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S1 – aDGVM2 model description

The following paragraphs provide a short description of the aDGVM2. A full description of the

original model version is provided by Langan et al. (2017). We used an updated model version

that (1) includes both C3 and C4 grasses (Kumar et al. 2020, 2021), in contrast to previous

versions that only included C4 grasses, (2) simulates plant-specific leaf-level photosynthetic

rates based on leaf temperature and leaf traits such as the specific leaf area (Kumar et al.

2020, 2021), and (3) simulates both single-stemmed trees and multi-stemmed shrubs, where

trees are better competitors in light-limited environments whereas shrubs are better com-

petitors in water-limited environments due to a trade-off between height and water uptake

capacity (Gaillard et al. 2018).

The aDGVM2 is based on ecophysiological sub-models commonly used in DGVMs (Prentice

et al. 2007). These sub-models describe fundamental processes such as photosynthesis (Far-

quhar et al. 1980; Collatz et al. 1991, 1992), respiration (Thornley & Cannell 2000; Arora

2003; Tjoelker et al. 2001), stomatal conductance (Ball-Berry model, Ball et al. 1987) and

evapotranspiration (Penman-Monteith model, Jones 1992; Allen et al. 1998) based on math-

ematical equations and physical principles. These sub-models were parametrized by using

data from observations and field experiments and they allow the simulation of biogeochemical

fluxes in response to climate and soil conditions.

The aDGVM2 is individual-based and simulates growth, reproduction, and mortality of in-

dividual plants while keeping track of state variables, such as biomass, height, and leaf area.

Each plant has leaf, stem, root, storage, reproduction, and bark biomass compartments. Each

plant in aDGVM2 is characterized by a plant-specific set of trait values. In the model, traits

are inheritable and constant during the lifetime of a plant, whereas state variables change dur-

ing the lifetime of a plant, dependent on the trait values. The selection of inheritable traits

was based on traits or parameters typically used in DGVMs to parameterize PFTs. Traits

describe growth form, leaf characteristics, hydraulic characteristics, carbon allocation to each

of the six biomass compartments, architecture, reproduction, mortality, and response to dis-

turbance. Most plant traits are linked by trade-offs to constrain possible trait combinations.

Selection and trait inheritance assemble plant communities that are adapted to biotic and abi-

otic conditions. Plants with trait combinations that allow sufficient growth and reproduction

rates, and that allow plants to cope with competition and disturbances can contribute their

trait values to the community trait pool. Trait mutation and recombination may alter trait

values in the community trait pool. Randomly drawn seeds from the trait pool are added to

the plant population as seedlings. Plants that are not adapted to the prevailing disturbance

regimes, biotic and abiotic conditions, or that do not allocate enough carbon to reproduction

disappear from the population. Therefore, successful ecological strategies emerge dynamically

from this community assembly process.

The aDGVM2 simulates four different phenological types: evergreen light-triggered, ever-

green water-triggered, deciduous light-triggered and deciduous water-triggered (Langan et al.
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2017). Woody plants can adopt all four types whereas we assume that grasses are evergreen.

Whether a plant is deciduous or evergreen and whether it is light- or water-triggered are two

inheritable traits that are constant during the lifespan of a plant, but that can change between

generations due to trait inheritance and community assembly processes in aDGVM2. Decid-

uous vegetation switches between a dormant and a metabolically active state once moving

averages of soil matric potential (water-triggered) or solar radiation (light-triggered) exceed

or fall below threshold values. Evergreen woody plants remain metabolically active during

their entire life time. However, leaf flushing of evergreen plants is stimulated by water and

light triggers, i.e., leaf flushing occurs once moving averages of soil matric potential (water-

triggered) or solar radiation (light-triggered) exceed threshold values. The threshold values are

plant-specific inheritable traits. They are constant during the lifespan of a plant but they can

change between generations due to trait inheritance and the community assembly processes

in aDGVM2. Leaf flushing of deciduous plants and leaf regrowth of evergreen plants is sup-

ported and enhanced by carbon allocation from the storage compartment to the leaves. The

amount of storage-to-leaf allocation is an inheritable trait in aDGVM2. While our approach

does not allow plants to switch between phenological strategies during their lifetime, growing

season length can adjust to inter-annual variation of the climate, because the thresholds used

to trigger phenology can be crossed earlier or later in the year.

