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Abstract: Recently, it was demonstrated that inelastic helium atom scattering from conducting
surfaces provides a direct measurement of the surface electron–phonon coupling constant (mass
enhancement factor λ) via the temperature or the incident wave vector dependence of the Debye–
Waller exponent. Here, previous published as well as unpublished helium atom scattering diffraction
data from the vicinal surfaces of copper (Cu(11α), with α = 3, 5, 7) and aluminum (Al(221) and
Al(332)) were analyzed to determine λ. The results suggested an enhancement with respect to
the corresponding data for the low-index surfaces (111) and (001) above the roughening transition
temperature. The specific role of steps compared to that of terraces is briefly discussed.

Keywords: electron-phonon coupling; vicinal surfaces; helium atom scattering

1. Introduction

Vicinal crystal surfaces, whose planes form a small angle with a low-index plane (e.g.,
(001), (111) or (110) in cubic crystals) have raised interest well beyond the pure crystallogra-
phy field. Ideal vicinal surfaces are characterized by sets of equally spaced steps separated
by low-index terraces. Their structure and stability with respect to faceting, reconstruction
and roughening transitions have been the subject of several experimental studies with He
atom scattering (HAS) and related theoretical investigations [1–21]. The early interest in
vicinal surfaces was motivated by their expected role as natural templates for the epitax-
ial growth of functional nanostructures [22–25] and as heterogeneous catalysts [26]. The
topological and the quasi-one dimensionality (quasi-1D) features of the steps are reflected
in their electronic and vibrational properties, hence, in the local electron–phonon (el–ph)
interaction, thus opening new horizons for quasi-1D superconductivity in topological
materials [27–30].

In a previous work [31], we showed that the temperature or incident wave vector
dependence of the Debye–Waller (DW) exponent in helium atom scattering (HAS) provides
direct information on the total mass enhancement factor λ, characterizing the el–ph interac-
tion at a conducting surface. The value of λ derived in this way (hereafter denoted as λHAS)
was reported for several metal surfaces [32], overlayers [33], graphene [34], topological
semimetals [35–38], layered dichalcogenides [39,40], 2D superconductors [41] and low- and
multi-dimensional surfaces [42].

In this work, the study was extended to high-index metal surfaces, by re-analyzing pre-
vious HAS diffraction measurements on the vicinal surfaces of copper Cu(11α)
(with α =1, 3, 5, 7 [43,44] and α = 2, 5 [45–47]) and aluminum Al(221) and Al(332) [47,48].
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In Figure 1, ball models of the (115) and (112) (left side) and of the (221) and (332) (right
side) vicinal surfaces are shown. The analysis revealed that the DW exponent −2W(T,ki),
as a function of both the surface temperature T and the incident He beam wave vector
ki, contained distinct information on the el–ph interaction associated with either steps or
terraces. Previously, Lapujoulade et al. [43,44] observed that, with increasing temperature,
the typical linear slope of 2W(T,ki) for Cu(11α) became suddenly steeper above a certain
temperature TR of the order of or above room temperature, indicative of a surface rough-
ening transition. It is shown in Section 3 that this kind of roughening transition actually
yielded an increase in the local el–ph interaction, similarly to what was recently reported
for a semiconductor surface [49].
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Figure 1. Ball models showing the structure of the (115) and (112) (left) and of the (221) and (332)
(right) vicinal surfaces of a monatomic face-centered cubic (fcc) crystal (adapted from [47]). The
orthogonal coordinates in the diagram are those of the vicinal surface; the wave vector component
normal to steps lying in the terrace plane is here denoted as K||.

2. Theory

The specular HAS intensity is written as a function of the incident wave vector ki and
the surface temperature T in the form

I(ki, T) = I0(ki) e−2W(ki ,T)

= I(ki, 0) e−2W(ki ,T)+2W(ki ,0)
(1)

In the second line of this equation, the specular scattering intensity is more explicitly
factorized into its value at T = 0 K times the exponential temperature-dependent attenuation
factor, which is just 1 at 0 K. Note that the incident wave vector dependence of the pre-
factors includes that of the incident intensity. This is conveniently described for small ki by
a power law, I0(ki) ∝ kη

i , where η depends on the atom–surface interaction as well as on
the supersonic beam source design and operating conditions [31].

