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ABSTRACT: Molecular dynamics is a powerful tool for studying
the thermodynamics and kinetics of complex molecular events.
However, these simulations can rarely sample the required time
scales in practice. Transition path sampling overcomes this
limitation by collecting unbiased trajectories and capturing the
relevant events. Moreover, the integration of machine learning can
boost the sampling while simultaneously learning a quantitative
representation of the mechanism. Still, the resulting trajectories are
by construction non-Boltzmann-distributed, preventing the calcu-
lation of free energies and rates. We developed an algorithm to
approximate the equilibrium path ensemble from machine-learning-
guided path sampling data. At the same time, our algorithm provides
efficient sampling, mechanism, free energy, and rates of rare molecular events at a very moderate computational cost. We tested the
method on the folding of the mini-protein chignolin. Our algorithm is straightforward and data-efficient, opening the door to
applications in many challenging molecular systems.

I. INTRODUCTION
Molecules are everywhere. They constitute biological struc-
tures, chemical reactions, and materials. Molecules are also
inherently dynamical. Molecular dynamics (MD) simulations
are accurate physics-based models that give access to the time
evolution of molecular systems with atomic resolution,
including complex biomolecules, materials, and chemical
reactions.1−3 MD can provide a thermodynamic, kinetic, and
mechanistic characterization of a wide range of phenomena,
such as conformational changes,4,5 folding,6,7 ligand binding,8

oligomerization,9,10 protein−membrane interactions,11 nuclea-
tion,12 and ion permeation.13

Ideally, long MD simulations would produce equilibrium
trajectories extensively exploring the configuration space of a
molecular system.14,15 In these simulations, the trajectories
would enter metastable states and spend the most time there.
Rarely, they would go on brief excursions in the transition
region outside metastable states. Even more rarely, those
excursions would result in an actual transition, crossing an
energy barrier to reach an alternative state.16

Only by repeatedly transitioning between metastable states
would these long trajectories sample the stationary Boltzmann
distribution that describes the system’s thermodynamics.17

One could then count how often the trajectories undergo a
transition to obtain the reaction rate constants that describe

the kinetics. Moreover, one could isolate the trajectory
segments that connect two metastable states�the transition
paths (TPs)�and collect them in the transition path ensemble
(TPE), which describes the mechanism of the transition.18,19

However, many interesting phenomena are rare events,
stochastic transitions occurring on exponentially longer time
scales than the MD integration time step.20 This makes them
practically inaccessible by typical MD simulations.21 Many
enhanced sampling strategies have been developed to over-
come these challenges without resorting to “brute-force”
simulations.22 One popular solution is to apply an unphysical
biasing force that steers the dynamics and enhances the
exploration of the configuration space.23 These methods
require accurate prior knowledge of the system�a low-
dimensional feature representation or, ideally, a reaction
coordinate.22,24 Additionally, the bias distorts the system’s
dynamics, complicating their reconstruction.25
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Alternative techniques do not bias the dynamics but instead,
exploit a judicious initialization of the sampling. In other
words, the initial configurations are not sampled from the
Boltzmann distribution but follow alternative criteria to
facilitate sampling in specific regions of the configuration
space. Adaptive sampling,26 swarm of trajectories,27 the
weighted ensemble approach,28 and transition path sampling29

(TPS) all belong to this category. An advantage of these
methods is that they provide not only ensembles of
configurations but entire trajectories that are the realization
of the system’s dynamics. Therefore, these are perfectly
reasonable trajectories that can be reweighted to take into
account the biased selection of the starting configuration.30,31

In particular, TPS is a rigorous way to collect the TPs of a
hypothetical extensive equilibrium trajectory.18,32 By avoiding
sampling in the metastable states, TPS can be computationally
very efficient29 and has enabled the characterization of several
molecular processes.33−38 The resulting TPE contains
mechanistic information.39 In practice, generating TPs with
high efficiency can be challenging, limiting the effectiveness of
TPS schemes.40

Recently, we integrated deep learning with TPS to
automatize and significantly improve the sampling of TPs in
complex molecular systems.41 We called this approach “AI for
molecular mechanism discovery” (AIMMD). In AIMMD, a
neural network controls TPS and boosts the production of TPs
connecting two states; at the same time, it autonomously
learns the transition mechanism by learning the committor.41

The committor is the ideal reaction coordinate describing a
general stochastic transition between two states, i.e., an optimal
one-dimensional projection that quantitatively monitors the
progress along a transition.42 However, TPS and AIMMD do
not directly provide free energy profiles and rates.40

Configurations in the TPE are by construction, not
Boltzmann-distributed.

Let us focus on a transition between two states, A and B,
even though the following considerations are general. Thinking
again at an ideal extensive trajectory, we can collect all
trajectory segments that leave a state and end as soon as they
reach a state.43 We can classify them according to their origin
and destination: A-to-A, A-to-B, B-to-A, and B-to-B. The TPE
contains only those segments that connect the two states (A-
to-B and B-to-A); it does not contain any excursions (A-to-A
and B-to-B), those trajectory segments that temporarily leave a
state and come back to it before reaching another one.
However, these excursions significantly contribute to the
Boltzmann distribution in the transition region between A and
B. Regarding kinetics, the TPE gives access to the transition
path time (the average duration of a TP) but not to the waiting
times in the metastable states, which dominate the transition
rate.17

An effective strategy for obtaining the free energy is to use
short unbiased simulations. One solution is offered by
transition interfaces sampling (TIS),44,45 a popular extension
of TPS. Rogal et al. introduced the reweighted path ensemble
(RPE), which reweights the individual TIS trajectories to
approximate the free energy in the transition region.43

However, TIS is computationally relatively expensive and
depends effectively on the knowledge of a reasonably good
reaction coordinate. Recently, Brotzakis and Bolhuis proposed
an algorithm to approximate the RPE by “waste-recycling” TPS
simulations.46,47

In this study, inspired by concepts introduced in refs 43 and
46, we propose a new computational scheme that enables us to
simultaneously access mechanisms, thermodynamics, and
kinetics of stochastic rare event transitions. We show that by
building on the committor estimated by AIMMD, we can
estimate free energy profiles and rates from just a few short
simulations. We also developed a procedure for extending the
estimate of the free energy in the transition region to the
metastable states�hence to the whole accessible configuration

Figure 1. Illustration of the algorithm. We simulate transition paths connecting two metastable states (top center) with AIMMD, which also
generates excursions (top left and right) in the process. Meanwhile, we perform equilibrium simulations around the states (bottom left and right).
Configurations in the trajectories generated by path sampling do not follow the Boltzmann distribution (dashed profile) by construction. After
reweighting them based on a machine-learned committor pB(x), we can merge all trajectories and recover the equilibrium kinetics and
thermodynamics of the entire configuration space (bottom center).

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://doi.org/10.1021/acs.jctc.3c00821
J. Chem. Theory Comput. 2023, 19, 9060−9076

9061

https://pubs.acs.org/doi/10.1021/acs.jctc.3c00821?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00821?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00821?fig=fig1&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00821?fig=fig1&ref=pdf
pubs.acs.org/JCTC?ref=pdf
https://doi.org/10.1021/acs.jctc.3c00821?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


space�with minimal additional computational cost (Figure
1). We illustrated our method on two benchmark 2-
dimensional systems with high energy barriers and multiple
reactive channels and with the folding of the mini-protein
chignolin.48 In all cases, we successfully determined the
complete free energy profiles and rates in a small fraction of
the computational resources required for a typical MD
simulation.

The paper is organized as follows. In section II, we provide a
detailed explanation of the algorithm. In section III, we
introduce the studied systems and present computational
methods. In section IV, we illustrate our results with a
particular emphasis on the computational performance. We
end with concluding remarks and a future outlook.

II. THEORY
II.A. AIMMD Sampling Scheme. For the sake of

completeness, we briefly summarize the theory behind the
AIMMD sampling scheme.41 Let us consider a system with
two metastable states A and B separated by an energy
barrier.17,18 We assume that the system’s dynamics (in the full
configuration space) are Markovian. The system is described
by its configuration x. A trajectory, or path, is a sequence x =
{x0, ..., xt, ..., xL} sampled at regular time intervals of length
L[x].

