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ABSTRACT 23 

Brain size robustly differs between sexes. However, the consequences of this anatomical 24 

dimorphism on sex differences in intrinsic brain function remain unclear. We investigated the extent 25 

to which sex differences in intrinsic cortical functional organization may be explained by 26 

differences in cortical morphometry, namely brain size, microstructure, and the geodesic distances 27 

of connectivity profiles. For this, we computed a low dimensional representation of functional 28 

cortical organization, the sensory-association axis, and identified widespread sex differences. 29 

Contrary to our expectations, observed sex differences in functional organization were not 30 

fundamentally associated with differences in brain size, microstructural organization, or geodesic 31 

distances, despite these morphometric properties being per se associated with functional 32 

organization and differing between sexes. Instead, functional sex differences in the sensory-33 

association axis were associated with differences in functional connectivity profiles and network 34 

topology. Collectively, our findings suggest that sex differences in functional cortical organization 35 

extend beyond sex differences in cortical morphometry.   36 

 37 

Teaser 38 

Investigating sex differences in functional cortical organization and their association to differences 39 

in cortical morphometry.  40 
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INTRODUCTION 41 

Sex differences in human brain size are robust and widely acknowledged [1-7], but the 42 

downstream functional consequences of this anatomical dimorphism are not well understood. 43 

Indeed, sex differences in intrinsic brain function are sometimes deemed small or negligible beyond 44 

differences attributed to brain size [2]. Nevertheless, diverging patterns of functional connectivity 45 

between males and females have been reported even when controlling for differences in brain size 46 

and most consistently in sensory and association regions [5, 8, 9]. These regions in fact represent 47 

the two anchors of a key principle of hierarchical functional organisation, the sensory-association 48 

(S-A) axis, differentiating localized primary sensory/motor areas from a more distributed set of 49 

transmodal association regions, including regions belonging to the frontoparietal and default mode 50 

networks (DMN) [10, 11]. However, the extent to which sex differences in intrinsic functional 51 

cortical organization may be explained by neuroanatomical differences relating to brain size 52 

remains unclear. 53 

 54 

Brain size and its variability may have important consequences for the spatial distribution 55 

of sensory and association areas across the cortical mantle, as illustrated by clear scaling patterns 56 

over evolution and development. In fact, over the past 4 million years, hominin evolution has not 57 

only shown a general trend of increasing body mass, but also an even more important relative 58 

increase in brain size [12]. According to the tethering hypothesis, the brain’s sensory systems, 59 

acting as anchors, may have constrained the growth of the developing ancestral mammalian cortex 60 

[13]. In this way, evolutionary cortical expansion may have led to the emergence of the S-A axis, 61 

with association cortices distributed across the cortical mantle and untethered from sensory 62 

hierarchies. Patterns of expansion across cortical regions along the S-A axis are also observed 63 

across human development, with a more markedly distributed areal expansion across frontoparietal 64 

association regions relative to limbic and sensorimotor areas [14]. Through the increase of overall 65 

brain size, the differential expansion of sensory and association areas could thus be an important 66 

product of mammalian evolution and development. It is however unclear whether brain expansion 67 

and associated re-organization along the S-A axis may also extend to sex differences in cortical 68 

morphometry (i.e., cortical shape and size), and thus result in different functional organization of 69 

sensory and association regions in males and females. 70 

 71 

Morphometric differences between male and female brains have been extensively reported, 72 

with males showing a greater absolute brain volume by 8-13% on average [6]. It must be noted that 73 

within-group variance in cortical morphometry –which is typically greater in  males– is larger than 74 
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between-group mean effects, meaning that individual differences within sex are larger than group-75 

differences between sexes [15]. Nevertheless, contrary to the belief that males may have larger 76 

brains as a sole consequence of their larger bodies [2], it has been repeatedly reported that sex 77 

differences in brain size cannot be fully explained by differences in body dimensions, as quantified 78 

by height and/or weight [1, 4, 5, 7]. Although individual differences in total brain size seem to 79 

account for most differences in relative regional volumes [3], some sex differences still remain 80 

statistically significant when the variance explained by total brain size is taken into account [7]. 81 

Therefore, there may be sex differences in the scaling of regional brain volume that go beyond 82 

linear associations with overall brain and body size. In fact, sex differences in cortical morphometry 83 

are partly located at the anchors of the S-A axis [6, 16]. Developmental trajectories of anatomical 84 

change also appear regionally heterogeneous, with higher rates of global cortical thickness change 85 

found in fronto-temporal association regions and lower rates found in sensory regions [17]. 86 

Morphometric cortical properties therefore seem to not only follow patterns of variation along the 87 

S-A axis, but also differ between the sexes. Yet, how exactly sex-specific differences in cortical 88 

morphometry may be relevant to differences in intrinsic brain function has not been directly 89 

explored. 90 

 91 

Consistent with patterns of morphometric variation and sex differences, robust evidence 92 

points to sex differences in intrinsic functional connectivity (FC) at the poles of the S-A axis [5, 8, 93 

9]. In fact, despite generally controversial findings on sex differences in brain function, findings of 94 

stronger FC in females within the DMN [18-20] and in males within sensorimotor areas [19, 21] 95 

are consistent and robust. Overlapping morphometric and functional patterns of sex differences 96 

along the S-A axis thus suggest that differentiation in functional cortical organization may be 97 

somewhat orchestrated by the cortical mantle’s morphometric properties. Indeed, the structure, size, 98 

and shape of the cortex not only physically support functional connections, but also determine their 99 

length. Short- and long-range connections, as measured by geodesic distance (the distance 100 

separating two regions along the cortical mantle) have in fact been found in sensory and association 101 

regions respectively [22], thus also displaying patterns of variation along the S-A axis. With 102 

increasing distance between regions, cortical function also appears to change more rapidly in 103 

association regions relative to sensorimotor regions [23]. These patterns further mirror patterns of 104 

microstructural cortical variability identified by post-mortem histology [22] and myelin-sensitive 105 

in vivo magnetic resonance imaging (MRI) [22, 23]. As such, intrinsic functional activity, showing 106 

variability between the sexes and along the S-A axis, seems to be embedded within the cortical 107 

mantle and its microstructural organization. Accumulating evidence further supports the important 108 
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role played by cortical geometric properties, including size and shape, in sculpting functional 109 

architecture. Established findings from graph theory suggest that a cortical functional network’s 110 

properties are largely determined by its spatial embedding, namely by the length of its connections 111 

[24]. Peaks of DMN clusters on the S-A axis also appear to be equidistantly distributed relative to 112 

primary areas [10], in line with the hypothesised untethering of association cortices from sensory 113 

hierarchies during evolutionary expansion [13]. Furthermore, recent findings suggest that the 114 

spatial organization of intrinsic cortical functional activity is dominated by long wave-lengths of 115 

geometric eigenmodes [25]. This research builds on notions from neural field theory positing that 116 

brain shape physically constrains brain-wide functional dynamics by imposing boundaries on 117 

emerging functional signals [26, 27]. In the context of sex differences in functional cortical 118 

organization, brain size also explains some –although not all– sex-specific variance in FC [28]. 119 

