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Supporting Information Text

Theorems and proofs

Equilibria of the system.

Theorem 1. The possible equilibria in our behavioral-epidemiological model are as follows.

1. There is a disease-free equilibrium with no adherence P (0)
0 , with S0 = 1, I0 = 0 and xA,0 = 0.

2. There is a disease-free equilibrium with complete adherence P (1)
0 , with S(1)

0 = 1, I(1)
0 = 0, and x(1)

A,0 = 1.

3. Suppose R0 > 1.

(a) There is an endemic equilibrium with no adherence P (0)
∗ that exists, with x(0)

A,∗ = 0, I(0)
∗ = µ+δ

γ+µ+δ

(
1− γ+µ

β

)
, and

S
(0)
∗ = γ+µ

β
.

(b) If p > 1
R0

, then there is an endemic equilibrium with complete adherence P (1)
∗ that exists, with x

(1)
A,∗ = 1, I(1)

∗ =
µ+δ

γ+µ+δ

(
1− γ+µ

pβ

)
, and S(0)

∗ = γ+µ
pβ

.

(c) If either

i. p > 1
R0

and p(1− p)β µ+δ
γ+µ+δ

(
1− γ+µ

pβ

)
< c

ξ
< (1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

β

)
, or

ii. p < 1
R0

and c
ξ
< (1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

β

)
,

then there is an endemic equilibrium with partial adherence P (m)
∗ that exists, with

x∗A = 1
1− p

[
1− γ + µ

β

(
1 + 1

(1− p) ξ
c

γ + µ+ δ

(γ + µ)(µ+ δ)

)]
, [1]

I(m)
∗ = µ+ δ

(1− p)(γ + µ)(µ+ δ) ξ
c

+ γ + µ+ δ
, [2]

S(m)
∗ =

(γ + µ)(µ+ δ) ξ
c
(1− p)

(1− p) ξ
c
(γ + µ)(µ+ δ) + γ + µ+ δ

. [3]

Proof. We begin by proving {1} and {3 (a)}. Setting model equations (see Main Text) equal to zero, we see that xA = x
(0)
A,∗ = 0

satisfies dxA
dt

= 0, in turn giving a regular SIRS model with transmission rate β. Thus, solving the remaining equations gives
that either I = I0 = 0 and S = S0 = 1, or I = I

(0)
∗ = µ+δ

γ+µ+δ

(
1− γ+µ

β

)
and S = S

(0)
∗ = 1

R0
. Note that I(0)

∗ and S(0)
∗ exist in

the feasible region only when R0 > 1.
Similarly (to prove {2} and {3 (b)}), if xA = x

(1)
A,∗ = 1, dxA

dt
= 0, which leaves a regular SIRS model with transmission rate

pβ and corresponding basic reproduction number pR0. As before, the S and I equations give that either I = I
(1)
0 = 0 and

S = S
(1)
0 = 1, or I = I

(1)
∗ = µ+δ

γ+µ+δ

(
1− γ+µ

pβ

)
and S = S

(1)
∗ = 1

pR0
. Note that this latter equilibrium exists in the feasible

region only when pR0 > 1, i.e. R0 > 1 and p > 1
R0

.
Furthermore (to prove {3 (c)}), when πA − πN = 0, then dxA

dt
= 0. Solving πA − πN = 0 with µ− [pxA + (1− xA)]βSI −

µS + δ(1− S − I) = 0 and [pxA + (1− xA)]βSI − (γ + µ)I = 0 gives Eqs. [1]–[3]. Using the fact that 0 < x∗A < 1 gives the
inequalities in (c) (and noting that c > 0, for {(c)ii}).

Stability.

Theorem 2. The local stability of the possible equilibria are as follows:

1. P (0)
0 is locally asymptotically stable when R0 < 1 and unstable when R0 > 1.

2. P (1)
0 is always unstable.

3. Suppose R0 > 1.

(a) If c
ξ
> (1 − p)β µ+δ

γ+µ+δ

(
1− γ+µ

β

)
, then P

(0)
∗ is locally asymptotically stable, whereas it is unstable if c

ξ
< (1 −

p)β µ+δ
γ+µ+δ

(
1− γ+µ

β

)
.

(b) Suppose also that p > 1
R0

:
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i. If c
ξ
< p(1 − p)β µ+δ

γ+µ+δ

(
1− γ+µ

pβ

)
, then P

(1)
∗ is locally asymptotically stable, whereas it is unstable if c

ξ
>

p(1− p)β µ+δ
γ+µ+δ

(
1− γ+µ

pβ

)
.

ii. If p(1− p)β µ+δ
γ+µ+δ

(
1− γ+µ

pβ

)
< c

ξ
< (1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

β

)
, then P

(m)
∗ is locally asymptotically stable.