The present el–ph theory of HAS from conducting surfaces [31,32] links the surface
el–ph mass enhancement factor λHAS to the dependence of the DW exponent on the
temperature or the incident momentum through the two equations

λHAS = − πφ

2nsac

∂ ln I(ki, T)
k2

iz∂(kBT)
(2)
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and

λHAS = − πφ

2nsac

∂ ln[k−η
i I(ki, T)]

(kBT)∂k2
iz

, (3)

respectively. Here, φ is the surface work function, ns is the effective number of the surface
atomic layers involved in the surface el–ph interaction, and ac is the surface unit cell area.
For vicinal surfaces, ac is approximated by that of the terraces between two neighbor
parallel steps. The power law for I0(ki) ensures that the measured I(ki, T) at a given surface
temperature T vanishes for both ki→ 0 and ki→∞. It will therefore have a maximum at ki =
ki,max, where ∂I(ki,max, T)/∂ki = 0. By combining this condition with Equations (1) and (3),
the latter can be expressed as

λHAS =
πφ

4nsac

η

kBT k2
iz,max

. (4)

Note that, by inserting Equation (4) into (3), k2
iz,max can be obtained from

1
k2

iz,max
= −

2∂ ln[k−η
i I(ki, T)]

η ∂k2
iz

, (5)

and is therefore dependent on the surface temperature.
As discussed in Ref. [31], when the effects of the attractive surface potential depth D

are not completely negligible in specular HAS, they can be approximately accounted for by

replacing k2
iz in Equation (2) with k

2
iz = k2

iz + 2mD/}2 (Beeby correction [50]), where m is the
He atom mass, and the potential depth D can directly be obtained from the analysis of HAS
bound-state resonances [51]. Classically, the Beeby correction is equivalent to assuming
that the attractive potential of the He–surface interaction contributes to the speed with
which the atom impacts the surface. When the ki dependence of the HAS intensity is used
instead of its temperature dependence to derive λHAS, Equation (4) has the advantage that
the information on the electron–phonon interaction is within the factor k2

iz,max, to which the
Beeby correction can be directly added.

3. The Copper Vicinal Surfaces Cu(11α)

A selection of HAS specular reflectivity data measured by Lapujoulade et al. [43,44] as
a function of the surface temperature for the vicinal surfaces of copper (11α), with α = 3,
5, 7, is reproduced in Figure 2 (left panel) and compared with the data for the low-index
surfaces (110), (111) and (001) (α = 0, 1, ∞) (right panel). The reflectivity data, normalized
to the extrapolated zero-temperature value I(ki, 0), were plotted on a logarithmic scale so
as to give the temperature dependence of the DW exponent, with the corresponding He
beam incident wave vectors ki and angles θi indicated in the panels. The HAS experimental
points were fitted by Lapujoulade et al. (full lines) [43,44] with a theory for the DW
temperature dependence based on a He-atom surface phenomenological potential. The
surface dynamics were described by a surface Debye temperature of the order of 230 K
and additional adjustable parameters to account for the Beeby correction, for the so-called
Armand effect, and for anharmonic corrections. The latter correction accounts for high-
temperature deviations from the expected linearity.

The fittings in Figure 2 are excellent for the densely packed surfaces (111) and (001),
which showed a regular behavior up to the highest measured temperature of 800 K. The
theory appeared to be insufficient to explain the sudden decrease in intensity observed
above the temperature TR for Cu(113), Cu(115), Cu(117) and Cu(110). This led Lapujoulade
et al. [8,9] to consider the sudden decrease in intensity as clear evidence for a roughening
transition, promoted by and affecting first the step rows. For the first three surfaces,
the roughening temperature was of the order of room temperature or larger for Cu(110).
Figure 2 shows evidence of roughening for the closed-packed surface Cu(111).
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Figure 2. The specular HAS intensity as a function of temperature, normalized to the T = 0 value, for
the copper vicinal surfaces (11α) with α = 3, 5, 7 (left panel) and low-index surfaces (right panel), as
measured by Lapujoulade et al. [43,44] with a He beam incident momentum ki = 6.35 Å−1 (ki = 11 Å−1

for Cu(111)) and incident angles θi indicated in the panels. The arrows indicate the roughening
transition temperature TR [43]; the slight slope increase for Cu(001) above 460 K can hardly be
distinguished from the effect of anharmonicity [43].

