Supporting information for:

Different myrosinases activate sequestered glucosinolates in larvae and adults of the horseradish flea beetle

Fig. S1. Phylogeny of Phyllotreta GH1s. Maximum likelihood-inferred phylogeny of putative GH1 β -glucosidase enzymes from Phyllotreta striolata (Ps) and Phyllotreta armoraciae (Pa) and predicted protein sequences of myrosinase-like genes identified in genome assemblies from P. cruciferae (PcMyr1 pred., PcMyr2 pred.) and P. striolata (PsMyr pred., PsMyr2 pred.). The tree was rooted using the myrosinase from the cabbage aphid Brevicoryne brassicae (BbrMyr, GenBank: AAL25999.1). Bootstrap values (10,000 replicates) and posterior probability values of a Bayesian analysis using the same dataset are shown next to each node. The clade containing myrosinase and myrosinase-like enzymes is highlighted with gray background. Enzymes that were heterologously expressed and tested for enzyme activity in this study or a previous study (Beran et al., 2014) are marked with an asterisk. -, not supported in Bayesian analysis.

Fig. S2. Western blot analysis and myrosinase activity of recombinant enzymes. (A) Recombinant PaMyr1, PaMyr2, and PaMyr3 were detected in the cell culture medium. Recombinant PaGH1-28 was detected in the cytosol. Control A corresponds to culture medium of non-transfected cells. Control B corresponds to the cytosolic fraction of non-transfected cells. (B) Myrosinase activity of recombinant enzymes was determined in assays with dialyzed crude protein extracts using 2-propenyl glucosinolate as substrate by quantifying the amounts of released glucose. Assays were performed in triplicates. n.d., not detected.

Fig. S3. Biochemical properties of myrosinase activity in crude beetle protein extracts. (A-B) Myrosinase activity towards glucosinolates (GSL) and the general β -O-glucosidase substrate 4-nitrophenyl glucopyranoside (4NPG). Substrates were tested at a substrate concentration of 0.5 mM and activity was monitored by quantifying released glucose. Enzymatic activity with different substrates is expressed relative to activity with 2-propenyl GSL, which was set to 1 (indicated with a dotted line). (C-D) Crude protein extracts were incubated with different concentrations of 2-propenyl GSL and activity was monitored by quantifying released glucose. *K*_M values of recombinant enzymes towards 2-propenyl GSL were determined based on two different equations. Lines show nonlinear regression used to determine *K*_M values based on the Haldane model for single-substrate inhibition (R² > 0.98 for all myrosinases). Gray bands show 95% confidence intervals. Arrows indicate the highest 2-propenyl GSL concentration used in nonlinear regression to determine the *K*_M values based on the Michaelis-Menten model (Simple MM). All assays were carried out in triplicates. n.d., no activity detected; 4MSOB, 4-methylsulfinylbutyl; 4MTB, 4-methylthiobutyl; 2PE, 2-phenylethyl; 4OHBenz, 4-hydroxy-benzyl; I3M, indol-3-ylmethyl.

Fig. S4. Analysis of potential off-target effects of dsRNA injection in larvae and adults. The expression level of (A) *PaMyr1* and (B) *PaMyr3* did not differ between larvae injected with dsRNA targeting *PaMyr2* (*dsPaMyr2*) and control larvae (N = 7, *PaMyr1*, t = 0.587, P = 0.568; *PaMyr3*, U = 23, P = 0.902). The expression level of (C) *PaMyr2* and (D) *PaMyr3* did not differ between adults injected with dsRNA targeting *PaMyr1* (*dsPaMyr1*) and control adults (N = 7, *PaMyr2*, U = 9, P = 0.053; *PaMyr3*, U = 17, P = 0.383). Box plots show the median and interquartile range of each dataset.