(c) On the other hand, suppose that p < 1
R0

:

i. If c
ξ
< (1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

β

)
, then P

(m)
∗ is locally asymptotically stable (and P (0)

∗ is unstable)

Proof. First, note that the Jacobian matrix about any equilibrium P̂ is

J(P̂ ) =

−βÎ(1− (1− p)x̂A)− (µ+ δ) −βŜ(1− (1− p)x̂A)− δ (1− p)βÎŜ
βÎ(1− (1− p)x̂A) (1− (1− p)x̂A)βŜ − (γ + µ) −(1− p)βŜÎ

0 x̂A(1− x̂A)(1− p)βξ(1− (1− p)x̂A) (1− 2x̂A)(πA − πN )−x̂A(1− x̂A)(1− p)2βÎξ

 .

[4]

We begin by proving {1}. The Jacobian matrix for P (0)
0 is

J(P (0)
0 ) =

−(µ+ δ) −β − δ 0
0 β − (γ + µ) 0
0 0 −c

 . [5]

Since the eigenvalues are −(µ+ δ) < 0, −c < 0, and β − (γ + µ), P (0)
0 is stable when R0 = β

γ+µ < 1 and unstable when R0 > 1.
To prove {2}, the Jacobian matrix for P (1)

0 is

J(P (1)
0 ) =

−(µ+ δ) −pβ − δ 0
0 β − (γ + µ) 0
0 0 c

 . [6]

Since one of the eigenvalues of J(P (1)
0 ) is c > 0, then P (1)

0 is always unstable.
To prove {3}, we begin by examining the {(a)} case. The Jacobian matrix at P (0)

∗ is

J(P (0)
∗ ) =

−βI
(0)
∗ − (µ+ δ) −βS(0)

∗ − δ (1− p)βI(0)
∗ S

(0)
∗

βI
(0)
∗ 0 −(1− p)βS(0)

∗ I
(0)
∗

0 0 (1− p)βI(0)
∗ ξ − c

 . [7]

Since J(P (0)
∗ ) is block diagonal, two eigenvalues of J(P (0)

∗ ) are those of the matrix

A =

(
−βI(0)

∗ − (µ+ δ) −βS(0)
∗ − δ

βI
(0)
∗ 0

)
. [8]

A has a negative trace and a positive determinant, and so both of its eigenvalues have negative real part by the Routh-
Hurwitz criterion. The third eigenvalue of J(P (0)

∗ ) is (1 − p)βI(0)
∗ ξ − c, which is negative when c > (1 − p)βI(0)

∗ ξ. Thus, if
c > (1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

β

)
ξ, then P (0)

∗ is locally asymptotically stable, whereas if c > (1− p)β µ+δ
γ+µ+δ

(
1− γ+µ

β

)
ξ, P (0)

∗ is
unstable.

To prove the {(b)i} case, consider the Jacobian matrix

J(P (1)
∗ ) =

−pβI
(1)
∗ − (µ+ δ) −pβS(0)

∗ − δ (1− p)βI(1)
∗ S

(1)
∗

pβI
(1)
∗ 0 −(1− p)βI(1)

∗ S
(1)
∗

0 0 −p(1− p)βI(1)
∗ ξ + c

 . [9]

As previously, two eigenvalues of J(P (1)
∗ ) are eigenvalues of

B =

(
−pβI(1)

∗ − (µ+ δ) −pβS(0)
∗ − δ

pβI
(1)
∗ 0

)
. [10]
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Since tr(B) < 0 and det(B) > 0, it follows that both eigenvalues of B have negative real part. The last eigenvalue of J(P (1)
∗ ) is

−p(1− p)βI(1)
∗ ξ + c, which is negative when c < p(1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

pβ

)
ξ. Thus, P (1)

∗ is locally asymptotically stable when
c < p(1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

pβ

)
ξ, whereas it is unstable when c > p(1− p)β µ+δ

γ+µ+δ

(
1− γ+µ

pβ

)
ξ.

We now prove the {(b)ii} and {(c)i} cases. For P (m)
∗ , the Jacobian matrix is

J(P (m)
∗ ) =

−βI
(m)
∗ (1− (1− p)x∗A)− (µ+ δ) −βS(m)

∗ (1− (1− p)x∗A)− δ (1− p)βI(m)
∗ S

(m)
∗

βI
(m)
∗ (1− (1− p)x∗A) 0 −(1− p)βS(m)

∗ I
(m)
∗

0 x∗A(1− x∗A)(1− p)βξ(1− (1− p)x∗A) −x∗A(1− x∗A)(1− p)2βI
(m)
∗ ξ

 [11]

Thus,
tr(J(P (m)