Table 1 lists the values of λHAS calculated with Equation (2) from the data in Figure 2.
The values of λHAS below and above the roughening transition are shown in lightface and
boldface, respectively. In Equation (2), the work function φ = 4.53 eV measured by Gartland
et al. [52] for the Cu(112) surface was adopted for the other vicinal surfaces. This was,
however, very close to that of the Cu(001) surface, which actually was the terrace plane for
α = 3, 5, 7. The Cu(001) terrace values were then used also for ns, and ac.

At temperatures below the roughening transition, the intensity slope used in
Equation (2) was that of the interpolating line calculated by Lapujoulade et al. from
the data shown in Figure 2 [31] and including anharmonic corrections, while above the
transition, the experimental intensity ratio at the two temperatures T1 and T2 reported
in Table 1 was used. For the Cu(111) surface, two different sets of data from Ref. [31]
are reproduced in Figure 2, corresponding to the different incident angles. Although the
slopes were somewhat different, the corresponding values of λHAS reported in Table 1
were about the same, as expected. For the Cu(001) surface, two different values of λHAS
were associated with the slight decrease in the intensity observed with respect to the fitting
curve, although this small effect could be hardly associated with a real transition rather
than with a gradual increase in surface disorder.

An interesting result from this analysis was the appreciable increase in the electron–
phonon interaction above the roughening transition. As anticipated above, this appeared
to be consistent with what was recently reported for a CdTe surface [48], although the
mechanism for the electron–phonon interaction at a roughened metal surface may be
rather different from that at an intrinsic semiconductor surface. It should be noted that
disorder activates additional scattering channels at the expense of ordinary specular and
diffraction channels. Thus, a steeper decay of the DW exponent observed at increasing
temperature above the disorder threshold associated with roughening could be, in part,
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an effect of opening new competitive scattering channels, rather than an indication of a
larger electron–phonon interaction. On the other hand, below the disorder threshold, the
observed increase in λHAS had a solid basis, relying on the localization of both electronic
and phonon excitations, conferring a quasi-one-dimensional character to step dynamics.
Phonon softening at the surface steps [57] may be viewed as a manifestation of a larger
local electron–phonon interaction.

Table 1. Electron–phonon mass enhancement factor HAS for the Cu(11) surfaces (Figure 2) and for
the Al(221) and Al(332) vicinal surfaces, derived from the dependence of the specular HAS intensity
on the surface temperature (Equation (2)). The results are listed both for ordered (low-temperature
T1–T2 interval) and for roughened (high-temperature T1–T2 interval, boldface entries) vicinal surfaces.
No roughening transition was observed for Cu(111). In contrast to the large values for Al(221) and
Al(332), the mass enhancement factor reported for Al(111) was λHAS = 0.30 [31].

Surface φ ns ac k2
iz D T1–T2 ln I(T1)

I(T2)
λHAS

[eV] [Å2] [Å−2] [meV] [◦K]

Cu(110) a 4.48 b 6.8 d 9.22 35.60 e 6.27 h 200–500 1.20 0.11
500–800 1.96 0.18

Cu(111) a 4.94 b 8.5 d 5.64 20.34 e 8.85 h 500–800 0.70 0.12
36.09 f 500–800 1.09 0.13

Cu(113) a 4.53 c 6.8 d 6.52 n 35.60 e 6.35 h 200–500 1.04 0.13
500–800 2.20 0.28

Cu(115) a 4.53 c 6.8 d 6.52 n 13.27 e 6.35 h 200–500 0.74 0.18
500–800 1.37 0.33

Cu(117) a 4.53 c 6.8 d 6.52 n 13.27 g 6.35 h 100–400 0.47 0.11
400–700 0.84 0.20

Cu(001) a 4.59 b 6.8 d 6.52 12.94 a 9.70 o 200–500 0.49 0.10
500–800 0.69 0.14

Al(221) i 4.26 k 1.6 d 7.09 n 21.91 k 7.0 h,l 232–550 1.17 0.71
550–711 1.12 1.33