Table S1. Primers used in this study

Gene	Primer name	Primer sequence 5'- 3'	Comment/purpose	primer efficiency
PaGH1-1	PaGH1-1_fl_fwd	ACGCATTAACGCGAATTAAAAATGT	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-1	PaGH1-1_fl_rev	TTATAAAATGTAATTCTCAAATATTCGATT	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-1	PaGH1-1_fl_iseq	AGGCTGGACCAACCCGCGA internal sequencing		
PaGH1-2	PaGH1-2_fl_fwd	GTGGTTTAATCATTGCGATCCATA	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-2	PaGH1-2_fl_rev	TTAATATGAGATAACATGAGTGCATAA	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-2	PaGH1-2_fl_iseq	CAAGACGCCGGCGGTTG	internal sequencing	
PaGH1-3	PaGH1-3_fl_fwd	CACGCGAGCATCGCATATC	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-3	PaGH1-3_fl_rev	TATATTCTCTTCAGGTCACAAGGA	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-3	PaGH1-3_fl_iseq	CGGCATATCTCCGTTCGTAAC	internal sequencing	
PaGH1-4	PaGH1-4_fl_fwd	TGAGCAGCTATCACGTTGAAGA	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-4	PaGH1-4_fl_rev	AGTTGCATACTGACTTGAGCATT	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-4	PaGH1-4_fl_iseq	CCTGAACCCGTCGGTGG	internal sequencing	
PaGH1-5	PaGH1-31_fl_fwd	CAGTTGTCAGAACACAATAATTGTT	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-5	PaGH1-31_fl_rev	CAATTTATTCGATAACTGACTGTTG	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-5/PaGH1-12	PaGH1-12_fl_iseq	CTGTCGATATTCCTACGGAAC	internal sequencing PaGH1-5 and PaGH1-12	
PaGH1-6	PaGH1-6_fl_fwd	ACACTGTTTCAACAAAGTCGATAATA	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-6	PaGH1-6_fl_rev	CATACGTTTATTACAGTCGTAATGT	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-6	PaGH1-6_fl_iseq	TGGTGGATAACCTTCAACGAG	internal sequencing	
PaGH1-7	PaGH1-7_fl_fwd	GAGGTGACAACAAGCTAAAATTACA	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-7	PaGH1-7_fl_rev	ACGAATGCAAAGAAGATGGGTG	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-7	PaGH1-7_fl_iseq	CTCGCTCCAGGAGTTTGTTCA	internal sequencing	
PaGH1-8	PaGH1-8_fl_fwd	AATGCTCCTTACTTGCAACTTA	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-8	PaGH1-8_fl_rev	AAAGGAGATCAAAGAACAAACGCT	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-8	PaGH1-8_fl_iseq	AACTTCGCCAACGATGTGGAC	internal sequencing	
PaGH1-9	PaGH1-9_fl_fwd	ACACCACAATCTGATAGATAAGCA	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-9	PaGH1-9_fl_rev	GAGTAAACAGTCGCAGGAAATTG	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-9	PaGH1-9_iseq	ACGCCAAGTTCGCGTTCGA	internal sequencing	
PaGH1-10	PaGH1-10_fl_g_fwd	CTACAGATAAGTACCTAATTTTGGT	Cloning in pCR4-TOPO vector for sequencing; fwd	
PaGH1-10	PaGH1-10_fl_rev	CGGATGGTTTCGGGTGAATAATG	Cloning in pCR4-TOPO vector for sequencing; rev	
PaGH1-10	PaGH1-10_fl_iseq	CTGGTGGATCACCGTCAACG	internal sequencing	

PaGH1-11	PaGH1-11_fl_fwd	TGCATCTTGGTTCTTCTAGTTCTAT
PaGH1-11	PaGH1-11_fl_rev	TACCAGAGAGTAGGATGCTAAGA
PaGH1-11	PaGH1-11_iseq	TGGGTGACAATTTACCATTGGGA
PaGH1-12	PaGH1-12_fl_fwd	AAGGTGCCTGGGAGAGTTGT
PaGH1-12	PaGH1-12_fl_rev	TCCACATAATAAAGGTTAGGTTCGA
PaGH1-13	PaGH1-13_fl_g_fwd	CTAGCCTAAAAATTGGGAAGGG
PaGH1-13	PaGH1-13_fl_g_rev	CATTATACATGAGGTAAGCCTTGG
PaGH1-13	PaGH1-13_fl_iseq	CCGGAAGTCGGGGCTTCT
PaGH1-13	PaGH1-13-fl-iseq2	GACCGGTGATATCGCTTGTG
PaGH1-14	PaGH1-14_fl_fwd	ACAGTTTACTGTAATACACATCAGAT
PaGH1-14	PaGH1-14_fl_rev	ACGACGAGGAGTTCAGGACT
PaGH1-14	PaGH1-14_fl_iseq	TATATTCCTGACCTACCTTCCAG
PaGH1-15	PaGH1-15_fl_fwd	ACCTCGTATGACAATTTACACGT
PaGH1-15	PaGH1-15_fl_rev	CACCTTATAATCCTCACGAGATC
PaGH1-15	PaGH1-15_fl_iseq	CGAGCCGTACGAAACGTGC
PaGH1-16	PaGH1-16_fl_fwd	GAACTGTATAATACTCGCTTATTTG
PaGH1-16	PaGH1-16_fl_rev	GCTACATTATTATGTATGTAGGTATTA
PaGH1-16	PaGH1-16_fl_iseq	TGCCGGTTACGCTGAGGTT
PaGH1-17	PaGH1-17_fl_fwd	CCCAATTGTGGTTTATCTAATCGAA
PaGH1-17	PaGH1-17_fl_rev	AGGTATCAACAGGTTAATTTGCTAG
PaGH1-17	PaGH1-17_fl_iseq	GCCTTTGCAAGACATTGGCG
PaGH1-18	PaGH1-18_fl_fwd	ACCTGGTAACAACGTCGGTAA
PaGH1-18	PaGH1-18_fl_rev	ACCAAAACACAATTCATCGACTACT
PaGH1-18	PaGH1-18_fl_iseq	TCGTCCGATGGTACTCCGA
PaGH1-19	PaGH1-19_fl_fwd	CACTCTGTATTTGCACATAATTATCA
PaGH1-19	PaGH1-19_fl_rev	AGTGGCGGAGGAAGGGGAT
PaGH1-19	PaGH1-19_fl_iseq	CGACGTGAAGCATTGGATGAC
PaGH1-20	PaGH1-34_fl_g_fwd	GGAAGTATTTATATATGTTATTGAGGT
PaGH1-20	PaGH1-34_fl_g_rev	CAGTTTTACCAGTGTCATAAGAG
PaGH1-20	PaGH1-34_fl_iseq	CCAGAAGTAGGCATATGGATTTC
PaGH1-21	PaGH1-21_fl_g_fwd	GTTCATAAGTATATAAGATACCTATGTA
PaGH1-21	PaGH1-21_fl_g_rev	CAACACCGCAACAGGTTGG

Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev internal sequencing Cloning in pCR4-TOPO vector for sequencing; fwd Cloning in pCR4-TOPO vector for sequencing; rev

PaGH1-21	PaGH1-21_fl_iseq	CGGACATCGTCGATTGGTTC	internal sequencing
PaGH1-22	PaGH1-22_fl_fwd	AACTTGGAAGAGCAGGTATCGAA	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-22	PaGH1-22_fl_rev	ATGTAATTAATAGATAAATCTAACTGCT	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-22	PaGH1-22_fl_rev2	CTAACTGCTTTAGTCGGTGCAA	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-22	PaGH1-22_fl_iseq	TGGCTGACATTCAACGAACCCA	internal sequencing
PaGH1-23	PaGH1-23_fl_fwd	ACCAAATTTCGTCCATAGTTTCGT	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-23	PaGH1-23_fl_rev	TGCTCTTGGGACAAATTATAAGCA	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-23	PaGH1-23_fl_iseq	ACGCTCTTCGGGGACGAC	internal sequencing
PaGH1-24	PaGH1-24_fl_g_fwd	CTTGTGTGTAGTGTCCTCCAG	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-24	PaGH1-24_fl_rev	CATAATTTGCTGTAGAAAAGAATATCAG	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-24	PaGH1-24_fl_iseq	CTACACCGACAACGTGTTCCA	internal sequencing
PaGH1-25	PaGH1-25_fl_g_fwd	ATTATTGCAGGTTTTGTAGCTAGATA	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-25	PaGH1-25_fl_g_rev	CACGACGGTCAAAAAACTGCA	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-25	PaGH1-25_fl_iseq	GATCACCATAAACGAACCTAGAC	internal sequencing
PaGH1-26	PaGH1-26_fl_g_fwd	AGGAGCATGATAAATAATTGTAATCTT	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-26	PaGH1-26_fl_rev	GCAACGTTTGATTTAATCTTGGGT	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-26	PaGH1-26_fl_iseq	CAGGATCTGGGCGGTTGG	internal sequencing
PaGH1-27	PaGH1-27_fl_fwd	AGCGCGGGTACTACTTATAGA	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-27	PaGH1-27_fl_rev	TACATTTCGATCGAT TTGGTCGA	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-27	PaGH1-27_fl_iseq	GACCGACGAGCAAATAGTCCA	internal sequencing
PaGH1-28	PaGH1-28_fl_g_fwd	GACTCTTACAAGTGCTGTGTCTA	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-28	PaGH1-28_fl_g_rev	ATCACTATATTACAACTATACATCACTA	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-28	PaGH1-28_fl_iseq	CGACGGGATCGCCGACTA	internal sequencing
PaGH1-29	PaGH1-38_fl_g_fwd	CAGTGGGGAGCCGAAGTAC	Cloning in pCR4-TOPO vector for sequencing; fwd
PaGH1-29	PaGH1-38_fl_g_rev	CCCATATGCGTTGCTGATTAGA	Cloning in pCR4-TOPO vector for sequencing; rev
PaGH1-29	PaGH1-38_fl_iseq	CTTTCCCGGAAGTCAGTATTTG	internal sequencing
PaMyr2	Parm_C41_Seq_fwd	TGAGGTCCTACGGTGACGGAAAGCA	Sequencing PaMyr2
PaMyr2	PaMyrIIa-5'R-1	CTCTTTGTCGTTGTTCACCAACATGGTGGTGT	5'RACE PCR
PaMyr3	PaMyrIIb-5'R-1	TTCTACACCGTTGGCTACCAACGCGGAATAGTA	5'RACE PCR
PaMyr3	PaMyrIIb-5'R-2	ATGATTAAGCAGCTTTCTAGCACCGTCTGGGA	5'RACE PCR
PaMyr1	Parm_C2654_BamHI_fw	TGGATCCCATGCAGCAAAAAATAGCATTCG	cloning into pIEx-4 expression vector without stop codon; fwd
PaMyr1	Parm_C2654_NotI_rev	TGCGGCCGCCTTTACGTTAGCGCAATTTATACGTT	cloning into pIEx-4 expression vector without stop codon; rev