TPS is a Markov chain Monte Carlo technique that
generates a series of paths y(1), y(2), ..., y(i) connecting A and
B.29,49 In this work, x(i) is the trajectory simulated at step i, and
y(i) is the last accepted path after that step. While the x(i) values
are always different, the y(i) values can repeat in the case of
rejection. Therefore, {y(1), ..., y(i)} is a subset of {x(1), ..., x(i)}.
With an increasing number of steps, the chain of paths
converges to the TPE (the equilibrium ensemble of all the
system’s TPs):

{ }y y y, , ..., n
TP

(1) (2) ( ) (1)

Element y(i) in the chain is generated from y(i−1). First, we
select the shooting point xsp

(i) from y(i). Then, we produce a trial
path x(i) by a two-way shooting move:50 we evolve two
subtrajectories from xsp

(i) backward and forward in time until
they hit either A or B, time-reverse the former, and join the
two subtrajectories together. To satisfy the fundamental
requirement of detailed balance, the acceptance probability
of x(i) as the next element in the chain is

[ ] = [ ]
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(2)

The indicator functional h̃AB[x] equals unity if the trajectory
connects A and B, and zero otherwise. psel(xsp

(i); x) is the
probability of selecting xsp

(i) among the configurations of
trajectory x; it can be any selection criterion function and
can even change at different steps.49 The yi−1 → xi ≡ yi move is
accepted or rejected according to pacc; in the latter case, we
repeat y(i) ≡ y(i−1). Note that the trial TPs may have a pacc
lower than one and, therefore, get rejected, modifying the
weights of the accepted trajectories. On average, the accept-
ance of a new TP varies with the system and the selection bias.
A good TPS algorithm increases the acceptance probability of
the trial paths while preserving their heterogeneity.40,51

In AIMMD, a neural network adaptively controls TPS in a
data-driven way.41 The network models the committor

pB(x)�the probability that a trajectory initiated with random
velocities at x reaches B before A.17,19,52 The committor
quantifies the progress along the transition and is considered
the optimal reaction coordinate.52,53 This enables us to
quantify the transition mechanism and it also allows us to
control the sampling. In fact, in the limit of Markovian
dynamics, the probability of sampling a TP by a two-way
shooting from x is54

| =P x p x p x(TP ) 2 ( )(1 ( ))B B (3)

Since we do not apply bias forces to accelerate the transition in
any direction, the dynamics remain time-reversible, such that
we can always exchange A and B, pB and pA = 1 − pB.

In AIMMD, we control sampling by modeling the shooting
point selection probability psel(xsp

(i); x) as a function of the
committor. This choice enables us to control the exploitation−
exploration dilemma. A selection probability peak around the
transition state, pB = 0.5, would result in a high TP-generating
efficiency (exploitation). On the other hand, discovering new
reaction channels�new transition mechanisms�often re-
quires selecting points close to the state boundaries
(exploration). Here, we strike a balance between the two
requirements by selecting shooting points following a uniform
distribution as a function of pB. Consequently, at convergence,
the optimal sampling rate of new TPs will be ⟨P(TP | xsp) ⟩pdB

=
1/3.

A selection probability that is a function of the committor of
the shooting configuration is justified by the fact that the TPE
and the equilibrium Boltzmann distributions are proportional
along an isocommittor surface:54

| |P x x P x x p x p x( TP) ( ) (TP ) ( ) ( )(1 ( ))B B (4)

which follows from eq 3. Consequently, the shooting points are
also Boltzmann-distributed along the isocommittor surfaces at
convergence, which ensures an appropriate exploration of the
transition region.

We learn the committor by training a neural network. The
training set contains only the shooting points xsp

(i), hence it has
the same size as the number of steps and therefore generated
trajectories. To each xsp

(i), we associate a result r(i) = (rA
(i), rB

(i))
that comes from two-way shooting. The trial path x(i) is the
union of two subtrajectories (backward and forward) shot
from xsp

(i). Note that we can include both backward and forward
subtrajectories due to the diffusive nature of the trajectories,
i.e., both backward and forward subtrajectories are valid
instances of a committor shot. rA

(i) and rB
(i) count how many x(i)

subtrajectories reach the boundaries of A and B, respectively,
with rA

(i) + rB
(i) ≤ 2. The probability of those outcomes depends

on the committor of xsp
(i). Maximizing the likelihood of the

results is equivalent to minimizing the log-binomial loss41,55

= [

+ ]
=

w r p x

r p x

log(1 ( ))

log ( )

n

i

n
i i i

i i

( )

1
train
( )

A
( )

B sp
( )

B
( )

B sp
( )

TPS

TPS

(5)

by learning the committor model pB(x). nTPS is the number of
trial shots, and wtrain

(i) is the importance in the training of the i-th
shooting point (for the choice of wtrain

(i) , see section III.A). Thus,
the network learns the committor with no prior information
and simultaneously enhances TPS.

II.B. Approximating the Equilibrium Path Ensemble.
AIMMD directly provides a valid estimate of the TPE.
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However, the TPs are only a small subset of the more general
equilibrium path ensemble (PE) [ ]x , which consists of all
unbiased trajectories that start and end as soon as they cross
any state boundary. In addition to transitions and excursions,
as defined in the Introduction, the PE also has trajectories
entirely contained in either A or B. We can split [ ]x into

[ ]xA and [ ]xB �the path ensembles “gravitating” around the
basins of attraction of states A and B, respectively.56

A (or B)
contains all trajectories that start either entering or leaving A
(or B) and end upon crossing any state boundary (A or B).
Trajectories in [ ]xA do not have configurations in B and vice
versa.

U n d e r t h e e r g o d i c h y p o t h e s i s , s a m p l i n g
[ ] = [ ] [ ]x x xA B is equivalent to simulating and then

splitting an infinitely long unbiased trajectory (Figure 2a).
Thus, the PE contains both thermodynamic and kinetic
information about the studied transition.

Our goal is to approximate the PE with a set of n
dynamically unbiased short trajectory segments, which are not
necessarily distributed a priori according to the equilibrium PE,

and need to be reweighted. For this purpose, we use the
following notation:

{ }w x w x w x( , ), ..., ( , ), ..., ( , )i i n n(1) (1) ( ) ( ) ( ) ( ) (6)

where w(i) is the vector of weights associated with each
configuration in trajectory x(i). The aim of this approximation
is that the distribution of the configurations in the reweighted
trajectories, ρ(x), must follow the Boltzmann distribution of
the configurations in the PE. More generally, the ensemble
average of any thermodynamic observable O(x) must be

= =

[ ]
O w O x( )

i

n

t

L

t
i

t
i

x

1 0

( ) ( )
i( )

(7)

Given a (small) committor threshold λA > 0, we further split
[ ]xA into A, A

and +
A, A

, according to the following
definition: the configurations in A, A

have committor values
smaller than λA, while those in +

A, A
have pB(x) ≥ λA (Figure

2a). Given a (large) committor threshold λB < 1, we obtain
B, B

and +
B, B

analogously. These new ensembles are strictly
speaking not proper path ensembles but are proper configura-
tional ones.

A, A
, +

A, A
, B, B

, and +
B, B

form a partition of
configurations in the PE. We will approximate each one
separately and join them together once their relative weights
are determined.

The configurations in +
A, A

, B, B
are more difficult to

sample, since they contain the rare event of interest. Our
approach is to approximate the +

A, A
, B, B

ensembles with the
nTPS trial paths x(1), ..., x(nTPS) produced by AIMMD to sample
the transition between A and B. Crucially, these include the
paths that were not reactive (A-to-A and B-to-B). The
justification for this lies in the path-recycling method
introduced in ref 46, which established that trial trajectories
created by two-way shooting, whether transitions or not, are
proper paths that take part in the equilibrium PE. By creating
the trial paths along the entire order parameter range, one
ensures proper coverage of the PE. The resulting trial paths are
naturally not distributed according to the equilibrium
ensemble because they were created from a biased selection
and thus must be properly reweighted.

For A, A
and +

B, B
, which entirely include the metastable

states, we will use nA + nB short unbiased trajectories zA
(1), ...,

zA
(nA), and zB

(1), ..., zB
(nB) initialized around A and B, respectively

(Figure 2b). In this way, we complement the AIMMD
trajectories with short equilibrium simulations and extend to
the metastable states. To avoid confusion, we call vA

(i) and vB
(j)

the weights associated with the trajectories zA
(i) and zB

(j),
respectively.