Al(332) j 4.26 k 1.6 d 7.09 m,n 20.70 t 7.0 h 308–606 0.92 0.61
21.34 s 7.0 h 308–606 1.68 1.10
11.83 414–494 0.20 0.66

414–711 1.59 1.42

(a) Refs. [41,42]. (b) Ref. [52]. (c) The value measured for Cu(112) [52] was adopted for all present vicinal surfaces.
(d) Value for the corresponding terrace surface from Ref. [31]. (e) Ref. [43]; for Cu(111) from the data in Figure 2
with θI = 65.8◦. (f) For Cu(111) from the data in Figure 2 with θI =56.9◦. (g) Ref. [44]. (h) Ref. [51]. (i) Refs. [47,53–55].
(j) Refs. [47,48,55]. (k) Ref. [53]. (l) Potential depth for the (001) surface; the one for the terrace (111) surface was not
available. (m) Diffuse elastic intensity (see Figure 13 of Ref. [48]). (n) Unit cell area of the corresponding terrace
surface. (o) Ref. [56]. (t) Specular scattering from the terrace surface (Figure 6a [47,48]). (s) Specular scattering from
the (332) surface (Figure 6a [47,48]).

The HAS reflectivity was measured by Miret-Artés et al. [46] for the Cu(112) and
Cu(115) vicinal surfaces, along the [111] and [552] directions, respectively. In Figure 3, their
specular intensities from the vicinal plane (θi = 45◦) are plotted for seven different values
of the incident ki at the same temperature of about 130 K. The maximum value of k2

iz,max
was about 15 Å−2 for both surfaces [46]. For both surfaces, the specular intensity was fitted
with the function

I00(ki) = Akη
i exp[−Ck2

i ], (6)

where the exponential represents the DW factor, and A and C are two fitting constants. For
the (112) surface, the dip in intensity at ki = 7.5 Å−1 was presumably due to a bound-state
resonance and did not allow to clearly distinguish between the fits with the two values of η
and the respective values of ki,max. The fittings in Figure 3 for the Cu(115) surface suggested
η = 2 with a maximum at ki,max

∼= 7.0 Å−1 rather than η = 1 with ki,max
∼= 5.5 Å−1.

Table 2 lists the corresponding values of λHAS at T = 130 K derived from the depen-
dence of the specular HAS intensity on the incident wave vector (Equations (3,4)) for the
surfaces Cu(112) and Cu(115) and Al(221) and Al(332). A comparison of the results for
η = 1 and 2 clearly showed that the values of λHAS increased with η. The resulting values
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of λHAS for Cu(115), even with η = 1, turned out to be systematically larger than those
obtained from the temperature dependence of the DW exponent (Equation (3)) in Table 1
in the low-temperature region). They were more consistent with the values found above
the roughening transition temperature in Table 1. For Al(221) and Al(332), the results in
Tables 1 and 2 are similar.
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Figure 3. Specular HAS intensity as a function of the incident wave vector for the copper vicinal
surfaces Cu(112) and Cu(115), measured at a surface temperature of 130 K along the directions normal
to the steps [111] and [225], respectively, (•, from Miret-Artés et al. [46]). Solid lines show the fits of
the HAS data with Equation (6) (reproduced in the upper panel) with two different values of the
exponent η.

Table 2. Electron–phonon mass enhancement factor λHAS derived from the dependence of the
specular HAS intensity on the incident wave vector (Equations (3) and (4)).

