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Abstract. Previous phases of the Coupled Model Intercomparison Project (CMIP) have primarily focused on simulations 

driven by atmospheric concentrations of greenhouse gases (GHGs), both for idealized model experiments, and for climate 35 

projections of different emissions scenarios.  We argue that although this approach was pragmatic to allow parallel 

development of Earth System Model simulations and detailed socioeconomic futures, carbon cycle uncertainty as represented 

by diverse, process-resolving Earth System Models (ESMs) is not manifested in the scenario outcomes, thus omitting a 

dominant source of uncertainty in meeting the Paris Agreement.  Mitigation policy is defined in terms of human activity 

(including emissions), with strategies varying in their timing of net-zero emissions, the balance of mitigation effort between 40 

short-lived and long-lived climate forcers, their reliance on land use strategy and the extent and timing of carbon removals. To 
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explore the response to these drivers, ESMs need to explicitly represent complete cycles of major GHGs, including natural 

processes and anthropogenic influences.  Carbon removal and sequestration strategies, which rely on proposed human 

management of natural systems, are currently represented upstream of ESMs in an idealized fashion during scenario 

development. However, proper accounting of the coupled system impacts of and feedback on such interventions requires 45 

explicit process representation in ESMs to build self-consistent physical representations of their potential effectiveness and 

risks under climate change.  We propose that CMIP7 efforts prioritize simulations driven by CO2 emissions from fossil fuel 

use, projected deployment of carbon dioxide removal technologies, as well as land use and management, using the process 

resolution allowed by state-of-the-art ESMs to resolve carbon-climate feedbacks.  Post-CMIP7 ambitions should aim to 

incorporate modeling of non-CO2 GHGs (in particular sources and sinks of methane) and process-based representation of 50 

carbon removal options.  Such experiments would allow resources to be allocated to policy-relevant climate projections and 

better real-time information related to the detectability and verification of emissions reductions and their relationship to 

expected near-term climate impacts. Such efforts will provide information on the range of possible future climate states 

including Earth system processes and feedbacks which are increasingly well-represented in ESMs, thus forming a critical and 

complementary pillar underpinning proposed km-scale climate modeling activities and calls to better utilize novel machine 55 

learning approaches. 

1 Introduction 

Past phases of the Coupled Model Intercomparison Project (CMIP)(Meehl et al. 2007; Taylor, Stouffer, and Meehl 2012; 

Eyring et al. 2016) have been the principal source of process-based climate and Earth system modeling outcomes for 

IPCC Assessment Reports (“Climate Change 2021: The Physical Science Basis” n.d.).   The vast majority of CMIP 60 

experiments have considered boundary conditions where concentrations of greenhouse gases are prescribed, both in 

the implementation of idealized simulations and in future scenarios which inform climate policy (O’Neill et al. 2016; 

Arnell et al. 2004; van Vuuren et al. 2011; Gillett et al. 2016).     

In the two most recent IPCC cycles, scenario experiments have been defined in terms of Representative Concentration 

Pathways (Moss et al. 2010), which define futures in terms of approximate end-of-century radiative forcing levels to provide 65 

a set of consistent scenarios to be used in climate research, and to provide multiple model-informed climate impact assessments 

at different warming levels.  In CMIP6, scenarios were jointly defined in terms of a 2 dimensional SSP-RCP space (SSPs 

(Riahi et al. 2017)), where RCPs (Representative Forcing Pathways) explored a wide range of global mean end-of-century 

radiative forcing targets and Shared Socioeconomic Pathways (SSPs) sampled sociological challenges to mitigation  and 

adaptation (O’Neill et al. 2016; Riahi et al. 2017).  70 

The SSP design is concentration-driven, with scenarios defined by their climate response.  For example, SSP1-2.6 is a scenario 

which is designed to achieve a radiative forcing of 2.6 Wm-2 in 2100.  This is achieved by linking the Integrated Assessment 

Model (IAM) with a simple climate model (SCM), to solve for a desired climate outcome (Riahi et al. 2017). To meet the 
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predefined climate target, the IAM-SCM integration is iteratively solved with either carbon emissions constraints or carbon 

price trajectories until the climate target is met with sufficient accuracy (“GCAM Documentation” n.d.; “IMAGE 75 

Documentation” n.d.; “MESSAGE Documentation” n.d.).  For the SSP design, all IAMs used the same simple climate model 

(MAGICC6.8) to ensure they reached the same forcing level in 2100 (Riahi et al 2017).  In the CMIP pipeline, the resulting 

emissions from each IAM SSP scenario are harmonized to a common historical dataset, any missing emissions infilled, and 

then multi-gas concentration pathways are estimated by a  common SCM (Meinshausen et al. 2020), to be used as boundary 

conditions for ESM simulations in future scenario projections, together with pre-computed spatial information on land use and 80 

aerosol emissions (Feng et al. 2020; Hurtt et al. 2020). 

The RCP framework was developed to allow computationally expensive ESM simulations to start computing simulations, 

while in parallel, Integrated Assessment Models (IAMs) were used to develop scenarios consistent with the RCPs. This step 

was felt necessary to ensure results were delivered in time for the IPCC Fifth Assessment Report (Moss et al., 2010).  As such, 

SSP-RCPs use concentrations as a definitional anchor point. In this framework, Earth System uncertainties as a function of 85 

concentrations are estimated by climate models (in practice, by the CMIP ensemble, Figure 1). This has pragmatic advantages 

in terms of coordinating research across climate disciplines, but excludes carbon cycle uncertainties.   The concentration-based 

framework has no structurally consistent mechanism for representing these uncertainties in a process-resolving fashion - the 

IPCC AR6 WG1 report relied on emulators which were informed indirectly by CMIP models, but climate and carbon 

uncertainties were independently calibrated(“IPCC AR6 Working Group 1: Technical Summary” n.d.).   90 

 

 
 
Figure 1: A conceptual illustration of the propagation of uncertainty using concentration and emissions-based anchor points 

1.1 The trouble with compatible emissions 95 

To date, CMIP phases have primarily represented anthropogenic emissions as a residual in concentration-driven simulations 

(P. Friedlingstein et al. 2006; Chris D. Jones et al. 2016), thereby computing ‘compatible emissions’ consistent with the 

prescribed concentrations.  This is achieved by assessing the residual flux of carbon which would be necessary to balance the 
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internal carbon budget of an ESM simulation which is run in concentration-driven mode.  However, in idealized simulations, 

these compatible emissions pathways often exhibit sharp discontinuities which render them less relevant to real-world carbon-100 

climate dynamics (Koven, Sanderson, and Swann 2023), and in scenarios there are often significant differences between the 

carbon cycle representations in the original IAM structure and the ESM, such that the compatible emissions are conceptually 

distinct from the original scenario design (Koven et al. 2022) (and Figure 2). For ambitious mitigation scenarios such as SSP1-

RCP2.6, these differences account for a significant variation in the total cumulative emissions consistent with the prescribed 

concentration pathway.  As the scenario literature increasingly focuses on mitigation strategy relevant to the Paris agreement 105 

(Rogelj, Huppmann, et al. 2019; Sognnaes et al. 2021), it becomes increasingly necessary for ESM simulations to accurately 

represent both historical emissions and the outcomes of emissions scenarios which are consistent with the socioeconomic 

trajectories they are meant to represent. 

A second issue with compatible emissions is the model-dependent ambiguity in their computation.  Because compatible 

emissions are computed as a residual, after accounting for carbon in the land surface, ocean and atmosphere, it is necessary 110 

that all models output the needed fields to account for the complete carbon budget.  However, not all models output biome 

integrated carbon fluxes - requiring their reconstruction from constituent components.  More fundamentally, there is 

inconsistency in the carbon pools and land use processes represented in different models - confusing the interpretation of the 

compatible emissions (Liddicoat et al. 2021). Furthermore, compatible emissions can only diagnose the fossil-fuel component 

(C. Jones et al. 2013). This meant for example that IPCC AR6 had to mix ESM output for diagnosed fossil fuel emissions and 115 

IAM-based scenario data on land-use emissions in creating synthesis figures such as WG1-SPM.7.  

In addition, ESMs calculate land use, land use change and forestry (LULUCF) emissions dynamically based on the changing 

land-use patterns which can markedly differ from the original LULUCF fluxes computed in IAMs (Quesada et al. 2018; 

Wilkenskjeld et al. 2014), and these differences are counterintuitively manifested in the compatible emissions which, in theory, 

should represent fossil fuel emissions.  This also means that compatible emissions calculated in SCMs are not comparable with 120 

ESM estimates, because aggregate LULUCF emissions are exogenously prescribed in most SCMs - creating discrepancies 

between SCM and ESM estimates of remaining carbon budgets for given warming levels (Millar et al. 2017). 
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Figure 2: Compatible emissions for a range of  scenarios and Earth System Models in CMIP6, showing the IAM internally calculated 
CO2 emissions (dotted black, combined fossil and land use), and the compatible emissions in CMIP6 ScenarioMIP simulations 125 
(colored lines), derived from concentration driven simulations but with a diagnostic carbon cycle that represents sources and sinks 
in the land and ocean and calculating residual emissions that would balance the model’s carbon budget.  Historical total 
anthropogenic emissions (P. Friedlingstein et al. 2022) are shown for context. 

Assessing compatible emissions for CMIP6 scenarios underlines that there are significant differences in the simulated 

compatible emissions amongst ESMs (Figure 2). For example, in the concentration driven SSP1-2.6 scenario in CMIP6, ESM-130 
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simulated net-zero dates measured in terms of compatible fossil fuel emissions ranged from 2076-2086, compared with the 

IAM estimate of 2076 (Gidden et al. 2019; van Vuuren et al. 2017) (Figure 2), resulting from differences between the IAM 

and ESM representations of carbon-climate dynamics.    

The only emissions-driven scenarios in CMIP6 took place as part of C4MIP (Chris D. Jones et al. 2016) , repeating high 

emissions scenarios (esm-SSP5-RCP8.5) and an extreme overshoot scenario (esm-SSP5-RCP3.4-over) with a small subset of 135 

models.  Notably, these scenarios were chosen to inform assessments of carbon feedbacks under high emissions (but they are 

not themselves considered to represent realistic near-term futures (Hausfather and Peters 2020b)).  As a result, multi-model 

ESM results from the CMIP6 scenario effort as presented in IPCC-AR6-WG1 (e.g. AR6-WG1-Fig4.11) exclude an assessment 

of carbon cycle uncertainty (Tebaldi et al. 2021; Lee et al., n.d.).  Where carbon-climate feedbacks were considered in IPCC 

consideration of SSP projections (e.g. AR6-WG1-Fig4.35), this was achieved by probabilistic SCM ensembles informed by 140 

idealized ESM experiments to inform carbon feedback parameter uncertainty (Chris D. Jones et al. 2016; P. Friedlingstein et 

al. 2006; “IPCC AR6 Working Group 1: Technical Summary” n.d.).   

