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Abstract

Behavioral policy often aims at influencing behavior by mitigating biases
due to, e.g., imperfect information or inattention. We study how this is af-
fected by the simultaneous presence of multiple biases arising from different
sources, through a field experiment on resource conservation in an energy-
and water-intensive everyday activity (showering). One intervention, shower
energy reports, primarily targeted knowledge about environmental impacts;
another intervention, real-time feedback, primarily targeted salience of re-
source use. We find a striking complementarity. While only the latter induced
significant conservation effects when implemented in isolation, each interven-
tion became more effective when implemented jointly. This is consistent with
predictions from a theoretical framework that highlights the importance of
targeting all relevant sources of bias to achieve behavioral change.
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1. Introduction

Amidst growing concern about climate change and resource scarcity, many individuals
intend to make personal sacrifices to protect the environment; yet they often fail to act
pro-environmentally in their everyday lives (Kollmuss and Agyeman, 2002; Frederiks
et al., 2015). This gap between intentions and actions can result from a multiplicity of be-
havioral frictions and biases. For instance, consumers tend to underestimate the impact
of highly resource-intensive activities (Attari et al., 2010; Attari, 2014; Imai et al., 2022),
and they may also not be fully attentive to their resource use (Allcott, 2016; Tiefenbeck
et al., 2018). Importantly, when biased behavior arises from multiple different sources
at the same time, this could not only prevent individuals from acting on their intrinsic
prosocial or pro-environmental motives, but also mute their response to policy interven-
tions that only address a subset of all relevant biases.

This problem that comes with multiple biases is reminiscent of the Anna Karenina
principle, which states that failure in just one factor out of many can lead to failure of an
objective as a whole.1 For example, providing information to correct misperceptions of
environmental impacts has little effect on behavior if individuals remain inattentive and
exhibit self-control problems, status quo bias, and so on.

Conversely, drawing attention to environmental impacts only has a muted effect on be-
havior if agents remain unaware of the true extent of the externalities caused by their ac-
tions. In this example, addressing both information problems and biases due to, e.g., lim-
ited attention, could produce synergies in the form of positive interaction effects. More
generally, combining interventions that focus on different biases each could result in com-
plementarities, defined as each intervention becoming more effective when implemented
in conjunction with the other(s) than in isolation (Coe and Snower, 1997). While the use of
combined interventions is widespread in (behavioral) public policy, less is known about
when and why one may expect interventions to be complements, which can be crucial
for guiding effective policy design. In this paper, we highlight the role of multiple biases.

We report evidence from a three-month randomized field experiment in which we
used two well-studied behavioral policy tools to encourage resource conservation in an
energy- and water-intensive everyday activity, namely showering. Our interventions
were designed in such a way that they target different potential sources of biased behav-
ior. The first intervention, shower energy reports, inspired by the Opower home energy
reports (Allcott, 2011), were primarily aimed at closing knowledge gaps about environ-
mental impacts by providing information on water use as well as on energy use and CO2

emissions due to water heating. The second intervention, real-time feedback, provided
immediately visible and salient information on water consumption — but not energy use

1The Anna Karenina principle is inspired by the opening phrase of Leo Tolstoy’s novel Anna Karenina:
“All happy families are alike; each unhappy family is unhappy in its own way.” (Tolstoy, 2003). One might
cheekily adapt this principle to our context by stating a slightly modified version: All unbiased agents are
alike; all biased agents are biased in their own way.
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or CO2 emissions — through a smart meter display (Tiefenbeck et al., 2018), and could
thus help individuals focus their attention while they engaged in the activity. Crucially,
we implemented a complete 2×2-design to evaluate both the combined intervention as
well as each intervention in isolation. Our main finding is that implementing the in-
terventions jointly seemed to result in a super-additive boost of resource conservation
effects compared to their effects when implemented in isolation. This is in line with the
idea that both information- and attention-based mechanisms might have been necessary
to achieve behavioral change in our context.2

To formalize our arguments, we introduce a novel theoretical framework in which
overconsumption can arise from multiple sources of bias (e.g., imperfect information,
limited attention). Each of the biases acts akin to a discount factor and agents are pre-
vented from incorporating the full marginal costs of resource use by the product of all
biases. A key implication is that when agents suffer not just from one but from multiple
independent biases (à la Anna Karenina), then interventions can become complements if
they each focus on a different behavioral mechanism. The intuition is simple: the more
unbiased an agent is in one dimension, the larger is the impact of reducing bias in another
dimension. For example, the more attention an agent pays to her resource use behavior,
the more likely it is that she will actually change her behavior when learning that the
environmental impact is more negative than previously thought. Thus, in this exam-
ple, mitigating both attention and information problems can have mutually reinforcing
effects. This interaction mechanism is absent when two interventions operate mostly
through the same behavioral channel, e.g., if they provide the same type of information.

Resource usage in the shower offers a useful context for studying complementarities
in behavioral interventions, for several reasons. First, showering is resource-intensive:
an average shower in our sample required 2.2 kWh of energy to heat up 38 liters of wa-
ter, which corresponds to about 10% of the average residential energy use and 30% of
the average water consumption per capita and day in Germany, where we conducted
our study.3 Second, most individuals underestimate the CO2 emissions caused by water
heating for showering — by as much as 89% on average based on our own survey data
—, which creates scope for conservation through belief correction (Byrne et al., 2018).
Third, showering is also prone to behavioral biases like limited attention and self-control
problems, as the pleasure of a warm shower is salient and immediate, whereas the cost
of resource use seems abstract and is hard to keep track of. Hence, individuals may not

2Complementarity can also arise if our interventions do not exactly work through the described mech-
anisms, as long as they sufficiently differ from each other in their targeted bias. For example, real-time
feedback could be interpreted as facilitating learning or optimization, and this information can be comple-
mentary to the information on CO2 emissions provided through shower energy reports.

3Source: German Federal Statistical Office (https://www.destatis.de/EN/Themes/
Society-Environment/Environment/Environmental-Economic-Accounting/private-households/
Tables/energy-consumption-households.html and https://www.destatis.de/EN/Themes/
Society-Environment/Environment/Water-Management/_node.html). About 70% of energy for room and
water heating in Germany was generated from fossil fuels at the time of our study (dena, 2016).
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fully engage in conservation efforts unless they are informed about the actual impact of
their behavior and keep environmental concerns on top of their minds while showering.

We conducted our field experiment in student dormitories in the cities of Bonn and
Cologne, Germany, in the winter term 2016/17. A total of 351 students participated in
our experiment, all of them living in single-person dorm apartments with a private bath-
room. For the duration of our study, from early December 2016 until early March 2017,
each participant was equipped with a smart shower meter that recorded detailed data
of each shower taken. Subjects were randomly assigned into one of four experimental
conditions: no intervention (CON group), shower energy reports only (SER group), real-
time feedback only (RTF group), or both interventions combined (DUAL group). After
an initial baseline stage, the smart meter started displaying real-time feedback on water
use for subjects in RTF and DUAL, and about halfway into the study, we further started
sending individualized shower energy reports via email to subjects in SER and DUAL,
using data uploaded from the smart meters. This staggered design allows us to identify
treatment effects of each intervention regime in a difference-in-differences setup.

Our empirical results show that, compared to the control group, subjects in the RTF
group reduced their energy (water) consumption by about 0.4 kWh (6.3 liters) per shower,
which corresponds to 17–18% of baseline resource use. This treatment effect remains sta-
ble over the entire 3-month duration of the study. Energy reports in isolation (SER group)
did not lead to any statistically detectable conservation effect. However, in line with our
hypothesis, we observe a striking complementarity between the two interventions. Com-
bining energy reports with real-time feedback (DUAL group) further increased the treat-
ment effect of real-time feedback in isolation by an additional 0.23 kWh of energy (3.8
liters of water) per shower. Thus, it seems that the shower energy reports in our context
could only start to unfold their potential when subjects were in an enhanced choice en-
vironment where their resource usage was immediately visible. We find no evidence of
adjustments on the extensive margin, i.e., the number of showers people take.

The additional reduction of resource use in the DUAL group was not driven by short-
lived boosts directly after receiving a shower energy report, but rather seemed to unfold
over time, which speaks against Hawthorne or pure reminder effects as the underlying
mechanism. Data from baseline and endline questionnaires shows that both interven-
tions helped subjects form more precise beliefs about their own water use in the shower
and that there is no evidence that subjects in the DUAL group read their reports more
carefully than subjects in the SER group. Supplementary survey results from a compa-
rable sample further suggest that information included in shower energy reports also
induces drastic (upward) updates in beliefs about CO2 emissions due to warm water
consumption in the shower. Hence, the null result for shower energy reports in isolation
was unlikely due to lack of learning. Instead, it seems that in the absence of real-time
feedback, inattention and lack of immediate visibility have prevented knowledge gains
about environmental impacts from translating into effective conservation behavior.
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Overall, our findings are consistent with the theoretical argument that in the presence
of multiple biases, different behavioral interventions can become complements, because
targeting one source of bias (e.g., imperfect information) becomes more effective when
residual biases (e.g., inattention, present bias) are also mitigated, and vice versa. One
implication is that lack of evidence for effectiveness of an intervention in isolation such as
in the case of shower energy reports in our study does not mean that it cannot be effective
in an enhanced policy environment that also takes into consideration further behavioral
mechanisms. Appropriate policy bundling may thus increase the cost-effectiveness of
interventions beyond what can be achieved with piecemeal approaches.

Our study builds on important previous contributions that have investigated the ef-
fects of similar interventions on household resource conservation.4 For example, in an
influential evaluation of the Opower home energy reports, which provide information on
aggregate electricity use to millions of U.S. households, Allcott (2011) reports an average
household-level conservation effect of 2%, or about 0.62 kWh per day, although effects
might be smaller in countries with lower baseline consumption (Andor et al., 2020) or
when monetary incentives to save energy are low (Myers and Souza, 2019). Our SER
intervention is inspired by the these home energy reports. One key difference is that
our reports only provide information on one specific activity (showering) instead of ag-
gregate household consumption, as disaggregated feedback could enable better learning
and thus stronger conservation responses in the targeted activities (Gerster et al., 2020),
in particular when provided in shorter time intervals or even in real time. Tiefenbeck
et al. (2018) provide real-time feedback in the shower through the same type of smart
meter that we use in this study and document a conservation effect of 22% (0.6 kWh
less energy and 9 liters less water per shower). These results also replicate in a sample
without monetary incentives and without self-selection into the study (Tiefenbeck et al.,
2019). One important mechanism of real-time feedback is that it draws immediate at-
tention to resource consumption by making it more salient (Bordalo et al., 2022). This
study addresses the question is whether this can be used to complement interventions
that aim to encourage pro-environmental action through other mechanisms, like more
detailed information provision or social norms, and could thus benefit from generally
higher attention to relevant behaviors.

We further relate to a number of other studies that test a combination of interventions,
and especially to studies on pro-environmental behavior that also consider the idea that
policy measures might become more effective when implemented in conjunction with
others — although it should be noted that some studies lack a complete experimental

4Pro-environmental interventions have drawn from a broad set of instruments such as information pro-
vision, social norms, goal-setting, etc. For reviews, see e.g. Abrahamse et al. (2005), Fischer (2008), Delmas
et al. (2013), Karlin et al. (2015), Andor and Fels (2018), Carlsson et al. (2021), and Khanna et al. (2021). Infor-
mation provision in particular is often regarded as a promising policy lever, as individuals often misperceive
the environmental impact of everyday activities (Attari et al., 2010; Attari, 2014; Camilleri et al., 2019) and
tend to engage in relatively ineffective conservation measures (Gardner and Stern, 2008; Tonke, 2019).
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design required to identify interaction effects.5 For example, Jessoe and Rapson (2014)
find that peak pricing schemes may only reduce peak electricity usage for households
who have been outfitted with in-home-displays. Other recent studies who investigate
the combination of financial incentives and behavioral interventions tend to find that
they affect behavior along different margins or for different subpopulations, but find no
conclusive patterns with regard to interaction effects (List et al., 2017; Holladay et al.,
2019; Giaccherini et al., 2020; Fanghella et al., 2021). Hahn et al. (2016) test the individual
and combined effects of social comparisons and loss framing on take-up of water-efficient
technology as well as general household water consumption, but the results for interac-
tion effects are mixed. Brandon et al. (2019) evaluate the interaction effect of two behav-
ioral interventions on household energy conservation, home energy reports and “peak
energy reports”, which provide feedback and social norms for households’ peak electric-
ity use. As both interventions are very similar and likely operate through similar behav-
ioral channels, it is not clear whether one should expect any interaction effect. Indeed,
Brandon et al. find neither strong evidence for complementarity nor substitutability.6

While we provide a novel case study on the interaction of two specific types of behav-
ioral interventions, our main contribution to this strand of literature is that we attempt to
make a step towards understanding mechanisms that systematically lead different pol-
icy interventions to become complements, both theoretically and empirically. Specifically,
our study highlights the role of multiple biases arising from different sources leading to
an Anna Karenina effect. These insights can be adapted to guide hypothesis formation
about policy interactions in other contexts as well.

The remainder of this paper is structured as follows: Section 2 introduces the theo-
retical framework for policy interactions under multiple biases. Section 3 describes the
experimental setup and derives behavioral predictions. Section 4 presents our data as
well as descriptive statistics. Section 5 lays out our empirical approach and Section 6
presents our main empirical results. In Section 7, we analyze the potential mechanisms
underlying the results. Section 8 concludes.

5See, for example, the review by Khanna et al. (2021). Combined interventions are also used in other
contexts than pro-environmental behavior. For example, in development economics, a number of studies
experimentally test the combined effect of different interventions on financial savings (Dupas and Robinson,
2013; Jamison et al., 2014), education (Mbiti et al., 2019), risky sexual behavior (Duflo et al., 2015; Dupas
et al., 2018), demand for health products (Ashraf et al., 2013), or immunization (Banerjee et al., 2021). Many
of these studies, however, cannot explicitly test policy interactions, as they lack a complete factorial design
(Muralidharan et al., 2020), and none of them asks more generally if or why different interventions can
be complements if they target separate mechanisms. One notable study is by Mbiti et al. (2019), who find
complementarities between providing school grants and adding teacher incentives in improving children’s
educational outcomes. Another study by Banerjee et al. (2021) employs reminders, incentives, and informa-
tion ambassador interventions on a large-scale, and then uses a data-driven approach to identify the best
combination; in particular, one observation is that information ambassadors seem to amplify the effect of
other interventions.

6One speculative interpretation is that, if the HERs reduced energy consumption through investments
into energy-efficient technology, while the peak energy report reduce energy usage by increasing salience of
peak load events, then the potential for complementarity is limited.
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2. Theoretical Framework

We begin by introducing a stylized framework to formalize our argument of how com-
plementarities in behavioral interventions can arise in settings where biased behavior
arises from multiple sources, e.g. imperfect information, limited attention, present bias.

2.1. Basic Setup

The agent (she) engages in an resource-intensive activity, say showering, and the policy
objective is to reduce resource use. Her consumption level is determined by a trade-off
between the consumption utility (e.g., hygiene, pleasure, opportunity costs of time) and
the perceived costs of resource use (e.g., monetary costs, environmental concern). In the
case of showering, both water and energy matter, and each is subject to distinct costs and
externalities. For national parsimony, we focus on energy, as it captures water use as well
as water heating.7 Thus, the agent chooses energy use level e ≥ 0 to maximize

U(e) = V(e)− B · ce , (1)

where V(e) is the instantaneous consumption utility and c > 0 is the (constant) marginal
cost of energy consumption. We consider a more general convex cost function C(e) in
Appendix G. In addition to standard smoothness conditions, we assume that V is hump-
shaped (locally increasing at 0, strictly concave, unique maximum). For simplicity, we
abstract from uncertainty or dynamics. In the absence of monetary motives, as in our
empirical setting, c is the “moral” cost the agent perceives in face of the negative exter-
nalities from energy use. However, the perceived cost is attenuated by an aggregate bias
factor B ∈ [0, 1).

Multiple sources of bias. — The aggregate B factor can be the product of a collection of
separate factors. Although this is easy to generalize, it is sufficient to focus on a simple
case with two sources of bias to illustrate the mechanics:

B = b1 · b2 . (2)

For example, the first factor b1 may indicate the degree to which the agent underestimates
energy intensity (as shown, e.g., in Attari et al., 2010), and the second factor b2 the degree
to which she is inattentive (e.g., Tiefenbeck et al., 2018). The multiplicative form captures
that any single factor can independently prevent the agent from implementing her con-
servation motive, akin to the Anna Karenina principle. In this example, the agent will
not take into account environmental cost both if she believes her behavior has no impact
(b1 = 0) and if she is fully inattentive (b2 = 0), either condition by itself is sufficient. In
the general case of K biases, this would become B = ∏K

k=1 bk (see Appendix G.3). Also

7Energy for water heating is determined by the amount of water and the temperature gradient. As we
will report in section 6, we find no evidence for adjustments in water temperature in our study.
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note that, in principle, individuals can be biased towards less consumption (i.e., bk > 1),
for example if they overestimate costs (e.g., Wichman, 2017; dAdda et al., 2020).

Consumption behavior. — The agent’s choice is defined by the intersection of marginal
utility and marginal costs, with the latter being diminished by the aggregate bias:

V ′(e) = B · c . (3)

If B < 1, then the marginal cost is underweighted and energy use is thus biased upwards.
Correcting the bias (raising B towards 1) thus leads the individual to perceive the cost of
consumption more fully. Thus ∂e

∂B < 0 , since V ′′(e) < 0.
Behavioral interventions. — In this setup, we define behavioral interventions as policies

that aim to change consumers’ behavior by changing B. In contrast, price-based policies
such as Pigouvian taxes would be aimed at increasing the marginal costs c that the agent
faces. As B = b1 · b2, there are two behavioral policy levers for reducing energy consump-
tion: raising b1 (e.g. providing information) and raising b2 (e.g. enhancing salience).

2.2. Policy interaction effects

In our context, two interventions X and Y are complements if their combination reduces
behavior by more than the sum of their individual effects: ∆eXY ≤ ∆eX + ∆eY. If they are
substitutes, the inequality is reversed. Notice that even under substitutability, it can be
the case that XY is more effective than either X or Y in isolation, i.e., ∆eXY < ∆eX and
∆eXY < ∆eY. Thus, to empirically identify interaction effects between different policy
interventions, it is necessary to evaluate the effectiveness of each intervention in isolation.