Surface φ ns ac ki,max D T η λHAS
[eV] [Å2] [Å−2] [meV] [◦K]

Cu(112) a 4.53 b 6.8 c 5.64 d ~5.0 8.25 e 130 1 0.29
~6.5 2 0.45

15.9 i ~5.0 8.25 e 130 1 0.10
~6.5 2 0.16

Cu(115) a 4.53 b 6.8 c 6.52 d ~5.5 6.35 e 130 1 0.26
~7.0 2 0.38

Al(221) f 4.26 h 1.6 c 7.09 d ~6.5 7.0 e 135 1 0.72
Al(332) g 4.26 h 1.6 c 7.09 d ~7.2 7.0 e 130 1 0.61

(a) Ref. [46]. (b) Ref. [52]; the value measured for Cu(112) was also used for Cu(115). (c) Value for the corresponding
terrace surface from Ref. [31]. (d) Unit cell area of the corresponding terrace surface. (i) Cu(112) unit cell area.
(e) Ref. [51]. The (111) terrace value was used for Cu(112). (f) Refs. [47,54,55]. (g) Refs. [47,48,55]. (h) Ref. [53].

It should be noted that the terraces of the Cu(112) surfaces are (111) surfaces, while the
terraces of the other Cu(11α) surfaces (α = 3, 5, 7) are (001) planes. For vicinal surfaces with a
short inter-step period and a densely packed terraces like Cu(112), the actual crystallographic
unit cell area (ac = 15.9 Å2) should be a better choice than the value of the corresponding
terrace surface (ac = 5.64 Å2). Table 2 shows that with the larger value of ac, λHAS dropped to
0.10 for η = 1 (close to that of Cu(001) and Cu(111)) and to 0.16 for η = 2 (Table 2).
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It appeared, however, as a general fact, that λHAS increased when moving from high-
index to intermediate vicinal surfaces. The largest λHAS of the Cu(11α) series derived from
the DW temperature dependence was found for α = 5. Such an increase in the surface el–ph
interaction can be associated with the presence of steps, as long as they were sufficiently
localized but not too far apart. The localization of the surface electronic states at the Fermi
level could also stay behind the increase in λHAS above the roughening transition.

4. The Aluminum Vicinal Surfaces Al(221) and Al(332)

The scattered HAS intensity at a total angle of θi + θ f = 91.5◦ was measured for the
vicinal surfaces Al(221) [47,54,55] and Al(332) [47,48,55], as a function of both the surface
temperature and the incident wave vector. Figure 4a–c reproduces some of the HAS angular
distributions from the Al(221) surface measured by Witte et al. [54,55] at three different
surface temperatures and given an incident wave vector ki = 6.2 Å−1. They were plotted as
functions of the parallel wave vector change ∆K|| in the direction [114] normal to the steps.
Specular scattering from the crystallographic surface occurred at ∆K|| = 0, while specular
scattering from the terraces occurred at about ±2.4 Å−1, the sign corresponding to either
the up-hill or down-hill scattering configuration. Panel (d) shows the DW exponent derived
from the full set of data points reported by Witte et al. and a coth(θD/2T) fit (red full line),
where θD = 790 K is the aluminum Debye temperature [58]. The corresponding λHAS from
Equation (2) and the parameters listed in Table 1, when referred to the approximate linear
behavior in the temperature interval 232–550 K, was 0.71. The experimental point at 712 K
clearly deviated from the fitting curve, with the larger DW slope in the high-T range giving
λHAS = 1.33. Such a large increase above 550 K could be interpreted as an effect of surface
roughening, similar to what observed for Cu(11α). Clearly, more measurements in this
range should be made available in order to confirm this interpretation.
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Figure 4. (a–c) HAS angular distributions from the Al(221) surface around the specular peak at three
different surface temperatures and the same incident wave vector ki = 6.2 Å−1 as functions of the
parallel wave vector change in the direction [114] normal to the steps [54]. Intensities are shown
in units of the specular intensity at T = 136 K. The arrows in panels (a,b) indicate the positions of
possible features from down-hill terrace specular scattering. (d) Temperature dependence of the DW
exponent. The linear part of the fit (red full line above 300 K) indicates λHAS = 0.71, while the point at
712 K would be fitted by a slope in the 550–712 K range corresponding to λHAS = 1.33.