Together, these findings point to possible morphometric properties that may not only underpin 120 

cortical functional architecture, but also be at the root of sex differences in functional organization.  121 

 122 

In the current work, we therefore investigated the extent to which sex differences in intrinsic 123 

functional cortical organization may be explained by differences in cortical morphometry, namely 124 

brain size, microstructure, and the geodesic distances of connectivity profiles. To this end, we used 125 

multimodal imaging data (including resting state functional MRI and structural T1 and T2 images) 126 

of the Human Connectome Project (HCP) S1200 release [29], consisting of healthy young adults. 127 

We began by computing the S-A axis as our measure of functional organization, given its relevance 128 

to cortical morphometry and sexual dimorphisms, and tested for sex differences along this low 129 

dimensional hierarchical organizational axis. Then, we identified the cortical morphometric 130 

properties potentially constraining the S-A axis, including brain size, microstructural organization 131 

(a low dimensional microstructure profile covariance (MPC) axis), and the mean geodesic distance 132 

of connectivity profiles. Next, we probed associations between patterns of sex differences in 133 

cortical morphometry and patterns of sex differences in the S-A axis. Contrary to our expectations, 134 

we did not find evidence supporting a morphometric explanation of sex differences in functional 135 

organization. As such, we further probed potential functional features that may intrinsically 136 

underpin sex differences on the S-A axis, and our findings suggest that differences in FC profiles 137 

and network topology may be a more plausible explanation of sex differences in functional 138 

organization.  139 
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RESULTS 140 

Sex differences in the S-A axis of functional cortical organization (Figure 1) 141 

We computed the S-A axis at the individual level as our measure of functional organization in 142 

subjects of the HCP S1200 release [29]. For this, we applied a non-linear dimensionality reduction 143 

algorithm on functional connectivity (FC) Fisher r-to-z transformed matrices. We only considered 144 

the top 10% of the row-wise z-values, representing each seed region’s top 10% of maximally 145 

functionally connected regions [30, 31]. We thus found the well-replicated low dimensional axis of 146 

functional brain organization explaining the most variance in the data (21.86%) –spanning from 147 

unimodal (sensory, here particularly visual) regions to heteromodal (association) regions [10]– and 148 

defined it as the S-A axis (Fig. 1A). Then, to test for regional effects of sex on S-A axis loadings 149 

(Fig. 1B), we fitted a linear mixed effects model (LMM) including fixed effects of sex, age, and 150 

total SA, and random nested effects of family relatedness and sibling status (see Methods for more 151 

information on the nested structure of the HCP data and the statistical modelling). We identified sex 152 

differences in the S-A axis that were distributed across the seven intrinsic functional Yeo networks 153 

[32] (Fig. 1C). Positive t-values, depicted in blue, represent higher loadings in males relative to 154 

females on the S-A axis, whereas negative t-values, depicted in red, represent higher loadings in 155 

females relative to males. In Supplementary Figure S1, we also show that patterns of within-sex 156 

variability in S-A axis loadings are similar between males and females, with only a few regions 157 

showing statistically significant sex differences in variance. 158 

 159 

 160 

Figure 1. The sensory-association (S-A) axis of functional cortical organization and its sex differences. A | Mean 161 
S-A axis loadings (spanning from visual to DMN regions) across sexes; B | Thresholded t-map of linear mixed effect 162 
model (LMM) results showing false discovery rate (FDR)-corrected (q < 0.05) statistically significant effects of sex on 163 
the S-A axis, where blue represents higher male loadings and red represents higher female loadings; C | Functional 164 
network breakdown of parcels showing statistically significant sex differences in S-A axis loadings. The outer ring 165 
displays absolute proportions of statistically significant parcels by functional Yeo network, the inner ring displays 166 
absolute proportions by directionality of effects, where blue represents higher male loadings and red represents higher 167 
female loadings. 168 
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Morphometric correlates of the S-A axis (Figure 2) 169 

We then investigated potential morphometric constrains of functional organization by probing 170 

associations between the S-A axis and brain size, microstructural organization, and the mean 171 

geodesic distance of connectivity profiles.  172 

 173 

First, we tested for associations between the S-A axis loadings and three measures of brain size 174 

commonly used in the literature, namely intracranial volume (ICV), total brain volume (TBV), and 175 

total surface area (SA). More specifically, ICV represents the entire volume encapsulated by the 176 

cranium (i.e., including cerebrospinal fluid), TBV represents the total volume of grey and white 177 

matter structures within the neocortex (excluding subcortical structures), and total SA represents 178 

the entire SA of the neocortical mantle (see Methods for the exact computation of these measures). 179 

Sex differences in brain size and other anthropometric measurements (height, weight, and body 180 

mass index) are further reported in Supplementary Table S1. For each measure of brain size, we 181 

fitted an LMM to test for regional effects of brain size on S-A axis loadings, and we found total SA 182 

to have the most widespread effects amongst the three tested brain size measures (Fig. 2B; Fig. S2).  183 

 184 

Second, we computed a MPC axis of organization at the individual level, representing a low 185 

dimensional representation of the similarity of T1-weighted (T1w) over T2-weighted (T2w) tissue 186 

intensity across cortical regions and layers [33-35]. We computed the MPC axis by again 187 

conducting non-linear dimensionality reduction on MPC matrices [30, 31], which were obtained by 188 

sampling and correlating the intracortical microstructural intensity of 12 equivolumetric depth 189 

profiles (see Methods). Following the same approach used for computing the S-A axis, we selected 190 

the axis explaining the most variance in the data (25.97%) –spanning from sensory to paralimbic 191 

regions– defining it as the MPC axis (Fig. 2C). We specifically selected this low-dimensional 192 

representation of microstructural organization as it has been previously shown to covary with the 193 

low-dimensional representation of functional organization (i.e., the S-A axis) [34]. To test for 194 

whole-brain associations between the S-A and MPC axes, we correlated the spatial maps of the 195 

axes’ mean loadings (Fig. 2A and 2C) across all subjects (Fig. 2E; r = 0.23, pspin = .024). We further 196 

fitted an LMM to test for regional effects of MPC axis loadings on S-A axis loadings at the parcel 197 

level (Fig. 2G and 2H), and found small and localized associations between the S-A and MPC axes.  198 

 199 

Third, we computed the mean geodesic distance of connectivity profiles at the individual level. The 200 

mean geodesic distance of connectivity profiles is the mean distance along the cortical mantle 201 

between each region and its top 10% maximally functionally connected regions. Group-level 202 
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patterns (i.e., averaged across all subjects; Fig. 2D) revealed shorter distances in visual and 203 

somatomotor (sensory) regions, and longer distances in frontoparietal and DMN (association) 204 

regions. We also tested for whole-brain associations between the S-A axis and patterns of mean 205 

geodesic distance of connectivity profiles by correlating their spatial maps (Fig. 2A and 2D) 206 

averaged across all subjects (Fig. 2F; r = 0.76, pspin < .001). We again also fitted an LMM to test 207 

for regional effects of mean geodesic distance on S-A axis loadings at the parcel level (Fig. 2I and 208 