The aDGVM2 simulates natural surface fire regimes (Langan et al. 2017). Grass biomass

and leaf litter on the ground contribute to fuel biomass. Fuel biomass and fuel moisture are

used to calculate the potential fire intensity (Higgins et al. 2008). Fire spreads in a grid cell

when fuel biomass is dry enough to carry fire and when the fire intensity exceeds a threshold

of 300 kJ s−1 m−1. To approximate the moisture status of fuel biomass, we use the matric

potential of the upper soil layer. Fuel moisture is then used to calculate a fire probability,

and fire spreads if a random number is lower than the fire probability. Fire removes the total

aboveground grass biomass and aboveground biomass of trees that are not well protected

against fire. Specifically, we use a ‘topkill’ function characterized by tree height and bark

thickness (Langan et al. 2017; Higgins et al. 2008) to simulate if fire damages a tree or not.

Both grasses and trees can recover from fire disturbance by re-allocating biomass from the

storage pool to leaf and stem biomass. The size of the storage pool is thereby influenced by a

inheritable allocation trait, that defines the amount of carbon allocated to the storage biomass

compartment. The amounts of carbon allocated from storage to leaf and stem biomass are also

described by inheritable traits. We assume that the storage pool is belowground where it is

protected against damages by fire or herbivores. The community assembly processes and trait

inheritance allow aDGVM2 to select for plants and communities that are well adapted to fire.

Pathways are high allocation to bark for protection, high allocation to storage for reproduction,

or low wood density and an architecture that allows rapid height growth and escaping from

the flame zone. While natural fire was included in our simulations, anthropogenic fire with

prescribed frequency and fire season was not considered.
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While we used aDGVM2 to study grazing impacts and management in mixed cropland-

rangeland systems in South Africa (Pfeiffer et al. 2019, 2022), as well as the predecessor

model aDGVM to study the impacts of grazing, fuel wood harvesting and fire management

(Scheiter et al. 2015; Scheiter & Savadogo 2016; Scheiter et al. 2019), we ignored direct

human impacts in this study. Rather, we focused on potential natural vegetation. Previous

studies showed that when ignoring areas highly affected by land use, the agreement between

simulated and observed model features increases (Kumar et al. 2021; Scheiter et al. 2020).

We used a similar approach to exclude areas affected by land use (see section 2.5 in the main

text).

The previous summary is based on the supplementary materials of Scheiter et al. (2020)

with several adjustments.

S2 – aDGVM2 model simulation protocol

We conducted aDGVM2 simulations for Africa, tropical and subtropical Asia and Australia

using climate forcing compiled for the Inter-Sectoral Impact Model Intercomparison Project

(ISIMIP, Warszawski et al. 2014). These data include daily time series of bias-corrected and

statistically downscaled climate variables at 0.5° spatial resolution between 1950 and 2099.

We used minimum, maximum, and average near-surface air temperature, precipitation, near-

surface relative humidity, near-surface wind speed, and downwelling long- and short-wave

radiation. Simulations were conducted for RCP8.5 derived from GFDL-ESM2M simulations

(Warszawski et al. 2014), because RCP8.5 represents an extreme case scenario within the

RCPs, with high carbon emissions, high energy consumption, and low climate mitigation until

2099 (van Vuuren et al. 2011). Substantial vegetation changes simulated under this scenario

are therefore most suitable to illustrate differences in future biome patterns and biome changes

derived by different classification methods. Climate forcings from GFDL-ESM2M were used

because they showed good performance for large parts of the study region (McSweeney &

Jones 2016). Soil data was derived from the Harmonized World Soil Database (Nachtergaele

et al. 2009) and we used elevation from the Shuttle Radar Topography Mission (SRTM, Jarvis

et al. 2008). Atmospheric CO2 concentrations were derived from van Vuuren et al. (2011) for

RCP8.5.

