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Abstract
Aim: Biome classification schemes are widely used to map biogeographic patterns 
of vegetation formations on large spatial scales. Future climate change will influence 
biome patterns, and vegetation models can be used to assess the susceptibility of 
biomes to experience transitions. However, biome classification is not unique, and 
various classification schemes and biome maps exist. Here, we aimed to assess how 
the choice of biome classification schemes influences current and projected future 
biome patterns.
Location: Africa, Australia, Tropical Asia.
Time period: 2000–2099.
Major taxa studied: Tropical vegetation.
Methods: We used the adaptive dynamic global vegetation model version 2 (aDGVM2) 
to simulate vegetation in the study region. We classified vegetation into biomes using 
(1) a classification scheme based on the cover of functional types, (2) a cluster analysis 
based on the cover of functional types and (3) a cluster analysis based on trait pat-
terns simulated by the aDGVM2. We compared the resulting biome maps to mul-
tiple observation-based biome maps and quantified differences in projected biome 
changes under the RCP8.5 scenario for the different classification schemes.
Results: As expected, biome patterns were strongly related to the scheme used for 
biome classification. The highest data-model agreement was derived for a cluster analy-
sis using 21 simulated traits. Traits related to size were most important for classification. 
Considering all classification schemes, the area projected to undergo biome transitions 
under climate change varied between 16.5% and 32.1%. Despite this variability, differ-
ent schemes consistently showed that grassland and savanna areas are most suscep-
tible to climate change, whereas tropical forests and deserts are stable. Our results 
demonstrate that traits simulated by aDGVM2 are appropriate to delimit biomes.
Main conclusions: Studies projecting biome patterns and transitions under current 
and future climate should consider applying different biome classification schemes to 
avoid biases in such projections caused by biome classification schemes.
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provided the original work is properly cited.
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1  |  INTRODUC TION

Biomes are widely used to map biogeographic patterns of vegetation 
formations on large spatial scales and to study changes in the spatial 
extent and distribution of vegetation formations under past, cur-
rent and future climate (e.g. Allen et al., 2020; Conradi et al., 2020; 
Fischer et al., 2022; Martens et al., 2020). However, while the value 
of the biome concept has been proven, a consensus on a single 
biome or land cover classification scheme that fits all purposes is 
lacking. Rather, the range of classification schemes varies from 
simplified schemes with a low number of mega-biomes to detailed 
schemes (Beierkuhnlein & Fischer, 2021; Fischer et al., 2022). The 
differences between classification schemes imply that the choice of 
the classification scheme influences projected changes in biome pat-
terns under future climate change: While a region may experience a 
biome change under one classification scheme, it may remain sta-
ble under another classification scheme. Robust studies of climate 
change impacts on biome patterns therefore require assessments of 
the sensitivity of regions threatened by biome changes to the choice 
of the classification scheme.

Early biome classification schemes were based on dominant life 
forms with similar physiological characteristics (Schimper, 1903), 
climate zones (Köppen, 1936) or climatic and orographic features 
(Walter, 1973). More recent biome maps included information on 
ground cover, vegetation structure and physiognomy (Prentice 
et al., 1992). The increased availability of remote sensing prod-
ucts facilitated the development of biome classification at high 
spatial resolution that emphasizes the features of the land surface 
and represents bioclimatic conditions only implicitly (e.g. Higgins 
et al., 2016). A comprehensive compilation of different biome 
classification methods and associated biome maps has recently 
been provided by Beierkuhnlein and Fischer (2021) and Fischer 
et al. (2022).

To assess the impacts of future climate change on the distribution 
of biomes at large spatiotemporal scales, dynamic global vegetation 
models (DGVMs, Prentice et al., 2007) have been widely used. These 
models simulate the dynamics of different plant functional types 
(PFTs), species or ecological strategies based on the prevailing en-
vironmental conditions. Model variables such as the leaf area index 
(LAI) of different PFTs or their fractional cover in a simulated grid 
cell can be used to classify vegetation into different biome types. 
Simulated changes in those variables due to climate change trans-
late into biome transitions and allow identifying regions and biomes 
most susceptible to climate change (Martens et al., 2020; Scheiter 
et al., 2020). Open ecosystems, that is savannas and grasslands, are 
expected to be particularly susceptible to climate change. Some of 
these areas support alternative biome states (Pausas & Bond, 2020) 
maintained by grass–tree interactions, fire and herbivory. Climate 

change may influence these factors and cause rapid transitions be-
tween alternative states (Higgins & Scheiter, 2012).

During the last decade, plant traits have gained considerable 
attention in observational studies and among DGVM developers. 
Trait data have been assembled in databases such as TRY (Kattge 
et al., 2020) or sPlot (Bruelheide et al., 2018). Statistical methods 
and machine learning approaches have been applied to create trait 
distributions at a global scale from site data (Boonman et al., 2020; 
Butler et al., 2017). Such global trait maps are suitable to develop 
trait-based biome classification schemes. For instance, Boonman 
et al. (2022) classified vegetation into the ecoregions provided by 
Olson et al. (2001) by using global maps of specific leaf area (SLA), 
wood density and vegetation height and projected climate change 
impacts on biome patterns.

