uncertainty and 
parameter non-identifiability arise due to interdependencies between 
the parameters. Therefore, alternative methods of optimization under 
parameter uncertainty such as robust optimization (Klamroth et al., 
2017; Puschke et al., 2018) or stochastic programming (Birge and 
Louveaux, 2011) are not directly applicable here because those methods 
usually consider, separately for each parameter, either a known proba-
bility distribution or simply a bounded parametric uncertainty (with 
known bounds) (Puschke et al., 2018) and thus implicitly assume pa-
rameters to be independent from each other. To capture the uncertainty 
of dependent parameters of a kinetic model we followed an ensemble 
modeling approach, which has been used in different variants for 
modeling other systems, including signaling and metabolic networks in 
cells (Tran et al., 2008; Jia et al., 2012; Tan and Liao, 2012; Villaverde 
et al., 2022). By repeating the global parameter estimation many times, 
different parameter sets are found leading to an approximation of the 
underlying distributions of each parameter. We note, however, that our 
ensemble approach is different to the one of Tran et al. (2008) and Tan 
and Liao (2012) since the latter are based on reference steady-state 
metabolic flux distributions in cells, while in batch operation of 
cell-free systems we usually have to deal with transient systems behavior 
(and thus changing fluxes and metabolite concentrations). Moreover 
and most importantly, here we go one step further and not only integrate 
but also account for this uncertainty when optimizing the system. Our 
approach is based on cross validation, i.e., we test the performance of 
the optimal initial enzyme or substrate concentrations identified for one 
parameter set also for the resulting performance under all other pa-
rameterizations and then select the optimal solution that performs best 
on average in terms of a suitable metric. Alternative metrics, such as the 

Fig. 11. (A) Column scores of the normalized process cost shown in the heat-
map in (B) according to equation (20). The best (here lowest) scoring column 
(optimization result ID 79) is highlighted in (B). (B) Heat map of optimized 
normalized process costs in €/mmol. Normalized costs are calculated using ti-
ters from model simulations that combine optimal enzyme and substrate con-
centrations determined for each of the 100 parameter sets (optimization result 
sets) with the 100 parameter sets of the estimated ensemble (see also Fig. 5 for 
further explanations). 
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maximization of certain performance measures under worst-case con-
ditions (Misener et al., 2018) (related to min-max optimizations often 
employed in robust optimization; Puschke et al., 2018) could be used as 
well. Taken together, it should be noted that our optimization frame-
work involves three separated optimization steps: (1) repeated param-
eter estimation based on experimental data resulting in a parameter 
ensemble (section 3.2); (2) optimization of the kinetic model (here with 
the initial enzyme/substrate concentrations as free variables) for a given 
objective function for every parameter set (section 3.3); and (3) using 
cross-validation to identify the best optimization result from (2) that 
maximizes a given metric (section 3.4). It should be noted that the best 
optimization result identified in this manner has indeed a superior 
metrics over all other optimization results (that were obtained when 
optimizing the model with each parametrization of the ensemble), but it 
is not necessarily globally optimal. For example, in our application 
where we maximized the product titer for a given maximal enzyme load 
(objective O1), there might exist a (valid) enzyme ratio that leads to a 
higher score in eq. (18). However, direct optimization determining the 
globally optimal solution maximizing this score would require signifi-
cantly higher computational effort than our approach and we do not 
expect larger differences in the results if the ensemble is large enough. 

We consider our developed framework to be generic and therefore 
applicable to a wide variety of cell-free batch processes and even to 
other systems including the optimization of metabolic pathways or 
networks in (whole-)cell factories. Clearly, certain modules, e.g., the 
generation of an ensemble of parameter sets (models), could be replaced 
with others. For example, an alternative approach to estimating model 
parameters is Bayesian inference where initial distributions of param-
eter values based on prior knowledge are updated by incorporating in-
formation from available data, leading to improved (posterior) 
parameter distributions (Wilkinson, 2007; Linden et al., 2022; Villa-
verde et al., 2022). Some of those methods have been used in the context 
of optimization of bioprocesses (but not cell-free enzyme cascades). 
There might be cases where such a Bayesian approach to determine 
parameter sets is more appropriate, especially if there are well-defined 
priors of the unknown parameters (i.e., more precise previous knowl-
edge than just a uniform distribution over an interval of possible 
parameter values as also used herein). For a review and comparison of 
different methods accounting for (parametric) uncertainty, we refer the 
reader to Villaverde et al. (2022). Generally, the probability to find a 
(close to) optimal parameter set decreases with increasing system 
dimension. Since cell-free systems usually contain a relatively low 
number of state variables (often 3–10, sometimes up to 30), there is a 
reasonable chance to obtain a good ensemble of meaningful parameter 
sets. In our application, we used an ensemble of one hundred estimated 
parameter sets, each exploring the parameter space by going through at 
least 25,000 iterations of testing different parameter sets while search-
ing for the global minimum. Hence, the total number of parameter sets 
evaluated is at least 2.5 million, letting us believe that the aggregate of 
all 100 global estimation runs is representative for the underlying un-
known parameter space. Clearly, the number of estimated parameter 
sets included in the ensemble can be increased, e.g., in larger systems, 
which, however, will also increase the computational demand. For our 
application example, starting with the kinetic model and parameter 
estimation, it takes ca. 9 h on a standard desktop PC to run all steps of 
our workflow (parameter estimation, optimization for each parameter 
set, cross validation) to eventually obtain the final optimal solution for 
objective O1. This indicates that there is room to deal with significantly 
larger systems or networks when using, for example, compute clusters. 