We conducted a 450-year model spin-up to allow modeled state variables, traits, and plant

communities to reach a dynamic equilibrium with environmental conditions. For the model

spin-up, we used a random sequence of years from the period between 1950 and 1980. After the

spin-up, transient simulations were conducted using the time series between 1950 and 2099.

Simulations were conducted in the presence of a natural surface fire regime, as represented by

the aDGVM2 fire routines (Langan et al. 2017). We simulated potential natural vegetation in

the absence of anthropogenic impacts. Model simulations were conducted at 1° spatial resolu-
tion. Therefore, climate, soil and elevation data were re-sampled to the required 1×1° spatial
resolution using the nearest neighbor method. Replicate runs were not conducted.
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The previous description is based on Scheiter et al. (2020) with several adjustments.

S3 – Biome classification

We applied a biome classification approach based on previous aDGVM2 studies (Kumar et al.

2021; Scheiter et al. 2020). Vegetation was classified into seven biomes based on the cover

of different PFTs. The approach distinguishes seven biome types: desert, C4 grassland, C3

grassland, shrubland, woodland, evergreen forest and deciduous forest. The PFTs used for

the classification were C4 grasses, C3 grasses, deciduous shrubs, evergreen shrubs, deciduous

trees and evergreen trees. To calculate the cover of different PFTs, we first assigned one of

the six PFTs to each simulated plant individual and then calculated the sum of the crown

area of all individuals of each PFT within a grid cell. Shrubs and trees were distinguished

based on the stem count of individual woody plants, a model trait describing whether a plant

is single-stemmed or multi-stemmed (Gaillard et al. 2018). Specifically, we assumed trees

have 1 or 2 stems and shrubs have 3 or more stems. Deciduous and evergreen vegetation were

distinguished based on the phenology trait in aDGVM2, which defines if a plant is deciduous

or evergreen (Langan et al. 2017). C4 and C3 grasses are explicitly represented as different

PFTs in aDGVM2.

If both grass and woody cover were lower than pre-defined cover thresholds (300m2 per

simulated 1ha stand, Table S1 ), vegetation was classified as desert. If woody cover was

below 300m2/ha and grass cover exceeded 300m2/ha, vegetation was classified as C3 or C4

grassland, according to the dominance (i.e., higher cover) of the C3 or C4 grass type. If woody

cover was between 300 and 30.000m2/ha, vegetation was classified as shrubland if shrub cover

exceeded tree cover, or as woodland if tree cover exceeded shrub cover. If woody cover exceeded

30.000m2/ha, vegetation was classified as deciduous or evergreen forest if the cover of deciduous

woody plants exceeded the cover of evergreen woody plants or vice versa. For shrubland,

woodland and both forest types, grass cover was not considered for the classification. This

definition of biomes uses the crown cover of each simulated plant in 1ha stands. As crowns

may overlap, their sum can exceed the size of the simulated stand. The threshold values were

selected such that observed and simulated biome patterns agree.
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Table S1: Thresholds used for biome classification. AGR - canopy area of all grasses; AWD -
canopy area of all woody plants; AC4 - canopy area of C4 grasses; AC3 - canopy
area of C3 grasses; ATR - canopy area of trees; ASH - canopy area of shrubs; ADE

- canopy area of deciduous woody plants; AEV - canopy area of evergreen woody
plants. The aDGVM2 simulates vegetation within 1 ha plots and the canopy areas
are calculated as the sum of the crown areas of all individuals of the respective
functional type. Values are given in m2.

Biome AGR AWD AC4 AC3 ASH ATR ADE AEV

Baren/Desert < 300 < 300
C4 grassland ≥ 300 < 300 ≥ AC3 < AC4

C3 grassland ≥ 300 < 300 < AC3 ≥ AC4

Shrubland ≥ 0 300 ≤ · < 30000 ≥ ATR < ASH

Woodland ≥ 0 300 ≤ · < 30000 < ATR ≥ ASH

Deciduous forest ≥ 0 ≥ 30000 ≥ AEV < ADE

Evergreen forest ≥ 0 ≥ 30000 < AEV ≥ ADE
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Table S2: Traits and trait assemblages used for the biome classification based on cluster anal-
ysis and traits. Numbers 1 to 11 are the trait clusters TC1 to TC11, WC provides
traits included the importance analysis where only weakly correlated traits (corre-
lation coefficient < 0.9) were included.