2J) and found strong and widespread associations between the S-A axis and patterns of mean 209 

geodesic distance. 210 

 211 

 212 
Figure 2. Morphometric correlates of the sensory-association (S-A) axis of functional cortical organization across 213 
sexes. A | Mean S-A axis loadings (spanning from visual to DMN regions) across sexes; B | Statistically significant 214 
effects following false discovery rate (FDR) correction (q < 0.05) of linear mixed effect model (LMM) results showing 215 
total surface area (SA) effects on the S-A axis; C | Mean microstructural profile covariance (MPC) axis loadings 216 
(spanning from sensory to paralimbic regions) across sexes; D | Mean geodesic distance of connectivity profiles across 217 
sexes; E | Spatial correlation between mean patterns of S-A axis loadings and mean patterns of MPC axis loadings 218 
(color-coded by yeo network), r = 0.23, pspin = .024; F | Spatial correlation between mean patterns of S-A axis loadings 219 
and mean patterns of mean geodesic distance (color-coded by yeo network), r = 0.76, pspin < .001;  G | Thresholded t-220 
map of LMM results showing FDR-corrected statistically significant effects of MPC axis loadings on the S-A axis; ; H 221 
| Functional network breakdown of parcels showing statistically significant MPC axis effects on S-A axis. The outer 222 
ring displays absolute proportions by functional Yeo network, the inner ring displays absolute proportions by 223 
directionality of effects; I | Thresholded t-map of LMM results showing FDR-corrected statistically significant effects 224 
of mean geodesic distance on the S-A axis; J | Functional network breakdown of parcels showing statistically significant 225 
geodesic distance effects on the S-A axis.  226 
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Morphometric correlates do not explain sex differences in the S-A axis (Figure 3) 227 

After establishing the morphometric correlates of the S-A axis, we probed whether sex differences 228 

in cortical morphometry may explain sex differences in the S-A axis. First, we tested whether sex 229 

differences in S-A axis loadings were moderated by total SA. For this, we modeled an interaction 230 

term of sex by total SA on the S-A axis loadings within the original LMM (Fig. 3B) and found no 231 

statistically significant effects across regions. In Supplementary Figure S3A-C, we further show 232 

that this interaction effect when including height as a covariate to the LMM yields virtually the 233 

same t-values as when height is not included as a covariate (r = 0.99, pspin < .001). This suggests 234 

that height –being an anthropometric feature that systematically differs between the sexes– does 235 

not explain variance in the moderation of sex effects by total SA on the S-A axis loadings either. 236 

We also plotted within-sex effects of total SA on S-A axis loadings, showing similar although 237 

slightly diverging patterns of effects between males and females (r = 0.65, pspin = .001; Fig. S3D-238 

F). However, the divergence of patterns between sexes may not be strong or systematic enough to 239 

be interpreted as meaningful, as underlined by the lack of evidence of a statistically significant sex 240 

by total SA interaction effect on the S-A axis. Second, we tested for regional sex effects on the MPC 241 

axis loadings (Fig. 3C) and correlated this spatial t-map with the t-map depicting regional sex 242 

effects on the S-A axis loadings (Fig. 3A). Here, we found no statistically significant association 243 

between these two patterns of sex differences (Fig. 3E; r = 0.03, pspin = .388). Third, we tested for 244 

regional sex effects on the mean geodesic distance of connectivity profiles (Fig. 3D) and again 245 

correlated this spatial t-map with the t-map depicting sex effects in the S-A axis loadings (Fig. 3A). 246 

Again, we found no statistically significant association between these two patterns of sex 247 

differences (Fig. 3F; r = 0-.04, pspin = .395). These results together suggest that sex differences in 248 

the S-A axis are overall not fundamentally moderated by –or associated with– sex differences in 249 

cortical morphometry.  250 

 251 

As an additional sensitivity analysis, we found that including the MPC axis and the mean geodesic 252 

distances as covariates in our LMM testing for sex effects on the S-A axis yields highly similar 253 

regional sex effects to those reported in Figure 1A (for which the original LMM only included total 254 

SA as a morphometric covariate, to control for brain size), as shown by the strong correlation of t-255 

maps (r = 0.95, pspin < .001, Supplementary Fig. S4A). Similarly, the association between sex effects 256 

when including all morphometric covariates versus not including any (i.e., also excluding total SA) 257 

remains high despite a small decrease in correlation strength (r = 0.81, pspin < .001, Supplementary 258 

Fig S4B). These findings further suggest that sex differences in brain size only explain a minor 259 

amount of variance in sex differences in the S-A axis. 260 
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 261 

Figure 3. Morphometric correlates of sex differences in the sensory-association (S-A) axis. A | Thresholded t-map 262 
of linear mixed effect model (LMM) results showing false discovery rate (FDR)-corrected (q < 0.05) statistically 263 
significant effects of sex on the S-A axis, where blue represents higher male loadings and red represents higher female 264 
loadings;  B | Unthresholded t-map of LMM testing for sex by total surface area (SA) interaction effects on S-A axis 265 
(there were no statistically significant sex effects after FDR correction; C | Thresholded t-map of LMM results showing 266 
FDR-corrected statistically significant effects of sex on the microstructure profile covariance (MPC) axis; D | 267 
Thresholded t-map of LMM results showing FDR-corrected statistically significant effects of sex on the mean geodesic 268 
distance of connectivity profiles; E | Scatterplot displaying the spatial correlation between patterns of sex differences 269 
(t-maps) in S-A axis loadings and in MPC axis loadings (color-coded by yeo network), r = 0.03, pspin = .388; F | 270 
Scatterplot displaying the spatial correlation between patterns of sex differences (t-maps) in S-A axis loadings and in 271 
the mean geodesic distance of connectivity profiles (color-coded by yeo network), r = -0.04, pspin = .395. 272 

 273 

Intrinsic functional underpinnings of differences in the S-A axis (Figure 4) 274 

Given that sex differences in the morphometric correlates of the S-A axis did not appear to explain 275 

sex differences in the S-A axis, we probed potential intrinsic functional underpinnings of sex 276 

differences on the S-A axis. We thus tested for associations between sex differences in the S-A axis 277 

loadings and sex differences in mean FC strength, FC profiles, and network topology.  278 

 279 

First, we computed mean FC strength at the individual level from FC matrices, representing –for 280 

each parcel– the mean row-wise z-values of a given seed region’s top 10% maximally functionally 281 

connected regions. We then fitted an LMM to test for local effects at the parcel level of sex on mean 282 

FC strength (Fig. 4C and 4E), which revealed –amongst other sex differences– higher intrinsic FC 283 

in females in DMN regions and in males in somatomotor regions. To test associations between 284 

patterns of sex differences in the S-A axis loadings and in FC strength, we spatially correlated the 285 

t-maps (Fig. 4A and 4C) of the respective sex differences and did not detect a statistically significant 286 
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association between sex differences in the S-A axis and sex differences in FC strength (Fig. 4H; r 287 