The value of λHAS found for Al(221) below 550 K was, however, much larger than the
one found for the Al(111) surface (λHAS = 0.30, see Table 2 of Ref. [31]), as well as the bulk
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value λ = 0.43 ± 0.05 [59], but it almost coincided with the value of λHAS = 0.72 derived
via Equations (3,4) from the wave vector dependence of the specular HAS intensity at
T = 135 K and for η = 1 (Figure 5). It may be argued that also for the vicinal surface Al(221),
a large increase in the el–ph interaction occurred with respect to that at the low-index
surfaces, with a further increase above 550 K as a possible effect of roughening. Note that
in Al(221), the specular scattering from the crystallographic (221) surface was still larger
than or comparable to that from the (111) terraces (small arrows in Figures 4 and 5), despite
the fairly large inter-step distance of 8.74 Å.
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Figure 5. HAS angular distributions from the Al(221) surface at the surface temperature of 135 K for
three different incident wave vectors ki as functions of the parallel wave vector change ∆K|| in the
direction [114] normal to the steps (adapted from [48]). The exponential drop of the specular intensity
(∆K|| = 0) at larger ki (see Equation (6)) is evident at ki = 7.51 Å−1 (top panel). The maximum specular
intensity was found at ki,max ∼= 6.5 Å−1. The arrows in the lowest panel indicate the positions of possible
features from either up-hill (positive ∆K||) or down-hill (negative ∆K||) terrace specular scattering.

Figure 6, adapted from Lock et al. [48,49], shows the angular distributions from the
vicinal surface Al(332). Figure 6a shows the changes of the HAS specular intensities from
both terraces and step arrays observed by changing the temperature at a given ki, while
Figure 6b displays the intensity when changing ki at a given temperature. This surface
with its large 14.30 Å inter-step distance (see Figure 1), exhibited, instead, a dominant HAS
specular scattering from the (111) terraces (∆Ky = 0) and only small sharp peaks from the
periodic array of the steps of the (332) surface (∆K|| = 0). The small peaks at ∆K|| = 0
in Figure 6a evaluated by Equation (2), with the parameters listed in Table 1 and in the
temperature interval of 308–606 K led to the value of λHAS = 0.61. The same value was
obtained from the wavelength dependence in the ki interval of 6.61–10.37 Å−1 (Figure 6b)
from Equations (3)–(5), with η = 1. The same consistency was found for Al(221), which
strongly supported the choice of η = 1.

It was noted that λHAS for Al(332), although still larger than that of Al(111), turns
out to be smaller than that found for Al(221). An interesting question is whether this
was due to the different sources of data used for Al(332) (specular HAS from the (111)
terraces) and Al(221) (specular HAS from the periodic array of steps of the (221) surface).
The temperature and incident wave vector dependence of the small peaks at ∆K|| = 0 in
Figure 6 permitted to compare terraces (see Figure 1) and steps at ∆Ky = 0 and to assess
their respective contributions to the surface electron–phonon coupling. The second row of
Al(332) data in Table 1 shows indeed that λHAS derived from the temperature dependence
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of the small ∆K|| = 0 peak increased to 1.10, which brought the surface electron–phonon
coupling of Al(223) above that of Al(221) and much above that of the Al(111) low-index
surface. A similar increase could probably be determined from the ki dependence of the
∆K|| = 0 peak, although the very small peak at the higher wave vector was hidden in
the background.
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Figure 6. HAS angular distributions from Al(332) along the direction [113] normal to the steps in
the up-hill orientation (adapted from Lock et al. [47,48]). (a) The results at two different surface
temperatures (302 K and 605 K) and a given incident wave vector ki = 6.62 Å−1. (b) The results for
different incident wave vectors (ki = 10.37 and 6.61 Å−1) at a given surface temperature of 130 K. The
insets in (a) show the up-hill scattering configuration, either specular with respect to the (332) surface
(left side) and yielding a small elastic peak, or specular with respect to the (111) terraces (right side),
and yielding a strong elastic peak. The inset in (b) illustrates the up-hill scattering configuration from
the vicinal surface (113) with a total scattering angle of 91.5◦. The large peaks were derived from
terrace scattering, while the scattering from the (332) surface (∆K|| = 0) yielded very small peaks.