DGVM modellers made use of the trait data to represent trait 
variability in DGVMs (Sakschewski et al., 2015; Scheiter et al., 2013). 
While such trait-based DGVMs allow simulations of trait patterns at 
large spatial scales, simulated traits have rarely been used to define 
biomes (Reu et al., 2011). It, therefore, remains to be tested if biome 
patterns derived from simulated traits differ from those using cover 
fractions or LAI of different PFTs, and if the likelihood of biome tran-
sitions under climate change differs.

Here, we used the adaptive dynamic global vegetation model 
version 2 (aDGVM2, Scheiter et al., 2013) to test how the selection 
of model variables and traits as well as the selection of biome maps 
used to develop biome classification schemes influence simulated 
biome patterns. We further assessed areas most susceptible to 
biome transitions under climate change for different classification 
schemes, focusing on Africa, tropical Asia and Australia. We hy-
pothesized (1) that the agreement between observed and simulated 
biomes is strongly related to the biome map used to develop classifi-
cation schemes, as well as to the model variables and traits used for 
biome classification; (2) that the considered traits are not equally im-
portant and appropriate for biome classification; (3) that regions and 
the total area projected to undergo biome transitions under climate 
change differ among biome schemes; and (4) that open ecosystems 
are most susceptible to biome transitions as indicated by previous 
studies.

2  |  METHODS

2.1  |  Model description and simulation protocol

We used the aDGVM2 to simulate current and future vegetation and 
classified vegetation into biomes using different approaches. A short 
model description is provided in Supplement S1. The original model 
version is described in Scheiter et al. (2013) and Langan et al. (2017); 
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the updated model version used in this study is described in Kumar 
et al. (2021). The aDGVM2 was previously benchmarked using mul-
tiple remote sensing products for South Asia (Kumar et al., 2021), 
tropical Asia (Scheiter et al., 2020) and Africa (Gaillard et al., 2018, 
using a previous model version). These benchmarking results are not 
reproduced in this study, yet, here we benchmarked aDGVM2 at the 
biome level (Sections 2.3 and 2.4).

We conducted aDGVM2 simulations following the modelling 
protocol described in Kumar et al. (2021) and Scheiter et al. (2020), 
see Supplement S2. Simulations were conducted for potential natu-
ral vegetation in the presence of fire.

2.2  |  Observation-based biome maps

For data-model comparison and to develop biome schemes, we used 
the data set compiled by Fischer et al. (2022), hereafter abbreviated 
as F31 biome maps. This data set includes 31 different biome and 
land cover maps at 10 × 10 km spatial resolution (provided in ap-
pendix S4 in Fischer et al., 2022). We aggregated the data to the 
1 × 1° grid of the aDGVM2 simulations using the nearest neigh-
bour method. We used the ‘raster’ R package for data processing 
(Hijmans, 2020).

2.3  |  Biome classification

We applied a biome classification scheme based on a previous 
aDGVM2 study (Kumar et al., 2021). Vegetation was classified into 
seven biomes (desert, C4 grassland, C3 grassland, shrubland, wood-
land, deciduous forest and evergreen forest) based on the cover of 
six PFTs (C4 grasses, C3 grasses, deciduous shrubs, evergreen shrubs, 
deciduous trees and evergreen trees). Details of the classification 
scheme are provided in Supplement S3 and Table S1.

The biome map derived from the classification was compared to 
each F31 biome map. We intended to use the κ statistics (Monserud 
& Leemans, 1992) for the comparisons. This measure quantifies the 
agreement between categorical data sets. It considers the likelihood 
that agreement can occur by chance and is more robust than cal-
culating overlap. Values <0 indicate no agreement, between 0 and 
0.2 slight agreement, between 0.2 and 0.4 fair agreement, between 
0.4 and 0.6 moderate agreement, between 0.6 and 0.8 substantial 
agreement and between 0.8 and 1 almost perfect agreement.

The κ statistics requires equal numbers of classes in the data 
sets to be compared, whereas the number of biomes differs be-
tween the modelled and the F31 biome maps. Therefore, a match-
ing between modelled and each F31 biome map was established 
using the Hungarian algorithm (Kuhn, 1955) implemented in the 
‘RcppHungarian’ R package (Silverman et al., 2022). The Hungarian 
algorithm identifies one observed biome for each modelled biome 
such that the matching overlap is maximized. After this matching, the 
number of simulated biomes and the corresponding F31 map was 
equal, and the κ value was calculated.

2.4  |  Cluster analysis for biome classification

Following the approach by Boonman et al. (2022), we used Gaussian 
mixture models (GMM) to classify simulated vegetation into the 
biome types given in each of the F31 biome maps. Biome types cov-
ering less than 40 grid cells were excluded. We used the ‘MclustDA’ 
function implemented in the ‘mclust’ R package (Scrucca et al., 2016) 
for the cluster analysis. The cluster analysis was supervised, that is, 
the biome information (number of biomes and their spatial distribu-
tion) of each F31 biome map was used. We used different sets of 
model variables for the cluster analysis: the cover of different PFTs 
used in the biome classification (see Section 2.3) and 30 plant traits 
simulated by aDGVM2 (Table S2). For the analyses using traits, we 
calculated mean trait values for each grid cell by averaging the trait 
values of all plants within a grid cell. Binary traits describing phenol-
ogy were averaged, and the averages represent the proportion of 
plants with those strategies in a grid cell. As the range of values dif-
fers between traits, traits were standardized for the cluster analysis 
such that the mean value is 0 and the standard deviation is 1.