= 0.02, pspin = .380). 288 

 289 

Second, we defined FC profiles at the individual level, for which we identified the top 10% of 290 

maximally functionally connected regions. Using the Chi-square (χ2) test of independence, we 291 

assessed –for each possible pairwise connection along the 400x400 matrix– sex differences in a 292 

given target region’s odds of belonging to the top 10% of maximally functionally connected regions 293 

of a given seed region. We identified the direction of these sex effects with the odds ratio (OR), 294 

where OR > 1 indicates a given region’s greater male odds and OR < 1 indicates a given region’s 295 

greater female odds. Out of the 160000 tested functional connections, 2004 connections 296 

(corresponding to 1.25% of all connections) displayed statistically significant sex differences in 297 

their odds of constituting a seed’s top 10% connections after FDR correction (Fig. 4F), suggesting 298 

that sex differences in S-A axis loadings may in part stem from differences in FC profiles, namely 299 

differences in which functional connections are the strongest. For illustrative purposes, we 300 

summarized spatial patterns of sex differences in FC profiles as the sum of connections showing 301 

sex differences per seed region (Fig. 4D), as well as the overall networks involved in sex differences 302 

in FC profiles (Fig. 4G).  303 

 304 

Finally, we investigated network topology, namely the organization of networks along the S-A axis. 305 

We computed between-network dispersion for each subject, quantifying the pairwise distance 306 

between two given networks along the S-A axis, where a higher value indicates higher segregation 307 

of the given pair of networks (21 pairs of Yeo networks in total) [36]. We also computed within-308 

network dispersion for each subject for the seven intrinsic networks under study [32], quantifying 309 

the spread of regions within each network along the S-A axis, where a higher value indicates higher 310 

segregation of the given network’s regions. LMMs did not show any statistically significant sex 311 

differences in between-network dispersion for any of the network pairs (Fig. 4I). However, we 312 

found greater male within-network dispersion in the DMN, t = 2.41, pspin = 0.001 (Fig. 4J), revealing 313 

a greater spread of regions belonging to the DMN along the S-A axis in males. The full statistical 314 

results for the analysis of sex differences in network dispersion are summarized in Supplementary 315 

Table S2.  316 
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 317 

Figure 4. Intrinsic functional underpinnings of differences in the sensory-association (S-A) axis. A | Thresholded 318 
t-map of linear mixed effect model (LMM) results showing false discovery rate (FDR)-corrected (q < 0.05) statistically 319 
significant effects of sex on the S-A axis, where blue represents higher male loadings and red represents higher female 320 
loadings; B | Functional network breakdown of parcels showing statistically significant sex differences in S-A axis 321 
loadings. The outer ring displays absolute proportions of statistically significant parcels by functional Yeo network, the 322 
inner ring displays absolute proportions by directionality of effects, where blue represents higher male loadings and 323 
red represents higher female loadings; C | Thresholded t-map of LMM results showing FDR-corrected statistically 324 
significant effects of sex on mean functional connectivity (FC) strength; D | Number of connections (per seed region) 325 
showing statistically significant FDR-corrected sex differences in their odds of belonging to the given seed’s top 10% 326 
of connections; E | Functional network breakdown of connections showing statistically significant FDR-corrected sex 327 
differences in mean FC strength; F | Connections between seed and target regions showing statistically significant FDR-328 
corrected sex differences in FC profiles (OR > 1 meaning that males have higher odds than females of having a target 329 
region belong to a seed region’s top 10% connections, where OR < 1 means that females have higher odds than males 330 
of having a target region belong to a seed region’s top 10% connections; connections are color coded by network and 331 
weighed by number of connections between the network pairs; G | Functional network breakdown of connections 332 
showing statistically significant FDR-corrected sex effects in their odds of belonging to the given seed’s top 10% of 333 
connections; H | Spatial correlation between patterns of sex effects in S-A axis loadings and patterns of sex effects in 334 
mean FC strength (color-coded by yeo network), r = 0.02, pspin = .380; I | t-values for the sex contrast in between-335 
network (BN) dispersion for each pairwise Yeo network comparison, where blue represents higher male BN dispersion 336 
and red represents higher female BN dfispersion (no statistically significant sex effects after spin permutation and 337 
Bonferroni correction; pspin < .001); J | t-values for the sex contrast in within-network (WN) dispersion for each Yeo 338 
network (displayed as white dots), plotted on null distributions of t statistics derived from 1000 spin permutations, 339 
where positive t-values represent higher male WN dispersion and negative t-values represents higher female WN 340 
dispersion, * indicates Bonferroni-corrected (pspin < .004) statistical significance of the sex contrast. V, visual, SM, 341 
somatomotor, DA, dorsal attention, VA, ventral attention, L, limbic, FP, frontoparietal, DMN, default mode network.   342 
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DISCUSSION 343 

In the current work, we investigated the extent to which sex differences in functional cortical 344 

organization may be explained by differences in cortical morphometry, namely brain size, 345 

microstructure, and the geodesic distances of connectivity profiles. We identified widespread sex 346 

differences in adult functional cortical organization as defined by the S-A axis, which however did 347 

not appear fundamentally associated with sex differences in brain size, microstructural 348 

organization, nor the mean geodesic distance of connectivity profiles. This finding is particularly 349 

striking given that the morphometric properties under study were all per se associated with the S-350 

A axis and differed between sexes. Instead, we observed that sex differences in the S-A axis were 351 

related to differences in FC profiles and network topology, namely greater male dispersion within 352 

the DMN. Collectively, our findings suggest that sex differences in functional cortical organization 353 

go beyond neuroanatomical sex differences pertaining to cortical morphometry. 354 

 355 

Different measures of brain size are commonly used in the literature, including ICV, TBV, and total 356 

SA. Although these measures highly covary and are often used interchangeably, they quantify 357 

different morphometric features of the brain, with sex differences in “brain size” ranging from 8% 358 

to 13% depending on the selected measure [6]. The size and direction of sex effects also vary by 359 

neuroanatomical property, such as different tissue types, brain regions, and features (including 360 

cortical thickness, gyrification, and SA) [37]. Furthermore, morphometric features vary differently 361 

as a function of age, whereby for example TBV but not ICV is affected by atrophy [6]. These 362 

findings highlight the complex heterogeneity of neuroanatomical properties constituting brain size. 363 

The potential for introducing non-linear bias in the detection of sex effects should therefore not be 364 

overlooked, particularly when statistically controlling for brain size in the detection of sex effects 365 

on brain structure and function [28, 38-41]. We addressed this issue by testing the effects of different 366 

measures of brain size, namely ICV, TBV, and total SA, on the S-A axis. Here, given that total SA 367 

had the most widespread effects on functional organization, we deemed it the most appropriate 368 

measure of brain size, which we further included as a covariate in our models throughout our 369 

analyses. The relevance of total SA is also supported by the theoretical assumptions motivating our 370 

study, namely the relevance of cortical shape and geometry in constraining brain wide functional 371 

dynamics [25-27] and thus sex differences in these features potentially underpinning sex differences 372 

in the S-A axis. Our findings therefore highlight the diverging effects of different measures of brain 373 

size and depict total SA as having the most substantial theoretical and statistical associations to a 374 

low dimensional representation of functional cortical organization. As such, future research on sex 375 
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differences should also carefully select the measure of brain size that is most conceptually and 376 

empirically pertinent to the research question under study in order to minimize bias. 377 

