
Abstract Process-based land surface models are important tools for estimating global wetland methane 
(CH4) emissions and projecting their behavior across space and time. So far there are no performance 
assessments of model responses to drivers at multiple time scales. In this study, we apply wavelet analysis to 
identify the dominant time scales contributing to model uncertainty in the frequency domain. We evaluate seven 
wetland models at 23 eddy covariance tower sites. Our study first characterizes site-level patterns of freshwater 
wetland CH4 fluxes (FCH4) at different time scales. A Monte Carlo approach was developed to incorporate flux 
observation error to avoid misidentification of the time scales that dominate model error. Our results suggest 
that (a) significant model-observation disagreements are mainly at multi-day time scales (<15 days); (b) most 
of the models can capture the CH4 variability at monthly and seasonal time scales (>32 days) for the boreal 
and Arctic tundra wetland sites but have significant bias in variability at seasonal time scales for temperate and 
tropical/subtropical sites; (c) model errors exhibit increasing power spectrum as time scale increases, indicating 
that biases at time scales <5 days could contribute to persistent systematic biases on longer time scales; and 
(d) differences in error pattern are related to model structure (e.g., proxy of CH4 production). Our evaluation 
suggests the need to accurately replicate FCH4 variability, especially at short time scales, in future wetland CH4 
model developments.

Plain Language Summary Land surface models are useful tools to estimate and predict wetland 
methane (CH4) flux but there is no evaluation of modeled CH4 flux error at different time scales. Here we use a 
statistical approach and observations from eddy covariance sites to evaluate the performance of seven wetland 
models for different wetland types. The results suggest models have captured CH4 flux variability at monthly or 
seasonal time scales for boreal and Arctic tundra wetlands but failed to capture the observed seasonal variability 
for temperate and tropical/subtropical wetlands. The analysis suggests that improving modeled flux at short 
time scale is important for future model development.
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Key Points:
•  Significant model-observation 

disagreements were found at multi-
day and weekly time scales (<15 days)

•  Models captured variability 
at monthly and seasonal time 
(42–142 days) scales for boreal 
and Arctic tundra sites but not for 
temperate and tropical sites

•  The model errors show that biases at 
multi-day time scales may contribute 
to persistent systematic biases on 
longer time scales
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1. Introduction
Methane (CH4) is a potent important greenhouse gas in terms of radiative forcing whose concentration in the 
atmosphere (∼1,900 ppb) has increased by approximately 150% since pre-industrial times (Canadell et al., 2021; 
IPCC, 2013). Methane emitted from wetland ecosystems is the largest natural source at ∼120–180 Tg CH4 yr −1 
(Poulter et  al.,  2017; Saunois et  al.,  2020) and contributes to short-term trend and interannual variability 
observed in atmospheric CH4 concentration (Bousquet et al., 2006; Saunois et al., 2017; Zhang, Fluet-Chouinard, 
et al., 2021; Zhang, Poulter, et al., 2021). Our understanding of global wetland CH4 emissions heavily relies on 
process-based wetland CH4 models, which incorporate biogeochemical mechanisms, climate forcing variables 
(e.g., temperature), and spatio-temporal distributions of surface inundation and wetland extent across the world 
(Melton et al., 2013; Wania et al., 2013; Xu, Riley, et al., 2016; Xu, Yuan, et al., 2016; Zhang, Fluet-Chouinard, 
et al., 2021; Zhang, Poulter, et al., 2021). These models play a critical role in diagnosing and forecasting terres-
trial CH4 dynamics across space and time, but their wetland CH4 flux (FCH4) estimates have large uncertainties 
due to potential biases in parameterizations, limited mechanistic characterization of known CH4 processes such 
as thermal impact of rainfall (Neumann et al., 2019) and microbial dynamics on FCH4 (Chadburn et al., 2020). 
However, it is unclear how well the current wetland models can replicate the observed FCH4 variability and 
magnitude at different time scales. Therefore, it is necessary to evaluate wetland CH4 model performance against 
observations to identify temporal model error patterns and inform future model development.

So far there has not been a major synthesis effort to evaluate multiple wetland CH4 models against global cover-
age of eddy covariance (EC) observations from different biomes using a standard simulation protocol, despite a 
few efforts to evaluate a single wetland CH4 model at multiple sites (Ringeval et al., 2014; Wania et al., 2010)  and 
a model inter-comparison (Melton et  al.,  2013; Wania et  al.,  2013). Moreover, current models may have a 
biased seasonal cycle over temperate and tropical wetlands, as suggested by a few recent regional studies (Lunt 
et al., 2019; Maasakkers et al., 2021; Yu et al., 2021). It is necessary to evaluate the simulated FCH4 variability 
against EC observations for different biomes at different time scales. Arguably, model development to represent 
terrestrial CH4 processes has been hindered by (a) limited number of local-to-regional CH4 observations to eval-
uate model outputs; (b) lack of understanding of the underlying processes informed by EC measurements and 
how well these processes are represented in the models. Evaluations of wetland CH4 models against the recently 
complied database FLUXNET-CH4 (Delwiche et  al.,  2021; Knox et  al.,  2019,  2021) offer an opportunity to 
improve understanding of current model performance for different wetland types.