Our estimate of the properly weighted configurations in the
PE thus becomes

{ }
{ }
{ }
{ }

v z v z

w x w x

w x w x

v z v z

( , ), ..., ( , )

( , ), ..., ( , )

( , ), ..., ( , )

( , ), ..., ( , )

n n

n n

n n

n n

A
(1)

A
(1)

A
( )

A
( )

A
(1) (1)

A
( ) ( )

B
(1) (1)

B
( ) ( )

B
(1)

B
(1)

B
( )

B
( )

A A

TPS TPS

TPS TPS

B B (8)

Figure 2. (a) Ensemble definitions. Given an infinitely long unbiased
simulation, the path ensemble (PE) collects all the trajectory
segments starting and ending upon crossing the boundary of a state
(cuts at the white dots). The trajectories in A (blue) start at the
boundary of A; their configurations populate +

A, A
(light blue) and

A, A
(dark blue), based on whether they have committor values

bigger or smaller than λA. B and ±
B, B

are defined analogously. (b)
Extension to the metastable states. The reweighted AIMMD
trajectories approximate the PE in the cyan ( +

A, A
) and yellow (

B, B
) regions. In the blue ( A, A

) and red ( +
B, B

) regions, we use
(potentially) short simulations initiated around the states (horizontal
lines); their occasional excursions in the AIMMD trajectories’ regions
are crucial to the extension, as they determine the trajectories’ relative
weight. (c) AIMMD trial trajectories to and from A before
reweighting. Each path is represented by a rectangle between its
minimum and maximum committor values (TPs span the whole
transition region); the height of the rectangle corresponds to its
weight; a white dot indicates the committor value of its shooting
point. The trajectories’ “crossing statistics” do not match the expected
crossing probability for +

A, A
(red line). (d) The same trajectories as

in (c) after applying the reweighting scheme of eq 12a. The crossing
statistics now match PA(λ|λA) = λA/λ.
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with n = nTPS + nA + nB. The first two sets jointly approximate
A , and the latter two approximate B, with the corresponding

distributions of configurations ρA and ρB.
II.C. Reweighting the Trial Trajectories. In this section,

we derive an explicit solution for reweighting the trajectories
sampled by AIMMD. AIMMD generates all of the trajectory
types that can be extracted from long equilibrium simulations
(excursions and transitions). Individually, AIMMD trajectories
are indistinguishable from those extracted from long
equilibrium runs, because they are dynamically unbiased.
However, they are biased in their starting configurations, which
means that large excursions and transitions are significantly
more frequent than equilibrium (Figure 2c). In other words,
the path ensemble generated by AIMMD has the same
elements as the equilibrium ensemble but with different
weights. Our strategy is to use importance sampling to correct
this imbalance: we associate a crossing probability distribution
along a progress coordinate and reweight the distribution of
the ensemble of paths generated by AIMMD to match that of
the equilibrium PE (Figure 2d). We will show that by using the
committor as a progress coordinate, we can write an explicit
solution of the latter, which enables a closed-form solution for
the weights.

Our algorithm determines the optimal weights wA
(i) and wB

(i)

for each trajectory x(i). However, there are portions of the
transition region (λ(x) < λA for +

A, A
and λ(x) > λB for B, B

)
where we use the equilibrium segments for the density
estimates. There, the x(i) trajectories have zero weight. For this
reason, we keep the vectorial notation:

=w w p x t( ( ( )) )t
i i i

A,
( )

A
( )

B
( )

A (9a)

=w w p x t i t( ( ( )) ), ,t
i i i

B,
( )

B
( )

B
( )

B (9b)

where θ(x) is the Heaviside function, which is 1 if x > 0 and 0
otherwise. Therefore, each wA,t

(i) value is always either 0 or wA
(i).

Furthermore, wA
(i) = 0 if x(i) does not originate and/or

terminate in A, and wB
(i) = 0 if it does not start and/or end in B.

Each TP has both wA
(i) > 0 and wB

(i) > 0. It contributes to both
+
A, A

and B, B
because of microscopic time reversibility: to

our purposes, an unbiased trajectory that goes from A to B is
equally valid to the time-reversed counterpart from B to A. By
allowing for time-reversed trajectory segments, we improve the
accuracy of the +

A, A
and B, B

estimates. Moreover, the
weights are halved to avoid double counting.

We introduce the (equilibrium) crossing probability PA(λ |
λA):44,56,57 the probability that a trajectory segment from
equilibrium sampling, starting in A, and crossing (λA ∈ (0, λ]
reaches λ before returning to A or ending in B. By assigning the
proper importance to each trial path starting and/or ending in
A, we ensure that the weighted fraction of paths that reach λ
follows PA(λ | λA). While λ is usually interpreted as an order
parameter that is a reasonable proxy for the reaction
coordinate, here we take λ to be the best possible reaction
coordinate: the committor itself. In trajectory-based ap-
proaches such as TIS and ours, the crossing probability is
the key to reweighting. By using the committor we obtain a
simple closed solution for the crossing probability (see
Appendix A for proof):

| = ] [ ]P ( ) , (0, , , 1A A
A

A A (10)

The trajectory segments in +
A, A

start and/or end in A and
cross λA ≪ 1 by definition. Therefore, the fraction of them
reaching λ must correspond to eq 10. In particular, most
trajectories would only make small excursions in the transition
region (λ ≪ 1) before returning to A. In our case, we
approximate +

A, A
with a finite set of trial paths. Again, the

fraction of them reaching λ (the “crossing statistics”) should
also match PA(λ | λA).

In AIMMD, however, we initialize trajectories at higher
committor values by controlling the selection probability of the
shooting points. For example, let λ(i) ≡ pB(xsp

(i)) be the value of
the i-th shooting point. If xsp

(i) is at the transition state (λ(i) =
0.5), then x(i) would start by construction at λ = 0.5. This
selection biases the crossing statistics (Figure 2c). Only by
appropriately weighting the trajectories can we match the
observed statistics with the expected one and reconstruct +

A, A

.
The weights wA

(i) should increase the contribution of small
excursions and decrease the contribution of large excursions
and TPs (Figure 2c). The RPE theory43 demonstrates that the
weight of each path x(i) depends on the furthermost value of
the committor λmax

(i) along that path (the magnitude of the
associated excursion).

The reweighting is an important sampling procedure: the
weight of x(i) should be of the form E(λmax

(i) )/S(λmax
(i) ), where

E(λmax
(i) ) is the fraction of expected paths that should touch at

least λmax
(i) , and S(λmax

(i) ) is the fraction of simulated paths that
touched at least λmax

(i) . From eq 10, we know that E(λmax
(i) ) is

proportional to 1/λmax
(i) . In this way, smaller excursions in the

transition region become increasingly promoted as λmax
(i)

approaches λA, while the TPs (λmax = 1) have the lowest
weights. Conversely, S(λmax

(i) ) is proportional to mA(λmax
(i) ): the

number of paths from A that touched λmax
(i) . However, for

assessing S we can only consider the trajectories shot from
committor values pB (xsp

(j)) = λ(j) lower than λmax
(i) �the only

ones following the crossing statistics at λmax
(i) , since paths with a

shooting point beyond λmax
(i) are pushed closer to state B by

construction. For these paths, we compute

= [ ]
=

m h x( ) ( ) ( )i

j

n
j i j j i

A max
( )

1
A

( )
max
( ) ( )

max
( )

max
( )

TPS

(11)

which counts the trajectories generated from shooting points
with committor values smaller than λmax

(i) and reaching (at least)
λmax

(i) . The indicator functional h̃A ensures that x(i) starts/ends in
A and crosses λA.

By matching the expected and observed crossing statistics,
we finally obtain an explicit form for the weights

= [ ]w h
c

m
x

( )
i i

i iA
( )

A
( ) A

max
( )

A max
( ) (12a)

where cA is a normalizing constant. A consequence of eq 12a is
that TPs are all reweighted by the same amount. In Appendix
B, we show that eq 12a can be obtained rigorously as a limit
case of the RPE theory.43 The reweighting algorithm is
insensitive in the direction orthogonal to the committor: we
can modify the relative free energies only among different
isocommittor surfaces and not along the same surface. Thus,
the trajectory segments must already be Boltzmann distributed
on the isocommittor surfaces before reweighting for obtaining
a good PE estimate. In AIMMD, this condition is fulfilled by
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construction once the algorithm converged to an accurate
committor model as granted by eq 4.

Switching states A and B, we must exchange pB(x) = λ with
pA(x) = 1 − λ, but the derivation remains the same. Thus

= [ ]w h
c

m
x

(1 ) ( )
i i

i iB
( )

B
( ) B

min
( )

B min
( ) (12b)

and analogously, mB(λ) counts the trajectories shot at
committor values bigger than λ, starting and/or ending in B,
and reaching λ, while λmin

(i) is the furthermost committor value
reached by x(i) from B (λmin = 0 if the path is reactive). In
Figure 2c,d, we show how this procedure recovers the expected
crossing probability from synthetic data. A uniform shooting
point distribution in committor space homogenizes mA and mB
in eq 12 and improves the accuracy of the estimate.

The relative importance of A and B is set by the
normalizing constants cA and cB. We impose the fixed ratio:

=
=
=

c
c

( 0.5)

( 0.5)
A

B

B

A (13)

where ρA′(λ = 0.5) and ρB′(0.5) are the unnormalized A and
B densities at the transition state. (For a justification of eq 13,

see Appendix C). In practice, we can compute the weighted
population of the ensembles between λ = 0.45 and λ = 0.55.
The scaling in the densities depends on the choice of the
committor as a coordinate but factors out by taking the ratio.
Using these constants thus ensures that the transition state
interface has equal amounts of trajectories going to A and B in
the PE. An alternative solution to determine the cA and cB
constants would make use of the crossing probabilities, which
are unitless and require that they match at the destination
state. For the systems discussed here, using densities or
probabilities did not lead to any significant difference.