In addition to using all 30 plant traits (hereafter denoted Trait 
Cluster 1, TC1), the cluster analysis was repeated for 10 differ-
ent subsets of the traits to assess how the inclusion or exclusion 
of different trait assemblages influences data-model agreement 
(Table S2). We considered only 25 inheritable traits according to 
the aDGVM2 design (TC2), only variable traits (TC3), only phe-
nology traits (TC4), only traits describing carbon allocation (TC5), 
only architectural traits (TC6), all traits excluding phenology traits 
(TC7), excluding allocation traits (TC8), excluding architectural traits 
(TC9), traits commonly used in the trait literature (TC10, e.g. Díaz 
et al., 2016) and all traits excluding traits commonly used in trait 
literature (TC11). The difference between inheritable and variable 
traits in aDGVM2 is that inheritable traits are constant during the 
lifetime of a plant and only change during reproduction by mutation 
and crossover. Variable traits change during the lifetime of a plant 
and are essentially model state variables.

Overall, we conducted 12 cluster analyses (one using PFT covers, 
11 using trait clusters) for each of the F31 biome maps, and obtained 
372 biome maps. We compared each simulated biome map with the 
corresponding F31 biome map used for the clustering by calculating 
the κ value.

We created biome maps for current and future conditions by 
evaluating the GMMs with the simulated current and future cov-
ers of PFTs and traits. We identified areas projected to experience 
biome transitions until the end of the century and calculated the 
number of grid cells with biome transitions for each map. To create a 
consensus map indicating areas most susceptible to biome changes, 
we stacked the 31 maps indicating biome changes derived from 
cluster analysis using covers of PFTs and the 31 maps derived from 
the best cluster analysis using traits (TC8, see Section 3). Then, we 
counted the number of maps projecting a biome transition for each 
simulated grid cell.

To test if traits characterizing biomes differ between cluster 
analyses using different F31 maps, we calculated mean trait values 
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of clusters representing tropical evergreen forest for all F31 maps. 
We only analysed those forests because they are represented in all 
F31 maps, while biomes outside forests strongly differ between the 
F31 maps.

2.5  |  Land use

Large proportions of the study area are affected by human land use. 
We used the land cover map provided by Potapov et al. (2022) and 
classified a grid cell as utilized by humans if the fraction covered 
cropland and built-up areas of a grid cell exceeded 15% (Figure S1). 
We masked out these grid cells and calculated the area affected by 
biome shifts based on the remaining grid cells.

2.6  |  Importance of traits

We assessed how the number of traits and the subset of traits used 
in cluster analyses influence the data-model agreement. A rand-
omized approach was necessary as testing all possible combinations 
of 30 traits was computationally not feasible. We conducted this 
analysis for the biome map with the highest data-model agreement 
(map 3, Beck et al. (2018), see Section 3).

Sets of 2, 3, …, 29 traits were randomly selected out of the 30 
traits simulated by aDGVM2. For each set, a cluster analysis was 
conducted. For each number of traits, this analysis was repeated 150 
times to obtain cluster analyses with different subsets of traits. We 
also conducted 150 analyses including all 30 traits. As the cluster-
ing algorithm is not deterministic, the replicates for 30 traits differ. 
Overall, 4350 (=29 × 150) models were fitted. For each model, we 
calculated the κ value to quantify data-model agreement.

To assess the importance of different traits in the 4350 models, 
we identified the best models by calculating the 98% percentile of 
the κ values. Models with a κ value greater than the 98% percen-
tile were selected, and as a measure of importance we counted how 
often each of the 30 traits was included in those models.

Some traits and state variables in the aDGVM2 are correlated. 
We therefore repeated the analysis for 17 weakly correlated traits, 
that is, traits with pairwise correlation <0.9 (WC in Table S2). Models 
were fitted for sets of 2, 3, …, 17 traits, with 150 replicates each. 
Overall, 2400 (=16 × 150) models were fitted for this analysis.

3  |  RESULTS

3.1  |  Biome patterns under current conditions

The comparison between the biomes of the biome classification 
scheme (BC) and the F31 biome maps revealed an average value of 
κ = 0.263. The highest agreement was observed for the Pfadenhauer 
and Klötzli (2014) map with κ = 0.367 (Figure 1, 2a), indicating fair 
agreement. In cluster analyses using the cover of PFTs, κ was highest 

for the Dinerstein et al. (2017) map (κ = 0.406, Figures 1 and 2d, 
Table 1), indicating moderate agreement. The average κ for all biome 
maps using the cover of PFTs was κ = 0.278.

When using traits for the classification, the highest average κ 
value for all F31 biome maps was obtained for trait cluster 8 (TC8, 
κ = 0.427), which uses all traits except the carbon allocation traits 
(Figures 1 and 2g, Table 1). The highest κ of all models was obtained 
with TC8 and the Beck et al. (2018) biome map (κ = 0.518). When 
using traits commonly used in the literature (TC10), κ was highest for 
the Olson et al. (2001) map with κ = 0.191.