Application of our optimization framework to improve the cell-free 
system for the production of GDP-fucose was very successful. The 
calculated optimal enzyme ratio maximizing the product titer (objective 
O1) suggests an increase of the initial FKP concentration, which indeed 
led to a significant increase of the titer in validation experiments. This 
finding is also in line with insights by Frohnmeyer et al. (2022) who 
identified the pyrophosphorylase activity of FKP as most likely to limit 

the process of GDP-fucose synthesis. Additionally, the enzyme exerts a 
disproportional amount of control on the cascade due to its bifunctional 
activity, making it an important target when optimizing the perfor-
mance of the cascade. Notably, FKP is much heavier than all other en-
zymes. Hence, increasing its molar amounts [mM] may more profoundly 
affect the gram enzyme load [g/l]. In the minimization of the enzyme 
load (objective O3), we therefore defined the enzyme load with respect 
to total mass [gram], i.e., it corresponds to a weighted sum of initial 
enzyme concentrations with conversion factors based on the molecular 
weight of the respective enzymes. Other studies usually focus on molar 
enzyme load, but we consider the mass-based enzyme load to be more 
relevant since it is the enzyme weight per volume that matters when 
setting up the process and assessing its costs. 

A limitation of a kinetic model as used herein for the optimization is 
that important process parameters such as temperature, pH value, and 
concentrations of cofactors are not incorporated because of their often 
poorly defined relationship with the kinetic parameters of the model. 
Here, statistical methods such as design of experiment (DoE) approaches 
are often used to identify optimal values for these parameters (Man-
denius and Brundin, 2008; Onyeogaziri and Papaneophytou, 2019). 
These methods, however, are limited in taking prior quantitative 
knowledge of the reaction mechanisms into account. We therefore 
consider a combination of our optimization approach based on kinetic 
models with DoE approaches as an interesting topic for future work. 
Furthermore, the experimental setup of the underlying biochemical 
process modeled and optimized in this work was a batch process where 
all substrates and enzymes are provided at the beginning. In order to 
potentially reach even higher titers, the process could be operated in 
fed-batch mode, e.g., using a certain substrate feeding rate. This could 
also increase the overall cost efficiency if the substrate feeding enables a 
longer process time as the expensive purified enzymes would then be 
used for additional substrate conversions. Optimizing such a fed-batch 
process would involve more advanced dynamic optimization ap-
proaches (known as optimal control, Kapadi and Gudi, 2004), which 
attempt to find an optimal trajectory of the substrate (or enzyme) 
feeding rate instead of a set of optimal initial enzyme and substrate 
concentrations (one recent study in this direction was presented by 
Paschalidis et al., 2022). The extension of our framework to this kind of 
dynamic optimization, including answering the question of when 
choosing a fed-batch approach over a simple batch process is advisable 
in the context of cell-free production systems, remains as a topic for 
future work. 
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Appendix 

Construction of a kinetic model of the enzyme cascade for GDP-fucose synthesis 

We implemented the cell-free reaction network for synthesis of GDP-fucose (Fig. 1) as a kinetic model. The general form of kinetic models based on 
a set of ordinary differential equations (ODEs) is given by the following formula 

ẋ(t) = f (x(t), t) = N⋅r(x(t),P, t),

where x(t) is the vector of species concentrations, N the stoichiometric matrix of the network, and r the vector of reaction rates which are defined by 
rate laws as functions of the species concentrations x(t), reaction parameters P, and time t. In this work, the rate law equations are based on the 
convenience kinetics formulation by Liebermeister and Klipp (2006), a generalized version of Michaelis-Menten kinetics, which we extended by the 
Haldane relationship to include terms incorporating the equilibrium constants for each reaction. This allows a simple yet realistic description of the 
dynamics of all enzymatically catalyzed reactions including the affinities of participating compounds (Km), the turnover rates (kcat), information about 
equilibria (Keq), and the actions of potential regulators. The kinetic rate laws and ODEs of the model are shown below. It should be noted that pol-
yphosphate (PP) was considered to be at saturation levels during the whole process and thus was not added as a dynamical species to the model. 