II.D. Extension to the Metastable States. So far, we
determined the weights for the paths in the transition region.
Now we will derive a solution for the vA

(i) and vB
(i) vectors

containing the weights for the short, unbiased simulations in
the wells. As the zA

(i) trajectories are the outcome of equilibrium
sampling around state A, their configurations must have equal
weight throughout A, A

; the same argument holds for the zB
(i).

Thus:

= <v p z t( ( ( )) )t
i i

A,
( )

A B A
( )

A (14a)

= >v p z t i t( ( ( )) ), ,t
i i

B,
( )

B B B
( )

B (14b)

where γA and γB are positive constants. The occasional
excursions of the zA

(i) and zB
(i) above and below the λA and λB

thresholds are instrumental for determining γA and γB and
therefore extending our [ ]x evaluation to the metastable
states. The number of zA

(i) configurations that go beyond λA,
when multiplied by γA, must match the total population of

+
A, A

. Conversely, the number of zB
(i) configurations that cross

λB, when multiplied by γB, must correspond to +
B, B

. We
enforce the above statements by setting

= = =
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γA and γB should be constant for all choices of λA, λB. In
practice, they become inaccurate when λA and λB are too close
to A and B (due to relatively large error in the committor
estimate and the noninfinitesimal interval between trajectory
frames) or too close to the transition state (due to the
inadequate equilibrium sampling). In particular, from eq 10 a
trajectory leaving A reaches λA a factor of λA

−1 times more
frequently than undergoing a transition.

It is convenient to determine the value of λA and λB by fixing
the number of equilibrium configurations that go beyond those
thresholds:

=
= =
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In this way, λA = λA(MA) and λB = λB(MB) follow from
inversion. By setting MA and MB, we ensure that enough
equilibrium sampling contributes to the calculation of
γA(λA(MA)) and γB(λB(MB)). We can then optimize MA and
MB as the parameters returning the most robust γA and γB to
small boundary changes (Figure S3,S4b). The weights of eq
12a are independent of the choice of λA and λB and thus are
computed only once.

In general, it is always possible to match the distributions
around the wells and in the transitions region by using WHAM
or analogous approaches.58−60

Finally, we enforce global normalization by rescaling all
weights such that they sum to one.

II.E. Free Energy Profiles along Arbitrary Variables.
We can project the PE and get the equilibrium distribution ρ
as a function of any set of collective variables q = { q1, ...,
qk}.

43,61 Starting from eq 7, making the weights explicit, and
applying the density operator δ(q(x) − q′):
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In practice, we bin along q and count the weighted population
of each contribution to the PE approximation in each bin.

The corresponding free energy profile is F(q) = −kBT log
ρ(q) up to an additive constant. The free energy difference
between A and B is

= =F F F k T logAB B A B
A

B (18)
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where ρA and ρB are the sum of ρ(q) over all configurations in
A and B, respectively.

II.F. Rate Constants. For the reaction rate constants, we
employ the Bayesian framework developed by Hummer:54,62

=
+

=
k k t

2 ( )
( )

2 (1 )

AB
1

BA
1

TP AB TP (19)

where kAB and kBA are the A → B and B → A rates,
respectively, and we project all densities on the committor.
The transition path density ρTP comes from the previous
AIMMD run. ⟨tAB⟩TP is the average duration of the TPs, and
2λ(1 − λ) is the probability P(TP | λ) of an equilibrium
trajectory crossing λ to be reactive, as in eq 3.

Equation 19 holds for any value of λ, as follows from eq 4.
However, it produces more accurate results around the
transition state (λ = 0.5) due to a better estimate of the
committor. The outcome is the quantity ν combining both kAB
and kBA; it is the inverse of the average mean first passage time
for A → B and B → A, and the reciprocal of half the average
first return time.63 The individual rate constants

= +
k

1 e
2

F k T

AB

/AB B

(20a)

= + +
k

1 e
2

F k T

BA

/AB B

(20b)

follow from eq 19 and the fact that kAB = e−ΔFAB/kBT kBA.
We could have also estimated the rates multiplying the

reactive fluxes through the interfaces defined by λA and λB with
the expected crossing probabilities.56 However, we found that
eq 19 provides a numerically more robust estimate.

II.G. The Complete Algorithm. We summarize the entire
algorithm as follows:

1. Perform AIMMD simulations and learn the committor
pB(x) from the {xsp

(i), r(i)} training set. Collect the x(1),

x(2), ..., x(n) trial paths (note that this includes the
rejected paths).

2. At the same time, run MD from multiple equilibrium
configurations in states A and B. Collect the sampled zA

(i)

and zB
(i) trajectories.

3. Evaluate pB on all the simulated configurations; for each
x(i), save λ(i) = pB(xsp

(i)), λmin
(i) , and λmax

(i) .
4. Weight the x(i) for approximating +

A, A
and B, B

according to eqs 12, with preliminary cA = cB = 1. Obtain
the unnormalized wA

(i) and wB
(i) (Figure 2d).

5. Evaluate γA and γB from eqs 15 and determine the
optimal λA and λB parameters. Assign the weights vA

(i)

and the vB
(i) trajectories according to γA(λA) and γB(λB).

6. Project A and B on the transition state: ρA(λ = 0.5)
and ρB(λ = 0.5). Impose the condition of eq 13 by
rescaling cA = 1/ρA(0.5) and cB = 1/ρB(0.5), and thus
wA

(i), wB
(i), γA, and γB.

7. Merge all the simulated trajectories as in eq 8. Normalize
the weights over all configurations.

8. Obtain a free energy profile as a function of the
estimated committor, or as a function of arbitrary
variables, and estimate the rate constants.

III. METHODS
III.A. AIMMD and PE Calculations. We used and

extended the AIMMD Python package developed by Jung41

to run the path sampling simulations. For each AIMMD run,
we initialized a deep neural network in PyTorch64 with 4
hidden linear layers of size 8192, 2048, 512, and 128 with ELU
activation functions, 4 residual units65 with 4 layers, and 128
neurons per layer, and a final linear layer (Figure S1). The
architecture is expressive enough to approximate the
committor in many-dimensional systems. The encoder
structure encourages the pruning of unimportant features.

Figure 3. Validation on the two-dimensional benchmark systems (top, double well; bottom, Wolfe-Quapp), results after 500 AIMMD steps. (a)
Potential energy surface (filled contour), example of TPs in different channels (blue and orange lines, shooting points in white), and true
committor (contour lines). (b) AIMMD run1, committor model (contour lines), error of the model (filled contour), and region between the λA
and λB thresholds (light area). (c) Run1, free energy as a function of the estimated committor (solid line, top axis), free energy from numerical
computation (dotted line), and error of the estimate (bottom axis). The arrows indicate the contributions of the simulations around A (blue), the
AIMMD trial trajectories from A (cyan), the simulations around B (red), and the AIMMD trial trajectories from B (orange). (d) Bayesian rate
estimate of ν at different committor values, with each color denoting a different run. The gray area is the 95% confidence interval of ν from the
equilibrium simulations.
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The network’s output is q(x), which is a one-to-one function
of the committor:66

= =
+

p x q x( ) ( ( ))
1

1 e q xB ( ) (21)

In AIMMD, we define a step as a shooting-attempt, i.e.,
starting two simulations with opposite initial velocities from a
selected configuration. A step can lead to the production of an
excursion or a transition path. Training does not have to be
done after every step. We performed 100 training epochs by
minimizing the binomial loss of eq 5 with the ADAM
optimizer.67 We found that the learning rates lr = 10−5 (2D
systems) and lr = 3.5 × 10−6 (chignolin), dependent on the
network architecture, were good hyperparameter choices to
prevent the model from overfitting.68 We observed that the
optimal lr value decreased with increased input feature
dimensionality with no system-specific dependency. To
regularize the training set, we set the shooting points’
importance wloss

(i) such that the A-to-A, B-to-B, and A-to-B
and B-to-A results would have each equal cumulative weight.
We saved the neural network parameters at regular intervals.

To achieve the target uniform selection probability, we
determined psel based on the committor values of the origin
trajectory (the last accepted trajectory in the Markov chain
built by TPS). We organized the candidate shooting points
into 10 equally pB-spaced bins and scaled the probability by the
population of the bins’ population. The probability of an
empty bin was distributed to the adjacent ones. For each
trajectory, the selection probability is a function of the
committor only. To ensure detailed balance in the Markov
chain, we kept the rule consistent within a step when
calculating the acceptance probability of eq 2.

We wrote the PathEnsemble Python class to automate the
PE estimation summarized in section II.G. A PathEnsemble
instance collects the features vectors, committor values, and
complementary information on a set of trajectories. It can
extract the TPE from the trials of an AIMMD run, weight the
trajectories for estimating A and B, and combine ensembles
together. It can also project the free energy onto an arbitrary
set of collective variables.

For assessing the accuracy of the rate estimates, we
considered the maximum relative error E(k, k̂) = |k − k̂|/
min{k, k̂}, where k is the reference value and k̂ is the estimated
value of the rate.