Trait 1 2 3 4 5 6 7 8 9 10 11 WC

Phenology traits
Phenology X X X X X X X
Rain-light trigger X X X X X X X
Light trigger off X X X X X X X
Light trigger on X X X X X X
Rain trigger off X X X X X X
Rain trigger on X X X X X X X

Carbon allocation traits
Allocation to bark X X X X X X X
Allocation to leaf X X X X X X
Allocation to reproduction X X X X X X X
Allocation to roots X X X X X X
Allocation to storage X X X X X X X
Allocation to wood X X X X X X
Storage to leaf allocation X X X X X X
Storage to wood allocation X X X X X X X

Plant architectural traits
Allometry parameter 1 X X X X X X
Allometry parameter 2 X X X X X X
Canopy shape parameter 2 X X X X X X
Maximum rooting depth X X X X X X X
Root shape parameter 1 X X X X X X X
Root shape parameter 2 X X X X X X X
Stem count X X X X X X X

Leaf economic and reproduction traits
SLA X X X X X X X
Wood density X X X X X X
Leaf Nitrogen X X X X X X
Seed weight X X X X X X X

Size-related variable traits (model state variables)
Crown area X X X X X X
Height X X X X X X X
Stem diameter X X X X X X
Bark thickness X X X X X X X
Age X X X X X X X
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Table S3: Traits included in the 10 best models in the randomized importance analysis using
all traits (TC1). All models had κ >0.54. ‘Number’ represents the number of traits
included in the different models, ‘Models’ represents the number of the selected
models that include a trait.

Trait 1 2 3 4 5 6 7 8 9 10 Models

AllocBark X X X X X X X 7
AllocLeaf X X X X X X X X 8
AllocRepr X X X X X X 6
AllocRoot X X X X X X 6
AllocStor X X X X X X X X X 9
AllocWood X X X X 4
BarkThickness X X X X X X X X 8
BiomassPar1 X X X X X X X 7
BiomassPar2 X X X X X X X X 8
CanfrmPar2 X X X X X X X X 8
CrownArea X X X X X X X X X X 10
Evergreen X X X 3
Height X X X X X X X X X 9
LeafNitrogen X X X X X X X 7
LightThrOff X X X X X X X X X 9
LightThrOn X X X X X X 6
RainLight X X X X X X X X X X 10
RainThrOff X X X X X 5
RainThrOn X X X X X X X X X X 10
RotfrmMaxD X X X X X X 6
RotfrmPar1 X X X 3
RotfrmPar2 X X X X X X X 7
SeedWeight X X X X X X X X X 9
Sla X X X X 4
StemCount X X X X X X X X X 9
StemDiamTot X X X X X X X X X 9
StorToLeaf X X X X X X X X 8
StorToWood X X X X X X X 7
WoodDensity X X X X 4
age X X X X X X X X 8

Number 21 24 19 23 23 19 23 22 20 20
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Table S4: Traits included in the 10 best models in the randomized importance analysis in-
cluding only weakly correlated traits (WC). All Models had κ >0.499. ‘Number’
represents the number of traits included in the different models, ‘Models’ represents
the number of the selected models that include a trait.

Trait 1 2 3 4 5 6 7 8 9 10 Models

AllocBark X X X X X X X X X X 10
AllocRepr X X X X X X X X X X 10
AllocStor X X X X X X X X X 9
BarkThickness X X X X X X X X X X 10
Evergreen X 1
LightThrOff X X X X X X X 7
RainLight X X X X X X X X X 9
RainThrOn X X X X X 5
RotfrmMaxD X X X X X X X X 8
RotfrmPar1 X X X X 4
RotfrmPar2 X X X X X X X 7
SeedWeight X X X X X X X X 8
Sla X X 2
StemCount X X X X X X X X 8
StemDiamTot X X X X X X X X X X 10
StorToWood X X X X X X X X X X 10
age X X X X X X X X X X 10