PaMyr2/PaMyr3	Parm_C41_BamHI_fw	TGGATCCCATGGCGAAACAAATCCCATTACTCT	cloning into pIEx-4 expression vector without stop codon;	fwd
PaMyr2	Parm_C41_NotI_rev	TGCGGCCGCCTCCAGGTCATCACATGTTAACCT	cloning into pIEx-4 expression vector without stop codon;	rev
PaMyr3	PaMyrIIb_NotI_rev	TGCGGCCGCCTCAACGTCTTCACATGATAACCTGTA	cloning into pIEx-4 expression vector without stop codon;	rev
PaGH1-28	PaGH1-28_BamHI_fwd	TGGATCCCATGTTTCTCAAATTAGTTATAACCTTAAACT	cloning into pIEx-4 expression vector without stop codon;	fwd
PaGH1-28	PaGH1-28_NotI_rev	TGCGGCCGCTAAAATTTGATTATCATTCCACACAGAG	cloning into pIEx-4 expression vector without stop codon;	rev
PaGH1-20	PaGH1-34_BamHI_fwd	TGGATCCCATGGGTGTTTACGTGCATTTATCA	cloning into pIEx-4 expression vector without stop codon;	fwd
PaGH1-20	PaGH1-34_NotI_rev	TGCGGCCGCACAGGCTGTTCTACGATTGAAAC	cloning into pIEx-4 expression vector without stop codon;	rev
PaMyr1	T7-PaMYR-F1	TAATACGACTCACTATAGGGAGAGGAGCAAGAAAATTACTGAACCAT	Amplification of DNA templates for dsRNA synthesis; fwo	1
PaMyr1	T7-PaMYR-R1	TAATACGACTCACTATAGGGAGAAAAATGTAGCAGAAAT	Amplification of DNA templates for dsRNA synthesis; rev	
PaMyr2	T7_PaMyrIIa_fwd	ATCCTAATACGACTCACTATAGGTACATTTTGGAAGCCATGCAGGT	Amplification of DNA templates for dsRNA synthesis; fwo	ł
PaMyr2	T7_PaMyrIIa_rev	ATCCTAATACGACTCACTATAGGTCACTCCAGGTCATCACATGTTA	Amplification of DNA templates for dsRNA synthesis; rev	
IMPI	T7-IMPI-F2	TAATACGACTCACTATAGGGAGAGAGTAATGACAAGTGCTACTGTGAAGAT	Amplification of DNA templates for dsRNA synthesis; fwo	1
IMPI	T7-IMPI-R2	TAATACGACTCACTATAGGGAGAGGGGGGGGGGGGGGGG	Amplification of DNA templates for dsRNA synthesis; rev	
RPL18a	qRPL18a-F2	GGCCACAAGTCAAACAATTCCA	qPCR; fwd 1	.91
RPL18a	qRPL18a-R2	AAGTAAGTTCTGGGTTTGCGGA	qPCR; rev	
RPL32e	qRPL32e-2F	ATACTGTGCTGAAATCGCCCAT	qPCR; fwd 1	.92
RPL32e	qRPL32e-2R	AATCTAGCGTGTCCATTGGTGA	qPCR; rev	
EiF4a	qPaEiF4a_F	CACGGTGACATGGAGCAAAG	qPCR; fwd 1	.95
EiF4a	qPaEiF4a_R	ACCTCTGGCCAACAAATCGG	qPCR; rev	
RPS4e	qRPS4e-F	CGTATTACTGCTGAAGAAGC	qPCR; fwd 1	.88
RPS4e	qRPS4e-R	ATCGTGGGTCACCAAGAACG	qPCR; rev	
PaMyr1	qPaC2654-3-F	AACGGTTACGCTGACACGAT	qPCR; fwd 1	.97
PaMyr1	qPaC2654-3-R	ACCGCCACCATTCCGTATTT	qPCR; rev	
PaMyr2	Parm_C41_qPCR_2_F	ACACCAGAGCTGTGATGTCG	qPCR; fwd 1	.86
PaMyr2	Parm_C41_qPCR_2_R	ATCTCTGACACCACTCGGGA	qPCR; rev	
PaMyr3	q-PaMyrIIb-3-fwd	ACTATTCCGCGTTGGTAGCC	qPCR; fwd 1	.82
PaMyr3	q-PaMyrIIb-3-rev	CAGGATGGTTCGACGTCACA	qPCR; rev	
PaGH1-28	q-PaGH1-28-3-F	TTCCTGCGTTCACGTCTGAA	qPCR; fwd 1	.81
PaGH1-28	q-PaGH1-28-3-R	AGCTCGTCTCGTTGTAAGGC	qPCR; rev	