In this perspective, we argue that the increasing sophistication and stability of emissions-driven model configurations relevant 

for modelling greenhouse gas cycles means that this approach can now be reassessed.  The urgent need for process-based 

information on the mitigation effectiveness of fossil fuel emission reductions, carbon dioxide removal, and land use policies, 145 

requires a framework for the increased inclusion of emissions-driven experiments in upcoming CMIP cycles, in the presence 

of heterogeneous model complexity, timeline constraints and technological challenges.  

2 The need for emissions-driven ESM scenarios 

Climate policy is framed in terms of emissions - naturally focussing on the elements that can inform mitigation decisions, such 

as emission benchmarks, carbon budgets and the timing of net-zero. In addition, emissions-driven climate metrics (Arora et 150 

al. 2020) such as the transient climate response to cumulative emissions of carbon dioxide (TCRE, (Chris D. Jones and 

Friedlingstein 2020) and the Zero Emissions Commitment (ZEC, (Chris D. Jones et al. 2019) are important and policy-relevant 

summary quantifications of the Earth System response to climate mitigation efforts.   As of today, countries have committed 

to achieving climate targets, including net-zero targets, under the Paris Agreement, that constrain the future emissions space. 

Consistency of simulations with policy constraints is key to providing policy relevant information.  155 

However, the dominance of concentration-driven scenarios means that CMIP6 does not contain self-consistent simulations of 

mitigation strategy and their climate outcome in Earth System Models.  As a result, though IAM simulations already frame 

scenarios in terms of emissions pathways (Sognnaes et al. 2021), the simplified internal representation of climate and carbon 

processes does not allow for a comprehensive assessment of the underlying carbon cycle uncertainties associated with the 

scenario tradeoffs, generally relying on simple climate models to represent uncertainty in carbon-climate feedbacks  (Nauels 160 

et al. 2017; Bodman, Rayner, and Jones 2016; Damon Matthews et al. 2021; Duncan Watson-Parris and Smith 2022), where 

idealized ESM results may be indirectly used in the calibration of the simple climate model parameter distributions.  However, 
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while this approach is convenient, bypassing process-resolving carbon cycle uncertainty in the assessment of mitigation 

strategy outcome has risks.  A CMIP ensemble with a primary focus on emissions-driven scenarios, starting with CO2 

emissions in CMIP7 but with a longer term objective to represent human activity through diverse emissions or land 165 

management, would allow ESM scenarios to represent real-world climate policy and its outcomes.   

2.1 Key science needs for emissions-driven models 

This emission-driven CMIP7 strategy would enable four key scientific benefits, which we outline in this section: 1) process-

resolved assessment of carbon removal assumptions which underpin the capacity for climate temperature overshoot, 2) trade-

offs between fossil fuel emissions, carbon removals, land use change, and short lived climate forcers on regional scales 170 

including relevant feedbacks, 3) integrated process-resolution of system thresholds, nonlinearities, and risks which might 

exacerbate climate impacts and modify Earth System feedbacks in warmer climates and 4) relevant simulations to inform the 

verification of mitigation activity. 

2.1.1 Qualifying assumptions on carbon removal and overshoot 

The plausibility and effectiveness of the gigatonne-scale carbon dioxide removal implied by mid- to high-mitigation scenarios 175 

is a key uncertainty (Marcucci et al. 2019) for end-of-century warming outcomes, given that the majority of the world’s 

economy has pledged net-zero CO2 or GHG targets which are themselves conditional on significant amounts of carbon dioxide 

removal (Grant et al. 2021).   Increasingly, this assumed feasibility of net global removal of carbon extends to climate overshoot 

pathways, where the temperature limits of the Paris Agreement are temporarily exceeded.   High level communication of 

climate science often frames the possibility of a temperature overshoot as a given; for example headline statement B.7 of the 180 

IPCC AR6 synthesis report presents the option of temperature overshoot in certain terms: “If warming exceeds a specified 

level such as 1.5°C, it could gradually be reduced again by achieving and sustaining net negative global CO2 emissions.” .   

The plausibility of large scale CDR is subject to uncertainties which are not captured in the current IAM and ESM modeling 

framework.  Interventions will cause biophysical and biogeochemical feedbacks on  the climate system that are not currently 

represented by the IAM-simple climate models used to define scenarios (Koch, Brierley, and Lewis 2021; Luyssaert et al. 185 

2018; Melnikova et al. 2023).   

For land-based CDR approaches, the carbon sinks assumed within IAMs for a given land use transition are themselves subject 

to climate-induced risks due to warming (drought, wildfire, insect outbreaks (Anderegg et al. 2022; Nathan G. McDowell and 

Allen 2015; Nate G. McDowell et al. 2020) which are not taken into account in IAM scenarios which rely on approaches such 

as Bioenergy Carbon Capture and Sequestration (BECCS) for large scale carbon removal (Kato and Yamagata 2014; Muri 190 

2018).  In addition, carbon sink strengths themselves respond dynamically to emissions and removals of gases through carbon 

concentrations, aerosol forcing, and surface ozone (Sonntag et al. 2018; Mengis et al. 2019; O’Sullivan et al. 2021; Zhang et 

al. 2021) - dynamics which can only be represented in an emission-driven, process resolving model structure.  
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We can illustrate in Figure 3 the scale of these potential uncertainties in the feasibility of land-based CDR capacity using a 

pair of scenarios from CMIP6; the highest emission member of the ScenarioMIP ensemble SSP5-RCP85 and the extreme 195 

overshoot scenario SSP5-3.4-overshoot (Kriegler et al. 2017; Riahi et al. 2017), which assumes a significant amount of BECCS 

is deployed in the latter half of the 21st century (with bioenergy crop production of 9PgC/yr  by 2100).  The assumed carbon 

removal in the IAM notably exceeds the difference between ESM simulated harvest flux in SSP5-85 (where there is no 

deployed BECCS) and SSP5-34-over in all 3 of the models considered (difference between purple and red lines, Fig. 3).  For 

one model (CESM2-WACCM), the assumed BECCS flux in SSP5-34-over exceeds the total harvest production simulated in 200 

that scenario (including all energy and food-based crops).  Though this scenario pair represents an extreme overshoot, it 

illustrates that IAM assumptions about available CDR capacity may at best be inconsistent with ESM simulated fluxes, and at 

worst completely unphysical. 
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 205 
Figure 3: (a) An illustration of total harvest carbon flux as simulated in the SSP5-34-overshoot (solid) and SSP5-85 (dashed) scenarios 
as simulated by the REMIND-MAGPIE integrated assessment model (black lines), compared with estimates from 3 climate models 
(colored lines) which completed both simulations.  (b) colored lines show the simulated difference in ESMs between harvest carbon 
flux in SSP5-34-overshoot and SSP5-85.  Black lines show bioenergy harvest in the REMIND-MAGPIE IAM for SSP5-34over (solid), 
SSP5-85 (dashed - negligible in this scenario) and the net carbon removal from BECCS (dotted).   210 
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Ocean carbon balance is also conditional on the climate state and wider mitigation efforts.  If net negative emissions are 

achieved over the land, dissolved carbon will likely be released from the oceans, acting to counter removal efforts (Vichi, 

Navarra, and Fogli 2013).  Ocean based CDR suggestions such as alkalinity enhancement (Fakhraee et al. 2023; Hartmann et 

al. 2023) or iron fertilization (Emerson 2019) are also conditional on the wider climate state and can have significant non-local 215 

effects on the wider biosphere (Keller, Feng, and Oschlies 2014). 

Issues over the feasibility of CDR at scale are compounded by uncertainties in the response of the Earth System to extended 

periods of net zero or net negative emissions.   Much of current understanding stems from highly idealized ESM experiments 

which have been conducted by only a subset of models (Chris D. Jones et al. 2019; Keller et al. 2018).  Such experiments show 

that Earth System response to net negative emissions is complex and likely asymmetric, but the lack of extensive process-220 

based ESM simulations of response to net negative emissions leaves significant uncertainties where SCMs and emulators have 

not been extensively tested or validated.  Such uncertainties have bearing on the feasibility of a temperature overshoot, both 

in terms of the level of mitigation needed to stabilize warming (Jenkins et al. 2022) and the relative timing of net-zero and 

peak warming (Koven, Sanderson, and Swann 2023).   

The current framing mostly neglects the coupled dynamics between carbon removal and the wider climate state,  meaning that 225 

its utility as a decision-informing exercise is fundamentally limited.  As such, concentration-driven mitigation scenarios created 

through the existing modeling chain may assume land-use and management carbon fluxes from the IAM which are impossible 

to achieve with the ESM (and perhaps reality) due to ecophysiological limitations of vegetation in a changing climate.  An 

emissions-driven framework would directly assess these risks associated with land-based carbon mitigation (such as through 

afforestation, reforestation, forest management, biochar, agricultural soils or BECCS). 230 

An emissions-driven framing is naturally suited to process representation of carbon dioxide removal methods (especially for 

those methods which rely on the manipulation of natural systems which are to some degree resolved within Earth System 

Models).  Some of these (such as afforestation) are already represented within most ESMs, while others (BECCS, soil carbon 

enhancement, terrestrial and marine alkalinity enhancement, blue carbon enhancement) are represented to a lesser degree or 

not at all.  A dedicated activity within CDRMIP could assess the effectiveness of different approaches in a semi-idealized 235 

context under different climate background states.  Such an activity could aid in the interpretation of emissions-driven scenario 

simulations in CMIP7 and provide a pathway to the inclusion of a wider range of CDR technologies in CMIP8 and beyond. 