Despite previous observational synthesis studies (Chang et al., 2021; Delwiche et al., 2021; Knox et al., 2021) 
that have identified the major controlling factors that regulate temporal variations in freshwater wetland FCH4 at 
different time scales, it is currently unknown how accurate wetland CH4 models are in predicting FCH4 across 
time scales and what factors are likely causing model biases across different temporal scales. Knox et al. (2021) 
demonstrated that dominant factors controlling the seasonality in EC-based FCH4 vary with wetland types and 
the major processes that regulate FCH4 vary at different time scales (e.g., from sub-daily to seasonal). For exam-
ple, although soil temperature simulations are well established in wetland models with different thermal param-
eterization schemes, the representation of the modeled relationship between FCH4 and temperature should be 
closely evaluated since it may affect model performance for the high latitudes. Examples include cold regions 
influenced by freeze-thaw cycles where FCH4 may occur during the zero-curtain period when subsurface soil 
temperature are poised near 0°C (Tao et al., 2021; Zona et al., 2016). In addition, temperature hysteresis could 
contribute to different FCH4 drivers across seasons (Chang et al., 2021). In contrast, models tend to use different 
proxies to calculate microbial CH4 production (e.g., Gross Primary Production, Net Primary Production [NPP], 
ecosystem Heterotrophic Respiration [Reco], and carbon substrate concentrations), which likely influences simu-
lated accuracy in reproducing FCH4 at different time scales.

It is difficult to diagnose the mechanisms responsible for the lack of agreement between model and observation 
using conventional model-fitting approaches (Schaefer et al., 2012; Taylor, 2001) that apply statistical metrics 
(e.g., RMSE, r 2, standard deviation). In contrast, model-observation evaluations in the frequency domain using 
wavelet analysis (Figure 1) or Fourier transform can provide insights about model-observation disagreements 
at different temporal scales (Dietze et al., 2011; Stoy et al., 2013; Vargas et al., 2010). Wavelet analysis is espe-
cially useful for model evaluation since, compared to Fourier transform, it can identify not only the time scales 
that influence a signal but also inform when those time scales are significant. Previous studies have identified 
disagreement between models and observations for carbon dioxide (CO2) fluxes across different ecosystems 
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(Golub et al., 2023; Li et al., 2023; Richardson et al., 2012; Schwalm et al., 2010; Stoy et al., 2013) using wave-
let analysis, and have found that (a) model errors in CO2 flux peak at the diurnal scale and (b) the model error 
patterns are associated with model structure and environmental drivers. However, so far there is no assessment for 
FCH4. Consequently, assessments of model-observation agreements using wavelet analysis are needed to identify 
discrepancies between observed and modeled FCH4 and provide insights for model development.

Our study aims to evaluate the performance of wetland CH4 models in the frequency domain against a large 
ensemble of EC measurements of ecosystem-scale FCH4. The goal is to quantify the most important time scales 
(e.g., multi-day, monthly, and seasonal) for the variability of FCH4 across wetland types and provide insights 
about the time periods in which models should be improved. Our specific objectives are to: (a) quantify the 
most relevant time-scales for the variability of FCH4 in the models and observations at the site-level, (b) test the 
disagreement between in situ observations and modeled FCH4 in time-frequency domain, (c) give insights into 
model structures responsible for model/observation mismatch. Based on previous findings for CO2 flux (Dietze 
et al., 2011; Stoy et al., 2013), we hypothesize that (a) models will have better model-observation agreement in 
terms of flux variability at longer time scales (e.g., monthly to seasonal) than short to intermediate time scale 
(e.g., multi-day to sub-monthly) as important biological processes regulated by seasonal variation (e.g., CH4 
production response to temperature) are adequately formulated in the models; (b) models will tend to fail at multi-
day and sub-monthly time scales due to forcing error propagation and limited representation of modeled plant 
physiology and biogeochemical processes; (c) The models have better performance over boreal and Arctic tundra 
sites than temperate and tropical sites, as temperature become less dominating in controlling FCH4 variability for 
those wetland types.