Gene	GenBank accession number	length protein	number signal peptides	length protein without predicted signal peptide	Isoelectric point	MW [kDa]	Number of predicted N- glycosylation sites
PaMyr1	OP313699	495	19	476	6.19	54.7	1
PaMyr2	OP313700	494	20	474	4.97	54.6	2
PaMyr3	OP313701	494	20	474	4.93	54.5	3
PaGH1-1	OP313702	493	18	475	6.30	55.1	2
PaGH1-2	OP313703	518	23	495	5.87	57.7	2
PaGH1-3	OP313704	492	17	475	4.94	54.0	3
PaGH1-4	OP313705	495	21	474	6.38	54.6	5
PaGH1-5	OP313706	539	20	519	6.98	60.5	4
PaGH1-6	OP313707	491	16	475	5.62	54.5	4
PaGH1-7	OP313708	478	0	478	6.17	55.0	1
PaGH1-8	OP313709	487	19	468	5.20	53.5	4
PaGH1-9	OP313710	501	18	483	5.59	55.1	4
PaGH1-10	OP313711	494	16	478	4.84	54.5	4
PaGH1-11	OP313712	480	18	462	8.04	53.1	4
PaGH1-12	OP313713	539	20	519	8.39	60.8	4
PaGH1-13	OP313714	516	20	496	8.74	57.2	5
PaGH1-14	OP313715	493	20	473	6.58	54.8	5
PaGH1-15	OP313716	477	17	460	4.93	53.2	5
PaGH1-16	OP313717	469	0	469	6.34	53.6	1
PaGH1-17	OP313718	495	18	477	5.27	54.9	1
PaGH1-18	OP313719	498	18	480	5.43	55.2	4
PaGH1-19	OP313720	501	20	481	6.80	55.3	5
PaGH1-20	OP313721	517	22	495	8.94	57.2	6
PaGH1-21	OP313722	507	23	484	5.22	55.7	4
PaGH1-22	OP313723	494	17	477	6.01	54.8	2
PaGH1-23	OP313724	496	21	475	5.04	54.2	4
PaGH1-24	OP313725	606	21	585	5.07	65.4	7
PaGH1-25	OP313726	553	22	531	5.05	60.1	7

Table S2. Summary of putative GH1 β -glucosidases identified in *P. armoraciae* transcriptomes

PaGH1-26	OP313727	533	20	513	5.43	58.3	5
PaGH1-27	OP313728	495	16	479	4.91	55.1	3
PaGH1-28	OP313729	504	18	486	7.37	56.5	3
PaGH1-29	OP313730	524	22	502	6.05	58.9	4
PsMyr (from genome)	-	495	20	475	5.82	54.9	3
PsMyr2 (from genome)	-	494	20	474	5.04	54.4	1
PcMyr1 (from genome)	-	494	20	474	5.96	54.9	1
PcMyr2 (from genome)	-	495	20	475	5.08	54.6	1