2.1.2 The need for activity-driven scenarios 

The ‘illustrative pathways’ provided by the IPCC special report on 1.5 Degrees of Global Warming (V. Masson-Delmotte et 

al. n.d.) and in the 6th Assessment Report (Wgiii n.d.) span a range of trade-offs between energy system change, economic 240 

growth, and carbon dioxide removals.  However the SSP-RCP framework used to sample scenarios in CMIP6, by design, 

assumes that the physical climate space sampled by ESMs can be defined in terms of a single dimension of end of century 

radiative forcing level.   
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However, pathways with similar end of century global mean temperature outcomes can be subject to divergent physical 

climates and ecological responses.  For example, land mitigation strategies have a joint effect on both the carbon cycle, regional 245 

climates (D. Li and Wang 2019) and competition for land use and food security (Qi et al. 2018).  The relative level of ambition 

and timing of mitigation for different greenhouse gases can change the timing and emergence of climate impacts (Lund et al. 

2020) and how (or if) to combine these commitments is a critical challenge for mitigation (Allen et al. 2022).   

Human activity changes which impact aerosol emissions can have a marked effect on regional patterns of climate change (Liu 

et al. 2018), and shifts in centers of aerosol emissions can have significant impacts on observed rates of warming and regional 250 

precipitation changes which can compound and modify the background greenhouse gas effects (Bjørn H. Samset et al. 2019).  

Aerosol processes can also be intricately linked with carbon uptake (O’Sullivan et al. 2021; Zhang et al. 2021), impacting both 

the interpretation of past carbon cycle evolution and future carbon uptake in areas with large aerosol concentrations/surface 

ozone (e.g. S. Asia/Africa).  

These dimensions increasingly dominate many of the most pressing questions in climate policy, and process resolving ESMs 255 

are in a unique position to provide self-consistent assessments of climate policies which have both regional, temporal, and 

species dimensions.  Constructing scenarios which fully explore these dimensions requires scenario definitions which go 

beyond end-of-century forcing or temperature level implied in a concentration pathway.  Rather, mitigation strategy needs to 

be defined in terms of activity and consequence: where human activities include fossil fuel and other industrial emissions, 

combined with regionally resolved descriptions of land use change and management. 260 

The hybrid approach proposed in this study considers a set of headline experiments in CMIP7 which are preferentially driven 

by carbon and aerosol emissions, with prescribed values for other atmospheric components.  Such an approach would be 

supported by continued activities in RFMIP (Pincus, Forster, and Stevens 2016) to provide diagnostics of global aerosol 

emissions-forcing-feedback dynamics, but also in AerChemMIP (Collins et al. 2017) which in CMIP6 assessed the role of 

aerosol forcing process uncertainty in future simulations.   Finally, there are some activities which did not exist under the 265 

CMIP6 platform which could be highly valuable in the increased understanding of emissions-driven processes.  A dedicated 

activity to assess the role of regional aerosol emissions in this uncertainty (Wilcox et al. 2022) would address the growing 

consensus that shifts in regional emissions intensity has a large and detectable climatic impact (Bjørn H. Samset et al. 2019).   

And, for those models capable, dedicated activities to assess the coupled dynamical response of the Earth System to non-CO2 

gases such as N2O and CH4 would provide critical groundwork for their eventual representation in following CMIP activities. 270 

2.1.3 Resolving compound tipping points and adaptation challenges as a function of emissions 

The potential for nonlinearities and tipping points in the climate system is frequently raised as a motivator for urgent emissions 

cuts (Lenton et al. 2019), and often framed in terms of temperature thresholds (for example, in discussion of whether rapid and 

irreversible changes might be triggered if 1.5C of warming above pre-industrial levels is exceeded (Armstrong McKay et al. 

2022)) - but introducing previously ignored nonlinearities can complicate how thresholds defined in terms of temperature map 275 

onto mitigation risks.  Some of these previously discussed system thresholds have the potential to alter global scale carbon-
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climate feedbacks and dynamics e.g. the risk of crossing cryosphere thresholds (Kloenne et al. 2022), forests may be subject 

to dieback or changes in carbon sink efficacy (Chai et al. 2021) and increased stratification of the ocean may change its heat 

and carbon uptake dynamics (Bourgeois et al. 2022).    

As such, tipping points and emissions are intricately tied together and Earth System Models are natural tools for simulating 280 

how they might interact, with increasingly complete and sophisticated process resolution for ecosystem and cryosphere and 

ocean processes.  Understanding how these nonlinearities combine, and relate to a wider mitigation strategy requires the 

processes to be simulated in a self-consistent framework in the context of a emissions-driven mitigation scenario where carbon-

climate feedbacks are interactively resolved. 

This argument extends to adaptation planning, where ESM results from concentration-driven simulations are often currently 285 

framed in terms of expected impacts at given warming levels (Jevrejeva et al. 2018; Lwasa et al. 2018; Valérie Masson-

Delmotte et al. 2022; Travis, Smith, and Yohe 2018) rather than impacts under given emissions pathways (Drouet et al. 2021; 

Wiebe et al. 2015).  As such, adaptation planners have no simple means of assessing the range of plausible hazards consistent 

with a given level of climate policy. Emissions-driven simulations could help fill this gap, while still allowing impacts to be 

framed in terms of warming levels as they are with existing ensembles. 290 

2.1.4 Verification of emissions reductions 

The 2028 Global Stocktake will be the next major global assessment of progress towards Paris Agreement goals.  This requires 

increasing understanding of how to quantify and verify national emissions reductions.   Existing approaches for the detection 

and attribution of observed climate changes to different historical anthropogenic activities rely predominantly on models in 

concentration driven mode (Hegerl and Zwiers 2011).  However, with increasing focus on mitigation activity and the 295 

verification of reductions in terms of climatic variables (such as greenhouse gas concentrations, temperatures or heat 

uptake)(Peters et al. 2017), it makes sense to consider the detection problem in terms of emissions - when can the benefits of 

mitigation activity be observed?  

As climate mitigation ambition ramps up, there is a growing expectation that emissions will change their recent historical 

trend, initially with slower growth, then a peak, followed by a decline.   Already, global CO2 emissions have slowed from 3% 300 

per year growth in the 2000s to 1% per year growth in the 2010s (Pierre Friedlingstein et al. 2022). An increasingly relevant 

question will then be to what degree any  reductions will be detectable in terms of observed climate variables and  near-term 

warming (McKenna et al. 2020; B. H. Samset et al. 2022)  and, potentially, climate impacts themselves (Mendez and 

Farazmand 2021; Ciavarella, Stott, and Lowe 2017).  These questions are of relevance for the justification of climate policy, 

both globally and at the country level, and for planning for potential near-term impacts and for assessments of liability for 305 

climate damages.  

Modeling to support such activity requires a joint assessment of land, ocean and atmospheric carbon pool and human activity 

in a self-consistent framework (T. Ilyina et al. 2021).  Land sinks are of particular relevance in the context of the Global 

Stocktake process which assesses national-level progress in the context of meeting obligations under the Paris Agreement.  In 
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this process, many countries offset a fraction of their emissions using managed land within their borders which is currently 310 

assessed to act as a carbon sink (Grassi et al. 2021).  Understanding the robustness of these sinks in present and future divergent 

climates is thus critical in assessing the degree to which countries can rely on such sinks to substitute for emissions reductions 

on different timescales (Giebink et al. 2022).   

In the atmosphere, efforts to detect emissions reduction from globally averaged atmospheric concentrations have not yet 

succeeded. It was expected that a two percentage point change in the growth rate of CO2 emissions could be detected in the 315 

atmosphere with reasonable confidence after about 10 years (Peters et al. 2017). A possible explanation for the lack of signal 

is our inability to fully model and explain the inter-annual variability in climate-carbon feedbacks, which could be offsetting 

a part of the expected change in trend (Spring, Ilyina, and Marotzke 2020). In the years ahead, when emissions are hopefully 

declining, there will be a need to understand how the carbon cycle may respond with  carbon-climate feedbacks potentially 

offsetting some of the expected declines in the atmospheric growth rate.  Such experiments have to date been idealized (Keller 320 

et al. 2018; Chris D. Jones et al. 2019), but there remains a need for integrated simulation to explore the interaction of natural 

carbon feedbacks with process-resolving CDR and non-CO2 emission pathways. 

To date, attempts to verify emissions reductions as a function of atmospheric concentrations have been conducted in simple 

climate models (Abdulla et al. 2023), by adjustments computed from compatible emissions in Earth System Models (Spring, 

Ilyina, and Marotzke 2020) or by using atmospheric inversion models to compute emissions consistent with prescribed 325 

concentrations (Deng et al. 2022).  Each of these is a pragmatic approach to verifying emissions reductions, but none provide 

a fully self-consistent internally generated representation of the chain of causality from emissions to concentrations.    

 Such questions could be addressed in DAMIP (Gillett et al. 2016)) or other activities using a combination of idealized and 

realistic simulations: (1) idealized experiments where CO2 emissions reduce at a fixed rate to detect timing of signal emergence, 

(2) emissions-driven single forcer experiments to assess the detectability and linearity of the historical climate response to 330 

different anthropogenic emissions.  As such, emissions-driven simulations would provide a critical complement to existing 

verification efforts, potentially including counterfactual scenarios which could illustrate when mitigation policy 

implementation becomes detectable in terms of atmospheric concentrations or climate impacts (Tebaldi and Friedlingstein 

2013). 

3 The coming of age of emissions-driven Earth System Models 335 

Past CMIP phases designed experiments to exploit the existing modeling capacity in major Earth System modeling 

centers at the time of experimental design, motivated by dominant uncertainties and pilot studies in the literature 

(Meehl et al. 2007; Taylor, Stouffer, and Meehl 2012; Eyring et al. 2016). Early climate simulations used atmospheric-only 

models to diagnose radiative feedbacks (Cess et al. 1989).  CMIP2 era coupled experiments generally exploited radiative 

flux corrections to maintain a stable ocean temperature (Covey et al. 2003), and a parallel Atmospheric Model 340 

Intercomparison Project (AMIP) process remained to understand atmospheric feedbacks without the added complexities 
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of ocean coupling (Lawrence Gates et al. 1999).  The presence of an intercomparison project fostered rapid 

improvements in coupled simulation such that by the time of the CMIP3 ensemble (Meehl et al. 2007), there was 

increasing acceptance that resolving coupled ocean-atmosphere processes was key to understanding climate 

projections (Frame et al. 2006), and models were rapidly advanced so that they could  maintain stable climates without 345 

flux corrections.   