Number 13 12 14 16 11 13 13 12 11 13
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Table S5: Data-model agreement and percent of the grid cells projected to undergo biome
changes until 2099 considering land use. ‘κ’ quantifies the data-model agreement,
‘∆lt’ represents the percent of grid cells projected to undergo biome changes when
considering the entire study area as reference, ‘∆le’ represents the percent of grid
cells projected to undergo biome changes when considering only the area covered by
natural vegetation as reference (i.e., excluding areas with land use), ‘Cover’ repre-
sents models where cover of different PFTs was used for the cluster analysis, ‘Traits’
represents models where trait cluster 8 (TC8) and the Beck et al. (2018) biome map
were used for the cluster analysis. For biome classification, the percentage of grid
cells projected to undergo biome changes are ∆lt Class=16.3% and ∆le Class=18.7%.
This percentage is not related to the F31 biome maps as the maps were not used
for developing the classification scheme. Simulations were conducted at 1°spatial
resolution, the biome maps were aggregated to the same grid. To account for land
use, we used the masked out areas where the fraction of cropland and built-up areas
in the Potapov et al. (2022) exceed 15%.

Biome map ∆lt Cover ∆lt Traits ∆le Cover ∆le Traits

Allen et al., 2020 21.1 18.6 24.7 21.7
Buchhorn et al., 2019 20.9 22.2 24.4 25.9
Beck et al., 2018 16.7 19.5 19.5 22.8
Hengl et al., 2018 20.6 19.9 24.1 23.3
Dinerstein et al., 2017 17.5 13.8 20.5 16.1
Zhang et al., 2017 14.3 19.8 16.7 23.1
Netzel & Stepinski, 2016a 18.5 18.0 21.6 21.1
Netzel & Stepinski, 2016b 19.1 16.4 22.3 19.2
Higgins, Buitenwerf, & Moncrieff, 2016 18.5 14.7 21.6 17.2
Pfadenhauer & Kloetzli, 2014 23.5 22.0 27.5 25.7
Zhang & Yan, 2014 14.2 19.3 16.6 22.6
Metzger et al., 2013 23.0 21.3 26.9 25.0
FAO, 2010 21.2 19.2 24.8 22.4
Tateishi et al., 2011, 2014 23.0 22.2 26.9 26.0
Defries et al., 2010 16.6 19.9 19.5 23.3
Ellis & Ramankutty, 2008 21.2 23.2 24.8 27.2
European Space Agency, 2010 18.1 19.9 21.1 23.3
Friedl et al., 2010 16.6 17.8 19.4 20.9
The Nature Conservancy, 2009 17.7 13.1 20.7 15.4
Peel et al., 2007 17.4 19.1 20.3 22.3
Bartholome & Belward, 2005 18.6 22.6 21.8 26.5
Kaplan et al., 2003 21.1 21.8 24.7 25.5
Olson et al., 2001 21.1 14.8 24.7 17.3
Loveland et al., 2000 19.7 19.5 23 22.8
Ramankutty & Foley, 1999 12.5 18.3 14.6 21.4
Leemans, 1990 25.1 23.6 29.4 27.6
Schultz, 1988, 1995, 2002, 2008, 2016 18.3 17.5 21.5 20.5
Mueller-Hohenstein, 1981 23.1 18.3 27 21.4
Schmithuesen, 1976 23.8 21.4 27.8 25.0
Whittaker, 1975 20.7 20.6 24.2 24.1
Walter, 1964 20.7 16.3 24.2 19.0