Experiment	Comparison	Statistical Method	Variance structure	Variable	Transformation	Ν	Statistics	Р
	i fa a			myrosinase gene			LR = 48.65	< 0.001
	myrosinases	method	varComb (varIdent (form = ~ 1 life-stage), form = ~ 1 gene))	life-stage	log	6	LR = 37.48	< 0.001
				Interaction			LR = 284.54	< 0.001
Candidate gene expression and	PaMyr1 gene expression	Generalized least squares method	varIdent (form = ~ 1 life-stage)	life-stage	log	6	LR = 140.61	< 0.001
myrosinase activity in different life-stages	PaMyr2 gene expression	Generalized least squares method	varIdent (form = ~ 1 life-stage)	life-stage	log	6	LR = 85.44	< 0.001
	PaMyr3 gene expression	Generalized least squares method	varIdent (form = ~ 1 life-stage)	life-stage	log	6	LR = 36.86	< 0.001
	myrosinase activity per mg fresh weight	Generalized least squares method	varIdent (form = ~ 1 life-stage)	life-stage	-	6-7	LR = 101.47	< 0.001
	PaGH1-28 gene expression	Generalized least squares method	varIdent (form = ~ 1 life-stage)	life-stage	log	6	<i>LR</i> = 59.95	< 0.001
	PaMyr1 gene expression	Mann-Whitney rank sum test	-		-		U = 0	< 0.001
	PaMyr2 gene expression	Mann-Whitney rank sum test	-	dsRNA treatment	-	7	U = 9	0.058
RNA interference in	PaMyr3 gene expression	Mann-Whitney rank sum test	-		-		U = 17	0.383
adult beetles	myrosinase activity per mg fresh weight	Two-tailed Student's t-test	-	deDNA treatment	-	8	<i>t</i> = 5.140	< 0.001
	2-propenyl glucosinolate amount per mg fresh weight	Two-tailed Student's t-test	-	dskinA treatment	-	12	<i>t</i> = 1.192	0.246
	PaMyr1 gene expression	Two-tailed Student's t-test	-		-		t = 0.587	0.568
	PaMyr2 gene expression	Two-tailed Student's t-test	-	dsRNA treatment	-	7	<i>t</i> = 2.528	0.027
RNA interference in	PaMyr3 gene expression	Mann-Whitney rank sum test	-		-		U = 23	0.902
larvae	myrosinase activity per mg fresh weight	Two-tailed Student's t-test	-	daDNA tractment	-	8	<i>t</i> = 5.556	< 0.001
	2-propenyl glucosinolate amount per mg fresh weight	Two-tailed Student's t-test	-	uskina treatment	-	7	<i>t</i> = 2.492	0.028
	PaMyr1 gene expression	Two-tailed Student's t-test	-		-		t = 0.272	0.78
	PaMyr2 gene expression	Mann-Whitney rank sum test	-	dsRNA treatment	-	7	U = 7	0.026
Predation experiment	PaMyr3 gene expression	Mann-Whitney rank sum test	-		-		U = 11	0.097
	myrosinase activity per mg fresh weight	Mann-Whitney rank sum test	-	dsRNA treatment	-	8	<i>U</i> = 2	< 0.001
	D annonaciae longel cunying	Log rank test		dsRNA treatment	-	68-	$\chi^2 = 21.8$	< 0.001
		Log-lalik-iesi	-	experiment day	-	72	$\chi^2 = 4.5$	0.107

Table S3. Results of statistical analyses

	PaMyr1 gene expression	Two-tailed Student's t-test	-		-	6-7	t = 0.806	0.555
	PaMyr2 gene expression	Mann-Whitney rank sum test	-	dsRNA treatment	-	6-7	U = 5	0.022
	PaMyr3 gene expression	Mann-Whitney rank sum test	-		-	6-7	<i>U</i> = 19	0.836
Feeding experiment larvae	myrosinase activity per mg fresh weight	Mann-Whitney rank sum test	-	dsRNA treatment	-	7	<i>U</i> = 5	0.011
	proportion of 4MSOB GSL hydrolysis products in larval feces	Two-tailed Student's t-test	-	dsRNA treatment	-	12	<i>t</i> = 0.248	0.804
	proportion of 4MSOB GSL hydrolysis products in larval bodies	Mann-Whitney rank sum test	-	dsRNA treatment	-	12	<i>U</i> = 30	0.017