III.B. 2D Systems. The two-dimensional (2D) systems are
defined by their energy surface on the (x, y) plane. The double
well energy surface has equation:
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with the barrier height ΔG = 12 kBT, k0 = 10.4 kBT, and δ = 1.5
(Figure 3a, top). The Wolfe-Quapp energy surface69 is defined
by

= + + + +U x y G x y x y xy x y( , )
5

( 2 3 0.3 0.1 )4 2 2 2

(23)

we set ΔG = 10 kBT, and by rotating the x and y coordinates
by 45 deg (Figure 3a, bottom).

In each system, we evolved a particle with overdamped
Langevin dynamics17 (diffusion coefficient D = 10−5 with

unitary distance, energy, integration time step, and mass), and
saved the trajectories every 500 (double well) and 1,000
(Wolfe-Quapp) integration steps. In this way, TPs contain
approximately 100 frames. As metastable states, we picked
circles of radius r = 0.5 around the local minima. We computed
the reference committor by numerically solving the stationary
Fokker-Plank equation70 and derived the reference kAB and kBA
rate constants by fitting the exponential decay17 of 40,000
replicas initiated in A and B.

For each system, we performed 3 AIMMD runs of 5,000
steps each, directly feeding the x,y coordinates to three
different neural networks. To assess the speedup given by
AIMMD, we performed a standard TPS (run0) as a
benchmark. As the initial trajectory (not representative of
the dynamics, therefore excluded from the TPE), we drew a
straight line connecting the minima; the first trial TP is always
accepted.

From each AIMMD run, we computed and extended the PE
with 20 equilibrium trajectories initiated from the energy
minima (10 each). The trajectories are at most 500,000
(double well) and 25,000 (Wolfe-Quapp) frames long and
were trimmed in case they reached the other state. We
determined the λA, λB thresholds according to eqs 16 such that
100 configurations from A and from B went beyond those
committor values (Figure S3). For the ideal scenario of
optimal sampling around the basins, we numerically computed
the ρA(x, y) = ρ(x,y) (1 − pB(x,y)) and ρB(x,y) = ρ(x,y)
pB(x,y) distributions, and scaled their weights such that λA, λB
were consistent with the previous case.

III.C. Chignolin. We obtained the folded structure of
CLN025 (amino acid sequence YYDPETGTWY) from the
2RVD entry of the Protein Data Bank71,72 (Figure 5b). We
solvated the peptide with TIP3 water in a 4 nm cubic periodic
box and generated a topology file with Charmm-GUI;73 the
final system has 6,468 atoms, 166 belonging to the peptide. We
reproduced the settings of Lindorff-Larsen et al.74 and chose
the CHARMM22* force-field.75 We ran the simulations at T =
340 K with GROMACS 2022.476 and the velocity Verlet
integrator; we fixed the volume after 1 ns of equilibration and
maintained the temperature with the velocity rescale thermo-
stat.77 We set a 0.95 nm threshold for the short-range
interactions and left the remaining GROMACS parameters
unchanged. We integrated the positions and momenta every dt
= 2 fs and saved the former every Δt = 100 ps in the XTC
trajectory files.

We calculated the reference free energy profiles and rate
constants from 4 equilibrium MD simulations, totaling 120 μs.
We visualized the trajectories with VMD78 and analyzed them
with MDTraj.79

We defined the folded (A) and unfolded (B) states based on
the fraction of native contacts:80

= { | }x Q xA ( ) 0.99 (24a)

= { | }x Q xB ( ) 0.01 (24b)

where the reference configuration (t = 55.1 ns of the first
equilibrium MD simulation) is the centroid of the Cα-RMSD
folded state cluster.74 We also considered the following
additional collective variables (see also Figure 6):

1. the distance between Asp3O and Gly7N (d1), forming a
hydrogen bond in the native state;81

2. the distance between Asp3N and Gly7O (d2);
3. the distance between Asp3N and Thr8O (d3);
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4. the fraction of native contacts between Tyr2 and Trp9
(Q29);

48

5. the fraction of native contacts between Pro4 and Gly7
(Q47);

6. the Cα-RMSD with respect to the reference structure;74

7. the radius of gyration of the protein’s heavy atoms (rg).
We performed 3 AIMMD runs of 250 steps each. As in the

2D systems, we ran further standard TPS (run0, run0b, and
run0c) with random selection probability as a benchmark to
compare performances. As the input for the neural network, we
featurized the system calculating 2064 distances between heavy
atoms at least 4 residues apart and min-max normalized the
distances according to the values sampled in the short
equilibrium simulations in A and B.

To obtain the initial TP trajectory, we set the temperature to
T = 600 K and quickly unfolded the native configuration in 0.9
ns. All successive simulations were instead performed at T =
340 K. We always accepted the first TP sampled after
initialization and discarded the initial high-temperature
trajectory from the TPE.

The path length limit for two-way-shooting is 100 ns, which
resulted in only 2 trajectories being rejected across the
AIMMD runs. Those trajectories were excluded from the PE
estimates but not from the training. In general, we strive for a
limit that is much higher than the average length of TPs and
still much lower than the average first return time.

In extending the PE, we integrated each AIMMD run with
20 short simulations initiated from two original 20 ns
equilibrium trajectories around A and B (Figure 2b). The
simulations were terminated as soon as they hit 50 (500
frames, for A) or 5 ns (for B). We picked the λA and λB
thresholds such that 10 configurations around A and 50 around
B crossed those committor values (Figure S4b).

IV. RESULTS
IV.A. Double Well Potential. We illustrated our method

on the double well benchmark system. The potential has a 12
kBT energy barrier, resulting in an average first return time of
about 105 times larger than the average TP time. The
committor varies significantly in a small portion of the
transition region, with most equilibrium configurations highly
committed to either A or B (Figure 3a, top). Many
configurations of TPE are also far from the barrier. Hence,
biasing the shooting point selection probability toward the
transition state is essential for good sampling performance.82

AIMMD generated 4,698 TPs and 2,456 accepted ones in
15,000 steps across 3 independent runs. The resulting TPEs
match the reference (Figure S2a). To mimic a data-poor
regime, we calculated the committor, free energy, and rates
using only the first 500 steps, corresponding to 163 TPs. The
networks quickly learned the committor (Figure 3b, top row),
with an absolute error of pB(x) below 0.05 in the reactive
channel. We computed the PE from the AIMMD run1 data
and projected the free energy on the committor estimated by
the network (Figure 3c, top). The absolute error of F(q)
remains below 0.2 kBT once it is aligned to the target.

We estimated the kinetics of the system by calculating ν with
the Bayesian approach of eq 19 at different committor values λ.
Again, we stopped at 500 steps and plotted the results of all the
3 runs to show the statistics (Figure 3d, top). The estimates
from the same run are stable between the λA and λB thresholds
(light area in Figure 3b). They range between 0.8 and 1.5 times

the reference rate. Each run took about 0.0035 cumulative
simulations in ν−1 units. By addition of the sampling around
the states for the PE extension, the total simulated time reaches
0.742 ν−1 = 0.742 kAB

−1. We expect no transitions at all from an
equilibrium simulation of the same length. In contrast, our
method successfully provided accurate free energy and rates
and also learned the reaction coordinate for the transition.

IV.B. Wolfe-Quapp Potential. The Wolfe-Quapp poten-
tial (Figure 3, bottom row) contains two alternative reaction
channels, posing an additional challenge for the sampling. The
two channels have different energy profiles and travel times
across the isocommittor surfaces. Switching channels requires
crossing a separation barrier of 2kBT in the transition state.

AIMMD substantially increased the switching frequency
compared to standard TPS, considering both the total steps
and the accepted trajectories alone (Figure 4). As a result, it

took 400 steps on average to switch between channels. The
switching frequency is closely related to the path decorrelation
and indicates that AIMMD generates diverse trajectories.41

Occasionally selecting shooting points close to the states
helped, as that promoted exploration of different config-
urations with a reasonable toll on exploitation: at convergence,
the expected TPs’ production rate (0.33) is 66% of the
theoretical maximum (0.5, when selecting shooting points only
at the transition state). We stress that we only used the
instantaneous pB in determining the selection probability. One
could tune the exploration−exploitation trade-off by shaping
psel(pB), although we found the uniform solution optimal for
improving both the committor mode and the estimated PE
accuracy. One could further optimize the selection bias to
enhance the exploration at the cost of harvesting fewer TPs.

We put ourselves in a data-poor regime and took the first
500 steps (and 172 TPs) of the AIMMD run1. The resulting
committor is less accurate in the low-energy channel (Figure
3b, bottom), albeit on par with the double well system overall.
The speed boost of AIMMD allowed us to explore both
channels; however, we put ourselves in a data-poor condition,
where their relative importance is hard to infer. This especially
affects the evaluated TPE (Figure S2b). Notwithstanding, we
obtained an excellent estimate of the free energy profile as a
function of the estimated committor, and the estimated rates
remain within a 2-fold error between λA and λB (Figure 3d,
bottom). In each run, we simulated approximately 0.071 of
cumulative time in ν−1 units, 0.722 ν−1 by including the
additional sampling in the metastable states.