Over the last 20 years, the scope of process resolution in climate models has further expanded (Figure 3), and the increasing 

complexity of both atmospheric chemistry and aerosol treatment has increased the degree to which some emissions are already 

represented in many climate models and interact with climate feedbacks (Thornhill et al. 2021).  The evolution of aerosol 

treatment from CMIP3 to CMIP5 to CMIP6 has seen a non-uniform tendency for models to represent aerosol indirect effects 350 

on clouds, and emissions-driven aerosol processes (interactive treatment of aerosols have been included in some fraction of 

Earth System Models since CMIP5 (Eyring et al. 2016), and stratospheric aerosols have been included since CMIP3 (Meehl 

et al. 2007)).  CMIP6, in particular (Eyring et al. 2016) introduced an tiered experimental design which accommodated models 

with varying levels of aerosol and atmospheric chemistry implementation in scenario experiments, supported by dedicated 

sub-MIPs to assess processes (in AerChemMIP) and effects of different forcers (in RFMIP). 355 
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Figure 4: the evolving dominant paradigm in different generations of CMIP, including this study’s recommendations for CMIP7 
and CMIP8 

3.1 Default coupled carbon cycle modeling in CMIP 

Past phases of CMIP have defaulted to concentration-driven scenarios, but models capable of running with a closed and 360 

interactive carbon cycle  have been developed by some centers for over two decades (Cox et al. 2000), with intercomparison 

efforts for coupled carbon Earth System Models coming soon after (P. Friedlingstein et al. 2006; C. D. Jones 2020).   However, 

despite increasing acknowledgment of the central role of coupled climate-carbon dynamics in determining the outcome of 

mitigation policies (Allen et al. 2009; Holden et al. 2018), only 19 out of 82 CMIP6 model configurations participated in the 

Coupled Climate–Carbon Cycle Model Intercomparison Project (C4MIP) in CMIP6 (“Cmip6 Data Search” n.d.), though these 365 

models vary in resolved processes (12 resolving carbon-climate interactive feedbacks, 5 resolving phytoplankton biophysical 

interactions, 3 resolving biogenic aerosol-cloud feedbacks and no models representing  non-CO2 biogeochemical cycle 

feedbacks (Séférian et al. 2020)).    
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The operational computational cost of modeling Earth System Processes is a factor in development priorities, but is not 

prohibitive.  The most notable increase in expense (relative to physics-only simulations) in simulating the carbon cycle arises 370 

due to the number of  tracers required in the biogeochemical models (Kwiatkowski et al. 2014).   As such, an ESM 

configuration requires some tradeoffs between horizontal and vertical resolution, number of tracers and the complexity of 

chemistry and aerosol representation- with the potential for multiple configurations with comparable computational costs with 

focus on Earth System processes or  resolution respectively (Dunne et al. 2020).  However, because for most CMIP-class 

models, the atmospheric component is significantly more expensive (Danabasoglu et al. 2020; Dunne et al. 2020; Hedemann, 375 

Hohenegger, and Ilyina, n.d.), land and ocean biogeochemistry (BGC) can be run in parallel with the atmosphere - somewhat 

increasing the CPU requirements, but not the overall run-time of the simulation on parallel High Performance Computing 

(HPC) systems. 

Recent ESM development efforts have shown that spinning up oceanic carbon cycles can be achieved on the same timescale 

as for deep ocean heat content, which is necessary for any atmosphere-ocean coupled configuration (Lindsay et al. 2014; Yool 380 

et al. 2020)) (although the exact details of how spinup is achieved can impact residual trends (Séférian et al. 2016)).   Moreover, 

there are a number of promising efforts to accelerate the  spinup of the physical ocean (Lindsay 2017; Singh et al. 2022) and 

land (Lu et al. 2020; Sun et al. 2023), further lowering the technical barriers to contributing with stable interactive carbon 

configurations.  Other efforts have improved the parallelisation of BGC tracers (Linardakis et al. 2022) and grid coarsening 

(Berthet et al. 2019)- allowing for the better exploitation of HPC infrastructure to run more comprehensive carbon resolving 385 

simulations without increases in wallclock time. 
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Figure 5: Carbon dioxide concentrations (a) and temperature anomalies (c) in emissions-driven historical simulations in CMIP6, 
and temperature anomalies concentration-driven historical simulations (b).  Temperature anomalies (Cowtan and Way 2014) are 
calculated from the 1850-1900 average. 390 

 

Another perceived challenge is the additional degrees of freedom associated with calibrating the coupled climate-carbon cycle 

system to reproduce both the joint evolution in historical concentrations of climate forcers and the historical warming increases.  

CMIP6 esm-historical simulations show most models (10 out of 13 models in C4MIP) fall within a range of CO2 concentration 

range of 40ppm.  Although this is significantly greater than the observational uncertainty (about 0.1ppm(Pierre Friedlingstein 395 

et al. 2022; Lee et al., n.d.)), it is not a significant factor in the model uncertainty in warming represented by the distribution 

of historical warming in CMIP6  simulations and their concentration-driven historical analogs for models which completed 

both experiments (Figure 5b,c) - indicating that CO2 biases from prognostic carbon are not a major source of error in 

reproducing historical warming trends compared with other factors such as climate sensitivity or historical forcing which 

dominated biases in CMIP6 (Papalexiou et al. 2020). 400 
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Nonetheless, emissions-driven experiments in the ‘central’ DECK/Historical part of CMIP6 were limited to esm-historical and 

esm-picontrol (Eyring et al. 2016).    Further, the DECK required independent picontrol and esm-picontrol simulations from 

an ESM, and highlighted the importance of large ensemble sampling for the historical simulation.  In practice, for models 

which conducted the ESM historical simulation esm-hist, it was generally without initial condition sampling - presenting an 405 

obstacle for the assessment of the role of internal variability in carbon cycle feedbacks, and for signal emergence of coupled 

Earth System processes (H. Li and Ilyina 2018) and near-term initialized climate prediction systems (H. Li et al. 2023) which 

enable near-term prediction of atmospheric CO2 concentrations,  air–sea and  air–land carbon fluxes.   

The limited ESM-DECK experiments in CMIP6 were supported by process understanding from idealized carbon cycle 

feedback experiments, including the globally aggregated effects of idealized carbon dioxide removal in CDRMIP (Keller et 410 

al. 2018), metrics of carbon cycle feedbacks in C4MIP (Chris D. Jones et al. 2016)and ZECMIP (Chris D. Jones et al. 2019) 

and the physical  and carbon effects of land use change in LUMIP (Lawrence et al. 2016)and LS3MIP (van den Hurk et al. 

2016).  Although C4MIP included some emissions-driven scenarios - (esm-ssp585  and esm-ssp534-over), these represent very 

large near-term emissions which are distant from contemporary policy discussions (Hausfather and Peters 2020a).  

As such, we argue that in order to provide robust information for both adaptation and mitigation, it is equally important to 415 

sample inter-model uncertainties in future atmospheric CO2 concentrations as for the physical climate response to a single 

trajectory of CO2.  This requires a change in prioritization in the DECK, ScenarioMIP, and elsewhere in CMIP, with default 

control, historical, and projection simulations run in emissions-driven configuration, with concentration driven options used 

as a fallback for models which cannot process emissions.  Such a reprioritization would enable modeling centers to more 

efficiently use resources to focus on Earth System uncertainties (including physical and carbon cycle elements), rather than 420 

splitting resources.  

3.2 The need for a post-CMIP6 coordinated effort on activity-driven carbon cycle modeling 

The status quo which defined the default configurations in CMIP6 and earlier phases is now changing. Models can increasingly 

resolve vegetation and soil carbon dynamics including permafrost, as well as marine biogeochemical cycles.  For many ESMs, 

the capability to represent these processes now exists, but relatively little work has been done thus far to comprehensively 425 

understand how this complexity impacts the trajectory of climate, especially under deep mitigation scenarios, geoengineering 

proposals, and overshoots. 

ESMs can potentially add self-consistent process resolution to a wide range of carbon processes which are currently resolved 

in scenarios in an ad hoc and  quasi-empirical fashion.  ESMs are already well placed to resolve natural land and ocean carbon 

sinks, and are operationally used to quantify these terms today (Pierre Friedlingstein et al. 2022).  But in addition to this, they 430 

can directly inform the effectiveness and uncertainty associated with land use and management policy, and their coupled 

interaction with natural sinks (Lawrence et al. 2016).  Beyond this, many high ambition scenarios contain significant 
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requirements for explicit representation of carbon dioxide removal (Fuss et al. 2014; Anderson and Peters 2016) whose 

plausibility can potentially be assessed when represented in an Earth System Model (Muri 2018).   

An emissions-driven scenario framework would allow for the explicit representation of different forms of human activity 435 

associated with carbon mitigation, and much of this has already been demonstrated using subsets of ESMs.  Carbon removal 

technologies (such as bioenergy carbon capture and storage) could largely use existing models combined with sub-annual 

harvest cycles, harvest-age for woody biomass, and a dedicated pool to represent underground carbon storage.  Others, such 

as cultivation and harvesting of oceanic algae (J. Wu, Keller, and Oschlies 2023) or ocean alkalinity enhancement (Keller, 

Feng, and Oschlies 2014; Tatiana Ilyina et al. 2013; Burt, Fröb, and Ilyina 2021; González et al. 2018), could be represented 440 

with explicit parameterisations (J. Wu, Keller, and Oschlies 2023).  And, as discussion of the ethics and risks of solar radiation 

management intensify (Reynolds 2021; Sovacool 2021), understanding the interaction between geoengineering and ecosystem 

processes is of paramount importance (Zarnetske et al. 2021) where coupled ESMs are essential in any comprehensive cost-

benefit assessment (Sonntag et al. 2018).  

Thus, although there is a large and growing body of work assessing mitigation strategy in the context of emission-driven 445 

models, much of this to date has been in the context of isolated ESM experiments which do not capture multi-model 

uncertainty.  By adopting a default emissions-driven design, CMIP7 could directly inform the coupled system risks associated 

with the range of carbon removal and geoengineering strategies which increasingly play an outsized role in the mitigation 

debate. 

4 Modeling needs for CMIP7 and beyond 450 

CMIP7 is the next phase of the Coupled Model Intercomparison Project.  Though a timeline is not yet officially defined, results 

would be relevant to inform both the seventh assessment cycle of the IPCC and potentially the Global Stocktake in 2028.  This 

requires the development, calibration and simulation of forcing datasets, Integrated Assessment Model and Earth System 

Model simulations in time to contribute to reports and assessments informing these international activities. 