The key mechanism we aim to highlight in this paper is that in the presence of multiple
biases, policies that target only one bias dimension may have a limited effect on behavior,
whereas the effect of combining several policy levers may be superadditive. For example,
correcting perceptions of the environmental impact b1 may only have a small impact on
behavior if the attention parameter b2 is still close to zero. There is a simple geometric
interpretation to illustrate this: the overall bias parameter B, defined in equation (2), can
be thought of as the area of a rectangle with sides of lengths b1 and b2 (see Figure 1a). The
larger the rectangle the lower the resulting energy consumption will be. Now suppose
that b1 is exogenously increased by δ1. The resulting increase in B will be δ1b2, as it is
attenuated by b2. Analogously, an exogenous increase of δ2 in the dimension of b2 results
in an aggregate change of δ2b1. The effect of jointly increasing b1 and b2 by the same
amounts, however, results in an overall change of

∆B = δ1b2 + δ2b1 + δ1δ2 . (4)

There is an additional effect of size δ1δ2, because a gain in one dimension also makes the
improvement in the other dimension larger. Geometrically, this is represented by the top
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(a) Baseline (b) Complementarity

Figure 1: Depiction of example interventions

Notes. The grey rectangle in Figure (a) illustrates the aggregate bias B as defined in equation 2 without
any intervention in place. Figure (b) illustrates the increase in B through exogenous interventions in
each dimension.

right rectangle outlined in Figure 1b. This mechanism potentially induces complemen-
tarity between interventions that mitigate different biases each.8

Under what conditions does this complementarity in bias reduction δ1δ2 translate into
a complementarity in behavior between interventions X and Y? As formally derived in
Appendix G.1, a second-order Taylor approximation yields

ΦXY := ∆eXY − ∆eX − ∆eY ≈
[

∂e
∂B

+
∂2e
∂B2 b1b2

]
δ1δ2 . (5)

The term ∂e
∂B in equation (5) is negative and scales with δ1δ2, thus creating scope for com-

plementarity in behavior. The second term in brackets reflects the change in the slope
of ∂e

∂B . Intuitively, one would expect a diminishing responsiveness to bias mitigation
( ∂2e

∂B2 > 0), as the more the agent already reduces her consumption. This corresponds
to V(e) having a positive third derivative. However, if either b1 or b2 is sufficiently close
to zero, the first-order effect dominates and complementarities in bias reduction translate
into complementarities in observable behavior. One might call this the Anna Karenina
condition: the more biased an agent is, in multiple ways, the more effective it is to target
the biases simultaneously.

2.3. Policy implications

Lastly, we explore implications for policy makers who attach a social cost γ > 0 to every
unit of e (e.g., due to externalities), in addition to the private cost c to the consumer. If the
only policy goal was to reduce resource use e, then complementarities in behavior would

8We focus here on the case of two “pure” interventions that only target b1 or b2, respectively. In practice,
many interventions may affect not just one but several biases. In Appendix G, we show that imperfectly
targeted interventions can still produce complementarities if sufficiently different from another.
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directly carry over to policy benefits. The prevailing view is to define welfare over true
consumer utility (e.g., Bernheim and Taubinsky, 2018), so

W(e) = V(e)− ce − γe . (6)

It is straightforward to show that welfare increases as B goes towards 1, as ∂W
∂B > 0

as long as B < 1. These welfare gains result from, both, a reduction in externalities
and “internalities”. Taking a second-order Taylor approximation, we can examine how
welfare is affected by combining interventions X and Y:

∆WXY − ∆WX − ∆WY ≈ [(B − 1)c − γ]ΦXY + Bcδ1δ2
∂e
∂B

⋛ 0 . (7)

Appendix G.2 contains a detailed derivation. The first term on the right-hand side is
positive if ΦXY < 0. However, the second term is always negative, reflecting that gains
in consumer surplus decrease as B increases. This implies that complementarity in be-
havior (i.e., if ΦXY < 0) is a necessary but not sufficient condition for complementarity
in welfare. If, in addition, either ∆eX ≈ 0 or ∆eY ≈ 0, our model implies that one of the
b’s is equal to zero. Thus, the joint finding of policy complementarities in behavior and
one of the interventions being completely ineffective on its own may serve as a sufficient
condition that complementarities also exist in terms of welfare.

Equation (7) further suggests that policy makers with a binding budget constraints
face a trade-off between targeting a larger share of the population or enriching the policy
bundle. For example, suppose the policy maker has a budget g, and that implementing
either X or Y in the whole population requires social costs κX or κY greater than her
budget. Hence, she could cover g/κX of households with X, or g/κY of households with
Y. Now assume that ∆WX

κX ≥ ∆WY

κY (X generates a larger welfare gain than Y) and ∆WX

κX >

1 (the welfare gain for X is positive). In this case, intervention Y seems unattractive
at first glance relative to X. However, our model implies that combining both policies
in a bundle (X, Y) at cost κX + κY to fewer households can be preferable to treating a
larger number with X in isolation Formally, the condition is ∆WXY−∆WX

κY ≥ ∆WX

κX . This
last condition can only hold if ∆WXY − ∆WX is substantially larger than ∆WY, i.e. if
complementarities are sufficiently strong.9 Thus, complementarities can create a unique
rationale for unequal policy distribution to improve cost-effectiveness.

9One implicit assumption we make here is that the costs of interventions are additive, i.e., κXY =
κX + κY . Costs can in principle be super- or sub-additive, purely for technological reasons, and hence we ab-
stract from this here. For example, in our study, costs of recruiting participants and setting up the technical
infrastructure are fixed, leading to economies of scope when adding interventions.
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3. Experimental setup

Our field experiment was conducted from early December 2016 to late February/early
March 2017 in a sample of students living in dormitory apartments. Each participant was
equipped with a smart meter that measured individual energy and water consumption in
the shower over the entire study duration. We then evaluated the effect of two different
interventions, real-time feedback and shower energy reports, on resource conservation
behavior. To test for complementarity, we further implemented a combined intervention
in which subjects received both real-time feedback and shower energy reports.

3.1. Recruitment of participants

We selected six student dormitory sites in Bonn and Cologne for our sample, and ran
the study from early December 2016 to early March 2017. All dormitory residents were
students at the University of Bonn, the University of Cologne, or at various smaller uni-
versities in the cities. We recruited our subjects from the pool of dorm tenants living in
single-person apartments with private bathroom, as this allows us to precisely measure
the resource use of each individual. One noteworthy feature of our sample is that subjects
have no direct monetary incentives to conserve energy or water, because they pay a flat
monthly rent that includes all utility bills. Hence, any observed conservation response
would be solely driven by non-monetary motives and unconfounded by income effects.

To participate in the study, residents had to actively agree based on the principle of
informed consent. Two additional criteria were levied: subject should not have lengthy
absences planned within the intended study period (except during Christmas vacation),
and they should own a smartphone compatible with Bluetooth 4.0, which was necessary
for implementing the shower energy reports.

The recruiting process started around mid-October 2016. Posters and flyers informed
residents of the selected dormitories about the upcoming study, and our local research
assistant teams engaged in door-to-door recruiting. Interested students had to complete
an online registration survey to provide required information and to give their consent
to the collection and analysis of data on their showering behavior. It was explicitly (and
truthfully) stated that we would treat any collected data confidentially and not share it
with the dormitory administration. As remuneration, each participant received 20 Euros
after completing the study, and ten participants were randomly drawn to receive a 300
Euro cash prize. In total, 406 students registered for the study, out of which 361 met
our participation criteria.10 Ten students subsequently dropped out of the study, either
because they moved out of their dorm unexpectedly or because we were not able to
contact them again. This leaves us with a final sample of 351 participants.

10The total number of all single apartments in the selected dorms was 1380 (vacancies included), thus our
gross recruitment rate was about 30%. For more than half of these apartments, we never encountered the
resident, so out of the students we actually managed to talk to, the majority registered for the study.
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(a) Position in the shower (b) Display in control mode (c) Display in feedback mode

Figure 3: Amphiro b1 smart shower meter

3.2. Smart shower meters and smartphone app

At the beginning of the study, starting on 5th Dec 2016, each participant was equipped
with an Amphiro b1 smart shower meter that measures and records data of every water
extraction in the shower. The device can be easily attached below the shower head and
features a smartphone-sized liquid crystal display, which can be programmed to show
various types of information (see Figure 3a). The smart meter is small, lightweight, and
needs no battery; power is generated through an integrated hydro turbine, without no-
ticeably affecting water flow in the process. One drawback of the lack of battery is that
the device is unaware of the absolute time of day: showers can only be recorded in tem-
poral order, but without time stamps. Once the water flow in the shower starts, the smart
meter is powered and begins to measure, among others, the amount of water flowing
through, water temperature, and the time passed since beginning of water flow. When
water flow stops, the device and its display initially remain switched on, and if water is
turned on again within three minutes, it will continue its measurement seamlessly. This
accounts for short breaks in water flow when applying soap or shampoo. Once water
flow stops for more than three minutes, the device terminates measurement and stores
the recorded information to a new data point.

We programmed the shower meters to display select pieces of information to partic-
ipants in real-time, i.e., while they are taking their showers, contingent on the study
progress and assigned experimental condition (as described below). In addition, we
asked all participants to install the Amphiro smartphone app around week 5 of the exper-
iment, shortly after the end of the Christmas break. The participants could use the app
to upload data from their shower meters via Bluetooth.11 We were then able to access
the uploaded data and use it to create personalized shower energy reports. The original
Amphiro smartphone app also calculates summary statistics about users’ resource use in
the shower, but we deactivated this feature for our study participants, so its only func-
tionality was data uploading. One ancillary benefit of the app was that it stored time and

11The process was quite simple. After installing the smartphone app, subjects created an account and
paired it to their shower meter. After successful pairing, the meter automatically transmitted all stored data
to the app via Bluetooth whenever it was powered on and the smartphone within range.
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date of each data upload, which allows us to construct approximate time windows for
each shower. About three out of four participants (72%) uploaded all data successfully,
while the remaining experienced some technical problems. The most common sources
of failure were problems with the Bluetooth connection or unexpected incompatibility
between smartphone and app. We will come to back to this issue again later.

3.3. Implementation of real-time feedback

The live tracking of water use on the shower meter display in feedback mode is what we
refer to as real-time feedback, our first type of intervention. We programmed half of the
smart meters as control devices and the other half as treatment devices. Control devices
only displayed the current water temperature throughout the entire study (Figure 3b).
Treatment devices also started in control mode for the first ten showers, which we use
to measure baseline behavior, but switched permanently to feedback mode starting from
the eleventh shower. In feedback mode, the display shows both the water temperature
and the amount of water used (in liters) at any time of the shower (Figure 3c). Note that
the smart meters did not provide any information on the impact of water temperature on
energy consumption or on the energy-intensity of water heating more generally.

3.4. Implementation of shower energy reports

Our second intervention consists of two personalized shower energy reports. These re-
ports were sent via e-mail and showed descriptive statistics about the subject’s water and
energy use in the shower, as well as information about environmental impacts. Tempera-
ture information was not included, as all subjects received this through their smart meter
anyway. To allow for learning about outcomes of single showers, a graphical represen-
tation of the subject’s history of water use per shower was included. The reports were
constructed based on data that was uploaded by subjects through the smartphone app.
We sent out additional reminders to upload data before each planned delivery, but the re-
ports themselves were not explicitly announced. Subjects who did not manage to upload
any data received a report template with blanks in place of statistical figures and graphs.

Appendix Figure A1 shows the screenshot of a typical shower energy report. After a
short introductory text, subjects see a scatter plot of their history of water use per shower
since the beginning of the study, including a fitted regression line to help recognize trends
and averages. Below the graph, average water use (in liters) and energy use (in kWh)
per shower are stated numerically. Furthermore, there is a paragraph with information
on projected CO2 emissions per year and the number of trees required to absorb the
corresponding amount of CO2. The report is formulated concisely in neutral language,
to avoid any normative or moral suasion elements. In the second report, we added a
social comparison component in the spirit of Allcott (2011) and Ferraro and Price (2013),
see Appendix Figure A2. Specifically, we assigned a random anonymous peer to each
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subject and displayed statistics on the peer’s energy and water use.12 At the bottom of
each report, we included personalized link to a mini-survey that we asked subjects to
fill out. The mini-survey contained three questions to elicit subjects’ estimate of their
water consumption per shower (absolute and relative to others). The purpose of this was
twofold. First, we use the responses to verify if a subject has read the email carefully and,
based on the estimate accuracy, how closely he or she paid attention to the information.
Second, we use the time of survey response to determine when exactly a subject read the
email.

3.5. Experimental design

We implemented a complete 2×2 design with four experimental conditions. Subjects in
the control (CON) group received no intervention at all; subjects in the RTF group only
received real-time feedback through the smart shower meters; subjects in the SER group
only received shower energy reports; and subjects in the DUAL group received both real-
time feedback and shower energy reports. Treatment assignment was randomized and
the group sizes are as follows: 82 in CON, 88 in SER, 90 in RTF, 91 in DUAL.13

Figure 4 illustrates the experimental design in detail. Each shower meter went through
a baseline stage of ten showers, in which it only displayed the current water tempera-
ture, regardless of the experimental condition. We use these showers to measure baseline
consumption. Starting from the eleventh shower (intervention stage), devices in RTF and
DUAL additionally displayed water use in real-time, whereas devices in CON and SER
stayed in control mode. About halfway into the study, we started sending energy reports
to each subject in the SER or DUAL group; the first report was sent on 24 January 2017
and the second report on 8 February 2017, about two weeks later. We distinguish between
intervention (IN) stage 1, in which real-time feedback is switched on but there were no
reports yet, and intervention (IN) stage 2, which is the period that begins after subjects
saw the first report.14 In order to hold interaction with experimenters constant, subjects
in CON and RTF groups received placebo emails at the exact same time the shower en-
ergy reports to subjects in SER and DUAL were sent out. These subjects were asked to
complete the same mini-survey that came along with the actual reports.

This staggered experimental design allows us to exploit both between- and within-
subject variation to cleanly identify and efficiently estimate treatment effects of interest.
The effect of real-time feedback in isolation is identified by the comparison between the
RTF and CON groups in the (entire) intervention stage, or alternatively by the compari-
son between the pooled RTF/DUAL group and the pooled CON/SER group in IN stage

12The matching procedure was one-sided and ensured that each subject (except the most and the least
efficient) was equally likely to see a peer with lower or higher energy use per shower.

13For the exact randomization protocol, see Appendix B.
14In practice, the distinction between IN stage 1 and 2 is not perfect, as we observe 23 subjects in our

sample who had yet to complete all 10 baseline showers when the first report was sent out. If anything, this
generates measurement error in our treatment indicators and thus biases estimates toward zero.
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Baseline stage
(showers 1-10, start: 5th Dec 16)

Intervention (IN) stage (showers 11+)

IN stage 1 (until 24th Jan 17) IN stage 2 (from 24th Jan until ~1st Mar 17)

CON group

+ SER group

RTF group

+ DUAL group

Figure 4: Experimental design and timing of interventions

1. The effect of shower energy reports in isolation is identified by the comparison be-
tween the SER and CON groups in IN stage 2. The additional effect of shower energy
reports, when combined with real-time feedback is identified by the comparison between
the DUAL and RTF groups in IN stage 2. Differences between the effects of shower en-
ergy reports with and without real-time feedback identify policy interaction effects, i.e.,
whether the two interventions are substitutes or complements. Note that behavior in the
CON group may not reflect a pure counterfactual, as subjects still receive a smart meter
with temperature information as well as placebo emails, to hold experimenter interaction
and Hawthorne effects fixed. We would underestimate the effects of our interventions to
the degree that subjects respond to this by itself, but any relative comparison across in-
tervention regimes would remain valid.

3.6. Behavioral predictions

In order to derive behavioral predictions for each of our experimental groups, we first
briefly discuss the channels through which each of the two interventions is likely to work.
Our theoretical framework shows that the effect of each regime depends on the degree to
which it succeeds in overcoming the aggregate bias, which may be the product of mul-
tiple separate factors. Furthermore, real-time feedback and shower energy reports could
be complements if they are relatively specialized and operate largely through different
channels.

Real-time feedback visually displays live measurement of water use in the shower. This
water volume information can debias individuals’ beliefs about the amount of water they
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use, but there is no additional information on energy use or CO2 emissions due to water
heating, so severe knowledge gaps about the environmental relevance of showering may
remain. In addition, the steadily upward moving liter count is likely to significantly re-
duce inattention and self-control problems, as users are constantly facing the smart meter
display, and the previously abstract and elusive notion of resource use suddenly becomes
salient and palpable, infused with a sense of immediacy. It may also facilitate experimen-
tation with various conservation strategies by keeping track of progress in real-time. As
the RTF condition in our experiment is essentially a replication of the intervention by
Tiefenbeck et al. (2018), albeit more minimalistic and in a sample without monetary in-
centives, we also expect to find comparable conservation effects:

Prediction 1. Providing real-time feedback through the smart shower meter display in treatment
RTF leads to a reduction in water and energy consumption in the shower.

Shower energy reports provided personalized information about subjects’ water use
in the shower as well as additional information about energy use and CO2 emissions.
We therefore expect that the reports can help close knowledge gaps in these areas and
thereby induce conservation behavior, since past evidence suggests that individuals tend
to grossly underestimate the energy intensity associated with water heating (Attari et al.,
2010). The second report also included a social comparison with a randomly assigned
and anonymous peer, which might further add motivation (Allcott, 2011).

Prediction 2. Providing information through shower energy reports in treatment SER leads to a
reduction in water and energy consumption in the shower.

As the shower energy reports are not immediately salient while showering, the ef-
fect of knowledge gains could be stifled by remaining barriers like limited attention or
self-control problems that can be better targeted by real-time feedback.15 Vice versa, the
effect of real-time feedback may be attenuated if subjects remain unaware of the energy
and carbon intensity of warm water use. If the two interventions indeed work largely
through these separate behavioral mechanisms, a combined intervention should lever-
age all mechanisms at the same time. As we argue in Section 2 , shower energy reports
and real-time feedback could therefore become complements in the sense that one inter-
vention makes the other more effective when implemented jointly. Thus, we derive the
following prediction:

Prediction 3. Shower energy reports in IN stage 2 lead to a larger (marginal) reduction in water
and energy consumption in the shower for subjects who also receive real-time feedback (DUAL
group) than for subjects who do not receive real-time feedback (SER group).

15In principle, it is possible that participants also become more attentive about resource use even without
visual aid through the smart meter, as would be predicted by rational inattention models when updates in
beliefs about environmental impacts are sufficiently large. However, if there is such an effect, it may prove
short-lived once reports fade out of memory and resolutions cool off (Allcott and Rogers, 2014; Schwartz
and Loewenstein, 2017).
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Note that in the communication with the participants, the study was primarily framed
as an energy conservation study, as water scarcity was less of an issue in Germany at
that time. By contrast, energy conservation and the transformation of the energy sector
ranked high on Germany’s policy agenda. Nevertheless, in the subsequent analyses, we
report results for both energy and water consumption. While greenhouse gas emissions
arise mostly due to water heating, conserving water may be an objective in itself, es-
pecially given that climate change increases the likelihood of droughts and water stress
even in parts of the world (like Germany) that previously have not suffered from water
scarcity (European Environment Agency, 2021). As energy use is calculated as a prod-
uct of water volume, temperature gradient, and constant factors (see 4.1 for details), the
amount of energy and water consumed in the shower are highly correlated. Any change
in water consumption (i.e., by shortening shower time or reducing the flow rate) affects
energy consumption proportionally. The only margin of adjustment that has a different
effect on these two outcomes are changes to the water temperature.