 378 

By establishing morphometric correlates of the S-A axis in addition to brain size, namely a 379 

microstructural axis of cortical organization [34, 35, 42] and the mean geodesic distance of 380 

connectivity profiles [10, 42], our findings align with previous work and argue for the rooting of 381 

functional cortical organization in cortical structure and shape. We show a particularly strong 382 

association between the mean geodesic distance of connectivity profiles and the S-A axis, 383 

supporting the relevance of the cortical mantle’s shape in sculpting functional organization. This 384 

may be a product of the cortical mantle’s evolutionary expansion, where association regions are 385 

untethered from sensory hierarchies [13], and long-range connections preserve the overall 386 

connectedness of cortical networks by facilitating the communication between distant areas [24]. 387 

Furthermore, as indexed by the MPC axis, microstructural organization appears to mildly covary 388 

with the S-A axis, supporting to some degree the well-established idea of structural constraints on 389 

brain function [34, 35, 43]. In our study, we obtained intensity profiles via the ratio of T1w over 390 

T2w imaging sequences, and although it is commonly used to measure myelin [34, 35, 44], the 391 

T1w/T2w ratio has been described as an acceptable qualitative proxy for myelin in grey but not 392 

white matter [45]. It is indeed thought to capture unique features of microstructural tissue that 393 

appear largely independent of diffusion-based metrics, thus portraying a mix of neuroanatomical 394 

features beyond pure myelin [46]. We therefore consider the T1w/T2w ratio –and the resulting MPC 395 

axis– as a general measure of tissue microstructure, which may serve as a scaffold for functional 396 

organization.  397 

 398 

After establishing morphometric correlates of the S-A axis, we addressed our primary aim of 399 

probing the extent to which sex differences in functional cortical organization may be explained by 400 

sex differences in cortical morphometry. We observed slightly diverging results when including –401 

as opposed to excluding– total SA as a covariate in our model testing for sex differences in S-A axis 402 

loadings, suggesting that sex differences in total SA explained some variance in sex differences in 403 

functional organization. This finding is consistent with the systematic practice of controlling for 404 

brain size when testing for structural and functional sex differences [28, 38-41]. Nevertheless, our 405 

findings overall suggest that morphometric differences between the sexes are altogether not 406 

substantial contributors of sex differences in the S-A axis of functional organization. We did not 407 

find sex differences in S-A axis loadings to be moderated by total SA, nor any associations between 408 

patterns of sex differences in the S-A axis and patterns of sex differences in the MPC axis or in the 409 
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mean geodesic distance of connectivity profiles. The negligeable relevance of cortical morphometry 410 

to sex differences in the S-A axis is striking given that morphometric properties appear per se to be 411 

associated with the S-A axis and to differ between sexes. The mechanisms underpinning different 412 

patterns of morphometric and functional sex differences may thus be independent from one another, 413 

suggesting that sex differences in functional cortical organization may extend beyond the 414 

connectome’s supporting shape and structure. 415 

 416 

Given that sex differences in morphometric correlates of the S-A axis did not seem to explain sex 417 

differences on the S-A axis, we probed and found potential intrinsic functional underpinnings of 418 

sex differences on the S-A axis. Firstly, the sex differences we observed in the S-A axis loadings 419 

were distributed across functional networks, and notably in the DMN, frontoparietal and ventral 420 

attention networks. This is consistent with previous findings of greater individual variability in the 421 

functional topography of these association networks relative to lower-order sensory networks, 422 

which have also been shown to contribute the most to sex classification in youth [8]. We also 423 

observed sex differences in intrinsic FC strength, replicating previous widely established findings 424 

of greater FC in females within DMN regions [18-20] and in males within somatomotor regions 425 

[19, 21]. However, these patterns did not spatially overlap with patterns of sex differences in the S-426 

A axis, suggesting that FC strength is not a feature of intrinsic FC that is captured by sex differences 427 

in our low dimensional representation of functional organization. Instead, we found that sex 428 

differences in the S-A axis were related to differences in FC profiles, which also presented 429 

qualitative sex differences in the proportional breakdown of networks involved. Females seemed to 430 

make more top connections involving the DMN relative to males, whereas males displayed more 431 

top connections involving the somatomotor networks relative to females. These sex differences in 432 

the configuration of connections may not only underly the recurrence of sex differences in these 433 

networks [18-21], but may also explain sex differences in network topology.  434 

 435 

We in fact observed greater male dispersion (i.e., decreased similarity on the S-A axis) within the 436 

DMN (and the somatomotor network barely not surviving the Bonferroni correction), which is also 437 

consistent with previous findings of generally more segregated male networks [47]. These network-438 

specific topological sex differences may be related to greater female odds of connections within the 439 

DMN, and greater male odds of somatomotor connections with other networks. Concretely, 440 

network topology, which represents the organization of functional communities within and between 441 

functional networks [36], may reflect brain states [48]. Network topology has also been associated 442 

with different cognitive features including arousal [49], awareness and consciousness [50], 443 
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behavior and task performance [51], and cognitive flexibility [52]. The balance between integration 444 

and segregation is complex, dynamic, and necessary to maintain the brain’s metastability [53] by 445 

reaching a point of equilibrium between global organization and local specialization [43]. The brain 446 

is a highly interconnected and metabolically expensive organ, and its organization is required to 447 

dynamically balance topological efficiency and energy utilization in response to transient cognitive 448 

and physiological demands [54]. Our findings of sex differences in network topology may therefore 449 

pertain to intricate sex differences not only in brain states at rest, which may underpin cognitive 450 

differences, but also in energy expenditure, which would reflect physiological differences.  451 

 452 

Despite the novel insights gained through our study, some limitations must be acknowledged. 453 

Firstly, by only considering biological sex, we neglected possible effects of gender on functional 454 

organization and its morphometric correlates. Findings may indeed appear more nuanced if we 455 

moved beyond the unrealistic assumption of a clear-cut sexual dimorphism of brain structure and 456 

function [55], as the relevance of considering transgender individuals in the study of sex differences 457 

is being increasingly recognized [56]. Nevertheless, we intentionally focused on the biological and 458 

dichotomous variable of sex assigned at birth given that our study aimed to study biological 459 

mechanisms relating to cortical morphometry. We did not venture in the intricacies of gender as 460 

they require an additional careful consideration of complex social and environmental influences, 461 

which go beyond the scope of our study. Secondly, we focused on neocortical functional 462 

organization, excluding subcortical structures and the cerebellum despite their substantial 463 

contributions to whole brain organization through their notable structural integration with the cortex 464 