Target gene	Hit	1-mismatch count	2-mismatch count	Sequence annotation
	Parm_LP_c4	0	1	cytochrome c oxidase assembly protein COX15 homolog
	Parm_LP_c9054	0	1	zinc finger protein 888-like
	Parm_LP_c9294	0	1	beta-alanine-activating enzyme-like isoform X1
	Parm_LP_c14962	0	1	5-hydroxytryptamine receptor 2C-like
	Parm_GBB_C2694	0	1	unnamed protein product [Brassicogethes aeneus]
	Parm_GBB_C6885	0	1	poly [ADP-ribose] polymerase
	Parm_GBB_C8370	0	1	beta-alanine-activating enzyme-like isoform X2
IMPI	Parm_GBB_C10195	0	1	5-hydroxytryptamine receptor 2C-like
(control)	Parm_GBB_C12996	0	1	zinc finger protein 888-like
	Parm_GBB_C19622	0	1	LOW QUALITY PROTEIN: uncharacterized protein LOC115885494
	Parm_GBB_C25101	0	1	unnamed protein product
	Parm_GBB_C27866	0	1	marc-1
	Parm_BB_C2192	0	1	cytochrome c oxidase assembly protein COX15 homolog
	Parm_BB_C10503	0	1	microcephalin
	Parm_BB_C20334	0	1	zinc finger protein 888-like
	Parm_BB_C27814	0	1	dopamine D2-like recepto
	Parm_LP_c688	0	4	beta-1,3-glucan-binding protein-like
	Parm_LP_c693	0	1	PaMyr3
	Parm_LP_c2284	0	1	uncharacterized protein LOC114342259
	Parm_LP_c2748	0	1	fatty acid synthase-like
	Parm_LP_c6853	0	1	uncharacterized protein LOC114333505
	Parm_GBB_C36714	1	2	No Hit
	Parm_GBB_C4530	0	1	uncharacterized protein LOC114333505
PaMyr1	Parm_GBB_C22037	0	1	PaMyr3
	Parm_GBB_C34896	0	1	fatty acid synthase-like
	Parm_BB_C28599	1	2	No Hit
	Parm_BB_C1424	0	1	fatty acid synthase-like
	Parm_BB_C2373	0	1	death-inducer obliterator 1-like
	Parm_BB_C3804	0	1	uncharacterized protein LOC114342259
	Parm_BB_C21049	0	1	No Hit
	Parm_BB_C27579	0	1	No Hit
	Parm_LP_c693	41	38	PaMyr3
	Parm_LP_c6174	0	2	No Hit
	Parm_LP_c8465	0	2	PaGH1-28
	Parm_LP_c495	0	1	microtubule-associated serine/threonine-protein kinase 3 isoform X2
	Parm_LP_c3092	0	1	PaGH1-16
PaMyr2	Parm_LP_c9501	0	1	probable prolinetRNA ligase, mitochondrial
	Parm_LP_c11552	0	1	hyaluronidase-like
	Parm_GBB_C22037	41	38	PaMyr3
	Parm_GBB_C653	0	4	PaGH1-18
	Parm_GBB_C36642	0	2	PaGH1-28
	Parm_GBB_C324	0	1	PaGH1-16

Table S4. In silico off-target prediction of the dsRNA designs against the local P. armoraciae transcriptome databases

Parm_GBB_C1484	0	1	probable prolinetRNA ligase, mitochondrial
Parm_GBB_C9477	0	1	microtubule-associated serine/threonine-protein kinase 3 isoform X2
Parm_GBB_C16713	0	1	hyaluronidase-like
Parm_GBB_C22656	0	1	Glucose-6-phosphate 1-dehydrogenase
Parm_GBB_C22858	0	1	unnamed protein product
Parm_GBB_C24664	0	1	unnamed protein product
Parm_GBB_C25866	0	1	hypothetical protein AAVH_02602
Parm_GBB_C37647	0	1	No Hit
Parm_GBB_C38976	0	1	lysophosphatidylcholine acyltransferase isoform X2
Parm_BB_C15344	59	33	misassembled contig of PaMyr2 and PaMyr3
Parm_BB_C12167	0	4	PaGH1-18
Parm_BB_C21485	0	3	40S ribosomal protein S2-like
Parm_BB_C8334	0	2	PaGH1-28
Parm_BB_C218	0	1	probable prolinetRNA ligase, mitochondrial
Parm_BB_C2766	0	1	microtubule-associated serine/threonine-protein kinase 3 isoform X2
Parm_BB_C7049	0	1	dopamine N-acetyltransferase-like
Parm_BB_C9210	0	1	hyaluronidase-like

Table 55: Le Months parameters for mattiple reaction monitoring (MRM)									
Analyte	Q1 [m/z]	Q3 [m/z]	DP [V]	CE [V]					
4MSOB GSL	435.9	95.8	-65	-60					
4MSOB-isothiocyanate	178.11	114	26	13					
4MSOB-cyanide	146	129	38	13					
4MSOB-amin	136	72	26	17					

Table S5. LC-MS/MS parameters for multiple reaction monitoring (MRM)

CE, collision energy; DP, declustering potential

Experiment	N	dsRNA treatment	transcripts of <i>PaMyr1</i> per 1,000 transcripts of <i>RPS4e</i> mean±sd	transcripts of <i>PaMyr2</i> per 1,000 transcripts of <i>RPS4e</i> mean±sd	transcripts of <i>PaMyr3</i> per 1,000 transcripts of <i>RPS4e</i> mean±sd	Ν	Activity [pmol glucose min ⁻¹ mg FW ⁻¹] mean±sd
RNAi predation	7	dsIMPI	0.5±0.5	1524.5±836.7	66.6±169.1	8	1251.2±544.8
	7	dsPaMyr2	0.5±0.3	501.7±539.1	260.1±301.9	8	219.1±232.1
RNAi feeding	7	dsIMPI	1.6±1.5	1497.2±819.3	79.2±132.0	7	1713.3±1150.7
	6	dsPaMyr2	1.2±0.8	413.3±362.8	141.6±200.4	7	481.1±485.4

Table S6. Myrosinase gene expression and activity in larvae used in predation and feeding assays

RPS4e, 40S ribosomal protein subunit 4.