4. Data and descriptive statistics

4.1. Measurement data on resource use behavior

For every water extraction in the shower, the smart meters measured, among others, the
volume of water used, its average temperature, and the average flow rate (i.e., volume
per time unit). The amount of energy used was then calculated based on volume and
temperature data, using the standard engineering formula for heat energy.16 Every sub-
ject had a shower meter installed for the whole duration of the study, starting from early
December 2016. At the end of the study, in early March 2017, we retrieved the devices
and read out the data manually.17 In this way, we were able to extract an initial data set of
21,469 showers by 327 participants. Unfortunately, no data could be obtained in 24 cases,
either because the device was defective or because subjects never used it, or because sub-
jects simply disappeared without a trace (and their shower meters with them).

A number of data cleaning steps are performed before running the empirical analyses.
We briefly describe the most important steps here; a more detailed documentation can be
found in Appendix C. First, we drop the very first data point of each participant, as they
usually started with a test run to check if the device was working. Following Tiefenbeck
et al. (2018), we further drop any water extraction with volume below 4.5 liters (in total
2, 942 extractions), as these are unlikely to be actual showers but rather minor extractions
for other purposes such as cleaning. As there are rare cases in which the device can pro-

16The formula for energy use of water heating is Q = m × cp × ∆T, with heat energy Q, mass of water m,
heat capacity cp , and ∆T the difference between the measured water temperature and cold water tempera-
ture (assumed to be 12 degrees Celsius). Following Tiefenbeck et al. (2018), we also assume boiler efficiency
losses of 35% and distribution losses of 24%.

17We already started retrieving some devices in late February, but as the retrieval process was drawn out
over a period several days, the end of the study was in early March for most subjects.

17

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



duce errors when storing data, we further remove 37 extreme outlier points, defined as
such by being more than 4.5 times the subject-specific interquartile range away from the
closest quartile.18 We further exclude 1 device with generally erratic data, 5 devices with
fewer than 10 recorded extractions, as well as 3 devices with an abnormally large base-
line consumption of 168 liters or more per shower, which is about 40 liters (1.5 standard
deviations) away from the rest of the field. In 8 cases, the integrated temperature sensor
became defective after some time, and we impute missing information with the average
temperature of showers taken while the sensor was still intact. The final data set used for
our empirical analyses includes 17, 942 showers by 318 participants.

The shower meter stores the temporal order of showers, so we can easily classify each
shower into baseline or intervention stage, as real-time feedback (in the RTF and DUAL
groups) started from the eleventh shower. Assigning showers to intervention stage 1
(pre-reports) or stage 2 (post-reports) is slightly trickier, as the device has no counter
for global time. Fortunately, the smartphone app stores the date and time of each data
upload, which allows us to construct time bounds for when a shower took place. Specif-
ically, we know that a shower cannot have occurred after the time at which it was up-
loaded, and also not before the time of the last previous data batch, because otherwise it
would have been uploaded then already. Combined with knowledge about the order of
observations, we can assign approximate dates to each shower, assuming that the time
that passes between one shower and the next remains roughly constant. For example, if
three shower observations were uploaded at day t and the last previous upload occurred
at day t − 3, then we would assign the first of these showers to day t − 2, the second to
t − 1, and the third shower to day t. We instructed subjects to use the app regularly start-
ing from 11 Jan 2017 — two weeks before the first energy report (sent out at 2:30pm on
Jan, 24th) —, and sent additional reminders before each energy report email (or placebo
email) was sent out.

Using this timing information from data uploads, we classify observations into pre-
report showers (IN stage 1) or post-report showers (IN stage 2). In particular, we know
from mini-survey response data when subjects likely read the email and use this as cutoff
date. For non-responders, we use the time at which we sent the email as cutoff date
instead; the response rate for the first email was 82.7%.19 Observations with upper time
bound before the cutoff date are assigned to IN stage 1 and observations with lower time
bound after the cutoff date are assigned to IN stage 2. For observations that fall into
a range of uncertainty around the date on which the subject read/received the email,
we intrapolate their dates based on the assumption that the frequency of showering was
constant within that time range, and then use these intrapolated dates to assign them into

18We are particularly strict in only excluding the most implausible data points here. Conventionally, 1.5
or 3 times the interquartile range (IQR) are used as criterion for outliers. For a normal distribution, 4.5 times
the IQR away from the nearest quartile corresponds to 6.745 standard deviations away from the mean.

1947% of subjects responded to the mini-survey within the same day that the email was sent out, and 77%
responded within one week.
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the first or second intervention stage.20

A final complication comes from subjects who did not manage to upload any data
to the app. For these non-uploaders, we impute the timing of shower energy reports
based on the assumption that it follows the same distribution for uploaders and non-
uploaders. To operationalize this, we use timing information from uploaders to estimate
the probability that a shower took place after receiving the first (second) report for each
shower, based on its temporal order, and then assign the implied post-report probabil-
ities to showers of non-uploaders. Appendix Figure A3 plots the estimated CDFs, and
more details on the imputation procedure are provided in Appendix D. We also consider
alternative definitions of intervention periods for robustness checks.

4.2. Survey data

To supplement our behavioral data on resource use in the shower, we administered sev-
eral questionnaires. In the baseline survey, we collected information on individual char-
acteristics (i.e., age, gender, etc.), perceived water use in the shower, shower comfort (i.e.,
how much they enjoy showering), environmental attitudes and beliefs, as well as a num-
ber of personality attributes (i.e., Big Five, patience, etc). In the post-intervention survey,
we again collected self-reported data on perceived water use, shower comfort, and en-
vironmental attitudes. Furthermore, we administered mini-surveys with each energy
report, in which subjects were asked to estimate their resource use in the shower.

We mainly make use of information on water use perceptions, shower comfort, and
environmental attitudes, and how they change in response to our interventions. Envi-
ronmental attitude is elicited using four items about pro-environmental behavior and
identity, e.g. “I do what is right for the environment, even when it costs more money or
takes more time”.21 Shower comfort is elicited using five items on how much subjects
enjoy showering, e.g. “I find it relaxing to take a shower”.22 We create indices for shower
comfort and environmental attitude, respectively, by taking the simple average of the in-
dividual’s responses to the relevant items (rated on a 4- or 5-point Likert scale) and then
normalizing to mean 0 and standard deviation 1. For perceived water consumption, we
asked subjects to estimate how many liters of water they typically use when taking a
shower. These estimates can then be directly compared to their actual water use as mea-
sured by the smart meter. Note that we refrained from eliciting subjects’ beliefs about

20For example, say we know for certain that shower s occurred at 8am on Jan, 22nd (pre-report), and
shower s + 3 occurred at 9am on Jan, 25th (post-report). This leaves the stage of showers s + 1 and s + 2
ambiguous. To assign these, we would assume that shower s + 1 occurred in the morning of the 23rd and
shower s + 2 in the morning of the 24th, thus putting both showers before the first report, which was sent
out at 4:30pm on the 24th.

21The other items are “Environmental friendliness is part of my personal identity”, “How often do you
try to conserve water?”, and “How often do you try to conserve energy?”. We also include a set of questions
adapted from Nolan et al. (2008) in the baseline questionnaire.

22The other items are “I like showering”, “For me, taking a shower is just a means to an end”, “I like to
let my mind wander when I shower”, and “I try to shower as quickly as possible”.
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Table 1: Descriptive statistics – baseline showers

Mean Std. dev. 10th pctile Median 90th pctile Obs.

Energy use [kWh] 2.21 1.91 0.43 1.71 4.58 2503

Volume [liter] 37.77 30.40 9.30 29.60 75.70 2503

Duration [min] 6.99 5.00 1.97 5.82 13.00 2503

Temperature [Celsius] 36.14 5.23 32.00 37.00 40.00 2477

Flow rate [l/min] 5.71 2.45 2.80 5.40 9.10 2503

Includes only showers taken in the baseline stage, i.e., first 10 showers and before subjects
read/received shower energy reports. For temperature statistics, devices with broken tempera-
ture sensors are excluded. Duration is net of any breaks and calculated by dividing water volume
by flow rate.

energy use and carbon emissions from water heating, because we did not want to raise
awareness about these issues and risk undermining the shower energy report treatments.

4.3. Sample characteristics and baseline behavior

All study participants were students at universities in Bonn or Cologne living in single-
person dorm apartments, so our sample is rather homogeneous. From the 318 partici-
pants represented in our main dataset, 203 lived in a dorm in Bonn and 115 lived in a
dorm in Cologne. The female share was 61 percent. Average age was 23.8 years (median
23 years), with students from all stages of their studies being represented in our sample.

Using the nine showers (the first being excluded) in the baseline stage, where only
the current water temperature was displayed, we can construct measures of each sub-
ject’s baseline resource use behavior. Table 1 presents descriptive statistics about baseline
energy and water use per shower, as well as shower duration (net of breaks), water tem-
perature, and flow rate. On average, showers in the baseline stage feature 7 minutes of
water flow, which amounts to 37.77 liters of water. On average, water is heated up to a
temperature of 36.14 degrees Celsius, resulting in energy consumption of 2.21 kWh per
shower. There is substantial variation across showers, as observed from the standard
deviations and different quantiles of the distributions. Water and energy consumption
follow a right-skewed distribution, thus the median energy use per shower (1.71 kWh)
is substantially lower than the mean. As the share of cold showers is extremely low in
our sample (only 3.7% of showers have an average temperature of 21◦C or lower), water
and energy usage is almost perfectly collinear, with a Pearson correlation coefficient of
0.9755. The average flow rate of 5.71 liters per minute is relatively low, likely due to dorm
infrastructure not being up to modern standards — flow rates of 10-12 liters per minute
are more typical for German households.
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Table 2: Randomization checks and extensive margin responses

Panel A. Baseline averages by individual Panel B.

Energy use Volume Duration Temperature Flow rate Number
[kWh] [liter] [min] [Celsius] [l/min] of showers

RTF group -0.111 -1.253 0.284 0.086 -0.124 -2.312
(0.215) (3.427) (0.597) (0.595) (0.370) (5.183)

SER group -0.077 -2.096 0.166 0.962 -0.441 3.393
(0.218) (3.431) (0.547) (0.608) (0.319) (5.226)

DUAL group -0.071 -1.215 0.126 0.323 -0.151 3.224
(0.226) (3.571) (0.578) (0.556) (0.357) (5.861)

Constant 2.237 38.316 6.797 35.681 5.832 55.312
(0.163) (2.539) (0.411) (0.447) (0.240) (3.698)

Observations 316 316 316 314 316 318
R-squared 0.001 0.001 0.001 0.011 0.005 0.005
F-test: p-value 0.965 0.945 0.972 0.351 0.550 0.669

Robust standard errors in parentheses. The omitted category is the CON group. For two par-
ticipants, the device was not able to record information on baseline showers, but we could ex-
tract valid data on showers in later stages; hence the number of observations is only 316 in most
columns. In addition, two participants with initially defective temperature sensors are excluded
in column 4.

4.4. Randomization checks

Our identification strategy relies on randomization producing treatment groups that are
comparable with regard to observable and unobservable subject characteristics. Although
it is naturally impossible to test the latter, we can check balance on observable baseline
characteristics. Panel A of Table 2 shows results from regressing various measures of sub-
jects’ baseline behavior on assigned treatment groups. The differences between groups
are very small and treatment assignment is insignificant for predicting any of the behav-
ioral measures, so randomization seems to have worked well. We also check for balance
along background characteristics and survey responses (see Table A1 in Appendix A),
and again find that treatment assignment is statistically insignificant. Importantly, self-
reported environmental attitude and shower comfort are comparable across groups.

4.5. Number of showers

On average, we observe 56.8 showers per individual over roughly 12 weeks of our study,
which corresponds to a frequency of about two showers every three days. However, the
net frequency (i.e., adjusting for absences) might be closer to one shower per day, as our
study period included a two weeks Christmas break. In Panel B of Table 2, we check
whether the number of showers per individual differs across experimental conditions,
but we find that treatments have no effect on the number of showers (p = 0.669). Hence,
our interventions do not seem to induce adjustments along the extensive margin, and we
do not need to worry about subjects compensating shorter showers with more showers,
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substituting behavior to other facilities (e.g. wash basin, gym showers), or about them
compromising on basic hygiene needs. This means that we can make use of the full panel
structure of our data and analyze (intensive-margin) water and energy conservation ef-
fects at the level of individual shower observations.

4.6. Presence of imperfect information and behavioral biases

Before moving on to the analysis of our experimental interventions, we provide sug-
gestive evidence that individuals’ resource consumption in our setting may indeed be
subject to biases due to imperfect information and limited attention.

First, we make use of the pre-intervention questionnaire and compare subject’s percep-
tions of their own water use per shower to their actual baseline water use as measured by
the smart meter. Figure 5 shows that subjects’ estimates are all over the place; we cannot
even reject the null hypothesis that estimated and measured water use are uncorrelated
(Pearson’s ρ = 0.0925, p = 0.1308). This demonstrates that subjects lack information
about their own behavioral outcomes prior to any intervention.23 Interestingly, the mean
estimate (43.4 liters) and median estimate (30 liter) across subjects were not too far from
the typical baseline water usage per shower in our sample. This is reminiscent of a “wis-
dom of crowds” phenomenon and suggests that, on average, our interventions should
not work through debiasing beliefs about water use.

However, people may be particularly unaware about the link between water heating
for showering and energy consumption, and hence CO2 emissions. For example, At-
tari et al. (2010) show that consumers are in general highly prone to underestimating the
amount of energy required for heating up water (e.g., water boilers, dishwashers). We
did not elicit beliefs about energy intensity or carbon emissions in the original experi-
mental sample, to avoid the risk of undermining our shower energy report treatments.
We did, however, elicit beliefs about carbon emissions in a different sample of students
living in the same dormitories three years after the original study (n = 329). For more
details on this supplementary study, see Appendix E. Without additional information,
these students underestimated the carbon impact of warm water use in the shower by a
factor of 8 to 9 on average, even though the average guess for the amount of water used
per shower was fairly unbiased. On average, students estimated that a typical shower
causes emissions of 91.3 grams of CO2 (median 35 grams), whereas the actual emissions
amount based on the data from our main experiment is about 800 grams.24 Thus, there
might be a large potential for encouraging energy conservation through the information
provided in shower energy reports (Byrne et al., 2018).

23We excluded 35 subjects who responded to the baseline survey more than 2 weeks after we distributed
shower meters, as they have likely reached the intervention stage by then. We also exclude 3 outliers with
estimates above 200 liters. The corresponding regression results are presented in Appendix Table A13.

24The average guess for amount of water used per shower was 40.4 liters. The survey was conducted in
Nov/Dec 2019 among 329 residents of the exact same student dorms in which the original study took place
in 2016/17. Only 4 surveyees had already participated in the original study.
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Figure 5: Pre-intervention awareness about water use per shower

Notes. This figure compares estimated water use from the baseline survey with actual water use in the
baseline stage (showers 2 to 10), excluding late survey responders. 3 outliers with estimates between
200 and 600 liters are excluded. Point clouds consist of individual observations (hollow diamonds for
CON and RTF, solid circles for SER and DUAL) and lines represent separate regression fits for each
treatment group. The dashed line starting from the origin is the 45 degree line.

Although anecdotally compelling, finding direct evidence for inattention or self-control
problems in the shower is trickier. The closest proxy we have is a baseline survey item
on how much subjects agree with the statement “I like to let my mind wander when I
shower.”. 59% of our sample agreed or strongly agreed to the statement (25% strongly
agree), whereas only 18% of subjects disagreed (13% weakly disagree, 5% strongly dis-
agree). Moreover, subjects’ response to this item is significantly correlated with their
average baseline energy use in the shower (Pearson’s ρ = 0.1645, p = 0.004). In fact,
it is the single most predictive item for baseline consumption in the entire survey based
on simple linear regressions. Our interventions could thus help reduce energy use by re-
minding subjects to stay focused and not lose track of time completely under the shower.

5. Estimation approach

Next, we describe our strategy for estimating the effects of our interventions on resource
use in the shower. The empirical results will be presented in the following section.

5.1. Basic identification and estimation strategy

To formally estimate the effects of different intervention regimes, we exploit the ran-
domized assignment of subjects into experimental conditions as well as the staggered
introduction of real-time feedback and shower energy reports, which gives us a double-
layered difference-in-differences setup. The differential changes in consumption behav-
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ior across conditions from baseline stage to intervention stage 1 identify the causal effect
of real-time feedback (RTF/DUAL versus CON/SER), and the additional changes from
intervention stage 1 to stage 2 identify the causal effect of shower energy reports, both
in isolation (SER versus CON) and in conjunction with real-time feedback (DUAL versus
RTF). In this setup, interaction effects between the two interventions can be identified
by comparing the incremental effects of shower energy reports with real-time feedback
(DUAL) and without real-time feedback (SER).

If one was only interested in estimating the effect of real-time feedback in isolation,
the most straightforward approach would be to simply compare how subjects in the RTF
and CON groups change their behavior from the baseline stage to the entire intervention
stage, without any need to consider shower energy reports or stage 2. To jointly estimate
the effects of each intervention regime, using data from all experimental condition, we
instead consider the following regression equation:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TS

i + β3TD
i

)
+ IN s2

it ×
(

γ0 + γ1TR/D
i + γ2TS

i + γ3TD
i

)
+ ε it , (8)

where the outcome variable yit is energy (water) usage by individual i for shower number
t, and αi is the individual fixed effect. TR/D

i , TD
i and TS

i are treatment group indicators,
where superscript R/D denotes the combined real-time feedback groups RTF and DUAL,
D denotes the DUAL group only, and S denotes the SER group only. Finally, INit is an
indicator that takes the value 1 if observation it falls into the intervention stage (t > 10),
and IN s2

it is an indicator for showers that fall into intervention stage 2. As INit applies to
the entire intervention period, IN s2

it captures incremental changes in consumption from
intervention stage 1 (pre-report) to stage 2 (post-report). Note that the stage 2 coefficients
combine the effects of two distinct reports, the second containing also social comparison.