Different classification methods reproduce clusters in northern 
Africa, western Asia and for the cluster analyses in central Australia 
(‘Des’ in Figure 2a, cluster 8 in Figure 2d,g) and clusters in central 
Africa and southeast Asia (‘EvF’ in Figure 2a, cluster 1 in Figure 2d,g). 
These clusters overlap with deserts and tropical forests in the F31 
maps respectively. The agreement was lower in areas outside trop-
ical forests and deserts, particularly in areas covered by savannas 
and grasslands. We conclude that tropical forests and deserts were 
best represented by the different classification approaches.

Mean trait values differed between biomes, here exemplified 
for the cluster analysis using traits and the Beck et al. (2018) biome 
map (Table 2, Figure S2). Tropical rainforest and tropical monsoon 
forest showed the highest mean vegetation height and lowest mean 
stem count, indicating tree dominance. In contrast, hot arid deserts 
showed the lowest vegetation height and highest stem count, indi-
cating shrub dominance. Mean tree age was low in tropical rainforest 
and monsoon forests and temperate regions without a dry season 
(Table 2). Those regions were almost exclusively dominated by ever-
green vegetation, whereas phenology in other biomes was a mixture 
of evergreen and deciduous vegetation. Communities dominated by 
evergreen vegetation showed the lowest SLA values and temper-
ate dry winter hot summer regions with the highest proportion of 
deciduous plants showed the highest SLA. Carbon allocation traits 
showed relations across different biomes (Figure S3). For instance, 
leaf allocation was negatively related to storage and reproduction 
allocation, and it was positively related to wood and root allocation. 
Despite these relations, variation of the values of allocation traits 
was low (Table 2). Mean trait values of the tropical rainforest biome 
differed between cluster analyses for all F31 biome maps, particu-
larly age, height, SLA and phenology (Figure 3).

3.2  |  Importance of traits for classification

Data-model agreement increased with the number of traits used for 
the cluster analysis while variation between replicates decreased 
(Figure S4a). For trait cluster TC1 using all traits, the highest data-
model agreement was observed for a classification using 21 traits 
(κ = 0.553, Table S3). The 98% percentile of κ for all models was 
κ = 0.514. Crown area was included in most of the models exceeding 
this value (81 models, Figure 4a), followed by stem diameter, height 
and age (76, 73 and 68 models). Allocation to wood biomass, wood 
density and SLA were the least important (40, 38 and 36 models).
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When considering only weakly correlated traits (WC), data-model 
agreement increased with the number of traits used for the cluster 
analysis (Figure S4b). The highest data-model agreement was observed 
for a model using 13 traits (κ = 0.506, Table S4). The 98% percentile of κ 
for all replicates was κ = 0.495. Of the models exceeding this κ value, 18 
models included all 17 traits. Stem diameter, bark thickness, allocation 
to bark and age were included in all best models (Figure 4b).

3.3  |  Biome transitions under future conditions

The number of grid cells projected to experience biome transi-
tions between current and future conditions differed between 
the methods used for classification. Using the biome classification 
scheme, 20.1% of the grid cells were projected to change, mainly in 
regions covered by grassland, shrubland and woodland (Figure 2a–
c). Similar spatial patterns were derived from clustering using the 
cover of different PFTs (Figure 2d–f) and traits (Figure 2g–i).

The consensus map of biome changes derived from cluster 
analyses using all F31 biome maps, all traits (TC1) and cover of 
different PFTs also showed that regions surrounding the equato-
rial tropical rainforests were most susceptible to biome transitions 
(Figure 5). Areas currently covered by desert and tropical rain-
forests were projected to be less susceptible to biome changes. 
The pattern differed for classification approaches using traits and 
cover of PFTs (Figure 5c). In 28.2% of the study region, at least one 
of the models projected a biome shift (Figure 5d). In 5.5% of the 
total area, more than 50% of the models projected biome shifts, 
and in 0.2% of the area, more than 90% of the models projected 
biome shifts.

The number of grid cells projected to undergo biome transi-
tions varied between 16.5% and 32.1% across all different mod-
els (Table 1). On average, 24.9% and 24.7% of the grid cells were 
projected to change their biome state in models using cover of 
PFTs and traits respectively. The number of grid cells projected 
to change and the κ value were negatively correlated for cluster 

F I G U R E  1  Data-model agreement for different biome maps and biome classification methods. The figure shows κ values for all of the 
31 biome maps provided by Fischer et al. (2022) for different trait clusters (TC) as defined in Table S2, for the cluster analysis using cover 
of different PFTs (PFT) and for the biome classification using cover of different PFTs (BC). The ‘X's’ denote the biome map that maximized κ 
within each trait cluster. The first row is the mean κ value for each trait cluster.