[57]. In fact, the amygdala and hippocampus are hypothesized to be at the origin of mammalian 465 

cortical evolution [58] and have also repeatedly shown both structural [6] and functional [59] sex 466 

differences. Nevertheless, our exclusive focus on the neocortex was motivated by the relevance of 467 

using the S-A axis as our measure of functional organization, which is obtained by reducing the 468 

dimensionality of FC matrices of cortical data [10]. By using the S-A axis, our work identified sex 469 

differences embedded in a key macroscale organizational principle that is closely tied to 470 

evolutionary expansion and cortical morphometry, going beyond previous research on functional 471 

differences between the sexes that solely focus on intrinsic brain function. Thirdly, the 472 

morphometric properties considered in our study are not exhaustive, overlooking the contributions 473 

of other morphometric measures such as local volumes of grey matter. The inclusion of the MPC 474 

axis [34, 35] and the mean geodesic distance of connectivity profiles [10, 42] was however 475 

supported by their theoretical and empirical relevance to functional cortical organization, 476 

particularly its low dimensional embedding.  477 
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All in all, our study opens a new set of questions pertaining to the mechanisms underpinning sex 478 

differences in functional cortical organization, given that they do not appear to be fundamentally 479 

rooted in cortical morphometric differences. Our findings instead suggest that sex differences in the 480 

S-A axis are to some extent intrinsically related to differences in FC profiles and network topology. 481 

Therefore, future research should explore factors driving males and females to form distinct 482 

functional connections and to adopt divergent system-level organization of functional networks. 483 

Recognizing the human body as a complex system of systems, future work should investigate other 484 

biological factors that may contribute to functional sex differences such as genes located on sex 485 

chromosomes [16] and sex hormones [60, 61]. Environmental factors should equally be considered, 486 

for example stress, which has also been found to contribute to sex differences via epigenetic 487 

mechanisms [62]. Investigating the mechanisms underpinning sex differences in functional 488 

organization is crucial to gain a deeper understanding of discrepancies in predisposition to 489 

psychiatric disorders, for example greater female vulnerability to affective disorders throughout the 490 

lifespan [63, 64] and particularly during hormone transition periods such as puberty, pregnancy, 491 

and menopause [65].  492 
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MATERIALS AND METHODS 493 

Participants and Experimental Design 494 

Our analyses were conducted on the publicly available data of healthy young adults from the Human 495 

Connectome Project (HCP) S1200 release (http://www.humanconnectome.org/) [29]. We selected 496 

subjects with available functional, T1, and T2 data, resulting in a final sample of 1000 individuals 497 

(536 females) with a mean age of 28.73 ± 3.71 years, including 284 monozygotic twins (MZ), 184 498 

dizygotic twins (DZ), 443 non-twin siblings, and 89 unrelated individuals. Subjects were all born 499 

in Missouri but recruited in an attempt to broadly reflect the racial and ethnic composition of the 500 

United States population. Recruitment efforts aimed to yield a subject pool capturing a wide range 501 

of variability –in socioeconomic and behavioral terms– in order to be representative of the general 502 

healthy population. The term “healthy” was thus broadly defined. Individuals with documented 503 

neurodevelopmental and psychiatric disorders, or reporting physiological illnesses such as high 504 

blood pressure or diabetes were excluded, but not individuals who reported smoking, being 505 

overweight, or a history of recreational drug use or heavy drinking (if they had not experienced 506 

severe symptoms). Informed consent was obtained for all study subjects. More detailed information 507 

about the HCP study design and recruitment procedure is available elsewhere [29, 66]. 508 

 509 

Structural MRI acquisition and preprocessing 510 

The HCP’s MRI data was acquired on a customized 3T Siemens Skyra ConnectomeScanner with a 511 

32-channel head coil at Washington University across four scanning sessions held over two days. 512 

Structural MRI images were acquired on the same day via high resolution T1-weighted (T1w) and 513 

T2-weighted (T2w) sequences. Two separate T1w images were acquired and averaged, with 514 

identical scanning parameters using a 3D MPRAGE sequence (0.7 mm isovoxels, FOV = 224 mm, 515 

matrix = 320 × 320 mm, 256 sagittal slices; TR = 2400 ms, TE = 2.14 ms, TI = 1000 ms, flip 516 

angle = 8°, BW = 210 Hz per pixel, ES = 7.6 ms). Two separate T2w images were acquired and 517 

averaged, with identical scanning parameters using a variable flip angle turbo spin-echo (3D T2-518 

SPACE) sequence, with the same isotropic resolution, matrix, FOV, and slices as for the T1w 519 

sequence (TR = 3200 ms, TE = 565 ms, BW = 744 Hz per pixel, total turbo factor = 314). The 520 

preprocessing steps included co-registering the T1w and T2w images, bias field (B1) correction, 521 

registration to MNI space, segmentation, and surface reconstruction. See [29, 66, 67] for more detail 522 

on the HCP’s MRI protocols and the FreeSurfer segmentation pipeline.  523 
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Functional MRI (fMRI) acquisition and preprocessing 524 

The HCP’s fMRI data was collected after the structural sequences and following the HCP’s minimal 525 

processing pipeline, as described above. A total of 1h of resting-state functional data was collected 526 

across four identical 15min scanning sessions, equally split over two days (LR1, RL1, LR2, RL2), 527 

with a gradient echo EPI sequence at a resolution of 2 mm isotropic (FOV = 208 × 180 mm, matrix 528 

= 104 × 90 mm, 72 slices covering the whole brain, TR = 720 ms, TE = 33 ms, multiband factor of 529 

8, FA = 52°). The multimodal surface matching algorithm (MSMAll) was used to co-register the 530 

data to the HCP template 32 k_LR surface space, consisting of 32492 nodes per hemisphere (59412 531 

nodes excluding the medial wall). A more detailed description of the resting state fMRI data 532 

acquisition and analysis protocol is available elsewhere [67, 68].  533 

 534 

Functional connectivity (FC) and the sensory-association (S-A) axis of functional organization 535 

Throughout this work, we used the Schaefer 400 parcellation (clustered into 7 networks: visual, 536 

somatomotor, dorsal attention, ventral attention, limbic, frontoparietal, DMN [32]). This widely 537 

used functionally-derived parcellation scheme was originally obtained via a gradient-weighted 538 

Markov Random Field model integrating local gradient and global similarity approaches [69]. The 539 

vertex-wise functional timeseries were therefore averaged within the Schaefer 400 cortical parcels. 540 

FC matrices (400x400) were then computed at the individual level –per scanning session– by 541 

correlating cortical timeseries in a pairwise manner using the Pearson product moment. We 542 

normalized the correlation coefficients using Fisher’s z-transformation. Final FC matrices were 543 

obtained by averaging each subject’s matrices across their four scanning sessions. From these FC 544 

matrices and for each subject, we computed the S-A axis of functional organization, as described 545 

below. 546 

 547 

We conducted data reduction on the FC matrices to yield macroscale gradients of functional 548 

organization [10]. For this, we used diffusion map embedding, a non-linear manifold learning 549 

algorithm that reduces complex, high-dimensional structures of data (in our case affinity matrices) 550 

to low-dimensional representations combining geometry with the probability distribution of data 551 

points [30]. Thus, cortical parcels that are strongly interconnected are represented closer together 552 

in the resulting low dimensional manifold of FC data, whereas parcels with low covariance are 553 

represented farther apart, as indexed by the parcels’ gradient loadings. To this end, we used the 554 