Given our formulation of the statistical model, we can interpret β1 as treatment effect
of real-time feedback on energy (water) use per shower in the first stage of the study, and
γ1 is its change in the second stage. This allows us to test Prediction 1. The relevant com-
parison for Prediction 2 on the effect of shower energy reports in isolation is between SER
and CON after the reports, which is captured by γ2. Finally, γ3 captures the marginal
effect of adding shower energy reports to real-time feedback, by comparing DUAL and
RTF in intervention stage 2. Finally, the comparison between γ2 and γ3 nails down the in-
teraction effect between the two interventions and thus allows us to test for any potential
complementarities (Prediction 3). As each test is associated with a separate hypothesis,
we do not adjust our inference for multiple hypothesis testing (Rubin, 2021).
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5.2. Estimating treatment effects on the treated

One complication in estimating the effect of shower energy reports is that 28% of sub-
jects did not succeed in uploading any data to the Amphiro smartphone app before we
sent out the reports, mostly due to technical problems (e.g., Bluetooth connection fail-
ure).25 For these “non-uploaders”, we were unable to provide informative shower en-
ergy reports. As the emails were generated automatically, non-uploaders in SER and
DUAL groups received report templates with blanks where it was supposed to show
statistics on resource use and environmental impacts. Effectively, this leads to imperfect
treatment take-up of shower energy reports, although being less the result of deliberate
non-compliance than unfortunate circumstances. For participants in the CON and RTF
groups, it is inconsequential whether they successfully uploaded data.

To test Predictions 2 and 3 from Section 3.6, one possible approach to estimate treat-
ment effects under imperfect treatment take-up would be simply to run an intention-to-
treat (ITT) analysis, which only uses treatment assignment information and ignores that
some subjects did not actually receive informative shower energy reports. While this
would be the relevant parameter in many policy evaluation contexts, one of our main
aims is to test whether the effect of receiving information on the energy use and carbon
emissions due to hot water consumption interacts with the effect of receiving real-time
feedback in the shower (Prediction 3). This would shed light on the potential importance
of multiple biases for complementarites between behavioral interventions that we iden-
tify theoretically in Section 2. However, a stringent empirical test of this requires that
subjects indeed have the opportunity to gain knowledge through shower energy reports.
Thus, the more policy-relevant parameters in our case are the treatment effects on the
treated (TOT) in the DUAL and SER groups, i.e., the effects of shower energy reports
on subjects who managed to upload data prior to the report and thus received actual
information on the environmental impact of their hot water consumption in the shower.

The first way in which we estimate the TOT is by simply comparing only the uploaders
in SER and DUAL groups with subjects in the CON and RTF groups. The usual concern
at this point would be that treatment take-up is not random. Fortunately, our setting lim-
its potential endogeneity concerns for three reasons. First, we include individual fixed
effects, so our estimates would still be unbiased if differences between uploaders and
non-uploaders do not interact with the treatment effect. Second, subjects only knew that
they should use the smartphone app to upload data, but we did not announce that we
would use this data to construct shower energy reports. Thirdly, the main cause for non-
compliance is not the lack of willingness to use the smartphone app, but unexpected
technical failure, which is unlikely to be selected on the trend. To alleviate the most bla-
tant endogeneity issue, we also exclude non-uploaders in the CON and RTF groups who
did not report any technical problems. Appendix Tables A2 and A3 present additional

25Out of the 90 non-uploaders in our estimation sample, 63 have explicitly contacted us for technical
problems encountered during their upload attempts.
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balance checks for the TOT subsample and show that the experimental groups remain
balanced along baseline characteristics.

The second way in which we estimate the TOT is by using random treatment assign-
ment as instrument for actual take-up.26 This can be shown to identify the so-called local
average treatment effect (LATE), i.e., the average treatment effect for the sub-population
of compliers, in our case the uploaders (Imbens and Angrist, 1994).27 Compared to
the “uploaders-only”-approach, the instrumental variables approach is consistent un-
der weaker assumptions, but potentially inefficient. We will report the results from both
TOT-approaches, but the estimates are very similar, suggesting that non-compliance due
to technical issues was likely uncorrelated with conservation intentions in our sample.

6. Main empirical results

6.1. Average treatment effects

We start by presenting descriptive evidence on the resource conservation effects of our
interventions in Figure 6 by plotting subjects’ average changes in energy and water con-
sumption per shower in intervention stage 1 (pre-report) and intervention stage 2 (post-
report) compared to the baseline period. The differences-in-differences across treatment
groups then correspond to the average treatment effects. Note that the stage 2 averages
need to interpreted as combining effects of two distinct reports, one without and one
with social comparison. In order to show the treatment effects on the treated (TOT), i.e.,
the effect of informative shower energy reports, we use the uploaders-only approach of
excluding non-compliers in SER and DUAL as well as non-compliers without technical
problems in CON and RTF.

Figure 6 essentially summarizes our main results in eight bars. The patterns are very
similar for energy and water consumption. The four bars to the left of the dashed vertical
line represent the change in resource use per shower in intervention stage 1 compared
to the baseline stage. We can see that relative to subjects in the CON and SER groups,
subjects in the RTF and DUAL groups with real-time feedback reduced their consump-
tion drastically, by almost 0.4 kWh of energy and 6 liters of water per shower. Recall that
there were no shower energy reports yet at this point. The four bars to the right of the
dashed vertical line represent the change in energy use per shower from baseline stage to
intervention stage 2, after shower energy reports were sent out. The first observation is

26To do this, we create new treatment indicators for the DUAL and SER groups that took the value 1 for
showers in IN stage 2 by subjects who were assigned to the respective group and who uploaded data through
the smartphone app that we could use to construct their shower energy reports. The previously defined ITT
indicators are then used as instruments for these new indicators for receiving actual shower energy reports.

27This identification result holds under the condition that there are no “defiers”, subjects who always do
the opposite of what they are prescribed. This monotonicity condition holds by design in our study, because
we control the eligibility of shower energy report treatment, so any participant in the sample can be classified
either as complier or as never taker in the LATE framework.
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Figure 6: Descriptive evidence on resource conservation effects

Notes. The bars represent changes in average energy use and water use per shower compared to the
baseline period. The error whiskers represent 90% confidence intervals. Non-uploaders in SER and
DUAL as well as non-uploaders without technical problems in CON and RTF are excluded.

that average resource use in the control group further increased, which could be driven
by weather effects, by pending exams leaving students stressed and in need for a long
and warm shower, or by Hawthorne effects that decrease over time (Tiefenbeck, 2016).28

The second observation is that the RTF group and the CON group followed a more or less
parallel trend from intervention stage 1 to stage 2, hence the effect of real-time feedback in
isolation remains nearly constant. The third observation is that providing shower energy
reports in isolation does not seem to result in effective behavioral change: consumption
of subjects in the SER group followed the CON group in close synchronization. In light of
this, the fourth and final observation is particularly striking: shower energy reports are
highly effective when combined with real-time feedback. In fact, subjects in the DUAL
group are the only ones to defy the general upward trend and reduce their consumption
considerably compared to subjects in the RTF group.

The descriptive evidence presented in Figure 6 is confirmed by formal empirical esti-
mates based on the empirical strategy outlined in the previous section. Table 3 presents
the regression results from estimating equation 8, with columns 1-2 using the uploaders-
only approach, and columns 3-4 using the alternative LATE approach. To ensure that our
statistical inference procedure is robust to arbitrary temporal interdependence of show-
ers taken by the same person, we cluster all standard errors at the individual level. Ap-
pendix Figures A4-A5 show that all statistical test results are virtually identical when

28While the baseline phase fell mainly into an unusually warm and dry December, the main intervention
months of January and February saw much higher precipitation. Exam periods at the universities began in
mid-February.
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using randomization-based inference methods (Young, 2019).
Focusing first on the effects of real-time feedback in isolation, LATE is preferable as it

utilizes the full sample. We document a conservation effect of around 0.37kWh energy
and 5.5 liters of water per shower from intervention stage 1 onwards (coefficient β1). The
effect does not change significantly in intervention stage 2 (coefficient γ1); if anything, it
becomes slightly stronger. Another direct way to estimate the effect of real-time feedback
that is easier to interpret is to only compare subjects in the RTF and CON groups, since
there is no need to take into account effects of shower energy reports. Appendix Table A4
shows that real-time feedback in isolation reduces resource use by 0.4 kWh of energy and
6.3 liters of water per shower compared to the CON group over the entire intervention
period, which corresponds to about 17-18% of average baseline consumption.

Result 1. Real-time feedback (in isolation) through the smart meter display led to a reduction in
energy (water) consumption by about 0.4kWh (6.3 liters) or 17-18% per shower.

For the shower energy reports, we need to focus instead on intervention stage 2 and ac-
count for imperfect compliance, to estimate the effects of actually receiving information
on resource use and environmental impacts (see Appendix Table A4 for the intention-
to-treat estimates). Recall that while the LATE approach is consistent even under strong
endogeneity of treatment take-up, the uploaders-only approach is potentially more ef-
ficient and still consistent if technical issues in uploading data are as good as random.
Table 3 shows that the point estimates obtained both approaches are very similar, im-
plying that endogeneity of treatment take-up is likely not a major issue in our sample,
whereas the standard errors are smaller in the uploaders-only approach. Contrary to
prediction 1, shower energy reports in isolation had no significant conservation effect
in the SER group (coefficient γ2), and the point estimates even go in the opposite di-
rection. While the null effect is not very tightly estimated, we can rule out reductions
of greater than 4-5% (0.08kWh and 1.95 liters per shower) with 90% confidence in our
preferred uploaders-only specification. This would be consistent with effect sizes in the
order of magnitude found in previous studies (e.g., Allcott, 2011). Note that lower statis-
tical power due to non-compliance does not explain the insignificant coefficient for SER
compared to the significant coefficient for RTF, since the standard errors for β1 and γ2 are
similar. We can also reject the hypothesis that shower energy reports in isolation were as
effective as real-time feedback in isolation (p = 0.009).

Result 2. Shower energy reports in isolation did not induce any significant reduction in energy
and water consumption per shower.

In stark contrast, we find that adding shower energy reports in the DUAL group in-
duced subjects to further reduce their consumption by around 0.23 kWh of energy and
3.8 liters of water per shower in intervention stage 2 (coefficient γ3), corresponding to
another 10%p reduction from baseline consumption and about 60% of the effect of real-
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Table 3: Treatment on the treated (TOT) estimates

Uploaders-only LATE

(1) (2) (3) (4)
Energy [kWh] Water [liter] Energy [kWh] Water [liter]

(β0) Intervention 0.207∗ 3.067∗ 0.200∗∗ 2.961∗

(0.108) (1.663) (0.099) (1.530)

(β1) Intervention × RTF/DUAL -0.388∗∗∗ -5.762∗∗∗ -0.368∗∗∗ -5.514∗∗∗

(0.130) (2.071) (0.122) (1.932)

(β2) Intervention × SER 0.013 0.543 0.003 0.476
(0.151) (2.361) (0.132) (2.051)

(β3) Intervention × DUAL 0.031 0.524 0.109 2.140
(0.111) (1.808) (0.106) (1.719)

(γ0) IN stage 2 0.110 2.191∗ 0.152∗ 2.756∗∗

(0.085) (1.319) (0.090) (1.360)

(γ1) IN stage 2 × RTF/DUAL -0.023 -1.234 -0.054 -1.550
(0.109) (1.805) (0.113) (1.806)

(γ2) IN stage 2 × SER 0.124 1.336 0.079 0.573
(0.124) (1.993) (0.149) (2.326)

(γ3) IN stage 2 × DUAL -0.230∗∗ -3.836∗∗ -0.226∗ -4.013∗

(0.109) (1.908) (0.122) (2.152)

(αi) Individual fixed effects yes yes yes yes

p-value: γ2 = β1 0.007 0.018 0.026 0.053
p-value: γ2 = γ3 0.033 0.062 0.114 0.149

Clusters 261 261 318 318
Observations 14712 14712 17942 17942
R2 0.412 0.415 0.004 0.004

In columns (1) and (2), we exclude all non-uploaders in SER and DUAL as well as all non-uploaders
in RTF and CON who did not report a technical problem. In columns (3) and (4), we use treatment
assignment to SER and DUAL, respectively, interacted with the IN stage 2 indicator as instrument for
receiving informative shower energy reports. The reported R2 in columns (3) and (4) is the within
R2. Standard errors in parentheses are clustered at the individual level. Permutation-based inference
procedures are presented in Figure A4 and A5. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

time feedback in isolation. Thus, information on environmental impacts of hot water
consumption was not ineffective per se in our setting, but in fact boosted conservation
efforts considerably when administered in combination with real-time feedback on wa-
ter usage via the smart meter displays. This contrast between individuals’ responses
to shower energy reports with and without real-time feedback is all the more remark-
able given that in the former case they had already cut their consumption significantly
in intervention stage 1, thus leaving less room for further behavioral adjustments. The
exact hypothesis for complementarity further requires to test not only whether the in-
cremental consumption reduction in the DUAL group was different from zero, but also
from the effect in the SER group (i.e., whether γ3 = γ2). This difference is statistically
significant in the uploaders-only specification (p = 0.033), although in the less efficient
LATE-specification it would be weakly significant only when using a one-sided test.
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Result 3. Combining real-time feedback with shower energy reports further reduced energy (wa-
ter) use by around 0.23 kWh (3.8 liters) per shower, in addition to the conservation effect of
real-time feedback in isolation.

Overall, we observe a sizable complementarity between the two interventions in our
setting. This is consistent with our theoretical framework, which shows that in the pres-
ence of multiple biases, behavioral interventions may need to address all significant
sources of bias simultaneously in order to unfold their full effect. While shower energy
reports provide information about resource use and associated environmental impacts,
conservation efforts may be hindered by residual biases such as lack of salience. Real-
time feedback through smart meters could thus turn environmental considerations into
action by keeping them on top of people’s mind in the heat of the moment. We will
analyze the underlying mechanisms more closely in Section 7.

6.2. Robustness checks on timing

As the timing of observations with regard to intervention stage 2 involves a degree of
fuzziness for subjects who did not use the app frequently, we conduct a number of ro-
bustness checks. First, we use a donut hole approach that excludes the around 10% of
shower observations with the highest uncertainty about whether they occurred before or
after the first shower energy report; Appendix Table A5 shows that our results remain
nearly unchanged.29 Second, our results are also robust to using an alternative definition
of report timing for non-uploaders that deterministically assigns non-uploaders into in-
tervention stage 2 based on the median study completion value among uploaders rather
than the full cumulative distribution (see Appendix Table A6). Finally, we estimate a
specification in which we assign all subjects into intervention stage 2 based on when we
sent out the first shower energy report email, rather than based on when they actually
read the reports (proxied by mini-survey response date). Appendix Table A7 shows that
our results are robust to using this alternative timing indicator.

6.3. Margins of behavioral adjustment

Subjects could conserve energy by reducing the temperature to which water is heated to
and the overall amount of water that needs to be heated up. Appendix Table A8 shows
that reductions in water temperature seem to be at most a minor factor in our sample,

29To be more precise, we calculate for each shower a probability that it occurred after reading the first
shower energy report (or placebo email). Notice that for many showers, these probabilities are either 0 or 1,
because they were uploaded before the report or after the first post-report upload, respectively. For observa-
tions within the range of uncertainty, we calculate approximate probabilities assuming that the frequency of
showering is constant. We then exclude all observations with probability between 10% and 90%, i.e., those
with significant uncertainty about whether they occurred before or after the report. For non-uploaders, we
use the same cutoffs of 10% and 90%, but based on the CDF for uploaders (see Figure A3).
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perhaps for hedonic reasons.30 Hence, water and energy usage tend to be very closely
aligned with each other, and energy conservation effects are almost equivalent to water
conservation effects, in relative terms. Water conservation, in turn, can be achieved by
adjusting time spent under the shower, water flow rate (i.e., liters of water per minute),
and the covariance structure. The data suggests that subjects respond to the interventions
mostly by taking shorter showers and reducing the flow rate during long showers.

6.4. Treatment effect dynamics

In a next step, we investigate how resource conservation outcomes changed over time,
with a focus on the last 5-6 weeks period of our study, after the first energy reports were
sent out (IN stage 2). This allows us to test whether effects declined over time or remained
stable and whether the second shower energy report (containing social comparison) may
have induced behavioral responses. To estimate effect dynamics, we extend the empirical
model from equation 8 by interactions with a time variable Zi:

yit = αi + INit ×
(

β0 + β1TR/D
i + β2TS

i + β3TD
i

)
+ IN s2

it ×
(

γ0 + γ1TR/D
i + γ2TS

i + γ3TD
i

)
+ IN s2

it × Zi ×
(

δ0 + δ1TR/D
i + δ2TS

i + δ3TD
i

)
+ ε it . (9)

We explore two variants of Zi. In the first variant, we look additionally at energy use
per shower after the second shower energy report, which was sent about two weeks after
the first report. In the second variant, we interact each treatment group indicator with
a linear time trend, so the δ coefficients can be interpreted as weekly depreciation (or
appreciation) rate of energy conservation effects by intervention regime.

Table 4 suggests that the effect of shower energy reports in the DUAL group seemed to
gradually unfold over time. The point estimates in columns (1) and (2) indicate that the
average conservation effect is driven largely by the final 3-4 weeks of the study, after the
second reports were sent out. However, this does not seem stem from a discrete jump,
but rather from a continuous trend. In columns (3) and (4), we estimate that the conser-
vation effect per shower in the DUAL group increases by a rate of around 0.08-0.09 kWh
every week. These descriptive results need to be interpreted with caution, as the rele-
vant coefficients are statistically insignificant. However, we note that the point estimates
for shower energy reports in isolation (SER group) show no signs of any quantitatively
significant dynamic pattern. The effect of real-time feedback in isolation also appears to
stay constant in intervention stage 2, overall showing no signs of weakening within the 3

30At 40 liters and a base temperature of 37◦C, reducing energy conservation by 0.1kWh would require
lowering the temperature by more than 1◦C, ceteris paribus.
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Table 4: Treatment effect dynamics

Zi = I{post report 2} Zi = # weeks after report 1

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

. . . . . . . . . . . . . . .