Kinetic rate laws  

Rate Law for the FKP (fucokinase) reaction FKP gt 

E FKP⋅
kcat F⋅

Fuc
Km Fuc

⋅
ATP

Km ATP
− kcat F⋅

1
K eq FKP fk

⋅
Fuc1P⋅ADP

Km Fuc⋅Km ATP
(

1 +
Fuc

Km Fuc

)

⋅
(

1 +
ATP

Km ATP

)

+

(

1 +
Fuc1P

Km Fuc1P

)

⋅
(

1 +
ADP

Km ADP

)

− 1  

Rate Law for the FKP (guanylyl-transferase) reaction FKP fk 
ki PP

ki PP + PP
⋅E FKP⋅

kcat F⋅
Fuc1P

Km Fuc1P
⋅

GTP
Km GTP

− kcat F⋅
1

K eq FKP gt
⋅

GDP Fuc⋅PP
Km Fuc1P⋅Km GTP

(
1 +

Fuc1P
Km Fuc1P

)

⋅
(

1 +
GTP

Km GTP

)

+

(

1 +
GDP Fuc

Km GDP Fuc

)

⋅
(

1 +
PP

Km PP

)

− 1 

Rate Law for GMPK reaction GMPK 

E GMPK⋅
kcat F⋅

GMP
Km GMP

⋅
ATP

Km ATP
− kcat F⋅

1
K eq GMPK

⋅
GDP⋅ADP

Km GMP⋅Km ATP
(

1 +
GMP

Km GMP

)

⋅
(

1 +
ATP

Km ATP

)

+

(

1 +
GDP

Km GDP

)

⋅
(

1 +
ADP

Km ADP

)

− 1 

Rate Law for PPA reaction PPA E PPA⋅kcat F⋅
1

1 +
Km PP

PP 
Rate Law for the PPK3 (ADP-dependent) reaction PPK3_A 

E PPK3⋅
kcat F⋅

ADP
Km ADP

− kcat F⋅
1

K eq PPK3 A
⋅

ATP
Km ADP

(
1 +

ADP
Km ADP

)

+

(

1 +
ATP

Km ATP

)

− 1 

Rate Law for the PPK3 (GDP-dependent) reaction PPK3_G 

E PPK3⋅
kcat F⋅

GDP
Km GDP

− kcat F⋅
1

K eq PPK3 G
⋅

GTP
Km GDP

(
1 +

GDP
Km GDP

)

+

(

1 +
GTP

Km GTP

)

− 1   

ODEs 

d[PP]
/

dt = +FKP gt – PPA  

d[P]/dt = +2 ⋅ (PPA)

d[ATP]
/

dt = − FKP fk – GMPK + PPK3 A  

d[ADP]
/

dt = +FKP fk + GMPK – PPK3 A  

d[E PPA]/dt = 0  

d[E PPK3]/dt = 0  

d[E FKP]/dt = 0  

d[Fuc]
/

dt = − FKP fk  

d[Fuc1P]
/

dt = +FKP fk – FKP gt 
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d[GDP Fucose]
/

dt = +FKP gt  

d[GTP]
/

dt = − FKP gt + PPK3 G  

d[GDP]/dt = +GMPK – PPK3 G  

d[GMP]/dt = − GMPK  

d[E GMPK]/dt = 0  

Reaction parameters 

We searched for relevant reaction parameters kcat (turnover rate), Km (Michaelis-Menten constant), ki (inhibitory constant), and Keq (equilibrium 
constant) in the literature and databases. All parameters that could not be found or were considered to be uncertain were estimated from a parameter 
fitting procedure based on a weighted least-squares estimation with available time course data y from multiple experiments (see experiments 1–5 in 
Supplementary Table 1). For the latter, the following objective function was used 

SSR = min
∑

k

∑

i,j
ωj,k⋅

(
yi,j,k − xi,j,k(P)