BrainSpace Python toolbox [31] to compute 10 gradients with the following parameters: 90% 555 

threshold (i.e., only considering the top 10% row-wise z-values of FC matrices, representing each 556 

seed region’s top 10% of maximally functionally connected regions), α = 0.5 (α controls whether 557 
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the geometry of the set is reflected in the low-dimensional embedding – i.e., the influence of the 558 

sampling points density on the manifold, where α = 0 (maximal influence) and α = 1 (no influence)), 559 

and t = 0 (t controls the scale of eigenvalues). These parameters were selected for consistency with 560 

previous studies [10, 34] and represent choices that are recommended to retain global relations 561 

between datapoints in the embedded space whilst being relatively robust to noise. In order to 562 

increase comparability for further between-subject analyses, Procrustes alignment was used to align 563 

individual gradients to mean gradients, which were computed by applying diffusion map 564 

embedding –with the same parameters listed above– to the mean FC matrix (i.e., FC matrices 565 

averaged across all subjects). The computation of these FC gradients was carried out independently 566 

per hemisphere (i.e., considering the top 10% row-wise z-values of only half of the FC matrices, 567 

shaped 200x200) and the gradient loadings resulting from both hemispheres were subsequently 568 

concatenated. This decision was made for consistency and comparability reasons within our study, 569 

so that the top 10% functional connections selected for data reduction corresponded to those 570 

considered in the calculation of the mean geodesic distance of connectivity profiles –which were 571 

only computed per hemisphere– as described further below). We verified and confirmed the stability 572 

FC gradients when computing them per hemisphere versus at the whole brain level, as shown by 573 

the spatial correlation of mean gradient loadings (r = 0.98, pspin = .001). Finally, we took the well-574 

replicated principal gradient explaining the most variance in the data and spanning from visual to 575 

DMN regions [10], which we labeled the S-A axis and used to represent functional organization for 576 

subsequent analyses. 577 

 578 

We also computed, for each subject, mean FC strength at the parcel level in a seed-wise fashion, by 579 

averaging the row-wise z-values of each seed region’s top 10% maximally functionally connected 580 

regions –again per hemisphere– and subsequently concatenated the hemispheric mean FC strength 581 

values to reconstruct whole brain data. 582 

 583 

Cortical microstructure and microstructural profile covariance (MPC) 584 

Microstructural properties –including myelin and cellular characteristics– show depth-dependent 585 

variation along cortical columns, as reported by histology [34, 70, 71] as well as in vivo and post 586 

mortem neuroimaging [33-35, 71], which illustrates cortical hierarchy [11]. Similar to previous 587 

work [35], we quantified cortical microstructure, or “microstructural profile intensity” (MPI), using 588 

the myelin-sensitive MRI contrast obtained from the T1w/T2w ratio from the HCP minimal 589 

processing pipeline described above [67] (a reliability check is reported in the Supplementary 590 

Methods, Fig. S5). The T1w/T2w ratio uses the T2w image to correct for inhomogeneities in the 591 
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T1w image [44]. Then, we followed the previously described protocol [33-35] to compute our 592 

measurement of MPC, which reflects the variation of MPI, across cortical depths. In short, we 593 

generated 14 equivolumetric surfaces within the inner and outer cortical surfaces, then excluded the 594 

inner- and outer-most surfaces, thus remaining with 12 surfaces representing cortical layers. Surface 595 

generation was based on a model compensating for cortical folding by altering the pairwise 596 

Euclidean distance (ρ) of intracortical surfaces throughout the cortex and thus preserving fractional 597 

volume between the surfaces. For each surface, ρ was calculated as defined in Eq. 1. 598 

 599 

ρ =
1

𝐴𝑜𝑢𝑡−𝐴𝑖𝑛
∙ (−𝐴𝑖𝑛 +√𝛼𝐴𝑜𝑢𝑡

2 + (1 − 𝛼)𝐴𝑖𝑛
2 )                        (1) 600 

 601 

for which α denotes a fraction of the total volume of the segment that the surface accounts for, 602 

while Aout and Ain respectively denote the surface areas of the outer and inner cortical surfaces.  603 

 604 

Across the whole cortex and from the outer to the inner surfaces, we systematically sampled MPI 605 

values layer-wise for each of the 64,984 vertices of the HCP template 32 k_LR surface space, which 606 

we then averaged within each of the 400 Schaefer parcels, per layer. Following a previously 607 

described protocol [33], we constructed subject level 400x400 matrices using pairwise Pearson 608 

partial correlation on the MPI profiles of cortical parcels (i.e., correlating the MPI values across 12 609 

layers between parcels), controlling for overall mean cortical MPI, followed by log transformation. 610 

We then used these matrices to compute MPC gradients –here directly at the whole brain level 611 

instead of independently within hemispheres– by following the same procedure and using the same 612 

toolbox and parameters as for computing the FC gradients [30, 31], as described above and 613 

previously done [33-35]. We also selected the principal gradient of MPC explaining the most 614 

variance in the data, which we labeled the MPC axis and used to represent microstructural 615 

organization in subsequent analyses.  616 

 617 

Measures of brain size 618 

In our analyses we included different measures of brain size typically used in the literature, 619 

including intracranial volume (ICV), total brain volume (TBV), and total surface area (SA). For 620 

ICV, we used the FreeSurfer output measure IntraCranialVol, which is an estimate of ICV based 621 

on the Talairach transform. We computed our own measure of TBV by summing the volumes of the 622 

following FreeSurfer output measures: TotCort_GM_Vol, Tot_WM_Vol, 3rdVent_Vol, 623 

L/R_ThalamusProper_Vol, L/R_Caudate_Vol, L/R_Putamen_Vol, L/R_Pallidum_Vol, 624 
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L/R_Hippo_Vol, L/R_Amygdala_Vol, L/R_AccumbensArea_Vol, L/R_ChoroidPlexus_Vol, 625 

L/R_LatVent_Vol, L/R_InfLatVent_Vol. We chose to include volumes that are anatomically located 626 

within the cortical sheath, which we considered relevant given our study’s focus on cortical 627 

functional organization (thus excluding the volumes of subcortical structures). We computed total 628 