(γ0) IN stage 2 0.091 0.135 0.016 0.066
(0.095) (0.103) (0.108) (0.115)

(γ1) IN stage 2 × RTF/DUAL -0.038 -0.059 0.037 0.016
(0.120) (0.127) (0.149) (0.154)

(γ2) IN stage 2 × SER 0.149 0.102 0.210 0.163
(0.135) (0.156) (0.151) (0.178)

(γ3) IN stage 2 × DUAL -0.086 -0.068 0.009 0.049
(0.109) (0.120) (0.154) (0.169)

(δ0) IN stage 2 ×Z_i 0.032 0.029 0.032 0.029
(0.090) (0.087) (0.023) (0.022)

(δ1) IN stage 2 × RTF/DUAL ×Z_i 0.025 0.009 -0.021 -0.024
(0.128) (0.125) (0.035) (0.034)

(δ2) IN stage 2 × SER ×Z_i -0.043 -0.040 -0.030 -0.028
(0.123) (0.133) (0.036) (0.041)

(δ3) IN stage 2 × DUAL ×Z_i -0.245 -0.273 -0.082 -0.095
(0.201) (0.207) (0.055) (0.058)

(β j) Intervention indicators yes yes yes yes
(αi) Individual fixed effects yes yes yes yes

Clusters 261 318 261 318
Observations 14712 17942 14712 17942
R2 0.413 0.004 0.413 0.005

The results are obtained by estimating equation (9). The full table with all the coefficients
is presented in Table A9. In columns (1) and (3), we exclude all non-uploaders in SER and
DUAL, as well as all non-uploaders in RTF and CON who did not report a technical prob-
lem. In columns (2) and (4), we use treatment assignment to SER and DUAL, respectively,
interacted with the IN stage 2 indicator as instrument for receiving informative shower en-
ergy reports. The reported R2 in Columns (2) and (4) is the within R2. Standard errors in
parentheses are clustered at the individual level.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

months of our experiment.31

There are several potential behavioral explanations for this descriptive pattern of in-
creasing responses over time that we observe in the DUAL group.32 The first explanation
is that the peer comparison element in the second report provided important additional
social motivation to conserve energy, which then interacted with real-time feedback; this
would be in line with our theoretical framework as well as previous literature. A sec-

31This is consistent with other interventions using smart shower meters (Agarwal et al., 2020; Byrne et al.,
2022). Energy conservation studies in other settings show some degree of backsliding over time after being
exposed to non-monetary interventions (e.g. Allcott and Rogers, 2014; Ito et al., 2018), although investments
into physical capital may alleviate this issue in the long term (Brandon et al., 2017).

32Another potential explanation is that the apparent increase in estimated effects over time is a statisti-
cal mirage driven by decreasing measurement error about when subjects were treated with shower energy
reports.
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ond explanation is that subjects may have required some time to discover new strategies
for further reducing resource use. This experimentation channel is consistent with Ap-
pendix Table A8, which suggests that subjects in the DUAL group conserved resources
in the second intervention stage by reducing the flow rate overproportionately during
longer showers. To further investigate this channel, Appendix Table A10 reports a spec-
ification that allows for discontinuities as well as differential trends after each report;
although admittedly noisy, the estimates suggest a more or less constant and continuous
(downward) slope of resource consumption in the DUAL condition that already begins
starting from the first report. This suggests that the effects are unlikely to be driven by
social comparison alone, although it may have played a role in reinforcing them. Impor-
tantly, the results speak against pure Hawthorne effects or short-lived attention boosts,
as these would rather predict an “action-and-backsliding” pattern (Allcott and Rogers,
2014; Schwartz and Loewenstein, 2017).

6.5. Heterogeneity by baseline consumption

A frequent finding in the literature is that households or individuals with high baseline
consumption tend to respond more strongly to interventions that foster conservation be-
havior (e.g., Allcott 2011; Ferraro and Price 2013; Tiefenbeck et al. 2018). Policy makers
could therefore improve cost-effectiveness by targeting high-baseline consumers. To es-
timate heterogeneity by baseline energy use, we extend the statistical model in equation
(8) by adding interactions with baseline consumption, measured using subject’s average
energy usage per shower in the baseline stage. Alternatively, we estimate a specifica-
tion where we interact with an above-median indicator. Appendix Table A11 shows that,
consistent with previous studies, the effect of real-time feedback increases with baseline
usage. In intervention stage 2, subjects with 1 kWh higher baseline in the RTF group
reduced their energy use by an additional 0.25 kWh (p = 0.083) on average, and above-
median baseline users (mean 3.30 kWh) saved 0.63 kWh (p = 0.043) of energy more per
shower compared to subjects with below-median baseline use (mean 1.17 kWh). It also
appears that providing information through shower energy reports in the DUAL con-
dition was about twice as effective for above-median users compared to below-median
baseline users, although the difference is not statistically significant, whereas shower en-
ergy reports in isolation (SER) had no significant effects in either subpopulation.

7. Underlying mechanisms

The empirical results show that, in our setting, shower energy reports appeared to be
ineffective in isolation, but induced large and significant conservation effects when com-
bined with real-time feedback, which suggests that our interventions were complements.
Through the lens of the theoretical framework in section 2, our proposed explanation for

33

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



this finding is that the two interventions targeted separated behavioral biases. Shower
energy reports may have increased knowledge about environmental impacts of warm
water use in the shower, but this in itself may not achieve reductions in energy consump-
tion if subjects still suffer from limited attention or self-control problems. Real-time feed-
back could help mitigating these problems and thus enable knowledge gains to translate
into conservation behavior. If, on the other hand, shower energy reports and real-time
feedback both operated through the same mechanisms, we would generally not expect
complementarities unless through some type of crowding in effect, e.g., if the combined
intervention leads to positive attention or motivation spillovers. In this section, we con-
duct a number of analyses to explore the mechanisms underlying our results.

7.1. Awareness about resource intensity and environmental impacts

A crucial element of both interventions in our study is that they can enable learning about
the outcomes of one’s behavior. Real-time feedback through the smart meter provides
immediate display of water use (and temperature) for the current shower. Shower en-
ergy reports also contain information of individuals’ entire history of water (and energy)
use per shower since the start of the study, with the difference that it comes in retro-
spect. Hence, a first manipulation check for our interventions is to analyze their effect on
subjects’ awareness about their own water use per shower.

In the post-intervention survey at the end of the study, we asked subjects to again esti-
mate the amount of water they typically use per shower. Recall that prior to the interven-
tions, subjects’ assessments were virtually uncorrelated with their actual water use (see
Figure 5). This picture changes after the interventions. Figure 7 plots individuals’ post-
intervention estimates as a function of their average water use per shower as measured
by the smart meter. The corresponding regression table A13 is presented in Appendix A.
Whereas subjects in the CON group remained as ignorant as before, the estimates by sub-
jects who received real-time feedback (RTF and DUAL group) were much more aligned
with their actual consumption patterns, as indicated by the fitted regression lines moving
closer to the identity line. Importantly, shower energy reports in isolation (SER group)
also induced significant learning effects about water use compared to the control group
(p = 0.039). Moreover, we cannot reject that the learning slopes among uploaders are
different between SER and DUAL (p = 0.522). We obtain similar results when we focus
instead on the magnitude of estimation errors as outcome variable. Table A14 in Ap-
pendix A shows that subjects estimation errors in the three treated groups are on average
about 20-30 percentage points closer to their actual water use than subjects in the CON
group, and notably, the effect is virtually the same for SER, RTF, and DUAL groups.

Taken together, the results show that subjects in our study became better informed
about their own consumption behavior in the shower through our feedback interven-
tions. However, belief updating about water usage alone cannot explain our main re-
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Figure 7: Post-intervention awareness about water use per shower

Notes. Both graphs compare subject’s estimates in the final questionnaire with their measured average
water use for the last third of shower observations. Graph (b) only uses the subsample defined for
the uploaders-only approach. 7 outliers with estimates between 200 and 500 liters are excluded. Point
clouds consist of individual observations (hollow diamonds for CON and RTF, solid circles for SER and
DUAL) and lines represent separate regression fits for each treatment group. The dashed line starting
at the origin is the 45 degree line.

sults. First, subjects’ prior beliefs about water use were by and large unbiased even in
the control group: on average, low-baseline users overestimated and high-baseline users
underestimated. Second, we observe signficant belief updating in the SER group that
does not translate into resource conservation effects. This points to the importance of the
immediacy and salience of the real-time feedback intervention, which can help subjects
track their water use while showering and overcome inattention problems.

In contrast to real-time feedback, shower energy reports did not only contain infor-
mation about water, but also on energy usage due to water heating and environmental
impacts in terms of CO2 emissions. This can explain why subjects in the DUAL group
reduced their energy consumption even further after receiving the reports. As a ma-
nipulation check for whether subjects responded to this information, we conducted a
supplementary survey in a new sample of 329 students at the end of 2019 (see also Sec-
tion 4.6). After eliciting prior beliefs about water consumption and CO2 emissions per
shower, we randomly presented one fact sheet (out of three) to each surveyee, mimick-
ing the basic informational content of our original interventions. The “CON sheet” only
reported the average water temperature in the shower, the “RTF sheet” also included the
average amount of water used, and the “SER sheet” further added information on energy
use and CO2 emissions. After presenting the fact sheets, we elicited posterior beliefs as
well as conservation intentions. We find that, relative to RTF sheet, surveyees that re-
ceived the SER sheet information drastically adjusted their beliefs about CO2 emissions
upwards (p < 0.001), and their self-reported intention to take shorter showers in the fu-
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ture increased by with a 0.24 standard deviations (p = 0.003). For further details on the
supplementary survey, see Appendix E.

Thus, the shower energy reports increased knowledge about the environmental impact
of hot water usage in the shower as well as conservation intentions, yet they were only
associated with significant conservation effects when combined with real-time feedback.
A key insights of our theoretical framework is that if biased behavior arises from multiple
different sources, a narrowly-targeted intervention can be undermined by residual biases
(Anna Karenina effect). Hence, a likely explanation of our results is that, when shower
energy reports were implemented in isolation, additional biases due to, e.g., limited at-
tention or self-control problems have prevented knowledge gains and good intentions
from translating into actual behavior.

7.2. Engagement with shower energy reports

One potential alternative channel is differential treatment engagement, in the sense that
subjects across experimental conditions may have paid more or less attention to the inter-
ventions per se. For example, if previous exposure to real-time feedback induced subjects
in the DUAL group to read shower energy reports more carefully than subjects in the SER
group, this might lead to complementarity between the two interventions through some
type of crowding in or foot-in-the-door effect.33

While the previous analyses show that shower energy reports induced significant learn-
ing effects also in the absence of real-time feedback, we can also compare engagement
with the reports between SER and the DUAL groups more directly by making use of the
mini-surveys that were attached to the reports. As described before, each email included
a link to a survey in which we asked subjects to estimate their water usage per shower.
The survey link was at the bottom of the email, so subjects had to scroll through all the
statistics on resource use and CO2 emissions before clicking on it. We therefore use sur-
vey responses as proxy for the level of engagement with the feedback email. Appendix
Table A15 shows response rates by treatment group in the uploaders-only sample. The
overall response rate among uploaders was 87% for the first email and 71% for the sec-
ond email. While the share of respondents in the SER group was 8.4%p lower than in
the DUAL group for the first email (p = 0.203) and 9.4%p higher for the second mail
(p = 0.308), both differences are statistically insignificant. Furthermore, we find no ev-
idence that uploaders in the DUAL group studied the reports more carefully than up-
loaders in SER group. Table A15 also compares estimation error across treatment group,
defined as percent deviation of the water use estimate in the mini-survey from the exact

33An opposite effect is also conceivable, in which paying attention to one intervention decreases engage-
ment with the other, for example due to cognitive capacity constraints (see, e.g., Altmann et al., 2022; Tra-
chtmann, 2022) or lower perceived marginal benefits of information when subjects already receive real-time
feedback. This would work against our complementarity argument.
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estimated treatment effect [kWh]
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Figure 8: Effects for different levels of engagement with shower energy reports

Notes. The squares represent estimated regression coefficients for the effects of shower energy reports in
intervention stage 2, where treatment engagement status is instrumented with treatment assignment
(with the exception of ITT). Lines represent 90% confidence intervals. LATE, survey all includes all
subjects who uploaded data and clicked on at least one mini-survey. The labels p25+/p25+/p75+
denote the groups of subjects whose estimate precision, defined as distance between estimated and
measured water use per shower calculated for the shower energy reports, was above the 25th, 50th,
or 75th percentile of all subjects, respectively. Responses from the two mini-surveys are combined by
using the minimum estimate precision to define indicators.

number that we showed in the same personalized report that contained the survey link.34

Smaller estimation errors are thus a direct indication of subjects paying closer attention
while reading. Unsurprisingly, all treated groups outperformed the control group, but
we observe no significant difference between uploaders in the SER and the DUAL group.

As a final plausibility check that differences between SER and DUAL are not driven by
differential level of engagement with the shower energy reports, we look at whether sub-
jects who studied the reports more closely also engaged more strongly in conservation
actions. To do so, we create new treatment compliance indicators that also consider sub-
ject’s level of engagement with the reports, to varying degrees of strictness. Specifically,
we define an indicator for whether subjects uploaded data and clicked on the mini-survey
in their report, and additional indicators for whether a subjects’ estimation precision in
the mini-surveys (as defined above) was above the 25th, 50th, or 75th percentile, respec-
tively, of their treatment group. To avoid the endogeneity issue at hand, we instrument
each of these treatment compliance indicators with the randomized assignment. Figure 8
plots results for the effect of shower energy reports in SER and DUAL group, respectively,
when using these new set of indicators. The estimated conservation effect in the DUAL

34For the CON and RTF group, we calculate this using the number that we would have shown, were the
subjects assigned to one of the shower energy report groups instead. Similarly, for non-uploaders, we use
the ex post analogue of the same statistic, based on data was uploaded after the report or manually read out
by our research team.
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group increases monotonically with the strictness of our compliance definition, reaching
more than 0.5 kWh per shower for the strictest 75th percentile indicator. In contrast, even
the most studious subjects in the SER group did not reduce their energy use on average.
Overall, it is therefore unlikely that our empirical results can be explained by differential
level of engagement with the shower energy reports.

7.3. Other potential mechanisms

There are a number of alternative channels through which our interventions could affect
conservation behavior. Hawthorne effects are one possibility, but recall that also subjects
in the control group received a smart meter and emails reminding them to upload their
data. Another potential channel may be that we accidentally killed the joy of showering.
Reassuringly, our endline survey results suggest that the interventions had no effects on
self-reported shower comfort, thus also alleviating concerns about unintended negative
welfare effects (e.g., Damgaard and Gravert, 2018; Allcott and Kessler, 2019). Further-
more, we find no evidence for positive effects on general pro-environmental attitudes.
If anything, we observe a decrease in self-perceived environmentalism in the treated
groups compared to the control group, potentially due to feedback provision curbing
the capacity for distorted self-image formation. See Appendix F and Table A17 for all
results and a more detailed discussion of alternative mechanisms.

8. Discussion

In this paper, we argued that when multiple biases arising from different sources (e.g.,
imperfect information, limited attention) simultaneously prevent individuals from acting
on their values and intentions, then combining interventions that each target a different
source of bias can result in complementarity, meaning that each intervention becomes
more effective when implemented in conjunction with the other(s) than in isolation. We
first introduced a novel theoretical framework that explores the implications of multiple
biases and defines conditions for complementary in behavioral interventions in such a
setting. We then presented results from a three-month field experiment on resource con-
servation behavior in an energy- and water-intensive everyday activity (showering), in
which we tested the effects of two types of interventions: shower energy reports, which
provided information on resource use and carbon emissions via email, and real-time
feedback, which made resource use in the shower immediately salient through a smart
meter display. While only the latter induced a significant conservation effect when imple-
mented in isolation, combining both interventions resulted in a striking complementar-
ity that is in line with theoretical predictions. Specifically, it seems that knowledge gains
about environmental impacts of water heating only translated into behavioral change
when resource use was additionally made salient through real-time feedback.
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8.1. Relevance of effect sizes

Although our interventions were targeted towards one specific resource-intensive activ-
ity, showering, the effect sizes are also quantitatively meaningful on the aggregate house-
hold level, which is all the more remarkable given that our subjects had no monetary
incentives to conserve resources. In our study, real-time feedback in isolation lowered
consumption by 0.4 kWh (6.3 liters) per shower; adding shower energy reports further
lowered consumption by 0.23 kWh (3.8 liters). For comparison, total daily energy use
for lighting in German households was less than 0.35 kWh per person on average at that
time.35 In his influential evaluation of the Opower home energy reports, which target ag-
gregate electricity use in U.S. households, Allcott (2011) finds an average household-level
conservation effect of 0.62 kWh per day.

For a simple cost-benefit calculation of the Amphiro smart shower meters, we re-
fer to Tiefenbeck et al. (2018). For the shower energy reports, while it would not be
credible to state a generally applicable estimate for the cost of intervention, we note
that given we had already set up the technical infrastructure for real-time feedback in
our study, the marginal costs of adding information on environmental impacts through
emails were close to zero. Although we find no evidence that the email interventions
were (cost-)effective in isolation, they produced significant additional conservation effect
when combined with real-time feedback, so the bundled intervention should be the most
cost-effective regime. This possibility was proposed theoretically in subsection 2.3.

8.2. Data limitations

Our data has a number of limitations. One issue is that the Amphiro devices had no
global time counter, so our only source of information on timing comes from data uploads
through a smartphone app. As most subjects tended to upload data in batches, some
uncertainty remains about when exactly a shower took place, implying that we cannot
easily control for date or time of day fixed effects and that there is some fuzziness around
which observations took place before or after a shower energy report — to address this,
we conducted a number of robustness checks. Moreover, a subset of participants could
not upload any data due to technical issues with the Bluetooth connection, and thus
could not receive any informative report. In principle, such problems that happen in
early stages in the life cycle of new applications can be ironed out in the future.

Another limitation is that we cannot measure behavior outside of the shower. Hence,
we cannot directly rule out, for example, whether subjects substitute part of their hy-
giene behavior to other facilities such as gym showers or wash basins. However, we
find no evidence of extensive margin effects (i.e., on the number of observed showers)

35Source: German Federal Statistical Office (https://www.destatis.de/EN/Themes/
Society-Environment/Environment/Environmental-Economic-Accounting/private-households/
Tables/energy-consumption-households.html)
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across experimental conditions, and a related study on water conversation in dorm show-
ers finds no evidence of students moving between different communal shower facilities
within the same building (Goette et al., 2021). Relatedly, we cannot account for potential
spillover effects on other resource consumption activities, e.g., kitchen water usage or
room heating. It is unclear whether this leads to an overstatement or an understatement
of the overall impact of our interventions, and the general evidence for spillover effects
of pro-environmental interventions is mixed (e.g., Tiefenbeck et al., 2013; Jessoe et al.,
2021; Goetz et al., 2021; Sherif, 2021). Exploring the direction and magnitude of spillover
effects thus constitutes an important avenue for future behavioral research.