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9 TC10 TC11 PFT BC

Allen et al., 2020
Buchhorn et al., 2019

Beck et al., 2018
Hengl et al., 2018

Dinerstein et al., 2017
Zhang et al., 2017

Netzel & Stepinski, 2016a
Netzel & Stepinski, 2016b

Higgins, Buitenwerf, & Moncrieff, 2016
Pfadenhauer & Kloetzli, 2014

Zhang & Yan, 2014
Metzger et al., 2013

FAO, 2010
Tateishi et al., 2011, 2014

Defries et al., 2010
Ellis & Ramankutty, 2008

European Space Agency, 2010
Friedl et al., 2010

The Nature Conservancy, 2009
Peel et al., 2007

Bartholome & Belward, 2005
Kaplan et al., 2003
Olson et al., 2001

Loveland et al., 2000
Ramankutty & Foley, 1999

Leemans, 1990
Schultz, 1988, 1995, 2002, 2008, 2016

Mueller−Hohenstein, 1981
Schmithuesen, 1976

Whittaker, 1975
Walter, 1964

Mean kappa, all maps

0−0.05
0.05−0.1
0.1−0.15
0.15−0.2
0.2−0.25
0.25−0.3
0.3−0.35
0.35−0.4
0.4−0.45
0.45−0.5
0.5−0.55
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analyses using the cover of PFTs and traits (Figure S5), indicating 
that biome transitions may be overestimated when data-model 
agreement is low whereas schemes with high agreement provide 
a lower bound for biome transitions. The κ value was negatively 
correlated with the number of biomes in the F31 maps (Figure S6), 
that is, biome maps with a lower number of biomes showed higher 
data-model agreement. The area affected by biome changes 
increased with the number of biomes in the F31 biome maps 
(Figure S7), yet, when dividing the area affected by biome changes 
by the number of biomes, the area per biome decreased with the 
number of biomes (Figure S8).

When excluding areas affected by land use, the projected area 
affected by biome transitions averaged for all models decreased to 
19.5% and 19.2% for clustering using PFT cover and traits, respec-
tively, when the entire study region was used as reference. When 
considering only areas with natural vegetation, biome transitions 
were simulated in 22.8% and 22.4% of the area for clustering using 
cover and traits respectively (Table S5, Figure S9).

4  |  DISCUSSION

We used different approaches to classify vegetation into biomes and 
assessed the agreement between simulated and observation-based 

biome maps, as well as differences between projected biome 
changes until the end of the 21st century. While most classification 
schemes in the context of DGVMs use variables such as cover or LAI 
of different PFTs, we showed that trait patterns simulated by the 
aDGVM2 can be used to delimit biomes. As expected, data-model 
agreement differed between classification approaches and was 
higher for clustering methods using traits than for methods using 
PFTs. Areas projected to undergo transitions under climate change 
differed between methods using traits and PFT cover. Yet, areas 
covered by grasslands and savannas were most vulnerable to climate 
change.

4.1  |  Biome patterns under current conditions

The classification methods reproduced clusters corresponding to 
evergreen forests and to deserts. Areas outside the forests and 
deserts showed disagreement among different classification ap-
proaches. This disagreement can be attributed processes that 
were not considered in aDGVM2 such as land use or herbivory, 
to uncertainties in simulated fire regimes, to uncertainties in eco-
logical and environmental data used to parameterize aDGVM2 
and to the large differences between the F31 biome maps (Fischer 
et al., 2022). These maps were used to inform the clustering and 

F I G U R E  2  Simulated biome patterns for current and future conditions for three different classification approaches, and simulated biome 
changes. Out of all classification methods, we selected the biome classification scheme using PFTs (a–c), one example from the cluster 
analysis using PFTs (d–f), and one example from the cluster analysis using traits (g-i). For the models based on cluster analysis (d,g), models 
with the highest κ value were selected (see Figure 1): Dinerstein et al. (2017) for PFTs and Beck et al. (2018) with trait cluster TC8 for traits. 
Panels (a,d,g) represent current biome patterns, panels (b,e,h) represent future biome patterns, panels (c,f,i) represent areas where biome 
changes between current and future conditions are projected. Note that a separate colour scheme was used for each method (i.e. each row). 
Biomes in a and b: C3G, C3 grassland; C4G, C4 grassland; DeF, deciduous forest; Des, desert; EvF—evergreen forest; Shr, shrubland; Wdl, 
woodland.
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therefore cause differences between biome maps derived from 
aDGVM2.

The highest agreement between observed and modelled bi-
omes was obtained for the cluster analysis using traits and the Beck 
et al. (2018) biome map. The Beck et al. (2018) map is a Köppen–
Geiger classification based on temperature and precipitation and 
represents climate zones. This finding indicates that simulated biome 
patterns are primarily determined by the environmental conditions 
that drive the ecophysiological processes in the model (Kumar 

et al., 2021; Langan et al., 2017). However, within communities simu-
lated at the 1-ha scale, community assembly processes, competition 
and fire influence community composition and traits. For example, 
simulated vegetation height (Figure S10), productivity and biomass 
(Kumar et al., 2021) increased from desert to forest, following a 
rainfall gradient. In contrast, SLA was hump-shaped and commu-
nity assembly selected for highest values in seasonal environments 
(Figure S10). Shrub abundance increased with aridity whereas trees 
outcompeted shrubs in humid areas. These small-scale processes 

TA B L E  1  Data-model agreement and percent of the grid cells projected to undergo biome changes until 2099.