Mean 19.5 19.2 22.8 22.4
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Figure S1: Areas covered by land use. To derive these areas, we used cropland (a) and built-up
areas (b) provided by Potapov et al. (2022). Areas where the cover of cropland and
built-up areas exceeded 15% cover were classified as intense land use (c). Those
areas were masked out for analyses including land use. Maps were aggregated to
the 1°spatial resolution used in aDGVM2 simulations by calculating mean values.
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Figure S2: Mean trait values of different biome types for the cluster analysis using the Beck
et al. (2018) map and all traits (TC1). Mean trait values of selected traits are
provided in Table 2 in the main text. Definition of biomes on y-axis: 1 - Tropical
rainforest; 2 - Tropical monsoon; 3 - Tropical savanna; 5 - Arid steppe hot; 6 -
Temp. dry winter warm summer; 7 - Temp. dry winter hot summer; 9 - Temp.
no dry season hot summer; 8 - Arid desert hot; 13 - Temp. no dry season warm
summer; 14 - Temp. dry summer hot summer; 15 - Arid desert cold; 17 - Arid
steppe cold. 14
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Figure S3: Correlations between mean carbon allocation traits in different biomes. Each point
in the plots represents one of the biomes in the Beck et al. (2018) map, classification
was conducted with all traits (TC1). Note that the differences in terms of absolute
values are small between biomes.
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Figure S4: Relation between data-model agreement and the number of traits included in the
cluster analysis. For each number of traits, the traits were randomly selected, and
the cluster analysis was repeated 150 times. Analyses were conducted including all
traits (TC1, panel a) and only weakly correlated traits (WC, panel b). Data-model
agreement is represented by the κ statistics.
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Figure S5: κ values and percent of grid cells affected by biome changes until 2099 for differ-
ent classification methods and the F31 biome maps used to develop classification
schemes. The lines represent linear regression models (adjusted R2=-0.0006357,
p-value=0.3302, correlation coefficient=-0.1808834 for clustering using cover of
PFTs; adjusted R2=0.5536, p-value=9.704e-07, correlation coefficient=-0.7539822
for clustering using traits). The data for figure are provided in Table 1 in the main
text.
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Figure S6: Relation between the κ values and the number of biomes in the different F31 biome
maps used to develop classification schemes. The lines represent linear regression
models (adjusted R2=0.2362, p-value=0.003268, correlation coefficient=-0.5115406
for clustering using cover of PFTs; adjusted R2=0.3364, p-value=0.0003725, corre-
lation coefficient=-0.5987969 for clustering using traits).
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Figure S7: Relation between the percent of grid cells undergoing biome changes until 2099 and
the number of biomes in the different F31 biome maps used to develop classifica-
tion schemes. The lines represent linear regression models (adjusted R2=0.3099,
p-value=0.000679, correlation coefficient=0.5769748 for clustering using cover of
PFTs; adjusted R2=0.3549, p-value=0.0002422, correlation coefficient=0.6135361
for clustering using traits).
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Figure S8: Relation between the average percent of grid cells per biome undergoing biome
changes until 2099 and the number of biomes in the different F31 biome maps
used to develop classification schemes. The lines represent linear regression mod-
els (adjusted R2=0.5332, p-value=1.887e-06, correlation coefficient=-0.740768 for
clustering using cover of PFTs; adjusted R2=0.5609, p-value=7.612e-07, correla-
tion coefficient=-0.7586113 for clustering using traits).
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a) Cluster analysis with PFT cover
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b) Cluster analysis with traits
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c) Difference traits − PFT cover
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d) Ensemble of all methods

Figure S9: Consensus maps of biome transitions until 2099 considering land use. The consen-
sus maps were derived by counting the number of models that simulate a biome
change in each simulated grid cell, (a) 31 models using cover of different PFTs, (b)
31 models using traits, and (d) all 63 models (1 classification using PFTs, 31 cluster
analyses using PFTs, 31 cluster analyses using traits). Panel (c) shows the differ-
ence between models using traits and models using PFT covers (difference between
panels a and b), and illustrates where biome projections from clustering methods
with PFTs and traits deviate. We constrained the values to a range between -15
and 15 to improve the visibility of the differences. Areas covered by land use were
derived from Potapov et al. (2022), and excluded in this analysis. See Fig. S1 for
areas covered by land use, and Fig. 3 in the main text for results ignoring land use.
Figures represent results from TC8.
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Figure S10: Patterns of height, SLA and wood density simulated with aDGVM2 under current
and future conditions, and changes between current and future conditions.
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