8.3. Generalizability

Our study on hot water conservation in student dorm showers constitutes a very specific
setting. First, students may generally not be representative of the general population.
As our subjects also self-selected into participating in the study, they may on average be
more intrinsically motivated to protect the environment, although note that about two-
thirds of all dorm residents that we could reach through door-to-door recruitment partic-
ipated in our study. Another noteworthy feature is that students in our sample did not
have to pay utility bills and thus had no monetary incentives to conserve water and en-
ergy, which is unusual but not unheard of in other settings (e.g., office energy use).36 The
theoretical predictions for how these factors would affect the potential for complemen-
tarity are ambiguous. On the one hand, stronger marginal (monetary or non-monetary)
incentives gives more leverage to alleviating informational and behavioural barriers; on
the other hand, ceiling effects may limit the conservation potential if individuals already
put in more effort in baseline. Our study was also conducted during winter in Germany,
where demand for long and hot showers may have been higher due to cold weather. This
could have limited conservation effects due to lower willingness to reduce warm water
use, but also increased conservation potential due to a higher baseline. Another char-
acteristic of our sample is that all subjects lived in single-person flats in relatively large
and anonymous dorm buildings. This has advantages for the empirical study design,
but limits the extent of information sharing and social influence that could be relevant
in multi-person households. Interestingly, Tiefenbeck et al. (2018) found no difference in
effects of real-time feedback between one- and two-person households.

Finally, whether and to which extent similar results would arise in other behavioral
contexts is an open question. Our theoretical framework predicts that complementarities
should become more likely if — following the Anna Karenina principle — multiple dif-
ferent mechanisms play a role in preventing behavioral change, including information
frictions and behavioral biases like limited attention and self-control problems, but also

36Ito et al. (2018) find that monetary incentives lead to stronger and more persistent reductions in peak
electricity use than to moral appeals. Also note that some surveys in Germany find that young people were
less likely to behave sustainable in their daily lives than older generations (e.g., Ipsos, 2019).
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more standard economic barriers such as lack of incentives or constraints on time, money,
or technology. We suspect that such complexity of behavioral mechanisms is a pervasive
feature of many social and economic domains of our lives, e.g., decisions affecting envi-
ronmental, financial, or health outcomes. If true, the Anna Karenina effect we highlight
in this study could imply the existence of numerous untapped opportunities for more
targeted intervention designs and help organize empirical research on interaction effects
of behavioral policy.37 Obviously, our study cannot offer any definitive conclusion and
should be viewed more as a proof of concept. More research is needed to understand
how our findings would extrapolate to other settings and samples.

8.4. Implications for policy and research

Policy evaluation typically requires to test whether an intervention in isolation leads to
the desired outcomes, to avoid that other interventions confound the effect. Similarly,
behavioral researchers who wish to investigate specific determinants of behavior need to
manipulate these determinants of interest while holding all other factors constant. How-
ever, our study highlights a particular generalizability challenge. Lack of observable
impacts in response to an intervention (or manipulation) in isolation may be insufficient
to rule out that it is not relevant or effective even within the same sample. For example,
one may have concluded from the lack of effectiveness of our shower energy reports in
isolation that improving knowledge about energy- and carbon-intensity of water heat-
ing does not matter in our context, but our findings suggest that knowledge gains may
have been prevented from inducing observable behavioral change by residual biases like
inattention or present bias.

The reason for this is that any singular evaluation of an intervention is inevitably con-
fined to the particular choice environment it is introduced into, which is shaped by exist-
ing policies, institutions, norms, and individual circumstances. This environment itself
can be malleable, so interventions that seem feeble at first glance may be able to unfold
their full potential only once combined with complementary policies. We focused specif-
ically on the role of multiple behavioral biases in decision-making creating potential for
complementarities, because mitigating one specific bias (e.g., due to knowledge gaps) be-
comes more effective when also mitigating residual biases (e.g., due to inattention, self-
control problems). This implies that policy designers should not focus only narrowly on
one specific behavioral mechanism, but also attempt to identify other behavioral factors
and how they might interact or interfere. For example, our results suggest that giving
people tools that allow them to track their resource use may also make behavior more

37For example, Dupas and Robinson (2013) study financial behavior in a development context and find
that simply providing a safe box for storing money is effective for encouraging higher savings, except for
the subgroup of individuals with severe present bias, who need additional social commitment. Similarly,
prompting deliberation about food choice to help resist temptations increases the effectiveness of healthy
purchasing subsidies (Brownback et al., 2019). Cortes et al. (2023) find that text-message interventions on
parenting practices work less well when in time periods where parents face high cognitive load.
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sensitive to other policies such as informational and norm-based interventions; the same
may also apply to conventional policies like price incentives (Jessoe and Rapson, 2014).
An interesting approach for future research could be to first identify and elicit the exis-
tence and strength of different behavioral motives and biases at the individual level, and
then implement and test tailored combinations of interventions in a second step — akin
to personalized medical diagnoses and prescriptions.

The potential for complementarities creates a trade-off for policy makers with a bind-
ing budget constraint. They could either target more people with a single intervention or
fewer people with a bundled intervention. We show in our theoretical framework that
when complementarities between interventions are sufficiently strong, it can be prefer-
able to implement a bundled approach at the cost of covering fewer households. As social
scientists are beginning to pioneer the process from small-scale proof-of-concept studies
to large-scale interventions (Banerjee et al., 2017), future research should therefore syn-
chronously advance our knowledge on the interplay of different policy instruments.
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Appendix A Supplementary figures and tables

Figure A1: Screenshot of a typical shower energy report (for a fictitious person)
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Figure A2: Screenshot of a shower energy report with peer comparison
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Figure A3: Empirical distribution of report timing

Table A1: Additional randomization checks

Baseline survey responses

environmental shower 1 if age 1 if
attitude comfort female in years international

SER group -0.106 0.094 -0.046 0.757 -0.017
(0.165) (0.164) (0.080) (0.615) (0.075)

RTF group 0.044 -0.164 -0.015 0.872 0.042
(0.167) (0.156) (0.079) (0.584) (0.077)

DUAL group 0.154 0.115 0.117 0.540 0.032
(0.161) (0.149) (0.075) (0.583) (0.075)

Constant -0.041 -0.014 0.597 23.351 0.325
(0.118) (0.100) (0.056) (0.380) (0.054)

Observations 307 306 318 307 318
R-squared 0.009 0.012 0.017 0.007 0.003
F-test: p-value 0.425 0.327 0.130 0.437 0.847

Robust standard errors in parentheses. The omitted category is the CON group.
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Table A2: Balance checks for the TOT sample

Volume Energy Duration Temperature Flow rate
[Liter] [kWh] [min] [řC] [l/min]

SER group -0.116 0.050 0.521 1.346 -0.420
(3.836) (0.242) (0.564) (0.668) (0.338)

RTF group -2.366 -0.191 0.149 0.199 -0.154
(3.533) (0.220) (0.537) (0.632) (0.384)

DUAL group -0.671 -0.030 -0.110 0.583 0.101
(4.154) (0.257) (0.579) (0.613) (0.421)

Constant 38.386 2.234 6.574 35.428 5.941
(2.679) (0.173) (0.379) (0.481) (0.245)

Observations 260 260 260 260 260
R-squared 0.002 0.005 0.005 0.020 0.007
F-test: p-value 0.895 0.685 0.731 0.176 0.522

Robust standard errors in parentheses. The omitted category is the CON group.

Table A3: Additional balance checks for the TOT sample

Baseline survey responses

environmental shower 1 if age 1 if
attitude comfort female in years international

SER group -0.135 0.110 -0.080 0.664 0.022
(0.182) (0.184) (0.088) (0.668) (0.083)

RTF group 0.040 -0.191 -0.030 0.925 0.073
(0.169) (0.159) (0.082) (0.605) (0.079)

DUAL group 0.129 -0.030 0.122 0.256 -0.060
(0.181) (0.175) (0.084) (0.658) (0.079)

Constant -0.033 -0.011 0.597 23.423 0.306
(0.123) (0.102) (0.058) (0.392) (0.055)

Observations 257 257 261 257 261
R-squared 0.008 0.011 0.020 0.010 0.010
F-test: p-value 0.561 0.447 0.123 0.451 0.430

Robust standard errors in parentheses. The omitted category is the CON group.
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Table A4: Effect of real-time feedback and ITT estimates

only RTF & CON Intention-to-treat (ITT)

(1) (2) (3) (4)
Energy Water Energy Water
[kWh] [liter] [kWh] [liter]

Intervention 0.283∗∗∗ 4.453∗∗∗ 0.200∗∗ 2.961∗

(0.104) (1.597) (0.099) (1.530)

Intervention × RTF/DUAL -0.397∗∗∗ -6.346∗∗∗ -0.368∗∗∗ -5.514∗∗∗

(0.125) (1.926) (0.122) (1.932)

Intervention × SER -0.001 0.450
(0.133) (2.059)

Intervention × DUAL 0.121 2.366
(0.108) (1.753)

IN stage 2 0.152∗ 2.756∗∗

(0.090) (1.360)

IN stage 2 × RTF/DUAL -0.054 -1.550
(0.113) (1.806)

IN stage 2 × SER 0.064 0.464
(0.120) (1.883)

IN stage 2 × DUAL -0.180∗ -3.192∗

(0.098) (1.710)

Individual fixed effects yes yes yes yes

Clusters 156 156 318 318
Observations 8446 8446 17942 17942
R2 0.379 0.375 0.403 0.404

Columns (1) and (2) only include individuals in the RTF or CON group. Standard
errors in parentheses are clustered at the individual level. Permutation-based in-
ference for the main coefficients of interest is depicted in Appendix Figure ??.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A5: Treatment on the treated (TOT) estimates with donut holes

Uploaders-only LATE

(1) (2) (3) (4)
Energy [kWh] Water [liter] Energy [kWh] Water [liter]

Intervention 0.199∗ 2.945 0.188∗ 2.821∗

(0.118) (1.806) (0.109) (1.662)

Intervention × RTF/DUAL -0.400∗∗∗ -5.983∗∗∗ -0.381∗∗∗ -5.773∗∗∗

(0.139) (2.190) (0.130) (2.045)

Intervention × SER 0.011 0.591 0.005 0.500
(0.158) (2.458) (0.138) (2.139)

Intervention × DUAL 0.021 0.421 0.094 1.878
(0.112) (1.842) (0.109) (1.754)

IN stage 2 0.129 2.431 0.152 2.732∗

(0.098) (1.492) (0.095) (1.432)

IN stage 2 × RTF/DUAL -0.035 -1.367 -0.059 -1.595
(0.121) (1.967) (0.117) (1.889)

IN stage 2 × SER 0.115 1.220 0.106 1.064
(0.138) (2.167) (0.154) (2.403)

IN stage 2 × DUAL -0.227∗∗ -3.848∗∗ -0.223∗ -3.949∗

(0.109) (1.926) (0.121) (2.135)

Individual fixed effects yes yes yes yes

p-value: γ2 = β1 0.015 0.030 0.025 0.043
p-value: γ2 = γ3 0.052 0.082 0.094 0.120

Observations 13465 13465 15584 15584
R2 0.424 0.425 0.005 0.005

This table excludes shower observations with high uncertainty regarding whether they oc-
curred before or after the first shower energy report. Specifically, we calculate post-report prob-
abilities based on a binomial distribution, assuming that shower frequency remains constant,
and only include observations with probability of either below 10% or above 90%. In columns
(1) and (2), we exclude all non-uploaders in SER and DUAL as well as all non-uploaders in RTF
and CON who did not report a technical problem. In columns (3) and (4), we use treatment as-
signment to SER and DUAL, respectively, interacted with the IN stage 2 indicator as instrument
for receiving informative shower energy reports. The reported R2 in columns (3) and (4) is the
within R2. Standard errors in parentheses are clustered at the individual level. Permutation-
based inference procedures are presented in Figure A4. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A6: TOT estimates with alternative timing definition for non-uploaders

Uploaders-only LATE

(1) (2) (3) (4)
Energy [kWh] Water [liter] Energy [kWh] Water [liter]

Intervention 0.204∗ 3.004∗ 0.194∗ 2.868∗

(0.108) (1.661) (0.100) (1.530)

Intervention × RTF/DUAL -0.391∗∗∗ -5.796∗∗∗ -0.371∗∗∗ -5.564∗∗∗

(0.130) (2.062) (0.121) (1.924)

Intervention × SER 0.016 0.606 0.013 0.642
(0.151) (2.359) (0.132) (2.049)

Intervention × DUAL 0.038 0.621 0.111 2.175
(0.110) (1.799) (0.105) (1.704)

IN stage 2 0.114 2.253∗ 0.160∗ 2.848∗∗

(0.084) (1.315) (0.090) (1.358)

IN stage 2 × DUAL -0.239∗∗ -3.980∗∗ -0.234∗ -4.115∗

(0.108) (1.893) (0.128) (2.232)

IN stage 2 × SER 0.120 1.274 0.053 0.137
(0.124) (1.990) (0.153) (2.397)

IN stage 2 × RTF/DUAL -0.018 -1.153 -0.047 -1.427
(0.108) (1.786) (0.112) (1.787)

Individual fixed effects yes yes yes yes

p-value: γ2 = β1 0.007 0.019 0.039 0.076
p-value: γ2 = γ3 0.030 0.057 0.152 0.195

Observations 14712 14712 17942 17942
R2 0.412 0.415 0.004 0.004

This table uses an alternative timing definition in which INstage2 is coded as 1 for non-
uploaders at the median study completion value of uploaders at the first report date. In columns
(1) and (2), we exclude all non-uploaders in SER and DUAL as well as all non-uploaders in RTF
and CON who did not report a technical problem. In columns (3) and (4), we use treatment as-
signment to SER and DUAL, respectively, interacted with the IN stage 2 indicator as instrument
for receiving informative shower energy reports. The reported R2 in columns (3) and (4) is the
within R2. Standard errors in parentheses are clustered at the individual level. Permutation-
based inference procedures are presented in Figure A4. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A7: TOT estimates using date of sending to define intervention stage 2

Uploaders-only LATE

(1) (2) (3) (4)
Energy [kWh] Water [liter] Energy [kWh] Water [liter]

Intervention 0.186∗ 2.731∗ 0.184∗ 2.704∗

(0.104) (1.608) (0.096) (1.480)

Intervention × RTF/DUAL -0.381∗∗∗ -5.685∗∗∗ -0.366∗∗∗ -5.506∗∗∗

(0.127) (2.031) (0.119) (1.896)

Intervention × HER 0.021 0.698 0.008 0.586
(0.151) (2.365) (0.131) (2.042)

Intervention × DUAL 0.033 0.578 0.109 2.177
(0.111) (1.822) (0.106) (1.726)

IN stage 2 0.144∗ 2.693∗∗ 0.175∗ 3.096∗∗

(0.086) (1.328) (0.094) (1.392)

IN stage 2 × RTF/DUAL -0.034 -1.319 -0.055 -1.493
(0.111) (1.824) (0.116) (1.839)

IN stage 2 × HER 0.104 1.004 0.063 0.278
(0.127) (2.035) (0.153) (2.387)

IN stage 2 × DUAL -0.225∗∗ -3.803∗∗ -0.220∗ -3.973∗

(0.105) (1.843) (0.120) (2.105)

Individual fixed effects yes yes yes yes

p-value: γ2 = β1 0.009 0.024 0.033 0.066
p-value: γ2 = γ3 0.047 0.081 0.146 0.183

Clusters 261 261 318 318
Observations 14712 14712 17942 17942
R2 0.413 0.416 0.004 0.004

This table defines intervention stage 2 using only the date and time that shower energy reports
(and placebo emails) were sent out. In columns (1) and (2), we exclude all non-uploaders in
SER and DUAL as well as all non-uploaders in RTF and CON who did not report a technical
problem. In columns (3) and (4), we use treatment assignment to SER and DUAL, respectively,
interacted with the IN stage 2 indicator as instrument for receiving informative shower energy
reports. The reported R2 in columns (3) and (4) is the within R2. Standard errors in parentheses
are clustered at the individual level. Permutation-based inference procedures are presented in
Figure A4. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A8: Margins of behavioral adjustment

Duration in seconds Temperature in ◦C Flow rate in liter/min
(1) (2) (3) (4) (5) (6) (7) (8) (9)
ITT Uploaders LATE ITT Uploaders LATE ITT Uploaders LATE

Intervention 11.69 11.16 11.69 0.02 0.05 0.02 0.27∗∗ 0.26∗∗ 0.27∗∗

(10.67) (11.32) (10.67) (0.33) (0.36) (0.33) (0.11) (0.12) (0.11)

Intervention × RTF/DUAL -41.63∗∗ -41.39∗∗ -41.63∗∗ -0.71 -0.83∗ -0.71 -0.12 -0.13 -0.12
(16.11) (16.88) (16.11) (0.45) (0.47) (0.45) (0.16) (0.17) (0.16)

Intervention × SER 10.68 9.62 9.06 -0.51 -0.59 -0.50 -0.11 -0.15 -0.09
(16.04) (17.21) (16.03) (0.40) (0.45) (0.40) (0.15) (0.18) (0.15)

Intervention × DUAL 7.11 7.77 6.98 -0.25 0.15 -0.27 -0.05 -0.25 -0.07
(16.73) (17.13) (16.41) (0.39) (0.41) (0.38) (0.17) (0.18) (0.17)

IN stage 2 20.67 9.20 20.67 0.38 0.43 0.38 0.25∗∗ 0.23∗ 0.25∗∗

(16.54) (9.33) (16.54) (0.28) (0.30) (0.28) (0.11) (0.12) (0.11)

IN stage 2 × RTF/DUAL -28.91 -17.53 -28.91 0.25 0.26 0.25 0.12 0.13 0.12
(18.54) (12.78) (18.54) (0.37) (0.39) (0.37) (0.17) (0.18) (0.17)

IN stage 2 × SER -28.54 -10.81 -35.28 0.12 0.17 0.15 0.23 0.17 0.28
(20.39) (16.23) (25.49) (0.34) (0.37) (0.43) (0.17) (0.17) (0.21)

IN stage 2 × DUAL -1.85 0.79 -2.33 -0.19 -0.37 -0.24 -0.29 -0.34 -0.36
(12.38) (13.80) (15.58) (0.35) (0.33) (0.43) (0.21) (0.23) (0.26)

Individual fixed effects yes yes yes yes yes yes yes yes yes

Observations 17942 14712 17942 17942 14712 17942 17942 14712 17942
R2 0.383 0.361 0.001 0.309 0.322 0.003 0.751 0.763 0.015

For LATE specifications the within-R2 is reported. Standard errors in parentheses clustered at individual level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(a) Col 1: IN stage 2 × SER

p = .3401
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(b) Col 3: IN stage 2 × SER

p = .6036
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(c) Col 1: IN stage 2 × DUAL

p = .0432
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(d) Col 3: IN stage 2 × DUAL
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Figure A4: Randomization inference for coefficients of interest in Table 3