∗ )) = −βI(m)
∗ (1− (1− p)x∗A)− (µ+ δ)−x∗A(1− x∗A)(1− p)2βI(m)

∗ ξ. [12]

Computing the determinant gives that

det(J(P (m)
∗ )) =− βI(m)

∗ (1− (1− p)x∗A)(βS(m)
∗ (1− (1− p)x∗A) + δ)x∗A(1− x∗A)(1− p)2βI(m)

∗ ξ

− (µ+ δ)(1− p)βS(m)
∗ I(m)

∗ x∗A(1− x∗A)(1− p)βξ(1− (1− p)x∗A). [13]

Computing the sum of the 2× 2 principal minors of J(P (m)
∗ ) gives that

a2 =βI(m)
∗ (1− (1− p)x∗A)[βS(m)

∗ (1− (1− p)x∗A) + δ]

+ [βI(m)
∗ (1− (1− p)x∗A) + µ+ δ]x∗A(1− x∗A)(1− p)2βI(m)

∗ ξ

+ (1− p)βS(m)
∗ I(m)

∗ x∗A(1− x∗A)(1− p)βξ(1− (1− p)x∗A). [14]

Note that whenever P (m)
∗ exists, x∗A is such that 0 < x∗A < 1. Thus, when P (m)

∗ exists, tr(J(P (m)
∗ )) < 0, det(J(P (m)

∗ )) < 0, and
it can be seen that tr(J(P (m)

∗ ))a2−det(J(P (m)
∗ )) < 0. Therefore, by the Routh-Hurwitz criterion, P (m)

∗ is locally asymptotically
stable whenever it exists, i.e., when

p(1− p)β µ+ δ

γ + µ+ δ

(
1− γ + µ

pβ

)
<
c

ξ
< (1− p)β µ+ δ

γ + µ+ δ

(
1− γ + µ

β

)
if p >

1
R0

[15]

c

ξ
< (1− p)β µ+ δ

γ + µ+ δ

(
1− γ + µ

β

)
if p <

1
R0

. [16]

Vaccination.

Theorem 3. With vaccination, the possible equilibria are analogous to those without vaccination, but with

• the disease-free equilibria P (0)
0 and P (1)

0 having instead S0 = µ(1−q)+δ
µ+ν+δ ;

• the endemic equilibria P (0)
∗ and P (1)

∗ having instead, respectively, I(0)
∗ = µ(1−q)+δ

γ+µ+δ

(
1− 1

R(v)
0

)
and I(1)

∗ = µ(1−q)+δ
γ+µ+δ

(
1− 1

pR(v)
0

)
;

• and the endemic equilibrium with partial adherence P (m)
∗ having instead

I(m)
∗ = µ(1− q) + δ

(1− p) ξ
c
(γ + µ)(µ+ ν + δ) + γ + µ+ δ

, [17]

S(m)
∗ =

(γ + µ)(µ(1− q) + δ) ξ
c
(1− p)

(1− p) ξ
c
(γ + µ)(µ+ ν + δ) + γ + µ+ δ

, [18]

x∗A = 1
1− p

[
1− µ+ ν + δ

µ(1− q) + δ

γ + µ

β

(
1 + 1

1− p
c

ξ

γ + µ+ δ

(γ + µ)(µ+ ν + δ)

)]
. [19]

[20]

Note also that the conditions change so that P (1)
∗ exists when p > 1

R(v)
0

, and P
(m)
∗ exists when either p > 1

R(v)
0

and p(1 −
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p)β µ(1−q)+δ
γ+µ+δ

(
1− 1

pR(v)
0

)
< c

ξ
< (1− p)β µ(1−q)+δ

γ+µ+δ

(
1− 1

R(v)
0

)
or p < 1

R(v)
0

and c
ξ
< (1− p)β µ(1−q)+δ

γ+µ+δ

(
1− 1

R(v)
0

)
.

Proof. This result follows from using the equations at equilibrium in the model with vaccination, and following the same
approach as in Theorem 1 (SI Appendix).

Theorem 4. With vaccination, the stability of each equilibria is analogous to that in the model without vaccination, but the
conditions change so that R(v)

0 is used instead of R0 and µ(1−q)+δ
γ+µ+δ is used instead of µ+δ

γ+µ+δ .

Proof. The Jacobian matrix for any equilibrium P̂ = (Ŝ, Î, x̂A) in the model with vaccination is

J(P̂ ) =

−βÎ(1− (1− p)x̂A)− (µ+ ν + δ) −βŜ(1− (1− p)x̂A)− δ (1− p)βÎŜ
βÎ(1− (1− p)x̂A) (1− (1− p)xA)βŜ − (γ + µ) −(1− p)βŜÎ

0 x̂A(1− x̂A)(1− p)βξ(1− (1− p)x̂A) (1− 2x̂A)(πA − πN )−x̂A(1− x̂A)(1− p)2βÎξ


[21]

At P (1)
0 , it then follows that

J(P (1)
0 ) =

−(µ+ ν + δ) −pβS(1)
0 − δ 0

0 pβS0
(1) − (γ + µ) 0

0 0 c

 . [22]

As without vaccination, since c > 0, P (1)
0 is always unstable.