4.1 Tradeoffs and synergies with high resolution climate modeling objectives 455 

Efforts to improve emissions-driven process representation are complementary to other areas of climate model development 

which have been documented elsewhere and address other key knowledge gaps: the need for kilometer-scale resolution of 

future climate impacts (Schär et al. 2020) , the quantification of parametric uncertainty (Yamazaki et al. 2021), robust sampling 

of internal variability (Deser et al. 2020) and making best use of machine learning for computational efficiency and climate 

model performance (Harris et al. 2022; Eyring et al. 2021).  Some groups have gone further to suggest that climate modeling 460 

efforts must pivot to centralized ‘digital twins’ conducted by a small number of modeling centers to provide global simulations 

at kilometer scale resolution (Bauer, Stevens, and Hazeleger 2021). 
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However, we argue here that it is impossible to address all of the current knowledge  gaps with a single modeling strategy 

focused on delivering results at a convection-permitting resolution.  To illustrate, Figure 6 shows the approximate current 

tradeoff between horizontal resolution and throughput on current high performance computational infrastructure.  For the 465 

operational CMIP6 resolution in the range of 50-100 km grid size, models on current representative operational modeling 

center hardware achieve between 1-100 simulated years per day.  This allows the production of ensembles of century scale 

simulations on a timeline of weeks to months.  Current highest resolution 3 km ‘convection permitting’  models achieve 1-10 

simulated days per actual day on current High Performance Computing Architecture (Stevens et al. 2019; Caldwell et al., n.d.) 

(forecast models such as IFS(C. D. Roberts et al. 2018) use approximations to achieve longer timesteps which allow an order 470 

of magnitude higher throughput, but these approximations are debated for climate applications(Stevens et al. 2019) ).  Allowing 

for the historical exponential growth of 100 times per decade in computing capacity to continue for the next 20 years (itself a 

debate (Theis and Wong 2017)), and assuming model performance could scale perfectly to utilize all additional performance, 

it would require until 2040 for 3 km convection permitting models to achieve the CMIP6-class throughput of 1-100 simulated 

years per wallclock day.  Global convection resolving models at a 1km resolution might be expected to be 10-100 times slower 475 

than convection permitting models (barring unforeseen advances), hence they should not be expected to produce CMIP6-style 

run lengths and ensemble sizes even by 2040. 

As such, a near-term singular focus on any single axis of climate model development would come at the expense of significant 

gaps in knowledge and in our ability to perform climate risk assessments, and in our capacity to have confidence in the range 

of possible climate mitigation outcomes.  Computational and human limitations dictate that not all of these goals can be 480 

fulfilled with the same type and resolution of model. 

However, coarse-scale Earth system models continue to have long-standing systematic errors (Stouffer et al. 2017; Eyring et 

al. 2021) and simulate a  large spread in effective climate sensitivity (Schlund et al. 2020), mainly due to unresolved subgrid-

scale processes (e.g., clouds and convection). New approaches exist to improve the models with Machine learning  (Eyring et 

al. 2021; Gentine et al. 2018; Reichstein et al. 2019), (Schlund et al. 2020). Short simulations from global high-resolution 485 

climate models might be of limited use in isolation for the projection of future climate evolution and risks, but together with 

observations, they can serve as information to develop ML-based parameterizations that are then incorporated into coarser-

scale Earth system models with demonstrated improved performance compared to the original Earth system model (Gentine 

et al. 2018).  The development of hybrid (physics + ML) Earth system models could thus ideally complement the approach 

proposed here, enabling large run-lengths and ensemble sizes needed for robust climate risk assessments that complement km-490 

scale climate modeling activities.. 
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Figure 6: Illustration of the trade-off between resolution and simulated years using current and projected future computational 
capacity.  Horizontal axis shows the horizontal resolution, estimated as the square root of the area of the largest gridcell, vertical 
axis shows the simulated years per wallclock-day as reported from operational flagship simulations (see Table B1.).  Climate models 495 
are filled circles, weather forecast models are open circles.  Dotted black line shows the fitted linear relationship between 
log(resolution) and log(throughput).  Red  and gold dotted lines show transposed fit for a 100 and 10,000 times increase in 
computational power respectively (assuming perfect scaling of model performance). 

 

Here we argue that the current 50-100km resolution ‘CMIP’ class of climate and Earth system models should continue as a 500 

pillar of climate information in parallel to high resolution activities.  This class of model would be of greater value if scenarios 

were, by default, conducted in emissions-driven mode for those models with the technical capacity.   

4.2 IAMs and scenario development 

Emissions-driven simulations to date in CMIP have been highly idealized (e.g. ZECMIP(Chris D. Jones et al. 2019)).  An 

emissions-driven focus allows coupled system processes to be represented in policy relevant scenarios, but this requires a 505 

refinement in the way that scenarios have traditionally been framed and categorized (O’Neill et al. 2016).  In emissions-driven 

mode, ESM simulated concentrations, radiative forcing, and temperature will differ from the original IAM simulation (Figure 

7c).   As such, emissions-driven scenarios should be categorized in terms of their policy strategies (e.g, net-zero dates and land 

use strategy), not backcasted from pre-defined climate outcomes, a fundamental shift in how scenarios are categorized.  In 

practice, the policy strategies implemented internally in IAMs would still be informed by a climate outcome (e.g., Paris 510 
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compliant scenarios), perhaps assessed using a simple climate model - but process uncertainties represented within the 

downstream ESM ensemble simulation may illustrate that some policies targeted at a given warming level are more robust 

than others (e.g. scenarios which rely heavily on afforestation which may or may not achieve desired carbon outcomes in all 

ESMs) or may have different negative impacts on other aspects of the global environment (e.g. air quality or food production 

capacity). 515 

It is notable that some IAMs already contain process-based land surface models to inform land use emissions estimates 

(Stevanović et al. 2016).  A key distinction in the emissions-driven framework would be that land use transitions (in addition 

to fossil CO2 emissions), are provided by the IAM system - allowing a diversity of land use emissions to be simulated in the 

ESM ensemble (rather than the status quo where a single set of land use emissions are computed by the IAM)  thus modeling  

the uncertainty in climate implications of land-use transitions. 520 
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Figure 7: Stylized illustrations of the historical (a,b) and proposed (c,d) information flow for CMIP. (a) shows concentration-driven 
modeling pipeline with prescribed aerosols common in CMIP3 (b) shows concentration-driven modeling pipeline with interactive 
aerosols common in CMIP5,6 (c)  a proposed scenario pipeline for emissions driven simulations in CMIP7 with carbon emissions 525 
but maintaining concentration definitions for non-CO2 greenhouse gases (d) a proposed CMIP8 pipeline, with complete emissions 
driven configuration and process based implementation of CDR and SRM approaches 
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4.3 A coupled climate-carbon ESM representation for CMIP7 

We argue that carbon-climate interactions and feedbacks are central to how the coupled Earth system will evolve in the future 

and therefore need to be central to CMIP activities going forwards rather than an optional extra.  For CMIP7, this requires that 530 

carbon emissions and land activity driven simulations become the default for those models which are capable.  ESMs in this 

configuration require the ability to represent anthropogenic carbon emissions from fossil fuels and land use change and 

management in the context of a closed and stable carbon cycle, which represents oceanic and land-based sinks.   For these 

models, CMIP7 historical and scenario experiments could be driven by fossil carbon emissions and land use transitions.   For 

ESMs without the capacity or desire to run in an emissions-driven configuration, scenarios based on simple climate models 535 

could still be computed in the conventional ScenarioMIP structure, with guidance that the concentration pathway represented 

within ScenarioMIP is only one potential outcome of climate policies in terms of emissions, atmospheric concentrations, and 

climate and carbon cycle responses.  Alternatively, non-ESM AOGCMs could be driven by small ensembles of plausible 

concentration pathways, sampling a range of plausible carbon cycle uncertainty.   

Participation in CMIP by models with heterogeneous complexity is not unprecedented.  In CMIP5 (Taylor, Stouffer, and Meehl 540 

2012)and CMIP6 (Eyring et al. 2016), only some models were capable of processing aerosol emissions (including aerosol-

cloud interactions and feedbacks on natural aerosol emissions such as biomass burning, dust and sea spray) while those without 

interactive aerosol schemes were driven by predefined loadings.  In CMIP3 (Meehl et al. 2007), there was a similar coexistence 

between models with a thermodynamic slab ocean and those with a  fully dynamic ocean (though slab oceans were abandoned 

in CMIP5).  These periods of coexistence of model complexity proved a necessary and very successful compromise to allow 545 

this diversity on the path towards a successful transition to increased complexity across the CMIP ensemble. We argue that 

now is the right time for the next planned transition to emissions-driven modelling capability.  

4.4 Towards comprehensive mitigation modeling in CMIP8 and beyond 

There are a number of highly informative model developments that are likely too ambitious for the CMIP7 timeline, but are 

necessary for a comprehensive process-driven representation of the outcomes of mitigation strategies. 550 

4.4.1 Closed cycles for water and other major greenhouse gases 

Non-CO2 forcers play a significant role in mitigation dynamics and carbon budget uncertainties, both in terms of forcing and 

scenario uncertainty (Rogelj et al. 2015).   However, the capacity of current generation Earth System Models to produce closed 

and stable cycles for non-CO2 greenhouse gases lag behind that of carbon dioxide (Séférian et al. 2020), where capacity has 

already been demonstrated to replicate historical and scenario simulations in CMIP6 (Arora et al. 2020).    While interactive 555 

treatment methane (Heimann et al. 2020; Folberth et al. 2022) and nitrous oxide (Xu-Ri et al. 2012)  are being developed in 

Earth System Modeling platforms, no models in CMIP6 yet resolved closed cycles for these gases (Séférian et al. 2020).   As 
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such - pragmatically, on a timescale of CMIP7, there will remain elements of historical and future simulations which will, for 

most models, remain exogenously defined.  

 Closing carbon and nitrogen budgets would require a dedicated joint effort in land and ocean model developments and 560 

calibration, and inclusion of potentially absent processes such as lateral transport of dissolved organic carbon and nitrogen 

(Lauerwald et al. 2017; Lacroix et al. 2021) representation of the coastal ocean dynamics (Mathis et al. 2022), and erosion of 

coastal permafrost (Nielsen et al. 2022).  Similarly, models do not currently close the water cycle.  Ice sheets and inland 

glaciers are a dominant component of sea-level rise (itself perhaps the most critical long term climate adaptation challenge 

(Hauer et al. 2019)), and yet ESMs do not operationally represent them in coupled simulations.  Given this, a number of models 565 

have a prioritized focus on including ice sheets and glaciers to “close” the global water cycle (R. S. Smith et al. 2021; 

Lofverstrom et al. 2020). 