Biome map κ cover κ traits κ class Δ cover Δ traits

Allen et al. (2020) 0.355 0.478 0.366 26.5 22.9

Buchhorn et al. (2019) 0.323 0.397 0.239 26.7 28.3

Beck et al. (2018) 0.264 0.518 0.228 21.3 25.5

Hengl et al. (2018) 0.192 0.348 0.200 25.6 25.8

Dinerstein et al. (2017) 0.406 0.469 0.239 22.4 18.1

Zhang et al. (2017) 0.324 0.496 0.263 18.3 24.7

Netzel and Stepinski (2016) - Map 1 0.298 0.464 0.253 23.2 23.8

Netzel and Stepinski (2016) - Map 2 0.330 0.465 0.239 24.2 21.6

Higgins et al. (2016) 0.322 0.483 0.275 23.8 19.3

Pfadenhauer and Klötzli (2014) 0.266 0.399 0.367 29.5 27.7

Zhang and Yan (2014) 0.234 0.488 0.187 18.6 24.7

Metzger et al. (2013) 0.172 0.307 0.213 28.3 27.9

FAO (2012) 0.342 0.408 0.339 27.9 25.1

Tateishi et al. (2011, 2014) 0.163 0.346 0.327 29.5 28.1

Defries et al. (2010) 0.325 0.443 0.241 21.7 24.6

Ellis and Ramankutty (2008) 0.111 0.320 0.223 27.8 29.8

European Space Agency (2010) 0.188 0.329 0.260 23.4 26.3

Friedl et al. (2010) 0.327 0.432 0.249 21.8 22.9

The Nature Conservancy (2009) 0.350 0.513 0.237 22.4 17.6

Peel et al. (2007) 0.270 0.471 0.229 21.8 24.8

Bartholomé and Belward (2005) 0.196 0.378 0.246 25.2 29.1

Kaplan et al. (2003) 0.246 0.432 0.299 27.4 27.5

Olson et al. (2001) 0.364 0.502 0.237 26.6 19.8

Loveland et al. (2000) 0.299 0.394 0.265 25.0 25.8

Ramankutty and Foley (1999) 0.217 0.435 0.292 16.5 23.2

Leemans (1990) 0.247 0.311 0.283 32.1 29.5

Schultz (1988, 1995, 2002, 2008, 2016) 0.260 0.509 0.293 22.7 22.8

Müller-Hohenstein (1981) 0.301 0.389 0.234 29.6 24.2

Schmithüsen (1976) 0.259 0.366 0.298 29.5 27.0

Whittaker (1975) 0.320 0.415 0.259 26.5 26.4

Breckle and Rafiqpoor (2019); Walter (1964, 1968);  
Walter & Breckle (2002)

0.343 0.517 0.283 24.8 20.2

Mean 0.278 0.427 0.263 24.9 24.7

Note: ‘κ’ quantifies the data-model agreement, ‘Δ’ represents the percent of grid cells projected to undergo biome changes, ‘cover’ represents models 
where cover of different PFTs was used for the cluster analysis, ‘traits’ represents models where trait cluster 8 (TC8) and the Beck et al. (2018) biome 
map were used for the cluster analysis, ‘class’ represents results from applying the biome classification scheme. For the biome classification, the 
percentage of grid cells projected to undergo biome changes is Δ class = 20.1%. This percentage is not related to the F31 biome maps as the maps 
were not used for developing the classification scheme. Simulations were conducted at 1° spatial resolution, the biome maps were aggregated to the 
same grid for the comparisons.
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can modify biome distributions, particularly where alternative biome 
states are possible (Pausas & Bond, 2020). To which degree biotic or 
abiotic factors are the main determinants of simulated biomes re-
mains to be tested in subsequent studies.

4.2  |  Importance of traits for biome classification

Our results indicate that traits describing plant size and growth form 
are most appropriate to distinguish biomes. These traits include height, 
crown area, stem diameter and a trait defining if a woody plant is a 
tree or shrub. Traits describing size generally increased with precipita-
tion and from deserts and grasslands to savannas to different forest 
types (Figure S2). This result agrees with the observed spectrum of 
plant form and function, where size is one major axis (Díaz et al., 2016).

The second major axis, characterized by leaf economic traits, 
was less important in our sensitivity analysis. Given that SLA showed 
clear patterns in the study region (Figure S10), we expected high 
importance of this trait. This result can be explained by the high 
observed variability of SLA within individual plants, species and 
communities (Xu et al., 2020). A better representation of this vari-
ation in the model may enhance the importance of SLA for biome 
classification. Furthermore, it can be explained by the importance 
of traits related to size, that override the effects of other traits. 
Indeed, when we excluded traits related to size from the analysis, 
SLA showed higher importance for biome classification (not shown). 
In the aDGVM2, low and high SLA typically co-occur with ever-
green and deciduous phenology respectively. Evergreen phenology 
emerged in tropical rainforests and non-seasonal forests while de-
ciduous phenology emerged in seasonal environments. Phenological 
traits are relevant for biome classification and have previously been 
used to map phenological zones (Buitenwerf et al., 2015).

Different ecological strategies are characterized by carbon al-
location patterns. For instance, carbon allocation in annual and 

perennial vegetation prioritizes reproduction and persistence re-
spectively (Pfeiffer et al., 2019). We therefore expected strong vari-
ation of allocation traits across biomes in the model result. Although 
the values of allocation traits varied only over small ranges, high 
carbon allocation to leaves was associated with high carbon alloca-
tion to wood but low carbon allocation to belowground storage and 
vice versa. This trade-off represents acquisitive strategies with rapid 
growth in environments with high resource availability and conser-
vative strategies in arid and seasonal environments.