Notes. Distribution of estimated t-statistics based on 10, 000 permutation samples. For each permuta-
tion, treatment assignment into CON, SER, RTF, or DUAL was randomly relabeled, holding constant
the actual number of individuals in each treatment group. The red vertical line represents the t-value
for the true treatment labels. Permutation-based p-values are shown in the top right corner.
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(a) Col 1: t-test for H0 : γ2 = β1

p = .0069
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(b) Col 3: t-test for H0 : γ2 = β1

p = .0258
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(c) Col 1: t-test for H0 : γ2 = γ3

p = .0351
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(d) Col 3: t-test for H0 : γ2 = γ3

p = .1154
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Figure A5: Randomization inference for additional hypothesis tests in Table 3

Notes. Distribution of estimated t-statistics based on 10, 000 permutation samples. For each permuta-
tion, treatment assignment into CON, SER, RTF, or DUAL was randomly relabeled, holding constant
the actual number of individuals in each treatment group. The red vertical line represents the t-value
for the true treatment labels. Permutation-based p-values are shown in the top right corner.
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Table A9: Treatment effect dynamics: all coefficients

Zi = I{post 2nd report} Zi = # weeks after 1st report

(1) (2) (3) (4)
Uploaders LATE Uploaders LATE

Intervention 0.208∗ 0.201∗∗ 0.206∗ 0.199∗∗

(0.108) (0.099) (0.108) (0.099)

Intervention × RTF/DUAL -0.388∗∗∗ -0.368∗∗∗ -0.387∗∗∗ -0.367∗∗∗

(0.130) (0.122) (0.131) (0.122)

Intervention × SER 0.012 0.003 0.014 0.005
(0.151) (0.132) (0.151) (0.132)

Intervention × DUAL 0.036 0.114 0.040 0.116
(0.111) (0.107) (0.112) (0.108)

IN stage 2 0.091 0.135 0.016 0.066
(0.095) (0.103) (0.108) (0.115)

IN stage 2 × RTF/DUAL -0.038 -0.059 0.037 0.016
(0.120) (0.127) (0.149) (0.154)

IN stage 2 × SER 0.149 0.102 0.210 0.163
(0.135) (0.156) (0.151) (0.178)

IN stage 2 × DUAL -0.086 -0.068 0.009 0.049
(0.109) (0.120) (0.154) (0.169)

IN stage 2 ×Z_i 0.032 0.029 0.032 0.029
(0.090) (0.087) (0.023) (0.022)

IN stage 2 × RTF/DUAL ×Z_i 0.025 0.009 -0.021 -0.024
(0.128) (0.125) (0.035) (0.034)

IN stage 2 × SER ×Z_i -0.043 -0.040 -0.030 -0.028
(0.123) (0.133) (0.036) (0.041)

IN stage 2 × DUAL ×Z_i -0.245 -0.273 -0.082 -0.095
(0.201) (0.207) (0.055) (0.058)

Individual fixed effects yes yes yes yes

Observations 14712 17942 14712 17942
Clusters 261 318 261 318
R2 0.413 0.004 0.413 0.005

Standard errors in parentheses are clustered at the individual level. In columns (1) and (2),
we exclude all non-uploaders in SER and DUAL as well as all non-uploaders in RTF and
CON who did not report a technical problem. In columns (3) and (4), we use treatment
assignment to SER and DUAL, respectively, interacted with the IN stage 2 indicator as
instrument for receiving informative shower energy reports. The reported R2 in Columns
(3) and (4) is the within R2.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A10: Treatment effect dynamics with trends and jumps

(1) (2)
Uploaders LATE

Intervention 0.202∗ 0.195∗

(0.108) (0.100)

Intervention × RTF/DUAL -0.382∗∗∗ -0.363∗∗∗

(0.131) (0.122)

Intervention × HER 0.013 0.007
(0.151) (0.132)

Intervention × DUAL 0.039 0.116
(0.112) (0.108)

IN stage 2 0.008 0.039
(0.100) (0.109)

IN stage 2 × RTF/DUAL 0.051 0.046
(0.156) (0.161)

IN stage 2 × HER 0.111 0.073
(0.149) (0.188)

IN stage 2 × DUAL 0.032 0.074
(0.181) (0.192)

IN stage 2 × I{post 2nd report} -0.154 -0.138
(0.143) (0.139)

IN stage 2 × I{post 2nd report} × RTF/DUAL 0.221 0.200
(0.183) (0.180)

IN stage 2 × I{post 2nd report} × SER 0.120 0.134
(0.192) (0.215)

IN stage 2 × I{post 2nd report} × DUAL -0.067 -0.051
(0.229) (0.235)

IN stage 2 × Time trend 0.066 0.076
(0.057) (0.056)

IN stage 2 × Time trend × RTF/DUAL -0.070 -0.083
(0.076) (0.075)

IN stage 2 × Time trend × SER 0.033 0.029
(0.086) (0.105)

IN stage 2 × Time trend × DUAL -0.089 -0.107
(0.088) (0.090)

IN stage 2 × I{post 2nd report} × Time trend 0.003 -0.022
(0.078) (0.076)

IN stage 2 × I{post 2nd report} × Time trend × RTF/DUAL -0.003 0.020
(0.097) (0.095)

IN stage 2 × I{post 2nd report} × Time trend × SER -0.135 -0.137
(0.137) (0.153)

IN stage 2 × I{post 2nd report} × Time trend × DUAL 0.030 0.032
(0.095) (0.103)

Individual fixed effects yes yes

Observations 14712 17942
R2 0.413 0.005

For LATE specifications the within-R2 is reported. Standard errors in parentheses clustered at
individual level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A11: Treatment effect heterogeneity by baseline consumption

(1) (2)
continuous I{> median}

Intervention × RTF/DUAL -0.398∗∗∗ -0.236∗∗

(0.124) (0.096)

Intervention × RTF/DUAL × Baseline energy use -0.183 -0.286
(0.123) (0.261)

IN stage 2 × RTF/DUAL -0.019 0.151
(0.110) (0.103)

IN stage 2 × RTF/DUAL × Baseline energy use -0.063 -0.344
(0.102) (0.218)

IN stage 2 × SER 0.129 0.193∗

(0.128) (0.105)

IN stage 2 × SER × Baseline energy use 0.058 -0.149
(0.129) (0.248)

IN stage 2 × DUAL -0.252∗∗ -0.154
(0.105) (0.094)

IN stage 2 × DUAL × Baseline energy use -0.165 -0.195
(0.115) (0.223)

Other treatment indicators yes yes
Individual fixed effects yes yes

Observations 14675 14675
R2 0.414 0.413

The full table with all coefficients can be found in Appendix Table A12. All non-
uploaders in SER and DUAL as well as all non-uploaders in RTF and CON who did
not report a technical problem are excluded. Baseline energy use is demeaned, so
main effects represent TEs at the sample mean. Standard errors in parentheses are
clustered at the individual level. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A12: Treatment effect heterogeneity: all coefficients

Xi : baseline energy use Xi : envir. attitude

(1) (2) (3) (4)
linear median+ linear median+

Intervention 0.206∗∗ 0.267∗∗∗ 0.208∗ 0.295
(0.101) (0.071) (0.109) (0.196)

Intervention × RTF/DUAL -0.398∗∗∗ -0.236∗∗ -0.394∗∗∗ -0.354∗

(0.124) (0.096) (0.131) (0.214)

Intervention × SER 0.003 -0.085 -0.013 0.007
(0.143) (0.117) (0.146) (0.250)

Intervention × DUAL 0.086 0.013 0.046 -0.068
(0.114) (0.087) (0.112) (0.153)

IN stage 2 0.110 0.009 0.124 0.059
(0.086) (0.064) (0.083) (0.155)

IN stage 2 × RTF/DUAL -0.019 0.151 -0.036 0.015
(0.110) (0.103) (0.109) (0.180)

IN stage 2 × SER 0.129 0.193∗ 0.110 0.271
(0.128) (0.105) (0.122) (0.202)

IN stage 2 × DUAL -0.252∗∗ -0.154 -0.237∗∗ -0.366∗

(0.105) (0.094) (0.116) (0.188)

Intervention ×Xi 0.018 -0.123 0.004 -0.183
(0.108) (0.222) (0.119) (0.211)

Intervention × RTF/DUAL ×Xi -0.183 -0.286 -0.176 -0.113
(0.123) (0.261) (0.135) (0.261)

Intervention × SER ×Xi 0.055 0.189 -0.144 -0.030
(0.138) (0.298) (0.158) (0.285)

Intervention × DUAL ×Xi 0.110 0.054 0.088 0.265
(0.129) (0.216) (0.101) (0.232)

IN stage 2 ×Xi -0.003 0.215 -0.034 0.138
(0.083) (0.170) (0.100) (0.168)

IN stage 2 × RTF/DUAL ×Xi -0.063 -0.344 0.030 -0.103
(0.102) (0.218) (0.116) (0.221)

IN stage 2 × SER ×Xi 0.058 -0.149 0.040 -0.399∗

(0.129) (0.248) (0.129) (0.233)

IN stage 2 × DUAL ×Xi -0.165 -0.195 0.053 0.229
(0.115) (0.223) (0.093) (0.229)

Individual fixed effects yes yes yes yes

Observations 14675 14675 14501 14501
Clusters 260 260 257 257
R2 0.414 0.413 0.414 0.415

Standard errors in parentheses are clustered at the individual level. The coefficients
are obtained using the within estimator. All non-uploaders in SER and DUAL, as well
as all non-uploaders in RTF and CON who did not report a technical problem, are
excluded. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A13: Estimated vs actual water use per shower

before study after study
ITT TOT

Actual volume 0.271 0.199 0.215
(0.263) (0.139) (0.147)

Actual volume × RTF 0.025 0.752∗∗∗ 0.838∗∗∗

(0.376) (0.198) (0.182)

Actual volume × SER -0.465 0.273 0.363∗∗

(0.292) (0.178) (0.175)

Actual volume × DUAL -0.074 0.500∗∗∗ 0.497∗∗

(0.299) (0.181) (0.237)

RTF group -0.131 2.348 3.855
(6.777) (3.194) (3.120)

SER group -7.001 -4.575 -5.113∗

(5.813) (3.105) (2.948)

DUAL group -5.182 2.039 2.050
(5.851) (3.118) (3.939)

Constant 43.436∗∗∗ 39.556∗∗∗ 39.680∗∗∗

(4.590) (2.347) (2.449)

Observations 267 299 253
R2 0.030 0.378 0.438

For column (1), actual volumes are approximated by the average baseline
water usage per shower. For columns (2) and (3), actual volumes are ap-
proximated by the average water usage in the final third of observations.
Actual volumes are recentered around 40 liters. Robust standard errors in
parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table A14: Estimated versus actual water use: relative estimation error

before study after study
ITT TOT

RTF group 0.075 -0.271∗∗∗ -0.282∗∗∗

(0.201) (0.076) (0.079)

SER group 0.008 -0.163∗∗ -0.268∗∗∗

(0.175) (0.082) (0.075)

DUAL group -0.055 -0.185∗∗ -0.228∗∗∗

(0.178) (0.087) (0.079)

Constant 0.927∗∗∗ 0.569∗∗∗ 0.573∗∗∗

(0.136) (0.064) (0.067)

Observations 302 299 253
R2 0.002 0.042 0.081

For column (1), actual volumes are approximated by the av-
erage baseline water usage per shower. For columns (2) and
(3), actual volumes are approximated by the average water us-
age per shower in the final third of observations. Actual vol-
umes are recentered around 40 liters. Robust standard errors
in parentheses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A15: Responses to mini-surveys attached to reports and placebo emails

Survey response rate Estimation error [%p]

(1) (2) (3) (4) (5)
report 1 report 2 any report report 1 report 2

RTF group -1.05 0.53 -2.48 -43.42*** -31.73***
(5.35) (6.57) (4.90) (10.17) (8.93)

SER group -7.85 -16.76** -7.18 -43.04*** -45.96***
(6.39) (7.91) (5.81) (13.53) (8.22)

DUAL group 0.58 -26.17*** -0.44 -38.98*** -40.43***
(5.54) (8.14) (5.00) (11.60) (8.50)

Constant 88.89*** 80.56*** 91.67*** 71.18*** 56.26***
(3.73) (4.70) (3.28) (9.75) (7.88)

p-value for SER = DUAL 0.203 0.308 0.270 0.719 0.166
Observations 261 261 261 224 183
R2 0.009 0.061 0.008 0.104 0.182

Columns 1 to 3 compares response rates to mini-surveys attached to the shower energy reports
(or placebo emails for RTF and CON). Columns 4 and 5 compares average estimation errors rel-
ative to the measured water usage calculated for the reports, excluding extreme outliers who
overestimate by a factor of more than 5. For non-uploaders, we use ex post calculations of the rel-
evant water usage statistics instead. Non-uploaders in SER and DUAL as well as non-uploaders
without technical problems in CON and RTF are excluded. Robust standard errors in parenthe-
ses. ∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Appendix B Randomization protocol

At the beginning of the study, we randomly assigned subjects into groups that receive
or do not receive real-time feedback. Each smart meter was programmed as either treat-
ment or control device. Treatment device started displaying real-time feedback from the
eleventh shower onwards, whereas control devices only ever showed the current wa-
ter temperature. When distributing the smart meters to subjects, we alternated between
treatment and control devices after each apartment. Thus, treatment and control devices
are by construction balanced within dorms.

We assigned subjects into groups with or without shower energy report shortly before
we intended to send out the reports. We used the data that subjects uploaded through the
smartphone app to rank them from lowest to highest average water use per shower, split
by whether they receive real-time feedback or not. Then, we formed pairs between sub-
jects adjacent to each other in rank and assigned shower energy reports to only one mem-
ber of a pair based on a virtual coin flip. This ensures that the distribution of resource
consumption levels remain balanced across experimental conditions. Subjects who had
not uploaded any data at that point in time were assigned to a group randomly without
prior ranking.

The second shower energy report further contained a social comparison component
with a random and anonymous peer. This peer was assigned to subjects in the following
way: (1) we used uploaded data prior to the second report to rank subjects again by their
average water use per shower; (2) we then selected three potential peers for each subject,
a subject who was somewhat above him/her in rank, a subject who was somewhat below
him/her in rank, and a directly adjacent subject; (3) we then chose one of these three can-
didates randomly with equal probabilities; (4) subjects who had not uploaded any data
received a random peer from the pool of subjects who had uploaded data. This proce-
dure ensured that the direction of peer comparison was orthogonal to subjects’ resource
use level.

Appendix C Data cleaning procedures

A number of data cleaning steps are performed before running the empirical analyses. In
principle, we have access to the smart meter data from two sources: (1) uploads by sub-
jects themselves using the smartphone app, and (2) the data that we read out manually
after retrieving the devices. For the large majority of devices, the two sources gave us
identical data. In the cases where it differed, we always opted to use the information we
read out manually.

We drop the very first data point of each participant, as they usually started with a test
run to check if the device was working. Following Tiefenbeck et al. (2018), we further
drop any water extraction with volume below 4.5 liters (in total 2, 942 extractions), as
these are unlikely to be actual showers but rather minor extractions for other purposes
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such as cleaning. We further remove 37 extreme outlier points, defined as energy use
and water use for that shower being more than 4.5 times the subject-specific interquartile
range away from the closest quartile. We are particularly strict in only excluding the most
unplausible data points here. Conventionally, 1.5 or 3 times the interquartile range (IQR)
are used as criterion for outliers. For a normal distribution, 4.5 times the IQR away from
the nearest quartile corresponds to 6.745 standard deviation away from the mean.

We further exclude 1 device with erratic data, as evidenced by huge intra-device vari-
ance (the largest for all devices) and some outrageous data points with water volumes
of up to above 500 liters for a single shower. In 8 cases, the device’s temperature sensor
broke at some point, and we impute missing information with the average temperature
of showers taken while the sensor was still intact. For some devices, we detected an error
through which decimal places of the flow rate are shifted such that the stored number
is actually ten times the actual flow rate. We corrected these manually for showers with
flow rates that are about ten times the flow rate of other showers stored on the device.

Appendix D Timing of showers

As the smart meter itself has no global time counter and only stores the chronological or-
der of water extractions, we make use of smartphone app information to put a time stamp
on each observation. In particular, we need to determine whether a shower took place
before or after we sent out the shower energy reports, so whether it is in intervention
stage 2. The app provides us with information on the date and time of each data upload
by subjects. This allows us construct time windows in which a shower observation has
plausibly happened. Firstly, a shower must have been taken by the time data was up-
loaded via the app, so this gives us the upper bound. Secondly, it must have been taken
place after the previous data upload, because otherwise it would have been uploaded by
then; this gives us the lower bound. To be able to determine the timing relatively reli-
ably around the crucial time period, in which we sent out shower energy reports, we sent
several upload reminders to all participants. Whenever it was not unambiguously clear,
which shower was the first that took place after a shower energy report, we assigned the
switching point implied by constant shower frequency. For example, if one upload was
1 day before the shower energy report and the next upload 1 day after, and there were
2 showers in the window, we assumed that the first shower was before and the second
shower after the report.

A complication arising from non-uploaders is that we do not know the timing of show-
ers by these participants, because the shower meter itself only stores the order of showers
but not the time and date. We can only infer the earliest and latest possible date of each
shower based on when it was uploaded to the smartphone app. Therefore, whenever we
want to include non-uploaders in our analyses, we need to impute the timing of showers
in one way or another, in particular whether it took place before or after a shower energy

66

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



report.
We use a pragmatic imputation approach based on the assumption that, given the stage

of study completion, i.e., which fraction of the number of total recorded showers have
been completed, showers by uploaders and non-uploaders have the same probability of
having taken place after the first/second shower energy report. Formally, we assume
that for each stage of study completion π,

Pr
(

IN s2
it = 1|π, non-uploader

)
= Pr

(
IN s2

it = 1|π, uploader
)

.

To operationalize this approach, we estimate the distribution of uploaders’ report timing
over study completion non-parametrically, so P̂r

(
IN s2

it = 1 | π, uploader
)
, and, instead of

the indicator IN s2
π for intervention stage 2, we define

ÎN
s2
s = P̂r

(
IN s2

it = 1 | πs
it = 1, uploader

)
as probabilistic indicator for every shower of non-uploaders in study completion stage
π. In other words, the regressor ÎN

s2
π is the probability that a particular shower by a

non-uploader took place after the first shower energy report. In all our regressions, we
actually use the indicator

ĨN
s2
it =


IN s2

it if uploader

P̂r
(

IN s2
it = 1 | π, uploader

)
if non-uploader .