	Mean GSL concentration [nmol GSL \times mg ⁻¹ fresh weight \pm SD]						
Glucosinolate (GSL)	<i>B. rapa</i> (<i>N</i> = 6)	Third instar larvae $(N = 20)$	Pupa (<i>N</i> = 20)	Adults $(N = 20)$	Statistical method	Statistics	Р
3-Butenyl GSL	0.15 ± 0.14	$0.03\pm0.07~b$	$0.10\pm0.21\ b$	$2.22\pm0.91~a$	Kruskal-Wallis one way ANOVA	H = 43.777	≤ 0.001
4-Pentenyl GSL	0.24 ± 0.16	$0.07\pm0.08~b$	$0.26\pm0.28~b$	$2.45\pm1.04~a$	Kruskal-Wallis one way ANOVA	H = 43.671	≤ 0.001
2OH3But GSL	0.24 ± 0.11	$1.50\pm0.66~b$	$2.27\pm1.03~b$	$3.79 \pm 1.04 \text{ a}$	one way ANOVA	F = 31.512	≤ 0.001
20H4Pent GSL	0.03 ± 0.02	$0.12\pm0.08~c$	$0.26\pm0.15~b$	0.63 ± 0.31 a	Kruskal-Wallis one way ANOVA	H = 37.968	≤ 0.001
5MSOP GSL	0.10 ± 0.12	$0.79\pm0.23~\text{b}$	$1.06\pm0.46~a$	1.18 ± 0.03 a	one way ANOVA	F = 6.495	= 0.003
Benzyl GSL	0.08 ± 0.05	$0.07\pm0.02~b$	$0.09\pm0.04\ b$	0.48 ± 0.12 a	Kruskal-Wallis one way ANOVA	H = 39.671	≤ 0.001
2PE GSL	0.02 ± 0.01	$0.02\pm0.06~\text{b}$	$0.10\pm0.13~b$	0.31 ± 0.12 a	Kruskal-Wallis one way ANOVA	H = 35.630	≤ 0.001
I3M GSL	0.06 ± 0.06	$0.06\pm0.03~\mathrm{c}$	$0.18\pm0.09\ b$	0.42 ± 0.12 a	Kruskal-Wallis one way ANOVA	H = 45.301	≤ 0.001
4MOI3M GSL	0.01 ± 0.01	$0.02\pm0.02~\text{b}$	$0.03\pm0.02~b$	0.12 ± 0.05 a	Kruskal-Wallis one way ANOVA	H = 39.109	≤ 0.001
1MOI3M GSL	0.25 ± 0.22	$0.20\pm0.09~b$	$0.17\pm0.05\ b$	0.26 ± 0.09 a	Kruskal-Wallis one way ANOVA	H = 12.056	= 0.002
Total	1.18 ± 0.63	$2.89\pm0.81~b$	4.51 ± 1.81 b	11.85 ± 2.14 a	Kruskal-Wallis one way ANOVA	<i>H</i> = 43.915	≤ 0.001

Table S7. Glucosinolate concentration in *B. rapa* leaves and *P. armoraciae* reared on *B. rapa*

20H3But, 2-hydroxy-3-butenyl; 20H4Pent, 2-hydroxy-4-pentenyl; 5MSOP, 5-methylsulfinylpentyl; 2PE, 2-phenylethyl; I3M, indol-3-ylmethyl; 40HI3M, 4-hydroxyindol-3-ylmethyl; 4MOI3M, 4-methoxyindol-3-ylmethyl; 1MOI3M, 1-methoxyindol-3-ylmethyl; different letters indicate significant differences between groups

Reference

Beran, F., Pauchet, Y., Kunert, G., Reichelt, M., Wielsch, N., Vogel, H., Reinecke, A., Svatos, A., Mewis,
I., Schmid, D., Ramasamy, S., Ulrichs, C., Hansson, B.S., Gershenzon, J., Heckel, D.G., 2014. *Phyllotreta striolata* flea beetles use host plant defense compounds to create their own glucosinolate-myrosinase system. Proc. Nat. Acad. Sci. USA 111, 7349-7354.