Figure 4. Reactive channel switch during AIMMD simulations on the
Wolfe-Quapp energy surface. The plots show the channel containing
the last accepted TP with the number of steps (a) or accepted moves
(b). The red lines represent AIMMD run1, while the blue lines are
from the standard (uniform selection) TPS run0. The channel is
determined by computing the Hausdorff distance to a reference path
in Channel 1. The asterisks mark the channel switches.
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IV.C. Chignolin. Chignolin is the smallest peptide folding
into a β-hairpin structure.72 The CLN025 variant exhibits a
two-state behavior with the folded state showing remarkable
stability83,84 (Figure 5b). The small size and short transition

time, together with the formation of nonlocal structures, make
it a good molecular system for testing our method and an entry
point to studying more complex molecular events. From our
equilibrium MD simulations at 340 K, totaling 120 μs, we
estimated a folding rate kBA = 2.5 ± 0.5 μs−1, an unfolding rate
kAB = 0.28 ± 0.05 μs−1, a combined ν = 0.50 ± 0.07 μs−1, and a
transition path time ⟨tAB ⟩TP = 11 ± 2 ns, in agreement with
Lindorff-Larsen et al.74

AIMMD provided an accurate transition mechanism, free
energy, and rates of folding with only a handful of trajectories.
We focus on AIMMD run1 (the other two runs yielded
consistent results, see also Figure S5 for their free energy
estimates). After only 50 steps (containing 20 TPs), the
committor clearly distinguishes between the folded and
unfolded state (Figure 5c) and is accurate when validated on
an independent data set (Figure S4a). This limited number of
trajectories produces a folding free energy profile within 1 kBT
of the expected value at the barrier (Figure 5d, uncertainty of
the reference <0.1kBT, see also Figure S4c for the individual
contributions to the PE). Also, we could estimate ν = 0.25
μs−1, which is less than a factor of 2 away from the reference
value. The folding rate kBA = 2. 49 μs−1 is compatible with the
estimate from very long equilibrium simulations; the two other
runs were less accurate for this specific observable (13.4 and
10.1 μs−1), but still within an order of magnitude from the
reference (Figure S4d). The run took 1.10 μs of cumulative
simulated time, corresponding to 0.548 ν−1. We chose not to
average the estimates from each run, because our primary focus
was to assess the variance of independent runs. If enough
resources are available, then this is always an effective strategy
to assess convergence. Bootstrapping can be instead a practical
way of estimating the variance for more challenging systems,
where independent runs are not feasible.

When extending the estimate of the PE to the metastable
states, we chose the largest MA and MB that ensured the
stability of the reweighting factors (Figure S4b). We emphasize
that the simulations used for the PE extension are short and are
confined to the states. The AIMMD trial trajectories are thus
essential to combine the two equilibrium path ensembles
associated with each state with the proper weights. The
additional data added up to 0.90 μs, or 0.448 ν−1.

Our method enables the characterization of the folding
mechanism beyond free energy and rates. One could directly
inspect the TPs or obtain explicit models of the committor
with AIMMD (Figure 5c). Another way is to project the
estimated PE on selected collective variables through eq 17.
This has the advantage of allowing the expert to choose among
domain-specific features and comes with no extra computa-
tional cost. It also produces a multifaceted representation of
the process, putting the accent on different aspects and
therefore rendering a more complete picture of this complex
reorganization. We obtained the free energy on 6 pairs of
collective variables discussed in the literature48,81 (Figure 6),
all in good agreement with the equilibrium MD data.

Another advantage of estimating the PE is that it provides
the effective (generalized) committor61 in any reduced space
through eq C1. pB encodes the progress of the reaction and
complements the free energy information. For example, Figure
6d reveals alternative pathways to the “turn zipper” folding
mechanism. Here, the Tyr2-Trp9 contacts, independent of the
complete formation of Pro4-Gly7, are the real limiting factors
in the reaction. Similar behavior was already reported in the
literature and associated with hydrophobic collapse.83,85 The
Asp3,N-Tyr8,O H-bond formation86 is another crucial event at
the barrier (Figure 6a): this, along with the fraction of native
contacts and the Cα-RMSD, stand out as the most important
features in separating the folded and unfolded state.

IV.D. Performance Evaluation. We assessed the perform-
ance of our proposed algorithm under data-poor and data-rich
regimes, in terms of both required computational resources
and the quality of our estimates. In the data-poor scenario, we

Figure 5. Characterizing the folding of chignolin. (a) Chignolin’s
transition state configuration, no-hydrogen licorice representation
colored in white (nonpolar residues), red (acidic), and green (polar).
We highlighted the formation of d1, d2, and d3 hydrogen bonds and
the association of Tyr2 and Trp9. (b) Chignolin’s native structure
represented as in a. (c) Representative folding trajectory (step 100 of
run1), committor time series with renders of highlighted config-
urations. The model was trained on the first 50 steps of run1. (d)
AIMMD run1, free energy as a function of the committor after 50
steps (solid line, top axis), free energy from long equilibrium
simulations (dotted line, with uncertainty <0.1kBT), and difference
between the two (bottom axis). The arrows indicate the contributions
of the simulations around A (blue), the AIMMD trial trajectories
from A (cyan), the simulations around B (red), and the AIMMD trial
trajectories from B (orange). (e) Bayesian rate estimate of ν at
different committor values, each color denoting a different run. The
gray area is the 95% confidence interval of ν from the long
equilibrium simulations.
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restricted the total simulations below ν−1 (half the average first
return time). In this data-rich situation, we imposed no
limitation on the computational resources to evaluate the
highest expected accuracy achievable by our method. We stress
that all of the estimates presented until now fall in the data-
poor regime. The results including the complete simulations
are collected in Figures S6, S7, and S8.

We verified AIMMD’s capability of accelerating TPS from
its early stages (Figure 7). The gain in production depends on
how quickly the network converges to a reasonable committor

model and how peaked the TPE density is at the transition
state. All of the systems promptly increased their production
rate of TPs. Chignolin’s higher chance of generating TPs from
random configurations resulted in no significant difference in
the number of accepted trajectories; in general, the system’s
complexity led to a higher variability within and among the
runs. However, the most significant advantage of AIMMD is in
obtaining the transition mechanism, free energies, and rates.
To achieve this objective, learning the committor is crucial.
Notably, training the network a posteriori on standard TPS
results led to worse committor models than using AIMMD
(Figure S9).

To evaluate the gain of the full procedure, we focused on the
rate estimates as the most illustrative example since they
require evaluation of the PE and TPE across the entire
configuration space; plus, they are notably difficult to obtain
with state-of-the-art techniques. To assess the computational
resources, we also considered the total simulated time in units
of ν−1 but excluded the equilibrium simulations around the
states as they can be executed in an embarrassingly parallel way
while doing path sampling. In the 2D systems, we replaced the
simulations in the states with the reference ρA and ρB to isolate
the error arising from the underlying approximations of our
method and see how the accuracy scales with sampling.
Training the networks on GPU and estimating the PE took a
negligible fraction of the resources dedicated to MD.

At every stage of the AIMMD runs, the accuracy of the rate
estimates consistently outperformed the predictions from
equilibrium simulations of matching duration (Figure S10).
Specifically, when the total duration is less than ν−1 (data-poor
scenario), no back-and-forth transitions are expected to
happen, and estimating the rates from a long equilibrium
simulation cannot yield accurate results. The dashed lines in
Figure S10 show the expected accuracy when the time
surpasses ν−1. In all of the systems, the relative error quickly
dropped to a factor 2 after a few TPs and consistently reduced
up to 10% with the increasing number of AIMMD trajectories.
The directional rate constants (kfold of chignolin, shown in
Figures 8d and S10d) are less precise because of their further
dependence on FAB through eqs 20. At convergence, a small
systematic error emerges from the discrete time interval
between the trajectory points. In particular, the true λmax is
always bigger than the recorded one for an excursion from A,
slightly altering the free energy profiles (Figure S6b).

When considering the total simulated time (Figure S10), the
performance gain depends on the factor η = ν·⟨tAB⟩TP (the

Figure 6. Chignolin’s free energy profiles (colored contour) and
effective committor (contour lines) extracted from the PE estimated
from the first 250 steps of AIMMD run1, projected on 6 pairs of
collective variables. We annotated the root-mean-square deviation

F F( )2 from the reference free energy F̃ obtained from long
equilibrium MD simulations (WRMSE).