2. Materials and Methods
We used data from 23 freshwater wetland sites included in the FLUXNET-CH4 Community Product (Delwiche 
et  al.,  2021) to evaluate seven wetland CH4 models from the Global Carbon Project (GCP) Methane Budget 
(Saunois et al., 2020; Stavert et al., 2021). The model simulations follow a common simulation protocol using 
a gridded climate data set from Climate Research Unit (CRU/CRU-JRA; CRU-JRA is a 6-hourly interpolated 
climate data set from Japanese Reanalysis data; JRA, i.e., aligned with CRU on the monthly basis) as the inputs. 
The selected EC sites have a total of 70 site-years of data classified as boreal forest/taiga (n = 25), Arctic tundra 
(n = 15), temperate (n = 25), and tropical/subtropical wetlands (n = 5). We take into account the flux meas-
urement errors in identifying model-data disagreements with observations by assessing the contribution of 
flux-tower observations error via a Monte Carlo approach.

Figure 1. A conceptual description of differences between information in the time-domain and the frequency domain and 
an example of model-data evaluation in the frequency domain (adapted from Vargas et al. (2010)). A time series can be 
decomposed into time and frequency (i.e., time scale) domain using the continuous wavelet transform. The resulting wavelet 
power spectra are plotted on what is referred to as wavelet half-plane, where time is along x axis, frequency/time scale along y 
axis, and spectra power indicated by color. Statistically significant areas are clearly distinguished by thick black contour lines. 
The white line is the cone of influence (COI) beyond which wavelet coefficients are unreliable (referred to as “edge effect”). 
While the COI is included in the calculations, we do not draw any conclusions or interpretations based on the wavelet 
coefficients beyond the COI.
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2.1. FLUXNET-CH4

Twenty-three sites from the FLUXNET-CH4 database were selected for the analysis (Table 1; Figure 2) based on 
three criteria: (a) tidal, upland, and agricultural sites were excluded from the analysis as the models only simulate 
natural inland freshwater wetland FCH4; (b) there had to be at least one complete site-year of overlapping EC 
observations and model results for all seven wetland models; and (c) only restored freshwater wetlands at later 
stages of wetland development (>10 years) were included in the analysis.

In order to match the broad definition of freshwater wetlands in the models, selected EC sites were regrouped 
to represent a broad range of wetland/biome type along a latitudinal gradient. The original freshwater wetland 
types were classified into bog, fen, marsh, and swamp based on site-specific literature (Delwiche et al., 2021). 
The biome types (Arctic tundra, boreal forest/taiga, temperate, and tropical/subtropical), were defined based upon 
Olson et al. (2001) using site coordinates and vegetation types to group wetland sites. Since continuous wavelet 
decomposition requires a gap-free time series, we used gap-filled data from the FLUXNET-CH4 database. Details 
on data standardization and gap-filling are described in Knox et al. (2019) and Delwiche et al. (2021). Gaps in 

Site ID Country Latitude Longitude Biome type Wetland type Start year End year Data reference

BR-NPW Brazil −16.50 −56.41 Tropical/Subtropical Seasonal 2014 2016 Dalmagro 
et al. (2019)

CA-SCB Canada 61.31 −121.30 Boreal forest Bog 2014 2018 Sonnentag and 
Helbig (2020)

FI-LOM Finland 68.00 24.21 Boreal forest Fen 2008 2010 Lohila et al. (2020)

MY-MLM Malaysia 1.46 111.15 Tropical/Subtropical Swamp 2014 2015 Wong et al. (2020)

RU-VRK Russia 67.06 62.94 Arctic tundra Wet Tundra 2008 2008 Friborg and 
Shurpali (2020)

SE-DEG Sweden 64.18 19.56 Boreal forest Fen 2014 2017 Nilsson and 
Peichl (2020)

SE-ST1 Sweden 68.35 19.05 Arctic tundra Fen 2012 2014 Jansen et al. (2020)

SE-STO Sweden 68.36 19.05 Arctic tundra Bog 2015 2015 Jansen et al. (2020)

US-ATQ USA 70.47 −157.41 Arctic tundra Wet Tundra 2014 2014 Zona and 
Oechel (2020a)

US-BZB USA 64.70 −148.32 Boreal forest Bog 2014 2016 Euskirchen and 
Edgar (2020)

US-BZF USA 64.70 −148.31 Boreal forest Fen 2014 2016 Euskirchen (2022a)

US-BZS USA 64.70 148.32 Boreal forest Swamp 2015 2016 Euskirchen (2022b)

US-EML USA 68.88 −149.25 Arctic tundra Bog 2015 2016 Schuur (2020)