)2
,

where SSR is the sum of squared residues, yi,j,k is the concentration of species j measured at time point i in experiment k, and xi,j,k(P) is the con-
centration of the corresponding model species at the same time point derived from a simulation of the model (based on the parameter set P and with 
initial concentrations used in the experiment k). ωj,k is the normalized weight of species j for experiment k and is calculated with the following 
equation (as implemented in COPASI): 

ωj,k =
1
/

〈y2
j,k〉

max
j∈{1…nj}

1
/

〈y2
j,k〉  

Here, 〈y2
j,k〉 expresses the mean square of all measurements y of species j across all time points of experiment k and nj is the number of species measured 

in experiment k. 
An overview of the kinetic parameters is provided in the table below. Apart from three Keq values, most parameters have been included in the 

estimation procedure with literature values serving as start values if available.   

Parameter name Literature value Reference Included in parameter estimation Estimation 
Boundaries 

(FKP (fucokinase)).kcat_F 1404 [1/h] Liu et al. (2019) Yes [1e0, 1e6] 
(FKP (fucokinase)).Km_Fuc 0.045 [mM] Wang et al. (2009) Yes [1e-5, 1e0] 
(FKP (fucokinase)).Km_ATP 1.08 [mM] Wang et al. (2009) Yes [1e-2, 1e2] 
(FKP (fucokinase)).Km_Fuc1P – – Yes [1e-7, 1e4] 
(FKP (fucokinase)).Km_ADP – – Yes [1e-6, 1e4] 
(FKP (fucokinase)).K_eq_FKP_fk 4 [-] Equilibrator (Beber et al., 2022) No – 
(FKP (guanylyltransferase)).kcat_F 36,252 [1/h] Liu et al. (2019) Yes [1e0, 1e6] 
(FKP (guanylyltransferase)).Km_Fuc1P 0.03295 [mM] Liu et al. (2019) Yes [1e-4, 1e2] 
(FKP (guanylyltransferase)).Km_GTP 0.012 [mM] Wang et al. (2009) Yes [1e-4, 1e3] 
(FKP (guanylyltransferase)).Km_GDP_Fuc 0.12 [mM] Pastuszak et al. (1998) Yes [1e-2, 1e3] 
(FKP (guanylyltransferase)).Km_PP 0.135 [mM] Pastuszak et al. (1998) Yes [1e-2, 1e2] 
(FKP (guanylyltransferase)).ki_PP – – Yes [1e-10, 1e-6] 
(FKP (guanylyltransferase)).K_eq_FKP_gt 20 Equilibrator (Beber et al., 2022) No – 
(PPA).kcat_F 558,000 [1/h] Kapyla et al. (1995) Yes [1e0, 1e6] 
(PPA).Km_PP 0.003 [mM] Rodina et al. (2007) Yes [1e-6, 1e1] 
(GMPK).kcat_F 752,400 [1/h] Nomura et al. (2014) Yes [1e0, 1e6] 
(GMPK).Km_GMP 0.156 [mM] Nomura et al. (2014) Yes [1e-4, 1e2] 
(GMPK).Km_ATP 0.5 [mM] Moriguchi et al. (1981) Yes [1e-3, 1e2] 
(GMPK).Km_GDP 0.097 [mM] Li et al. (1996) Yes [1e-4, 1e2] 
(GMPK).Km_ADP 0.017 [mM] Li et al. (1996) Yes [1e-4, 1e2] 
(GMPK).K_eq_GMPK 1 Equilibrator (Beber et al., 2022) No – 
(PPK3_G).kcat_F 15,048 [1/h] Achbergerová and Nahalka (2014) Yes [1e0, 1e6] 
(PPK3_G).Km_GDP 1.2 [mM] Achbergerová and Nahalka (2014) Yes [1e-4, 1e2] 
(PPK3_G).Km_GTP – – Yes [1e-6, 1e4] 
(PPK3_G).K_eq_PPK3_G 1 [-] Equilibrator (Beber et al., 2022) Yes [0.5, 2] 
(PPK3_A).kcat_F 18,780 [1/h] Achbergerová and Nahalka (2014) Yes [1e0, 1e6] 
(PPK3_A).Km_ADP 2.5 [mM] Achbergerová and Nahalka (2014) Yes [1e-4, 1e2] 
(PPK3_A).Km_ATP 2 [mM] Ahn and Kornberg (1990) Yes [1e-4, 1e2] 
(PPK3_A).K_eq_PPK3_A 1 [-] Equilibrator (Beber et al., 2022) Yes [0.5, 2]  
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ymben.2023.10.007. 

References 
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