SA by using the FreeSurfer mri_surf2surf tool to resample cortical white matter surface for each 629 

subject. 630 

 631 

Geodesic distances of connectivity profiles 632 

Geodesic distances, representing the shortest distance between two vertices along the folded 633 

cortical mantle’s curvature, were computed using the Micapipe toolbox [72], and following the 634 

previously described protocol [73]. In short, geodesic distance matrices were computed for each 635 

subject along their native cortical midsurface. The first step consisted in defining a centroid vertex 636 

for each cortical parcel, identified as the vertex having the shortest summed Euclidean distance 637 

from all other vertices within the parcel. Then, Dijkstra’s algorithm [74] was used to compute 638 

geodesic distances between the centroid vertices and all other vertices on the on the native 639 

midusrface mesh. The vertex-wise geodesic distance values were then averaged within each parcel 640 

to form the geodesic distance matrices. From these individual matrices, we finally averaged –641 

parcel-wise– the geodesic distance values of each seed parcel’s top 10% maximally functionally 642 

connected regions per hemisphere, thus obtaining for each subject the mean geodesic distance of 643 

functional connectivity profiles by region. 644 

 645 

Statistical Analysis 646 

Given that the HCP sample includes different levels of kinship, we used linear mixed effects models 647 

(LMMs) to account for sibling status (MZ, DZ, non-twin siblings) and family relatedness. In fact, 648 

all LMMs mentioned in this work consistently included sex, age, and total SA as covariates (unless 649 

otherwise mentioned), and controlled for random nested effects of family relatedness and sibling 650 

status. In addition, effects on cortical data obtained via LMMs underwent false discovery rate 651 

(FDR) correction (q < 0.05), thus correcting for multiple comparisons across the 400 Schaefer 652 

parcels. Throughout this work, we also tested for associations in brain-wide patterns displayed in 653 

the form of cortical maps, for which we used Spearman-rank correlation followed by spin-654 

permutation tests to control for spatial autocorrelation [75]. 655 

 656 

After computing the S-A axis of functional brain organization, we tested for sex differences in the 657 

S-A axis loadings with an LMM. Then, we investigated which measure of brain size (out of ICV, 658 
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TBV, and total SA) had the largest effect on the S-A axis parcel loadings using separate LMMs 659 

(respectively only including ICV, TBV, or total SA as a covariate, in addition to sex, age and the 660 

random nested effect of family relatedness and sibling status). The reason underlying our decision 661 

to systematically include total SA as a covariate in all our LMMs (as the measure of brain size) is 662 

that it showed the most widespread effects on the S-A axis loadings out of the three tested measures. 663 

Then, we investigated associations between the S-A axis and cortical morphometry, namely the 664 

MPC axis and the mean geodesic distance of connectivity profiles, using both LMMs and 665 

Spearman-rank correlations of cortical maps.  666 

 667 

To probe whether sex differences in cortical morphometry may explain sex differences in the S-A 668 

axis, we tested whether sex differences in the S-A axis loadings were moderated by total SA by 669 

modelling an additional interaction term of sex by total SA on the S-A axis loadings within the 670 

original LMM. We also tested for sex differences in the MPC axis and in the mean geodesic distance 671 

of connectivity profiles, and conducted Spearman-rank correlations of cortical t-maps for the sex 672 

contrast in the S-A axis and in the morphometric measures. Finally, we conducted sensitivity 673 

analyses to test for sex effects on the S-A axis yielded by an LMM including all morphometric 674 

measures as covariates (i.e., including the MPC axis and the mean geodesic distance of connectivity 675 

profiles, in addition to total SA), as well as an LMM not including any morphometric measures as 676 

covariates (i.e., also excluding total SA). We then tested the similarity of both these sex effects with 677 

the original sex effects on the S-A axis with a Spearman-rank correlation of the cortical t-maps. 678 

 679 

In order to probe the potential intrinsic functional underpinnings of sex differences in the S-A axis, 680 

we tested for sex differences in FC strength (also with an LMM), as well as sex differences in FC 681 

profiles, i.e., the presence of sex differences in the top 10% of maximally functionally connected 682 

regions used to compute the S-A axis. To this end, we built 400x400 binary matrices at the subject 683 

level –based on the subjects’ individual FC matrix z-values–  in which we marked in a seed-wise 684 

fashion (along the matrix rows) whether the given parcel (along the matrix column) belongs to the 685 

given seed’s 10% maximally functionally connected regions, where 1 = parcel belongs to the seed’s 686 

top 10% maximally functionally connected regions and 0 = parcel does not belong to the seed’s  top 687 

10% of maximally functionally connected regions. We then summed the binary matrices separately 688 

within sexes in order to fill 160000 contingency matrices –one for each cell (i.e., functional 689 

connection) of the 400x400 FC matrix– as follows: 690 
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Parcel belongs to the  

seed’s top 10% of maximally 

functionally connected regions 

Parcel does not belong to the seed’s 

top 10% of maximally functionally 

connected regions 

Males Cm NCm 

Females Cf NCf 

 691 

where Cm and Cf respectively denote the number of males and females for which the given parcel 692 

(corresponding to the matrix column) constitutes the given seed’s (corresponding to the matrix row) 693 

top 10% of maximally functionally connected regions, and where NCm and NCf respectively denote 694 

the number of males and females for which the given parcel does not constitute the given seed’s 695 

top 10% of maximally functionally connected regions.  696 

 697 

We then conducted the Chi-square (χ2) test of independence (degrees of freedom = 1) on each 698 

contingency table to test for sex differences in the odds of each parcel of belonging to the top 10% 699 

of maximally functionally connected regions of each seed region. Given the large number of tests 700 

conducted here (400x400=160000), we controlled for multiple comparisons using FDR correction. 701 

We quantified the size of these sex effects with the odds ratio (OR), calculated as defined in Eq. 2.: 702 

 703 

𝑂𝑅 =
𝐶𝑚 𝑁𝐶𝑚⁄

𝐶𝑓/𝑁𝐶𝑓
                         (2) 704 

 705 

where OR > 1 indicates greater male odds –and OR < 1 indicates greater female odds– of a given 706 

region of belonging to a given seed’s top 10% of maximally functionally connected regions. 707 

 708 

We also tested for sex differences in network topology, i.e., how nodes are physically organized in 709 

networks and how networks are physically organized along the S-A axis. For this, we computed 710 

two measures of network dispersion: between-network and within-network dispersion. Between-711 

network dispersion is defined as the Euclidean distance between a pair of network centroids, where 712 

a higher value indicates that networks are more segregated from one another along the S-A. Within-713 

network dispersion is defined as the sum squared Euclidean distance of network nodes (i.e., parcel 714 

loadings) to the network centroid, where a higher value indicates wider distribution and segregation 715 

of a given network’s nodes along the S-A axis. At the individual level, we thus computed between-716 
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network dispersion between all networks in a pairwise fashion (21 pairs), and within-network 717 

dispersion for all 7 networks, by defining network centroids as the median of the S-A axis loadings 718 

of all parcels belonging to a given network, following a previously described protocol [36]. Then, 719 

we computed sex differences in each of the 21 between-network dispersion metrics and 7 within-720 

network dispersion metrics using LMMs. For each model, we computed a null distribution of t-721 

values for sex differences using 1000 spherical rotations of the Schaefer parcellation scheme in 722 

order to shuffle the network labels [75], against which we computed our p-value to determine 723 

statistical significance. We then assed pspin-values against Bonferroni-corrected two-tailed α-levels 724 

of 0.001 (0.025/21) and 0.004 (0.025/7) for between-network and within-network dispersion sex 725 

contrasts respectively.  726 
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