Figure 7, adapted from Lock et al. [47,48], illustrates a problem inherent in determining
el–ph mass enhancement factors from stepped surfaces. The temperature dependence of the
angular distributions from Al(223) terraces in Figure 7 could hardly be used to extract λHAS
due to the partial superposition of an additional peak growing with increasing temperature
at positive values of ∆Ky. This was attributed to a temperature-driven instability towards
faceting at the steps. Nevertheless, the value of λHAS = 0.66 obtained from Equation (2) in
the lowest temperature interval (413.5–493.7 K) (see Table 1, third row for Al(332)), where the
specular scattering intensity from the (111) terraces was still dominant, was consistent with
the terrace values derived from Figure 6. At higher temperatures, where faceting instability
occurs, it can make sense to consider the areas of the double peak features and to determine the
logarithm of the ratio of two areas measured at two different temperatures in order to obtain
overall qualitative information on the electron–phonon interaction. The fourth entry under
Al(332) in Table 1 shows a comparatively large value of λHAS = 1.42 obtained in this way over
the entire 414–711 K temperature range. This is consistent with λHAS = 1.33 found at similar
high temperatures for Al(221). The large values of λHAS were attributed to a roughening
transition, in analogy to what was reported for copper vicinal surfaces.
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Figure 7. HAS angular distributions measured at around ∆Ky = 0 from the (111) terraces of Al(332)
at different temperatures and with a fixed incident wave vector ki = 4.93 Å−1. With increasing
temperature, an additional peak appeared which was attributed to faceting or increasing disorder
(adapted from Lock et al. [47,48]).

It is worth noting that the enhancement of λHAS at vicinal surfaces with respect to that
of the terrace high-index surface was appreciably stronger for aluminum than for copper.
This can be attributed to the rather different range of the surface el–ph interaction for the
two metals, expressed by ns, which was rather short for the aluminum surfaces and quite
longer for the copper surfaces. As discussed in Ref. [31], this difference is in turn related to
the rather different values of the surface Fermi wave vectors at the nesting points associated
with the el–ph interaction. The dependence of this interaction on surface morphology is
naturally more pronounced the shorter is its extension into the bulk.

5. Conclusions

The method of extracting the electron–phonon interaction (mass enhancement factor
λHAS) at conducting surfaces from the Debye–Waller exponent of helium atom scattering [31]
was applied to the analysis of existing HAS data on Cu and Al vicinal surfaces. It was found
that the electron–phonon interaction of the vicinal surfaces analyzed in the present work was
generally larger than that of the corresponding low-index surface of the terraces between two
neighboring steps. The observed increase in λHAS was attributed to the specific contribution
of the steps. The case of Al(332) was illuminating in this respect, because it permitted to
compare the value of λHAS obtained from the HAS reflectivity of the (111) terraces to that
obtained from the HAS reflectivity of the crystallographic surface (332).

More intriguing is the pronounced increase in λHAS at higher temperature where
some form of disorder appeared, such as roughening or terrace faceting. Figure 7 shows
that disorder activated additional scattering channels, which subtracted intensity from
specular and diffraction scattering, leading to a steeper decay of the DW exponent with the
temperature. It is expected that disorder induced by increasing temperature starts from
steps were atoms are more loosely bound at their lattice positions. On the other hand, the
larger contributions to λHAS of the step atoms compared to the terrace atoms, as found
in the present analysis, was likely to be due to the step localization of both electronic and
phonon excitations, which acquired a quasi-one-dimensional character, so that phonon
softening at the steps [57] might be linked to the larger local electron–phonon interaction.
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The present work was stimulated by existing HAS measurements which were not
intended for the derivation of λHAS, the method being unknown at the time of the measure-
ments. There are very interesting HAS investigations also on clean and Fe-covered Pt(997)
surfaces [24], where unfortunately the missing normalization of the HAS diffraction spectra
measured at several different temperatures does not permit the evaluation of λHAS. We
hope that this study will stimulate new HAS studies explicitly designed for the derivation
of both λHAS and the mode-selected λQν. The recent studies on the possible superconduc-
tivity enhancement as an effect of surface disorder [60] offer further good reasons for new
HAS studies specifically aiming at the derivation of the electron–phonon interaction at
stepped surfaces and conducting surfaces with various types of disorder.
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