Figure 7. Efficiency of generating TPs by AIMMD compared to standard TPS, for the double well (a), Wolfe-Quapp (b), and chignolin (c). The
plots show the cumulative number of generated (solid lines) and accepted TPs (dotted lines), the latter based on the probabilities of eq 2. The red
lines denote AIMMD run1, while the blue lines are from TPS run0. The dashed line (target) is the optimal upper-bound number of TPs given the
chosen AIMMD selection probability.
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“rareness” of the event). Despite longer TPs, AIMMD enabled
a significant computational gain applied to the study of
chignolin’s folding, also yielding reasonable folding rates
(Figure 8d). Moreover, the two competing pathways did not
compromise the results in the Wolfe-Quapp system, even in
the case of no channel switches throughout the simulations.

Remarkably, substituting the instantaneous committor with
its numerical computation did not significantly improve the
rate estimate for the 2D systems aside from the early steps
(Figure S11). We believe this is due to the robustness of the
Bayesian approach while accounting for the ensembles’
fluctuations. In particular, deviations in the TPE density
ρTP(λ) are likely to reflect on ρ(λ) and counterbalance in eq
19. Although it is possible to apply the method on TPS data
trained a posteriori, the estimate is generally worse (Figure
S11). Finally, the adaptive λA and λB thresholds improved the
accuracy of the results when the network underfits the
committor close to the states.

V. DISCUSSION
Understanding how molecules dynamically organize is key to
revealing how they function and enabling technological and
biomedical breakthroughs. This understanding comes in two
ways: an accurate quantitative description and a qualitative
explanation that allows us to obtain an intuitive insight and
paves the way to formulating hypotheses and models. MD
simulations can provide both�the first as free energies and
rates and the second as mechanisms. However, standard
simulation schemes usually cannot sample the time scales
required for either goal.

Here, we present a path sampling algorithm that gives access
at the same time to mechanisms, free energy, and rates for rare
events in molecular systems. Our algorithm is general and
straightforward and produces good free energy and rate
estimates at a moderate computational cost. In essence, we run
AIMMD simulations41 to sample trajectories that explore the
transition region between two metastable states, which we then
reweight and integrate with short, unbiased simulations in the
states. Our algorithm provides a free energy profile that can be
projected on any collective variable. The only requirement of
our algorithm is a definition of the two states and an initial
trajectory connecting them. AIMMD will adaptively learn how
to optimally simulate TPs and learn the committor. In the
basins, we run simple, unbiased simulations that can be
conducted parallel to path sampling.

Our algorithm builds on established path sampling
approaches and overcomes some of their limitations. TIS is a
powerful method to obtain rates by seeding paths at interfaces

between two states. While able to yield very accurate rate
estimates, TIS is computationally expensive. Here, we
combined a path recycling scheme using straightforward two-
way shooting simulations46 with the RPE theory43 to
approximate the equilibrium path distribution between the
states. From a more abstract viewpoint, next to a regular
Markov chain sampling from the constrained TP distribution,
our method creates a set of trajectories containing all trial
paths that are all acceptable in the equilibrium path ensemble.
Giving each path in this set the correct weight yields an
approximation of the equilibrium PE. Our method thus builds
on regular TPS, but it takes advantage of the trial paths in an
unorthodox way, setting it apart from other path sampling
approaches.

The high efficiency of our algorithm relies on two factors:
AIMMD samples TPs with near-to-optimal efficiency; the
committor model learned by AIMMD is the ideal reaction
coordinate that simplifies the reweighting and makes it
numerically more robust. Using the committor in combination
with straightforward two-way-shooting simulations radically
simplifies the algorithm in practice and enables us to recycle
existing TPS simulation campaigns to extract free energy and
rates a posteriori.

Rates are among the most challenging quantities to estimate
in MD simulations. While many techniques exist to evaluate
free energy profiles, rate calculations are much less established.
On the other hand, free energy profiles are not observables�
only free energy differences between metastable states are,
while rates can often be measured in experiments, providing a
natural way of comparing experiments and simulations. We
anticipate that our algorithm and analogous approaches87 will
make the calculation of rates from MD simulation more
accessible. By comparing calculated and measured rates, we
can assess the systematic uncertainties arising from using
semiempirical force fields, which generally were not para-
metrized on kinetic measurements.

AIMMD learns the committor in a self-consistent way. An
accurate committor model guarantees by construction that the
expected and actual sampling rates of TPs are equal (Figure 7).
Learning an accurate committor is key to obtaining accurate
estimates of free energy and rates. The convergence of these
can be assessed by monitoring their variations as a function of
an increasing number of steps.

Selecting good features to describe a molecular system is
based on physical symmetries, experience, and trial and error.
System-specific features are available in many scientific
domains, and using them facilitates training and enables a
more insightful mechanistic interpretation. When these are

Figure 8. Accuracy of estimated kinetics as a function of an increasing number of simulations for the double well (a), Wolfe-Quapp (b), and
chignolin (c). The plot shows the maximum relative error of the ν estimate at λ = 0.5 (transition state) as a function of the number of steps. Each
color corresponds to a different AIMMD run. For chignolin, we also plot the error of the folding rate, kBA (d). The vertical lines mark the steps
considered in Figures 3 and 5. The gray area is the 95% confidence interval of ν from equilibrium simulations.
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unavailable, one can use general features, such as pairwise
distances (as we did to describe the folding of chignolin). The
neural network that models the committor in AIMMD can be
fed with all of the possible reasonable features simultaneously.
There are no practical restrictions on the dimensionality of the
input featurization. For instance, we could use more than 2,000
pairwise distances to describe chignolin. Scaling up to
hundreds of thousands of features should not be a problem.
Learning relevant features from a Cartesian representation of
molecular systems remains an outstanding problem.

Despite the many advancements, important challenges
remain. Our algorithm focuses on characterizing rare molecular
events between the two states. While AIMMD and the
underlying committor theory generalize to transition between
multiple states,41,88 in practice, it might be more efficient to
reduce this problem to a collection of pairwise transitions. The
definition of two states is not always straightforward. However,
it requires only order parameters that do not have to resolve
the transition. Also, state definitions can be iteratively refined
by using the committor. After a first simulation campaign,
configurations with committor values close to 0 and 1 can be
used as new, more accurate state boundaries. The correlation
along the chain of sampled TPs is still a great challenge.89 We
showed how AIMMD alleviates this problem by speeding up
the switching between alternative reactive channels, but many
steps are still required. Integrating generative AI approaches, as
recently proposed by Dellago and co-workers, might provide a
solution.51,82

Our algorithm relies on many short, unbiased simulations.
The clear advantage is that the dynamics are not distorted, and
reweighting is necessary only to obtain the correct stationary
distribution in the transition region. This also means that the
longest time scale that one must be able to simulate is the
duration of the TPs. This time scale ultimately determines the
applicability of our method. Importantly, the typical TP
duration is usually exponentially shorter than the typical
lifetime in the states and can be on the scales of nanoseconds,
even for large and complex systems.90 In practice, one should
be able to perform at least ∼100 steps of our algorithm, taking
into account that it can be easily parallelized.41 For some
systems, it will still be challenging to sample even a few TPs in
a reasonable time. In addition, the energy wells of the states
could be so deep that sampling excursions that overlap with
the reweighted paths in the transition region could be
impractical. Using a static biasing potential can help in both
cases.23

Our algorithm is simple to use and data-efficient. It builds on
highly efficient simulation packages like GROMACS91 and
OpenMM.92 In this way, it seamlessly capitalizes on the new
software and conventional force-field developments. But it will
also take advantage of the latest exciting developments in
generative AI for conformational sampling.93 Path sampling
simulations are increasingly more attractive for investigating
rare molecular events.

■ APPENDIX A. CROSSING PROBABILITY ALONG
THE COMMITTOR

We demonstrate eq 10 in the nonrestrictive assumption of
Markovian dynamics.95,96 If λ = λA or λ = 1, the proof is
trivial�the case of λ = 1 follows from the definition of
committor. Assume now that 0 < λA < λ < 1; x is a trajectory
leaving A at t = 0 and crossing the committor value λA. Let t′

be the first time when pB(x(t′)) = λA. x can continue from t′ in
3 possible ways:

1. it reaches A before B without crossing λ;
2. it reaches A before B after crossing λ;
3. it reaches B before A, hence crossing λ,

with probability p1, p2, and p3, respectively. We find that p1 = 1
− PA(λ | λA), p3 = pB(x(t′)) = λA, and p2 = PA(λ | λA) (1 − λ) as
combination of two independent events: x crossing λ from λA
before A and x reaching A from λ before B. Since p1 + p2 + p3 =
1:

| + + | =

| + + =

P P

P

1 ( ) ( )(1 ) 1

( )( 1 1 ) 0

A A A A A

A A A (A1)

from which PA(λ | λA) = λA/λ. A related result was obtained in
eq 9 of ref 97.