Mean traits of specific biomes differed between cluster analyses 
informed by different biome maps. Nonetheless, broad trait patterns 
were consistent. For example, tropical evergreen forests were rep-
resented by the dominance of tall evergreen trees, irrespective of 
the underlying biome map.

4.3  |  Biome transitions under future conditions

Under future climate change, all classification methods showed 
that tropical rainforests and deserts were stable, whereas other 
biomes showed biome transitions. Yet, the area affected by biome 
transitions varied between 16.5% and 32.1% for different meth-
ods. Previous studies showed that vegetation changes simulated 
by aDGVM2 are primarily driven by increasing atmospheric CO2 
and associated CO2 fertilization effects on woody plants, and to a 
lower extent by changes in precipitation and temperature (Kumar 
et al., 2021; Scheiter et al., 2020).

How changes in simulated traits and variables translate into 
biome transitions differs between classification approaches. In ap-
proaches based on the cover of PFTs, CO2-induced increases in size 
and density of woody plants imply changes in the cover of different 
PFTs. Simulated increases in the cover of tree PFTs imply transitions 
to tree-dominated biome types. In the clustering methods based 
on traits, biome transitions can be attributed to changes in the 

TA B L E  2  Mean trait values of selected traits for the cluster analysis using the Beck et al. (2018) map.

Ind Biome name AL AR Ph H SC SLA Age

1 Tropical rainforest 34.36 7.52 94.2 7.83 1.60 7.53 29

2 Tropical monsoon 33.87 8.19 48.4 8.91 1.80 8.26 76

3 Tropical savanna 33.51 8.13 48.5 4.26 2.24 8.45 131

6 Temp. dry winter warm summer 33.70 7.75 61.7 4.99 1.76 7.56 98

7 Temp. dry winter hot summer 33.16 8.49 31.9 3.60 3.08 9.67 199

14 Temp. dry summer hot summer 33.21 8.26 50.9 1.40 3.26 8.58 199

9 Temp. no dry season hot summer 34.38 7.61 96.9 6.18 1.57 7.29 30

13 Temp. no dry season warm summer 34.37 7.78 97.9 5.62 1.65 7.16 29

8 Arid desert hot 32.84 7.85 40.1 0.21 5.41 7.69 44

5 Arid steppe hot 33.44 7.94 45.5 0.83 4.16 7.89 169

15 Arid desert cold 33.58 7.88 36.1 0.76 3.19 7.57 137

17 Arid steppe cold 33.28 8.23 58.0 1.75 2.85 8.15 188

Note: Ind, index of biome in Beck et al. (2018) map; Biome name, biome name in Beck et al. (2018) map; AL, allocation to leaves (%); AR, allocation to 
roots (%); Ph, percent of evergreen (vs. deciduous) plants (%); H, height (m); SC, stem count (number); SLA, specific leaf area (m2/kg); Age, mean age 
of all trees (years). Mean trait values for all modelled traits per biome are provided in Figure S1.
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community trait composition. Simulated increases in stem diameter, 
height, crown diameter and wood density, and decreases in SLA and 
the stem number of woody plants (Figure S10) indicate a higher pro-
portion of tall and evergreen trees with low SLA and a lower propor-
tion of shrubs in plant communities under future conditions. Such 
changes represent biome transitions to tree-dominated biomes. The 
aDGVM2 also simulated changes in carbon allocation patterns with 
decreases in allocation to bark, reproduction and storage and in-
creases in allocation to leaves, roots and wood. These changes indi-
cate transitions to acquisitive ecological strategies (Díaz et al., 2016) 
that invest more in growth and less in protection and reproduction.

In our results, traits that are affected by climate change are not 
necessarily traits that are most important for biome classification. 
For example, SLA showed a strong response to climate change but 
only low importance for classification. In contrast, traits related to 
size showed strong responses to climate change and high importance 

for classification. How traits will respond to climate change remains 
unresolved. Kühn et al. (2021) investigated responses of traits to 
changes in precipitation and temperature to assess whether specific 
traits maintain plant performance under climate change. These re-
sults indicate that species with lower SLA are more likely to maintain 
productivity and to survive when precipitation decreases. However, 
under increasing temperatures, the role of SLA was less clear.

The comparison of changes in trait patterns and biome patterns 
simulated by aDGVM2 shows broad agreement with the patterns of 
Boonman et al. (2022), despite the different modelling approaches. 
Similar to the aDGVM2 results, Boonman et al. (2022) found decreases 
in SLA, increases in height and increases in wood density across most 
of the study region under climate change (Figure S10). Boonman 
et al. (2022) also projected increases in wood-dominated ecosystems 
and forests such as an expansion of central African forests. Elevated 
CO2 was not considered by Boonman et al. (2022); therefore, these 
biome changes were attributed to climate change effects only.

Biome shifts projected by our modelling approach are affected 
by several sources of uncertainty. First, aDGVM2 shows strong re-
sponses to elevated CO2 that imply increases of productivity, car-
bon stocks and woody vegetation cover, thereby promoting biome 
transitions to more wood-dominated states (Kumar et al., 2021; 
Scheiter et al., 2020). The strength of CO2 fertilization effects is, 
however, still debated. A second source of uncertainty is that land 
use activities such as pasturing or fuel wood harvesting were not 
explicitly simulated (Pfeiffer et al., 2019; Scheiter et al., 2019). Here, 
we masked out areas affected by land use (Potapov et al., 2022, 
Figure S1) and ignored land use changes until the end of the century. 
In reality, forest loss and expansion of urban areas and cropland are 
ongoing (Potapov et al., 2022).