(10)

Appendix E Supplementary Survey

We conducted a supplementary survey in a new sample of students in November and
December 2019, about three years after the original experiment took place. The purpose
of the survey was two-fold. First, we wanted to collect evidence that people tend to
underestimate the environmental impact of showering without additional information.
Second, we wanted to provide a manipulation check for our shower energy report in-
tervention, testing whether the additional information on energy use and CO2 emissions
due to showering can plausibly induce stronger conservation efforts. The survey was
conducted among residents of exactly the same student dorms in Bonn and Cologne in
which the original study took place. Thus, the surveyee pool is comparable to the subject
pool of the original experiment. In total, 329 students participated in the supplementary
survey. Due to the high fluctuation rate of residents in student dorms, only 4 out of the
329 surveyees had also participated in the original experiment in 2016/17.

We first elicited students’ prior beliefs about the amount of water used and CO2 emit-
ted per shower, as well as how confident they are about their response on a 10-point
scale. As reference, we told surveyees that one hour of room lighting causes about 10
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grams of CO2 and that one hour of watching TV causes about 30 grams of CO2. Fur-
thermore, we asked students about their intention to take shorter showers on a 10-point
Likert scale (we normalize this to mean 0 and standard deviation 1 for all analyses). After
the first round of questions, we randomly presented one fact sheet (out of three) to each
surveyee, mimicking the basic informational content of our original interventions. The
“CON sheet” only contained information on average water temperature in the shower,
the “RTF sheet” also included the average water use per shower, and the “SER sheet”
further added information on energy use and CO2 emissions. The exact wording was as
follows. All fact sheets started with this text:

“Did you know that a few years ago, a study was conducted in this dorm, as well as other dorms
in Cologne and Bonn? The study has shown that the average water temperature when taking a
shower is about 37 degrees Celsius.”

While the CON sheet ended here, the RTF sheet added the sentence “... A typical shower
uses around 40 liters of water.”. The SER sheet provided even more information by adding
the following sentences: “... A typical shower uses around 40 liters of water and 2.4 kWh of
energy. This means that, on average, a persons emissions due to daily showering amount to almost
300 kg CO2 per year (800 grams per shower). It requires about 24 trees to absorb this amount of
CO2.”. After surveyees had finished reading their respective fact sheet, we elicited pos-
terior beliefs and attitudes by asking them the same questions again that they answered
before receiving additional information. Surveyees were then paid 5 Euros for their par-
ticipation in the survey, although 11 students refused to accept any remuneration.

Prior to receiving the fact sheets, surveyees estimated on average that they use 40.4
liters of water per shower (standard error of the mean = 6.36), causing emissions of 91.3
grams of CO2 (s.e.m. = 15.03). While the estimate for water used per shower is roughly
accurate on average, surveyees grossly underestimate the amount of CO2 emitted by a
factor of 8 to 9. However, subjects are also very uncertain about their estimates. On a scale
from 1 (very uncertain) to 10 (very certain), the average surveyee places him-/herself at
4.24 for water use and 3.71 for CO2 emissions.

Table A16 shows how surveyee change their beliefs and intentions after being pro-
vided with additional information through the fact sheets. Neither the RTF nor the SER
survey induces statistically significant changes in surveyees’ average estimates for water
use per shower compared to the CON sheet, although surveyees in these groups become
much more confident about their answer. In contrast, only the SER fact sheet has a strong
impact on surveyees beliefs about CO2 emissions. As surveyees severely underestimated
the carbon intensity of showering in baseline, the SER fact sheet had an extreme debi-
asing effect compared to the CON and RTF fact sheets. This experimentally-induced
belief update about environmental impacts is further associated with a sizeable increase
in self-stated intentions to take shorter showers. Compared to surveyees receiving the
RTF sheet, conservation intentions of surveyees receiving the SER sheet increased by 0.24
standard deviations (p = 0.003). In contrast, the RTF sheet did not increase intentions
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Table A16: Supplementary survey — change in beliefs and intentions after fact sheet

Water use per shower CO2 emissions

(1) (2) (3) (4) (5)
Estimate Confidence Estimate Confidence Intention

RTF fact sheet -12.274 2.148∗∗∗ 28.774 0.358∗ 0.060
(10.146) (0.279) (21.587) (0.208) (0.065)

SER fact sheet -22.909 2.561∗∗∗ 484.941∗∗∗ 2.023∗∗∗ 0.304∗∗∗

(16.813) (0.258) (37.599) (0.264) (0.076)

Constant 14.203 0.118 -15.274 0.335∗∗ 0.088∗∗

(9.663) (0.161) (19.023) (0.138) (0.042)

p-value for RTF = SER 0.451 0.175 0.000 0.000 0.003
Baseline mean 40.428 4.239 91.335 3.711 0.000
Observations 328 328 329 329 329
R2 0.008 0.222 0.476 0.185 0.054

Robust standard errors in parentheses. The omitted category is the CON fact sheet group. Column
(1) and (2) exclude one subjects who did not give a baseline estimate for water use. The intention
measure used for column (5) is normalized to mean 0 and standard deviation 1.

significantly compared to the CON sheet (p = 0.359). Overall, these results suggests that
people tend to severely underestimate the environmental impact of showering, and that
information provision about energy and carbon intensity can induce subjects to increase
their conservation efforts.

Appendix F More on Other Potential Mechanisms

F.1 Hawthorne or cueing effects

Given that we observe energy and water use in a relatively private and sensitive ac-
tivity, showering, subjects’ behavior may have been distorted by Hawthorne effects. We
attempt to hold this constant by equipping every participant with a functioning smart
shower meter, so to the degree that subjects in the control group respond to the sheer
presence of a shower meter (with temperature feedback), we would in fact underes-
timate our conservation effects. To explain our empirical findings, Hawthorne effects
would thus need to additionally interact with the intervention regimes. As the conser-
vation effect in the RTF group (compared to the CON group) is quantitatively large and
remains stable over the entire 3-months study duration, it seems unlikely that it is driven
by differential Hawthorne effects. However, the shower energy reports may have made
it more salient again to participants that they were part of a study, or alternatively, the
reports may have simply served as a general cue or reminder to pay more attention to
conservation efforts in the shower. Note that we sent out placebo emails instead of infor-
mative shower energy reports to the RTF and CON groups precisely to limit such types of
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Table A17: Change in self-reported attitudes (baseline vs. post-intervention survey)

shower comfort environmental attitude
(1) (2) (3) (4)
ITT TOT ITT TOT

RTF group 0.042 0.047 -0.340∗∗∗ -0.345∗∗∗

(0.117) (0.119) (0.117) (0.119)

SER group 0.085 0.090 -0.277∗∗ -0.253∗

(0.134) (0.136) (0.133) (0.145)

DUAL group -0.097 -0.011 -0.225∗ -0.239∗

(0.138) (0.150) (0.129) (0.144)

Constant 0.026 0.030 0.139 0.143
(0.086) (0.088) (0.094) (0.095)

F-test: p-value 0.641 0.896 0.034 0.039
Observations 300 255 304 257
R2 0.007 0.003 0.027 0.031

Robust standard errors in parentheses.
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

confounders. Furthermore, we find that, if anything, the effect of shower energy reports
(in the DUAL group) tends to become stronger over time instead of weaker, and the ex-
ercise in Figure 8 using different complier definitions for LATE estimation also suggests
that it is the actual content of shower energy reports that matters. While we have no way
to directly rule out Hawthorne or cueing effects, we are therefore confident that they do
drive our empirical results.

F.2 Environmental attitude and consumption value of showering

Another alternative way in which two interventions could develop complementarities
is through some sort of motivational spillover effect, in which the combined intervention
convinced subjects to generally care more for the environment, or somehow made show-
ering less pleasurable to them. Our interventions presented all information in a neutral
and factual way, and we specifically refrained from including any normative element.
Nevertheless, to check if this could confound our results, we again analyze subjects’ sur-
vey responses before and after the study. The outcome variable of interest is the change in
environmental attitude index or shower comfort index, respectively. All indices are nor-
malized by subtracting the pre-intervention mean and dividing by the pre-intervention
standard deviation.

The first two columns in Table A17 show difference-in-differences estimates for the
effect of treatments on subjective shower comfort from baseline to endline survey. Both in
the ITT (column 1) and in the TOT (column 2) regressions for subjective shower comfort,
we find no significant differences across experimental condition, and all point estimates
are virtually zero. Hence, at least based on self-reported measures, our interventions
do not seem to have diminished the consumption benefits of showering, which is also
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relevant for welfare considerations.
The other two columns in Table A17 show the difference-in-differences estimates for

impacts on environmental attitude, with ITT estimates in column (3) and TOT estimates
in column (4). Surprisingly, we find that subjects in the treated groups become less pro-
environmental relative to the control group based on their survey responses. The magni-
tude of this decrease ranges from 22% to 35% of a (pre-study) standard deviation, which
is not exactly quantitatively large, but also not negligible. We can only speculate about
what is happening here. At face value, it may seem that feedback makes people less
motivated to act pro-environmentally. Of course, we only have self-reported measures
and cannot be certain of the underlying latent variable that they proxy for. But as we
seem to proxy self-perceived inclination to act pro-environmentally rather than the actual
extent of pro-environmental behavior, one possible interpretation could be that feedback
provision curbs the capacity for distorted self-image formation, because people become
aware of their intention-action gaps. We caution from overinterpreting the result here,
as we did not have any ex ante hypothesis along these lines. Still, we can tentatively
conclude that the conservation effects we observe are unlikely due to generally increased
pro-environmental motivation.

Appendix G Theoretical framework: proofs and extensions

G.1 The Taylor approximation for policy complementarities in behavior

The second-order Taylor approximation for the change in behavior due to intervention
X, ∆eX is given by:

∆eX ≈ ∂e
∂B

b2δ1 +
1
2

∂2e
∂B2 b2

2 (δ1)
2 (11)

and similarly for ∆eY:

∆eY ≈ ∂e
∂B

b1δ2 +
1
2

∂2e
∂B2 b2

1 (δ2)
2 (12)

The response to the bundle X, Y, ∆eXY is given by

∆eXY ≈ ∂e
∂B

[b1δ2 + b2δ1] +
1
2

∂2e
∂B2 b2

2 (δ1)
2 +

1
2

∂2e
∂B2 b2

1 (δ2)
2 +

[
∂e
∂B

+
∂2e
∂B2 b1b2

]
δ1δ2 (13)

Thus, combining the last three expressions, we obtain

ΦXY ≡ ∆eXY − ∆eX − ∆eY ≈
[

∂e
∂B

+
∂2e
∂B2 b1b2

]
δ1δ2 (14)
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As claimed in equation (5).

G.2 The Taylor approximation for policy complementarities in welfare

We first establish the derivatives of W(b1, b2) as follows

∂W
∂b1

= [V ′ (e)− c − γ]
∂e
∂B

b2 (15)

= [(B − 1)c − γ]
∂e
∂B

b2

∂W
∂b2

= [(B − 1)c − γ]
∂e
∂B

b1 (16)

∂2W
∂b2

1
= b2

2
∂e
∂B

c + [(B − 1)c − γ]b2
2

∂2e
∂B2 (17)

∂2W
∂b2

2
= b2

1
∂e
∂B

c + [(B − 1)c − γ]b2
1

∂2e
∂B2 (18)

∂2W
∂b1∂b2

= [(B − 1)c − γ]
∂e
∂B

+ b1b2[(B − 1)c − γ]
∂2e
∂B2 + b1b2c

∂e
∂B

(19)

We then calculate the second-order Taylor approximations of policy interventions X and
Y as follows:

∆WX =
∂W
∂b1

δ1 +
1
2

∂2W
∂b2

1
δ2

1 (20)

= [(B − 1)c − γ]
∂e
∂B

b2δ1 +
1
2
[b2

2
∂e
∂B

c + [(B − 1)c − γ]b2
2

∂2e
∂B2 ]δ

2
1

= [(B − 1)c − γ]∆eX +
1
2

b2
2

∂e
∂B

cδ2
1

where in the last equation, we substituted the definition of eX from equation (11). Simi-
larly, for ∆WY, we obtain

∆WY = [(B − 1)c − γ]∆ey +
1
2

b2
1

∂e
∂B

cδ2
2 (21)
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The approximate welfare gain of the combined intervention (X, Y) can be expressed as:

∆WXY = ∆Wx + ∆Wy +
∂2W

∂b1∂b2
δ1δ2 (22)

= ∆WX + ∆WY + [(B − 1)c − γ](
∂e
∂B

+ b1b2
∂2e
∂B2 )δ1δ2 + b1b2c

∂e
∂B

δ1δ2

We finally use equation (13) to substitute ( ∂e
∂B + b1b2

∂2e
∂B2 )δ1δ2 = ∆eXY − ∆eX − ∆eY and

obtain

∆WXY − ∆WX − ∆WY = [(B − 1)c − γ](∆eXY − ∆eX − ∆eY) + b1b2c
∂e
∂B

δ1δ2 (23)

as claimed in equation (7) in the main text.

G.3 Generalizing the complementarity condition to k dimensions of biases

In the case of ∏K
k=1 bk with k > 2, first we derive the k-dimensional geometric interpreta-

tion.
Suppose that b1 is exogenously increased by δ1. The resulting increase in B will be

δ1 ∏K
k=2 bk, as it is attenuated by b2. Analogously, an exogenous increase of δj in the di-

mension of bk results in an aggregate change of δj ∏K
k ̸=j bk. The effect of jointly increasing

b1 ,b2 ... bkby the same amounts, however, results in an overall change of

∆B =
K

∏
k=1

δk +
K

∑
i=1

bi

K

∏
j ̸=i

δj +
i≤K,j≤K

∑
i ̸=j

bibj

K

∏
m ̸=j,m ̸=i

δm + ... +
K

∑
i=1

δi

K

∏
j ̸=i

bj. (24)

In our context, k interventions X1 , X2 ... and Xk are complements if their combination re-
duces behavior by more than the sum of their individual effects, i.e ∆e∑K

i=1 xi −∑K
i=1 ∆eXi <

0.

∆e∑K
i=1 xi −

K

∑
i=1

∆eXi ≈ ∂e
∂B

i≤K,j≤K

∑
i ̸=j

∏K
m=1 bm

bibj
δiδj +

∂2e
∂B2

i≤K,j≤K

∑
i ̸=j

∏K
m=1 b2

m
bibj

δiδj

However, if our “Anna Karenina” condition is satisfied, i.e., if any terms among bk are
sufficiently close to zero, the first term always dominates, and complementarities in bias
reduction translate into complementarities in behavior.

As for the welfare,

∆W∑K
i=1 xi −

K

∑
i=1

∆WXi ≈ [(B − 1) c − γ]

(
∆e∑K

i=1 xi −
K

∑
i=1

∆eXi

)
+

i≤K,j≤K

∑
i ̸=j

∏K
m=1 b2

m
bibj

c
∂e
∂B

δiδj

If, in addition, any terms among ∆eXi ≈ 0 , this implies that one of the b’s is equal to zero,
and thus complementarities also exist in terms of welfare.
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G.4 Generalizing the complementarity condition to other aggregations of
bias

If δX+Y
1 = δX

1 + δY
1 and δX+Y

2 = δX
2 + δY

2 , The change in behavior is

∆eX+Y − ∆eX − ∆eY =
∂2e
∂B2

(
δX

1 δY
1 b2

2 + δX
2 δY

2 b2
1 + δX

1 δY
2 b1b2 + δX

2 δY
1 b1b2

)
+

∂e
∂B

(
δX

1 δY
2 + δY

1 δX
2

)
.

(25)

If δX+Y
i = max(δX

i , δY
i ), for example δX

1 = max(δX
1 , δY

1 ), δY
2 = max(δX

2 , δY
2 ) The change

in bahavior is

∆eX+Y − ∆eX − ∆eY =
∂2e
∂B2

(
δX

1 δY
2 b1b2 − δX

1 δX
2 b1b2 − δY

1 δY
2 b1b2 −

1
2

δY
1

2
b2

2 − 1
2

δX
2

2
b1

2
)
(26)

+
∂e
∂B

(
δX

1 δY
2 − δX

1 δX
2 − δY

1 δY
2 − δY

1 b2 − δX
2 b1

)
.

To illustrate the complementarity in an example that might be closer to reality, consider
the case of two sources of bias and two interventions, X and Y. Suppose that intervention
X is primarily targeted at the perception of the environmental impact b1, while potentially
also having a positive side-effect on b2, which could describe an information intervention
which may also lead to endogenously higher attention levels (Hanna et al., 2014; Gabaix,
2017). Analogously, intervention Y is primarily targeted at the attention parameter b2,
with positive side-effects on b1. This could describe a salience intervention that inciden-
tally also offers some degree of information or induces information search efforts. Hence,
the relevant parameters are such that δX

1 ≥ δY
1 and δY

2 ≥ δX
2 . The reduction in bias of each

intervention in isolation are ∆BX = δX
1 b2 + δX

2 b1 + δX
1 δX

2 and ∆BY = δY
1 b2 + δY

2 b1 + δY
1 δY

2 ,
respectively, which is also illustrated in Figure A2a and b.

Aggregating policy interventions. — When two partially overlapping interventions are
introduced jointly, we need to specify how they aggregate into the overall bias B. As a
benchmark, we assume that the mitigation effects δX

i , δY
i are additive (and that the result-

ing bi does not exceed 1). Figure A2c illustrates this example, in which δX+Y
1 = δX

1 + δY
1

and δX+Y
2 = δX

2 + δY
2 . The additional bias reduction is

∆BX+Y − ∆BX − ∆BY = δX
1 δY

2 + δX
2 δY

1 . (27)

Notice, that — holding constant δX+Y
1 and δX+Y

2 — the potential for complementarity is
largest for two completely specialized interventions.

Next, we look at a case where, in each dimension, only the dominant intervention
matters, i.e., δX+Y

i = max(δX
i , δY

i ) c. This is illustrated in Figure A2d. This case is less
favorable toward complementarities, as each intervention now only has an impact on
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(a) Intervention X (b) Intervention Y

(c) Combined (no crowding out/in) (d) Combined (crowding out)

Figure A2: Depiction of example interventions

Notes. Figures (a) and (b) illustrate the bias mitigation effect of interventions X and Y in isolation,
respectively. Figure (c) illustrates their combined effect when their individual effects in each dimension
are additive, i.e., there is neither crowding out nor crowding in. Figure (d) illustrates their combined
effect when there is perfect crowding out of the less effective intervention in each dimension.

one bias dimension, and the condition becomes

∆BX+Y − ∆BX − ∆BY = (δX
1 − δY

1 )(δ
Y
2 − δX

2 )− (δX
2 b1 + δY

1 b2 + δX
2 δY

1 ) (28)

This term is positive if the top right rectangle in Figure A2d, which represents the policy
lever complementarity, is larger than the cross-shaded intersection of X and Y, which
represents loss in impact from X and Y in isolation. Complementarity is more likely the
more specialized each intervention is, as the interaction is increasing in bX

1 and bY
2 and

decreasing in bY
1 and bX

2 .
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