■ APPENDIX B. CONNECTION TO THE RPE THEORY
We explain the connection between the weighting scheme
described in eq 12a with TIS44 and the RPE approach.43 In
previous studies, the transition region between A and B was
partitioned into interfaces defined by a progress coordinate,
which generally was not the committor. TIS then required
sampling a large number of unbiased trajectories at each
interface. From these simulations, one can estimate an
ensemble for each interface and then merge them according
to the global crossing probability estimated, e.g., with
WHAM58−60). This method proved to be computationally
demanding and highly sensitive to the interface selection.98

Recently, Brotzakis and Bolhuis developed the virtual
interface exchange (VIE) algorithm, which populates the TIS
interfaces with TPS trial trajectories.46,47,99 Having access to
the committor, the optimal reaction coordinate,42 our method
can be seen as a limit case of VIE with an infinite number of
interfaces defined after the committor.

Carrying the analogy with the RPE approach, each AIMMD
trial trajectory x(i) is now the unique representative of the
interface

= { | = }I x p x( ) i
B

( )
i( ) (B1)

defined by its shooting point, with pB(xsp
(i)) = λ(i). Once the

AIMMD sampling has converged, xsp
(i) is correctly sampled

from the Boltzmann distribution restricted to Iλ(i). This result
has two reasons: first, the shooting point is drawn from the
TPE distribution biased along the committor (the selection
probability does not alter ρTPE within Iλ(i)); second, from eq 4
the Boltzmann and TPE distribution are proportional when
projected onto the committor. As a consequence, the
configurations in the trial paths are already Boltzmann-
distributed when restricting ourselves to Iλ(i). As we explain
in the main text, this feature is essential for a good reweighting
and PE estimate. We retain the initial AIMMD steps (before
convergence) in the computations to optimize resource usage.

The RPE combines all the associated interfaces by assigning
weights related to the crossing probability.43 Each interface Iλ(i)

gives its own “crossing statistics” (or histogram) starting from
λ(i):

= [ ]H h x( ) ( ) ( )i i i i
A
( )

A
( ) ( )

max
( ) (B2)

in which x(i) is the only contributor. The statistics before λ(i)

do not provide meaningful information because we deliberately
forced the trajectory to reach that point.
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The total crossing statistics from λA can be obtained in two
ways:

1. from the HA
(i)(λ), through a function f(λ):

=
=

H f H( ) ( ) ( )
i

n
i

A
1

A
( )

TPS

(B3)

2. from the individually weighted trajectories (as in Figure
2d):

=
=

K w( ) ( )
i

n
i i

A
1

A
( )

max
( )

TPS

(B4)

The two approaches are apparently very different: HA
(i) does

not contribute to the total statistics before its shooting
interface, as HA

(i)(λ < λ(i)) = 0, whereas x(i) does.
Rogal et al.43,46 showed that KA(λ) converges to HA(λ) if we

set

= [ ]w h fx ( )i i i
A
( )

A
( )

max
( ) (B5)

in the limit of infinite trajectories. Therefore, eq B5 gives the
optimal weights for reconstructing +

A, A
. Here, we impose

HA(λ) to match PA(λ | λA). By comparing eqs 10 and B3, we
obtain

f
m

( )
1

( )A (B6)

where mA is defined as in eq 11. By injecting eq B5, we finally
get eq 12a.

■ APPENDIX C. NORMALIZATION CONSTANTS OF
THE RPE

We derive the constraint of eq 13. Bolhuis and Lechner61

proved that the effective committor function of the coordinates
q is

=
+

p q
q

q q
( )

( )

( ) ( )B
B

A B (C1)

If the q = λ are committor values themselves, then pB(λ) = λ.
At the transition state (λ = 0.5) we obtain the identity:

=
=
+

1
2

( 0.5)

(0.5) (0.5)
B

A B (C2)

satisfied by ρA(0. 5) = ρB(0.5) and cA ρ̃A(0. 5) = cB ρ̃B(0.5).

■ ASSOCIATED CONTENT
Data Availability Statement
For the purpose of Open Access, the author has applied a CC-
BY license to any Author Accepted Manuscript version arising
from this submission. All data needed to evaluate the
conclusions in the paper are openly available in the paper
and the Supporting Information, and in the “Source code and
data for AIMMD and PE estimate” repository at http://doi.
org/10.5281/zenodo.8048453. Code Availability Statement:
We performed path sampling simulations adapting the
AIMMD Python package developed by Jung,41 which builds
upon OpenPathSampling (OPS), a Python library for TPS
simulations.94 We performed the reweighting and projections
described in section II.G with the custom-written PathEnsem-
ble Python package. The PathEnsemble code, the data featured
in this paper, and the scripts for running the simulations and

analyzing the results are available at the repository 10.5281/
zenodo.8048453.
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jctc.3c00821.

Supplementary Figures S1−S11 (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Roberto Covino − Frankfurt Institute for Advanced Studies,
Frankfurt am Main 60438, Germany; Goethe University
Frankfurt, Frankfurt am Main 60438, Germany;

orcid.org/0000-0003-0884-0402; Email: covino@
fias.uni-frankfurt.de

Authors
Gianmarco Lazzeri − Frankfurt Institute for Advanced

Studies, Frankfurt am Main 60438, Germany; Goethe
University Frankfurt, Frankfurt am Main 60438, Germany;

orcid.org/0000-0002-0593-5572
Hendrik Jung − Goethe University Frankfurt, Frankfurt am

Main 60438, Germany; Department of Theoretical
Biophysics, Max Planck Institute of Biophysics, Frankfurt am
Main 60438, Germany; orcid.org/0000-0002-2159-0391

Peter G. Bolhuis − Van’t Hoff Institute for Molecular Sciences,
University of Amsterdam, Amsterdam 1090GD, The
Netherlands; orcid.org/0000-0002-3698-9258

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jctc.3c00821

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS
We thank Drs. Jutta Rogal, Gerhard Hummer, and Attila Szabo
for stimulating discussions and helpful comments. G.L. and
R.C. acknowledge the support of the Frankfurt Institute of
Advanced Studies, the LOEWE Center for Multiscale
Modelling in Life Sciences of the state of Hesse, the CRC
1507: Membrane-associated Protein Assemblies, Machineries,
and Supercomplexes, and computational resources and support
by the SURFsara National Supercomputing and e-Science
Support Center in The Netherlands, the Center for Scientific
Computing of the Goethe University, and the Jülich Super-
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C. Characterization of Rare Events in Molecular Dynamics. Entropy
2014, 16, 350−376.
(21) Lane, T. J.; Shukla, D.; Beauchamp, K. A.; Pande, V. S. To

milliseconds and beyond: challenges in the simulation of protein
folding. Curr. Opin. Struct. Biol. 2013, 23, 58−65.
(22) Bernardi, R. C.; Melo, M. C.; Schulten, K. Enhanced sampling

techniques in molecular dynamics simulations of biological systems.
Biochimica et Biophysica Acta (BBA) - General Subjects 2015, 1850,
872−877.
(23) Hénin, J.; Leliev̀re, T.; Shirts, M. R.; Valsson, O.; Delemotte, L.

Enhanced sampling methods for molecular dynamics simulations.
Living Journal of Computational Molecular Science 2022, 4, 1583.
(24) Fiorin, G.; Klein, M. L.; Hénin, J. Using collective variables to

drive molecular dynamics simulations. Mol. Phys. 2013, 111, 3345−
3362.
(25) Gershenson, A.; Gosavi, S.; Faccioli, P.; Wintrode, P. L.

Successes and challenges in simulating the folding of large proteins. J.
Biol. Chem. 2020, 295, 15−33.
(26) Kleiman, D. E.; Nadeem, H.; Shukla, D. Adaptive Sampling

Methods for Molecular Dynamics in the Era of Machine Learning.
arXiv 2023, No. 2307.09664v1, DOI: 10.48550/arXiv.2307.09664.
(27) Chen, H.; Ogden, D.; Pant, S.; Cai, W.; Tajkhorshid, E.;

Moradi, M.; Roux, B.; Chipot, C. A companion guide to the string

method with swarms of trajectories: Characterization, performance,
and pitfalls. J. Chem. Theory Comput. 2022, 18, 1406−1422.
(28) Zuckerman, D. M.; Chong, L. T. Weighted Ensemble

Simulation: Review of Methodology, Applications, and Software.
Annual Review of Biophysics 2017, 46, 43−57.
(29) Bolhuis, P. G.; Chandler, D.; Dellago, C.; Geissler, P. L.

Transition Path Sampling: Throwing Ropes Over Rough Mountain
Passes, in the Dark. Annu. Rev. Phys. Chem. 2002, 53, 291−318.
(30) Krivov, S. V. Nonparametric Analysis of Nonequilibrium

Simulations. J. Chem. Theory Comput. 2021, 17, 5466−5481.
(31) Russo, J. D.; Copperman, J.; Zuckerman, D. M. Iterative

trajectory reweighting for estimation of equilibrium and non-
equilibrium observables. arXiv 2020, No. 2006.09451v1,
DOI: 10.48550/arXiv.2006.09451.
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