At P (0)
0 , it follows that

J(P (0)
0 ) =

−(µ+ ν + δ) −βS(0)
0 − δ 0

0 βS0
(0) − (γ + µ) 0

0 0 −c

 , [23]

so that the eigenvalues are −c < 0, −(µ+ ν + δ) < 0, and βS(0)
0 − (γ + µ). Note that βS(0)

0 − (γ + µ) < 0 if R(v)
0 < 1, and

βS
(0)
0 − (γ + µ) > 0 if R(v)

0 > 1. Thus, P (0)
0 is locally asymptotically stable if R(v)

0 < 1, and P (0)
0 is unstable if R(v)

0 > 1.
At P (0)

∗ , the Jacobian matrix is

J(P (0)
∗ ) =

−βI
(0)
∗ − (µ+ ν + δ) −βS(0)

∗ − δ (1− p)βI(0)
∗ S

(0)
∗

βI
(0)
∗ 0 −(1− p)βS(0)

∗ I
(0)
∗

0 0 −(1− p)βI(0)
∗ ξ + c

 [24]

Thus, two eigenvalues are those of the 2× 2 matrix(
−βI(0)

∗ − (µ+ ν + δ) −βS(0)
∗ − δ

βI
(0)
∗ 0

)
[25]

which has negative trace and positive determinant. Therefore, both of these eigenvalues have negative real part. The third

eigenvalue of J(P (0)
∗ ) is −(1− p)βI(0)

∗ ξ + c, which is negative when c < (1− p)β µ(1−q)+δ
µ+ν+δ

(
1− 1

R(v)
0

)
ξ. Thus, it follows that

P
(0)
∗ is locally asymptotically stable when c

ξ
< (1− p)β µ(1−q)+δ

µ+ν+δ

(
1− 1

R(v)
0

)
.

At P (1)
∗ , the Jacobian matrix is

J(P (1)
∗ ) =

−pβI
(1)
∗ − (µ+ ν + δ) −pβS(1)

∗ − δ (1− p)βI(1)
∗ S

(1)
∗

pβI
(1)
∗ 0 −(1− p)βS(1)

∗ I
(1)
∗

0 0 (1− p)pβI(1)
∗ ξ − c

 [26]
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Note that the matrix (
−pβI(1)

∗ − (µ+ ν + δ) −pβS(1)
∗ − δ

pβI
(1)
∗ 0

)
[27]

has negative trace and positive determinant, and that (1− p)pβI(1)
∗ ξ − c is negative if c > (1− p)pβ µ(1−q)+δ

µ+γ+δ

(
1− 1

pR(v)
0

)
ξ.

Thus, analogous to the case without vaccination, P (1)
∗ is locally asymptotically stable if c

ξ
> (1− p)pβ µ(1−q)+δ

µ+γ+δ

(
1− 1

pR(v)
0

)
.

For P (m)
∗ , the Jacobian matrix is

J(P (m)
∗ ) =

−βI
(m)
∗ (1− (1− p)x∗A)− (µ+ ν + δ) −βS(m)

∗ (1− (1− p)x∗A)− δ (1− p)βI(m)
∗ S

(m)
∗

βI
(m)
∗ (1− (1− p)x∗A) 0 −(1− p)βS(m)

∗ I
(m)
∗

0 x∗A(1− x∗A)(1− p)βξ(1− (1− p)x∗A) −x∗A(1− x∗A)(1− p)2βI
(m)
∗ ξ

 .

[28]

Similar calculations to the analysis without vaccination shows that tr(J(P (m)
∗ )) < 0, det(J(P (m)

∗ )) < 0, and tr(J(P (m)
∗ ))a2 −

det(J(P (m)
∗ )) < 0 when P (m)

∗ exists, i.e., 0 < x∗A < 1. Thus, as in the model without vaccination, P (m)
∗ is locally asymptotically

stable whenever it exists.

Maximal adherence to the NPI

In the model with no vaccination, if there is no complete adherence for the range of p, i.e. the maximum adherence happens
with the partial equilibrium, then we can solve ∂x∗

A
∂p

= 0, giving

p̂ = 1−
2 γ+µ

β
c
ξ

γ+µ+δ
(γ+µ)(µ+δ)

1− γ+µ
β

. [29]
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