4.4.2 Assessment of uncertainty in historical and future land use emissions 

A more comprehensive, accurate, and consistently-diagnosed representation of historical land-use emissions and processes is 

necessary to address both the ensemble bias towards low historical land use emissions as compared to Global Carbon Project 570 

estimates in CMIP6 (P. Friedlingstein et al. 2022) and the need for a counterfactual no-land-use scenario found in (Liddicoat 

et al. 2021).  For future scenarios, in order to make ESM simulations consistent with scenario narratives, a greater focus will 

be required to ensure that IAM internal representations of land use emissions are at least representative of those obtained from 

the ESMs (though some spread around the central estimate is a desired outcome of the experimental design). 

4.4.3 Process-based representation of carbon removal and storage     575 
  

The objective to interactively resolve the processes associated with carbon removal within the structural framework of Earth 

System Models is a key requirement to providing process uncertainty in carbon dioxide removal (Psarras et al. 2017) .  

Although isolated ESMs have already been used to investigate the potential effectiveness of removals through Bioenergy 

Carbon Capture and Storage (Muri 2018; Melnikova et al. 2022; Kato and Yamagata 2014), or potential oceanic CDR 580 

approaches through ocean alkalinization (Fröb et al. 2020) or algal cultivation (J. Wu, Keller, and Oschlies 2023), these 

capacities remain experimental, and lack representations and accounting of sequestered carbon in emissions-driven 

simulations.  Further, the pipeline for representing the respective amount of CDR carried out in any given IAM scenario and 

translating this into a consistent set of instructions for an Earth System Model does not yet exist (see Figure 5c/d).  As such, 

without a dedicated and immediate effort, it is likely that for CMIP7, CDR will also remain exogenously defined in the coming 585 

cycle. However, constructing and standardizing these information pipelines for specifying process-based CDR methods in 

ESMs from IAM output during the CMIP7 timeframe will be needed to create a foundation for fully process-resolved 

emissions-driven mitigation scenarios beyond CMIP7. 
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5 A proposal for an ESM-DECK 590 

Here we propose a set of experiments for a CMIP7 emissions-driven DECK to be conducted by models in emissions-driven 

configurations, providing information on relevant climate response diagnostics.  The set of experiments is self-contained and 

not conditional on the existence of a concentration-driven model spinup, but the protocol would be complementary to the 

concentration-driven experiments in existing CMIP6 DECK (detailed in Table A2).  These idealized emissions-driven 

experiments would allow calculation of key carbon-climate metrics needed to inform climate policy tools such as the IPCC 595 

remaining carbon budget for climate stabilization, thus complementing existing concentration-driven metrics. 

Table 1 and Figure 8 illustrate a proposal for a set of diagnostic emissions-driven experiments which would provide emissions-

driven estimates of TCRE and ZEC, together with objective assessments of climate reversibility under negative emissions.  

These are illustrated in Figure 7, which uses a diverse ensemble of parameter configurations of the FaIR (C. J. Smith et al. 

2018) simple climate model to illustrate the relationship between carbon emissions, concentrations and temperature response 600 

under climate uncertainty. 

experiment mode CMIP6 MIP Forcing branches from Relevance 

Metrics 

provided from 

simulation 

esm-PiControl e-driven DECK 1850 constant 

esm-PiControl-

spinup 

Stable control climate 

for e-driven climate - 

esm-PiControl-

spinup e-driven DECK 1850 constant - 

Pre-equilibrated 

spinup stage  for 

ESM configurations - 

esm-flat10 e-driven - 

fixed CO2 emission 

rate (10GtC/yr) for 

at least 150 years to 

ensure 2x CO2 

concentrations are 

reached esm-PiControl 

Emissions-driven 

estimate of TCRE, 

reaches exactly 

1000PgC in 100 

years TCR, TCRE 

esm-flat10-zec e-driven - 

zero emissions 

branching from 

flat10 in year 100 flat10 

Idealized calculation 

of ZEC from flat10 

expt, branch in year 

100 ZEC50, ZEC100 

esm-flat10-cdr e-driven - 

Linearly declining 

emissions by 

2GtC/decade from 

10GtC/yr (year 100) 

to -10GtC/Yr (year flat10 

Idealized calculation 

of climate 

reversibility under 

negative emissions, 

branching from flat10 

TNZ, TR1000, 

TR0, tPW 
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200).  Constant -

10GtC/yr (years 

200-300) 

experiment. 

esm-CDR-pi-

pulse e-driven CDRMIP 

100PgC 

instantaneous 

emission (year 0) esm-PiControl 

Provides clean 

calibration data for 

climate emulators  

esm-Historical e-driven CMIP historical emissions esm-PiControl 

Provides historical 

climate assessment 

and initial states for 

e-driven scenarios - 

 Table 1: A proposal for an “ESM-DECK”, which would provide emissions-driven dynamics of the global climate system.   

 

 
Figure 8: emissions, cumulative emissions, CO2 concentrations and Global Mean temperatures in the ‘flat10’ experiments (esm-605 
flat10, esm-flat10-zec and esm-flat10-cdr) as simulated in a perturbed parameter ensemble of the simple climate model FaIR (C. J. 
Smith et al. 2018).   

5.1 Transient metrics 

The Transient Climate Response (TCR) is defined as the warming in 1pctCO2 at the time of doubling of pre-industrial 

concentrations(Gregory and Forster 2008), while the TCRE (Matthews et al. 2009) is defined as the ratio of the TCR to the 610 

cumulative fossil fuel emissions at the time of doubling (usually expressed as warming per Exagram of cumulative carbon 
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emissions i.e. per 1000PgC).  In CMIP6 (and prior phases), the 1pctCO2 simulation, which increased atmospheric 

concentrations of CO2 by 1% per year from pre-industrial levels, was used to calculate two metrics of transient climate change.   

This experiment would consider a constant annual flux of 10PgC of carbon for 100 years (such that the warming after 100 

years would correspond to 1000PgC of cumulative emissions - as such, a direct measure of TCRE).  Unlike for 1pctCO2, 615 

compatible emissions do not need to be computed and the TCRE can be easily calculated as a time average in the experiment.  

Figure 9 illustrates that TCRE derived from 1pctCO2 and esm-flat10 are highly correlated in the simple climate model 

ensemble, with R=0.983 in the FaIR simple climate model ensemble.  We note that the greatest outliers are models with a 

particularly large zero emissions commitment.   If FaIR configurations with a Zero Emissions commitment outside of the IPCC 

AR6 assessed range (Lee et al., n.d.) (where the absolute value of ZEC50 was assessed as likely to be less then 0.3K) are 620 

excluded, the correlation of TCRE from esm-flat10 and 1pctCO2 improves further (R=0.987). 

 We propose that esm-flat10 could provide an emissions-driven assessment for both TCRE and TCR which would complement 

1pctCO2 in CMIP7 while providing a clean experiment which can be branched to assess zero emissions commitment and 

climate reversibility.  In future CMIP phases, as a greater fraction of models adopt default emissions-driven configurations, it 

would provide a method for assessment of TCR and TCRE which does not require a concentration-driven model spinup. 625 
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Figure 9: Comparative calculations of (a) TCRE, (b) TCR and  (c) Airborne Fraction from esm-flat10 experiments and the CMIP6 
1pctCO2 experiment as simulated in a perturbed ensemble of the simple climate model FaIR (C. J. Smith et al. 2018).   

Esm-flat10 as a default diagnostic for TCRE would have a number of desirable properties: (1) emissions are constant for all 630 

models considered (rather than varying by model under 1pctCO2 - see Figure A1), (2) emissions are constant throughout the 

simulation (rather than weighted towards the end of the simulation in 1pctCO2), (3) peak emission rates are more consistent 

with those of ambitious climate mitigation scenarios than the diagnosed peak emission rates in 1pctCO2 at the point of reaching 

1000PgC cumulative emissions are. Esm-flat10 also provides a good estimate for TCR by considering warming at the time of 
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CO2 doubling, where we find a correlation of 0.984 between TCR from 1pctCO2 and esm-flat10 (similarly improved to 0.994 635 

if only models using configurations with ZEC50 in the IPCC assessed range are considered).  CO2 concentration doubling 

occurs at a later point in time in esm-flat10, (between year 110 and year 140 in the FaIR esm-flat10 ensemble, compared with 

year 70 in 1pctCO2), and we find both a generally slightly higher value of TCR in esm-flat10 than 1pctCO2, and that the 

airborne fraction at the time of CO2 doubling is generally higher in 1pctCO2 than esm-flat10 as a result of this longer time to 

CO2 doubling. 640 

5.2 Zero Emission Commitment metrics 

The zero emissions commitment is a measure of the path-dependence of the temperature to cumulative emissions relationship 

(Koven, Sanderson, and Swann 2023), an estimate of the subsequent global warming that would result after a period of 

anthropogenic emissions, once they are set to zero (Chris D. Jones et al. 2019; MacDougall et al. 2020).  ZECMIP (Chris D. 

Jones et al. 2019) contains a number of experiments to quantify this behavior, most predominantly with the  esm-1pct-brch-645 

1000PgC experiment, which branched from the concentration driven 1pctCO2 at the point at which 1000PgC of cumulative 

emissions had been emitted.   
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Figure 10: Computation of Zero Emission Commitment metrics (a) ZEC50, (b) ZEC100  in esm-flat10-zec and esm-1pct-brch-
1000PgC as simulated in a perturbed ensemble of the simple climate model FaIR (C. J. Smith et al. 2018), while (c) shows the sum of 650 
TCRE and ZEC50. 

Here, we propose a completely emissions-driven alternative derivation for ZEC behavior.  esm-flat10-zec allows for 

computation of temperature changes after an immediate cessation of emissions, similar to the ZEC concept assessed in (Chris 

D. Jones et al. 2019).  Figure 10 shows that although ZEC50 is highly correlated between the esm-flat10 experiments and the 

ZECMIP protocol, we see significant differences in the derived magnitude due to the greater weighting of emissions towards 655 

the end of the experiment in 1pctCO2 - with values of ZEC50 order 50% greater when calculated in  esm-1pct-brch-1000PgC 

(see Figure 10a).  Differences in ZEC100 are smaller (around 10%) between the two experiments (Figure 10b). 
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We can understand these differences due to the partitioning of warming between TCRE and ZEC in the two experimental 

designs.  This is evident in Figure 10c - where we show that TCRE+ZEC50 is near-identical for both methodologies.  The 

tendency for emissions to be weighted towards the latter years of the simulation in 1pctCO2, as well as the shorter total time 660 

period over which emissions occur in 1pctCO2 (~70 vs 100 years), means that models with a higher ZEC50 have a greater 

fraction of unrealized warming at the time the 1000PgC threshold is exceeded in the 1pctCO2 than in the esm-flat10 case, 

where emissions are evenly distributed through a longer experiment - such that more warming is realized in year 100 

(corresponding to a cumulative emission of 1000PgC).    