4.4  |  Comparison of biome classification methods

The most common approach for classifying simulation results of 
DGVMs into biomes is based on vegetation features such as LAI or 
fractional cover of PFTs that are characteristic for a biome (Hickler 
et al., 2012; Kumar et al., 2021). The advantages of such ‘expert-
based’ approaches are that they use knowledge on biomes, they 
are reproducible and easy to interpret, and they can be tailored to 
specific regions and applications. Caveats of biome classification are 
that simulated biome patterns and transitions may be highly sensi-
tive to the selection of threshold values that delimit biomes (Scheiter 
et al., 2018, 2020), and that the matching between observed biomes 
and model variables can be challenging.

In contrast, many clustering methods are probabilistic and pro-
vide uncertainty measures and probabilities that a grid cell belongs 
to a specific biome (Boonman et al., 2022). The assignment to a 
biome is based on the similarity of vegetation features within each 
biome and, in the case of unsupervised classification, not informed 
by a priori information on observed biome distributions (Higgins 
et al., 2016). Unsupervised classification was not used in this study, 
and its suitability remains to be tested.

F I G U R E  3  Mean traits of evergreen forest in different biome 
classifications. For each of the F31 biome maps, mean traits of 
the corresponding cluster analyses were calculated. Each point 
represents the mean trait value of one biome map. Units are: age—
years/10; height—m; SLA—m2/kg; stem count—number of stems per 
plant; evergreen—fraction of evergreen trees; allocation—fraction. 
Note, that age was divided by 10 and that the range of the y-axis 
differs between the panels. ‘AllocWood’, ‘AllocStor’, ‘AllocRoot’, 
‘AllocRepr’ and ‘AllocLeaf’ are traits describing carbon allocation to 
wood biomass, storage, roots, reproduction and leaves.
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F I G U R E  4  Importance of different traits in cluster analyses. Importance is represented by the percent of models that include the trait in 
a randomized design with variable number of randomly selected traits. Analyses were conducted including all traits (TC1, panel a) and only 
weakly correlated traits (WC, panel b). Traits in the analysis represent mean trait values of all plants in simulated grid cells.
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F I G U R E  5  Consensus maps of biome transitions until 2099. The consensus maps were derived by counting the number of models that 
simulate a biome change in each simulated grid cell, (a) 31 models using cover of different PFTs, (b) 31 models using traits from TC8 and (d) all 
63 models (1 classification using PFTs, 31 cluster analyses using PFTs, 31 cluster analyses using traits). Panel (c) shows the difference between 
models using traits and models using PFT covers (difference between panels a and b), and illustrates where biome projections from clustering 
methods with PFTs and traits deviate. We constrained the values to a range between −15 and 15 to improve the visibility of the differences.
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We demonstrated that three aspects are relevant for biome clas-
sification: (1) the model variables used for classification, (2) the clas-
sification method and (3) the biome map for developing classification 
methods and for data-model comparisons. Modellers need to select 
appropriate data and models for each aspect. The uncertainty asso-
ciated with such decisions was clearly demonstrated by our analysis. 
For (1), we recommend to use traits for biome classification instead 
of PFT cover, if such information is available in the model. To maxi-
mize data-model agreement, all available traits should be included, 
particularly traits related to size. For (2), we recommend to apply 
supervised clustering methods for classification, informed by obser-
vation-based biome maps, because it showed the best performance 
and a priori definition of thresholds to match observation-based bi-
omes is not necessary. For (3), we recommend to compare simulated 
biome patterns to multiple observation-based biome maps to ac-
count for uncertainties in biome classification. Thereby, a subset of 
the Fischer et al. (2022) product can be selected that is most appro-
priate for the study region or that best matches the PFTs and biomes 
simulated by the model. Classification methods with high accuracy 
provide a lower bound for biome transitions according to our results.

Merging different biome maps into a consensus map is chal-
lenging if they use a variable number of different biome types 
(Fischer et al., 2022). Yet, biome maps could be merged by first re-
classifying different biome maps into a set of common biomes and 
then merging biome maps, for example, by identifying the most 
frequent biome types. Alternatively, maps representing areas with 
biome transitions can be merged by counting the number of maps 
that project biome transitions per grid cell. Such an approach pro-
vides a measure of uncertainty for biome transitions and was ap-
plied in this study.

5  |  CONCLUSIONS

Our results showed that the selection of methods for classifying simu-
lated vegetation into biomes influences both the simulated current 
and the future biome distributions, as well as the area at risk of ex-
periencing a biome change. This result has important implications for 
management, climate mitigation and adaptation as it is crucial whether 
model results indicate that 32.1% of the study area may be affected 
by biome changes or merely 16.5%. Studies of biome changes should 
therefore account for uncertainties in biome classification by using 
different approaches. Aggregation of model results based on differ-
ent climate forcing data sets or different DGVMs in model ensembles 
is already state of the art, and applying different methods for biome 
classification schemes adds a further dimension to such studies.
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