Esm-flat10-zec would convey a number of both practical and theoretical advantages over 1pctCO2 as a primary diagnostic of 665 

Zero Emissions Commitment.  (1) Because the experiment is emissions-driven from the outset, it would not require a change 

in configuration at the branch point, which poses a technical challenge for some models.  (2) The branch point is identical for 

all models (unlike in esm-1pct-brch-1000PgC, where the year in which 1000PgC of compatible cumulative emissions is 

exceeded must be calculated retrospectively to find the appropriate branch year).  (3) This common experimental setup would 

allow the easier automation of ensembles in the calculation of both TCRE and ZEC, without needing to calculate compatible 670 

emissions to find the appropriate branch point. (4) The maximum rate of CO2 emissions in esm-flat10 (10 Pg C/yr, vs ~20 Pg 

C/yr for 1pctCO2) is closer to realistic values that are projected for ambitious policy scenarios, where emissions must peak 

and decline from their present values of ~10 Pg C/yr within decades to achieve Paris Agreement-compatible warming targets. 

Because TCRE and ZEC should be quantified relative to a consistent set of experiments (Koven, Sanderson, and Swann 2023), 

and because TCRE as assessed by IPCC AR6 was further decomposed into separately-assessed Transient Climate Response 675 

(TCR) and Airborne Fraction (AF) components (AR6 WG1 ch. 5 & 7), using esm-flat10 and esm-flat10-zec as the primary 

CMIP7 quantification of TCRE and ZEC would thus require a self-consistent quantification of TCR, AF, and ZEC, and in 

particular a mapping of TCR between the esm-flat10 scenario and TCR as assessed from multiple other lines of evidence.  

5.3 Reversibility metrics 

An increasing feature of the discussion of future Paris-Compatible pathways is an assessment of the reversibility of the climate 680 

system, both in a global sense (Zickfeld et al. 2013; P. Wu et al. 2015) and in terms of regional and subsystem responses 

(Armour et al. 2011; Martin et al. 2022).  In CMIP6, a number of idealized experiments were conducted under CDRMIP 

(Keller et al. 2018) which included a concentration-driven extension of 1pctCO2 called 1pctCO2-cdr, which prescribed a 1% 

rampdown in concentrations at the point at which 1pctCO2 reached quadruple pre-industrial levels.   This experiment 

undergoes a large discontinuity in compatible emissions at the transition from upwards to downwards branches, making it less 685 

useful as an indicator of realistic transitions to negative emissions (see Figure A1)  (Koven, Sanderson, and Swann 2023). 

Here we propose an emissions-driven extension to esm-flat10 to address this need: esm-flat10-cdr would serve as an emissions-

driven idealized experiment to assess the dynamics of climate reversibility under reducing emissions and net-negative 

emissions.  The experiment would allow for a number of simple idealized diagnostics which would be relevant to the net zero 

transition and the response of the system to net negative emissions.  Esm-flat10-cdr would branch from esm-flat10 in year 100, 690 
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after 1000PgC of emissions, ramping down emissions linearly over 100 years from +10PgC/yr to -10PgC/yr and then 

maintaining a negative flux of -10PgC/yr for an additional 100 years.   

This esm-flat10-cdr experiment would provide a number of advantages over 1pctCO2-cdr: (1) an emissions-driven metric of 

climate reversibility with a continuous emissions timeseries, (2) an idealized net-zero transition to measure  the lags in the 

climate system in the decades around net-zero as emissions pass from net positive to net negative, (3) characterization of 695 

asymmetries in the climate response relative to emissions rather than to concentrations, by using a symmetric and continuous 

reversal from positive to negative CO2 emissions, and (4) initial emissions and a decarbonisation rate which are comparable 

to an aggressive mitigation scenario.  These features are all also present in the gaussian cumulative emissions experiment 

described by (Koven, Sanderson, and Swann 2023) and listed as esm-restoration in table A1 and figure A1, which also features 

an asymptotic rise in emissions at the start of the industrial period and an asymptotic tapering of negative emissions to zero as 700 

cumulative net zero emissions is achieved. The key advantage of esm-flat10-cdr over esm-restoration for an ESM-DECK is 

that it aligns well with esm-flat10 and esm-flat10-zec to form a coherent set of interrelated experiments and metrics. 

We propose that esm-flat10-cdr could be used to define a number of reversibility metrics: 

1. tPW - the time difference between the peak value of 20-year smoothed global mean temperatures and the point that 
net zero is achieved in esm-flat10-cdr (year 150). This metric has a clear policy-relevant translation as the expected 705 
time it will take for the climate system to achieve maximum CO2-driven global warming after (or before) reaching 
net zero emissions under a smooth positive-to-negative emissions transition. 

2. TNZ - a 20 year average around year 150 in esm-flat10-cdr minus a 20 year average around year 125 in esm-flat10.  
TNZ would be the temperature simulated at net zero minus the expected temperature at net zero using cumulative 
emissions proportionality.   It represents the degree to which temperatures at net-zero might deviate from what 710 
would be expected from combining a remaining carbon budget and an estimate of TCRE (Rogelj, Forster, et al. 
2019).  This could be easily calculated using a combination of the esm-flat10 and esm-flat10-cdr experiments for a 
cumulative carbon emissions total of 1250GtC.  Esm-flat10-cdr reaches net zero emissions in year 150, with a 
cumulative emissions of 1250GtC (calculated from year 0, see Figure 7).  Esm-flat10 itself reaches 1250GtC in year 
125. 715 

3. TR1000 - be calculated as a 20 year average around year 200 in esm-flat10-cdr minus a 20 year average around 
year 100 in esm-flat10. TR1000 would be a measure of hysteresis in global mean temperature when cumulative 
emissions return to  1000PgC on the downward branch minus the expectation from TCRE.  This could be calculated 
using a combination of the esm-flat10 and esm-flat10-cdr experiments for a cumulative carbon emissions total of 
1000GtC.  Esm-flat10-cdr reaches 1000PgC cumulative emissions in year 200 on the downward branch (see Figure 720 
7).  Esm-flat10 itself reaches 1000GtC in year 100.  

4. TR0 - a 20 year average around year 300 in esm-flat10-cdr minus mean global temperatures in esm-pictrl. TR0 
would be a measure of hysteresis in global mean temperature when cumulative emissions return to zero after a 
period of negative emissions.  This could be calculated using a combination of the esm-pictrl and esm-flat10-cdr 
experiments.  Esm-flat10-cdr reaches zero cumulative emissions in year 300 on the downward branch (see Figure 725 
7). 

In the FaIR SCM ensemble of esm-flat10–cdr, we see some strong emergent relationships between these reversibility metrics 

and ZEC metrics (see Figure A2)—consistent with similar reported metrics derived from CMIP6 ESMs (Koven et al. 2022) 

and FaIR (Koven, Sanderson, and Swann 2023)—but noting the structural assumptions in FaIR do not allow for threshold 
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behavior which may be present in ESMs.   As such, esm-flat10-cdr would provide an assessment - beyond ZEC, of underlying 730 

nonlinearities and irreversibilities in Earth System Models. 

5.4 Pulse response and equilibrium climate sensitivity  

Finally, we propose the inclusion of an idealized experiment following (Joos et al. 2013), to inform the Impulse Response 

Function given a 100GtC emissions pulse of CO2 into the atmosphere (See Figure A1).  Although such an experiment is clearly 

idealized, the experiment has uses in the clean calibration of simple climate models  (Schwarber et al. 2019), which are 735 

regularly used in assessment as climate emulators.  A similar experiment was included in CMIP6 under the CDRMIP protocol 

esm-CDR-pi-pulse.   

Notably, an ESM Deck in isolation would not allow for the direct calculation of equilibrium climate sensitivity (ECS) which 

is the equilibrium temperature response to a doubling of atmospheric carbon dioxide concentrations, though it would be 

desirable to know ECS to enable comparison of climate feedbacks across the wider CMIP7 ensemble.  The ECS could be 740 

inferred indirectly by calibrating a simple climate model to the ESM output of esm-CDR-pi-pulse,  and assessing the climate 

feedback parameters.  Alternatively, for centers with a spun-up emissions driven configuration, a short concentration-driven 

pre-industrial control could be produced relatively cheaply by branching from esm-picontrol holding CO2 concentrations 

constant at the model’s equilibrated average level (rather than prescribed pre-industrial levels), preventing the need for a long 

additional spinup.  The CMIP6-style DECK experiments abrupt4x and 1pctCO2 could then be conducted with concentrations 745 

relative to the model’s own equilibrium pre-industrial CO2 concentrations to determine ECS and TCR. 

6 Conclusions 

Future climate scenarios have been primarily framed in terms of concentrations (or in terms of metrics of global warming) 

since the Special Report on Emissions Scenarios (SRES) was introduced (Nakicenovic et al. 2000) at the turn of the 21st 

century.  More recently, a ‘parallel process’ (Moss et al. 2010) advocated defined concentration pathways, with climate effects 750 

conditional on concentration pathways assessed by Earth System Models while Integrated Assessment Models explore 

scenarios consistent with the pathways.  This approach was chosen pragmatically to allow the two communities to work 

concurrently, and because only a subset of Earth System Models have operationally incorporated interactive and closed carbon 

cycles.  However, this framing does not allow carbon cycle uncertainty as represented by diverse, process-resolving Earth 

System Models to be manifested in the scenario outcomes, thus omitting a dominant source of uncertainty in meeting the Paris 755 

Agreement (Chris D. Jones and Friedlingstein 2020; Holden et al. 2018). 

In addition, a rapidly evolving policy landscape increasingly requires information to differentiate between scenarios which 

represent both different levels of mitigation ambition and different mitigation strategies.  A decade earlier in the timing of net-

zero CO2 represents a huge economic investment (Nieto 2022), but at present we do not have scenario outcomes to clearly 

illustrate the associated climatic benefits in a way that accounts for all uncertainties. Thus, there is no direct and self-consistent 760 
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simulation of the benefits of mitigation which can be associated with incremental reductions in emissions.    On the 

implementation side, national mitigation policies that (explicitly or implicitly) rely on land use and carbon dioxide removal 

(CDR) techniques introduce significant uncertainties which remain unsampled in the current ESM scenario framework. 

The utility of ESMs is to a large degree shaped by how they are deployed in model intercomparison projects.  For example, it 

has been argued that ESMs can be made more relevant to climate adaptation challenges by resolving and outputting relevant 765 

human and ecosystem climate impacts (Bonan and Doney 2018).  Similarly, with the right experimental design, many existing 

ESMs already include components that can provide valuable insights into the uncertainty surrounding the timing and 

implementation of net-zero policies.    

The upcoming Coupled Model Intercomparison Project Phase 7 (CMIP7) provides an opportunity to move towards a 

framework enabling an operational assessment of emissions-based policies. This would happen through the explicit 770 

representation of carbon dioxide emissions in the context of multiple plausible representations of natural climate system 

feedbacks. This framework will serve as a structure for incorporating the uncertainties associated with the effectiveness of 

land use and CDR techniques as part of a mitigation portfolio, some of which are already implemented in current-generation 

Earth System Models, and some of which require further development beyond the timescale of CMIP7.  This framework needs 

to be flexible enough to accommodate different models at various stages of development, and different configurations focusing 775 

on different elements of the climate problem, necessitating a hybrid approach for CMIP7.  

We propose that the existing CMIP6 model for accommodating a range of aerosol complexity is extended to the simulation of 

an emissions and activity-driven carbon cycle.  Concentration pathways should still be available for models that require them 

(and for configurations where carbon cycle feedbacks are not the primary focus, such as high-resolution experiments and some 

perturbed parameter ensembles).  This will need careful communication in the ScenarioMIP framework, as only a subset of 780 

models will be subject to carbon cycle uncertainties (though this remains analogous to the CMIP6 treatment of aerosols, where 

only some models process aerosol emissions directly).  It is expected that some climate-relevant forcers such as nitrous oxides 

and methane will not be represented interactively by a large fraction of models on the timescale of CMIP7, thus exogenous 

concentrations will still be required in most cases.  

Looking ahead to CMIP8 and beyond, ESMs will continue to occupy a critical niche, maximizing the representation of human 785 

actions involved in climate mitigation and adaptation in a risk framework which relies on deep and diverse process 

understanding which is uniquely represented in the collective historical and ongoing effort encapsulated in the CMIP ensemble.  

Future efforts (and their associated computational expense) should be focused on areas where they can add the most value to 

understanding the Earth system in an ever-widening ecosystem of simple and complex model configurations which are 

increasingly well adapted to different aspects of the climate problem.  790 

We argue that a better understanding and representation of emissions-driven dynamics remains one pillar of a wider effort 

needed to adapt Earth System Models to evolving climate challenges.   It has been documented already that there is a need for 

physically realistic, higher resolution model output (Schär et al. 2020; Bauer, Stevens, and Hazeleger 2021), but these must be 

supplemented by lower resolution operational configurations which are capable of simulating large initial conditional and 
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parametric ensembles of century driven global response to diverse mitigation strategies.   Machine learning    may also change 795 

this tradeoff - approaches are currently being explored to improve the representation of key resolution-dependent physical 

processes in global climate models (Gentine et al. 2018), with encouraging results. Such approaches also hold great potential 

for better utilizing observations to inform future improvement of carbon cycle processes in ESMs (Forkel et al. 2019). Bringing 

together ML developments for both the physical and carbon-cycle components of future emission-driven ESMs offers the 

potential for a major advance in our ability to model the coupled global climate and carbon cycle (Eyring et al. 2021).  However, 800 

there remain conceptual problems with overreliance on machine learning for century scale projections where no training data 

is available (D. Watson-Parris 2021)  

By shifting to primarily emissions-driven simulations, the ESM ensemble would become a critically relevant part of the 

scenario assessment framework, providing the best available process-based estimations of the distribution of potential 

outcomes resulting from proposed societal transformation pathways.  A scenario which achieved a set of policy goals based 805 

on the prior generation of models may not achieve those same outcomes with updated models.   A default emissions-driven 

scenario infrastructure would make such comparisons transparent, making it clear when developments in process 

understanding have measurable impacts on the projected risk associated with a given mitigation strategy.   
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Appendix A1 – Additional idealised experiments not in the main ESM-DECK proposal 

 810 
Figure A1: Simple model ensemble illustrations of various idealized experiments relevant to the quantification of emissions-driven 
Earth System dynamics, using perturbed variants of the FaIR (C. J. Smith et al. 2018) with parameters sampled as in (Koven, 
Sanderson, and Swann 2023).  Columns from left to right indicate carbon emissions as a function of time (starting from an equilibrated 
pre-industrial state), atmospheric CO2 concentrations and surface temperatures.  The top two rows show concentration driven 
idealized experiments (with the exception of esm-1pct-brch-1000PgC, which switches from concentration driven to emissions driven 815 
when 1000PgC cumulative emissions are exceeded) where compatible emissions are calculated for each ensemble member, while the 
bottom three two rows show emissions-driven experiments. 

 

experiment mode 

CMIP6 

MIP Forcing branches from Relevance 

esm-1pct-brch -

1000PgC e-driven ZECMIP zero emissions 1pctCO2 

Follows CMIP6 ZECMIP protocol, branches 

from 1pctCO2 (for most models), 
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produces non-continuous emissions 

esm-bell1000PgC e-driven ZECMIP 

gaussian emissions 

profile, totaling 

1000PgC at end of 

experiment esm-PiControl 

Follows CMIP6 ZECMIP protocol, branches 

from piControl (for most models), 

continuous emissions 

 

esm-pulse-reversal e-driven - 

100PgC 

instantaneous 

removal (year 100) CDR-pi-pulse 

Provides information on reversibility of 

pulse injection of carbon  

esm-restoration e-driven - 

Gaussian derivative 

curve(Koven, 

Sanderson, and 

Swann 2023).  

Cumulative emissions 

are zero at end of 

simulation esm-PiControl 

Provides climate system lags and policy 

relevant departures from TCRE-like 

behaviour under an idealized net-zero 

transition 

 Table A1: Additional idealized emissions-driven simulations not included in the main recommendation in Table 1. 

 820 

experiment mode 

CMIP6 

MIP Forcing branches from Relevance 

PiControl c-driven DECK 1850 constant PiControl-spinup Provides (ideally stable) control climate 

1pctCO2 c-driven DECK 

1pct annual CO2 

concentration ramp 

from 1850 PiControl 

Provides TCR and TCRE, but uses 

compatible emissions which make TCRE 

estimate less relevant to real world 

response to constant emissions 

abrupt4xCO2 c-driven DECK 

Instantaneous 

concentration 

quadrupling from 

1850 PiControl 

Compute ECS - questions due to assumed 

radiative balance and sensitivity of 

gregory result to end of simulation 

Historical c-driven CMIP 

historical 

concentrations PiControl 

Provides historical climate assessment 

and initial states for c-driven scenarios 

CDR-reversibility c-driven CDRMIP 

1pct annual CO2 

concentration 

decline from 4xCO2 

(end of 1pctCO2 

simulation) 1pctCO2 

Provides thermal reversibility information 

in c.driven mode - branches from 

1pctCO2, highly discontinous compatible 

emissions timeseries creates transient 

artifacts 

abrupt4xtoPI c-driven - 1850 concentrations 

abrupt4xCO2, 

year 140 

Provides information on thermal 

asymmetry in warming and cooling 

response to step changes in forcing 

 Table A2: Additional idealized concentration-driven simulations not included in the main recommendation in Table 1. 
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Appendix B – reference information on models and reported HPC performance 825 

Model Resolution Cores used GFLOPS/core PFLOPS used 

Simulated 
days/wallclock day 
(reported) 

Simulated 
days/wallclock days 
(scaled to 
0.1PFLOPS) 

ARPEGE-NH 2.5 7200 23.1 0.17 2.6 1.56E+00 

FV3 3.3 13,824 38.4 0.53 19 3.58E+00 

GEOS 3.3 20,480 31 0.63 6.2 9.77E-01 

ICON 2.5 12,960 40 0.52 6.1 1.18E+00 

IFS 4.8 12,960 38.4 0.5 124 2.49E+01 

MPAS 3.8 9216 38.4 0.35 3.5 9.89E-01 

NICAM 3.5 2560 64 0.16 2.6 1.59E+00 

SAM 4.3 4608 38.4 0.18 6 3.39E+00 

UM 7.8 12,240 38.4 0.47 6 1.28E+00 

SCREAM 3.2 217.6 45 4.7 5 1.06E-01 

Had L 250 9000 38.4 0.02 1460 8.80E+03 

Had M 100 3600 38.4 0.07 474.5 6.86E+02 

Had H 50 1800 38.4 0.12 182.5 1.47E+02 

HR-CESM 25 23404 38.4 0.9 730 3.80E+00 

CESM-1deg 100 1800 38.4 0.07 5110 2.28E+04 

CESM-2deg 200 900 38.4 0.03 8760 1.43E+05 

IFS 1.4 138240 166 22.95 62.05 1.62E+01 

 

Table B1: Data for Figure 2, showing reported model throughput and number of CPU cores used for low and high resolution 
configurations (Stevens et al. 2019; Dueben et al. 2020; Caldwell et al., n.d.; Small et al. 2014; M. J. Roberts et al. 2019; Chang et al. 2020; 
“CESM1 Timing Table” n.d.). Core performance is taken from advertised peak CPU single float performance on the corresponding 
machine. 830 

https://doi.org/10.5194/egusphere-2023-2127
Preprint. Discussion started: 21 November 2023
c© Author(s) 2023. CC BY 4.0 License.



40 
 

Code availability 

All code to reproduce Figures in this study is archived at https://zenodo.org/record/8349377.  The FaIR simple climate model 

used to simulate ESM-DECK experiments is available at https://github.com/OMS-NetZero/FAIR 

Data availability 

CMIP6 model output is available through the Earth System Grid Foundation (ESGF).  CMIP6 scenario data is available at 835 

https://greenhousegases.science.unimelb.edu.au/ and https://tntcat.iiasa.ac.at/SspDb/ .Global Carbon Budget data is available 

at https://www.icos-cp.eu/science-and-impact/global-carbon-budget/2022  
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