US-ICS USA 68.61 −149.31 Arctic tundra Wet Tundra 2015 2016 Euskirchen 
et al. (2020)

US-IVO USA 68.49 −155.75 Arctic tundra Wet Tundra 2013 2016 Zona and 
Oechel (2020b)

US-LOS USA 46.08 −89.98 Temperate Fen 2014 2017 Desai and 
Thom (2020)

US-ORV USA 40.02 −83.02 Temperate Marsh 2011 2015 Bohrer and 
Morin (2020)

US-OWC USA 41.38 −82.51 Temperate Marsh 2015 2015 Bohrer and 
Morin (2020)

US-SNE USA 38.04 −121.75 Temperate Marsh 2016 2017 Shortt et al. (2020)

US-TW1 USA 38.11 −121.65 Temperate Marsh 2011 2017 Valach et al. (2020)

US-UAF USA 64.87 −147.86 Boreal forest Bog 2011 2017 Iwata et al. (2020)

US-WPT USA 41.47 −82.99 Temperate Marsh 2011 2013 Chen and Chu (2020)

Table 1 
Summary of Site Characteristics
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FCH4 were filled using artificial neural networks (ANN) as described in Knox et al. (2019). An estimate of FCH4 
observation error at every time step was generated, accounting for uncertainties associated with the gap-filling 
process and random measurement errors. The errors of observed FCH4 follows a double exponential distribution 
(Knox et al., 2019), which has a fatter tail than normal and is highly heteroscedastic, with error increasing linearly 
with the absolute magnitude of the flux, similar to CO2 flux errors as suggested by previous studies (Hollinger 
& Richardson, 2005; Lasslop et al., 2008; Richardson et al., 2006, 2008). These uncertainties are incorporated in 
the spectral null model, as described in the spectral analysis (Section 2.3).

2.2. Wetland FCH4 Models

Our study applies seven global wetland CH4 models from the GCP Methane Budget activities (Saunois 
et  al.,  2020), including Canadian Land Surface Scheme Including Biogeochemical Cycles (CLASSIC), 
E3SM Land Model (ELM), Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS), Jena Scheme 
for Biosphere-Atmosphere Coupling in Hamburg HelsinkI Model of MEthane buiLd-up and emission 
(JSBACH-HIMMELI), Lund-Potsdam-Jena Wald Schnee and Landschaft version (LPJ-wsl), Terrestrial Ecosys-
tem Model-Methane Dynamics Module, and TRIPLEX-GHG. The details about the structure and configurations 
of the wetland CH4 models can be found in Table 2. All the models were run to steady-state using their own 
parameters and no site-specific tunings were done. Ancillary data such as soil texture and CH4-related parameter 
sets were used as model-specific inputs (Table 2). Thus the assumptions about the local environment at each site 
depended on the individual model's setup. The models were run at the global scale at their native spatial reso-
lution following a prescribed protocol to facilitate intercomparison. The models were run at the grid cell level 
using the CRU-JRA 6-hourly, land surface, gridded climate data set, which was constructed by combining the 
CRU data set and the reanalysis from Japanese Reanalysis data (JRA) produced by the Japanese Meteorological 
Agency. The CRU-JRA was adjusted where possible to align with the monthly climate data set CRU (version 
ts3.26) data. For CLASSIC that requires climate inputs at half-hour time step, the CRU-JRA has been interpo-
lated to half-hourly using a linear interpolation or random distributions. LPJ-wsl model uses the monthly CRU 
data set, and a weather generator within the model to produce precipitation events and daily temperature. Here 
we evaluate the wetland FCH4 strength (gCH4 m −2 day −1), which was defined as the total flux over a 24-hr period 
over a standardized wetland area (m 2). The FCH4 strength is calculated as FCH4 divided by wetland areal fraction 
within the grid cell to exclude the effect of inundation dynamics in the FCH4 calculation.

The wetland CH4 models can be generally characterized as a set of functions describing the biogeochemical 
processes that control CH4 production and oxidation through methanogenesis and methanotrophy, and the 
biophysical processes that regulate CH4 transport from the soil to the atmosphere (Table 2). Methanogenesis in 
the models is linked to different proxies (e.g., carbon substrate, heterotrophic respiration, NPP) with a wide range 

Figure 2. Locations of eddy covariance sites from FLUXNET-CH4 in this study, with sites colored by wetland types. The 
variable size of dots in the map corresponds to the sample size (i.e., number of site-years) with a larger dot indicating a higher 
sample size. Base map used came from https://hub.arcgis.com/datasets/esri::world-countries.
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of model complexity—more sophisticated models include wetland Plant Functional Types (PFTs) and explicitly 
simulate the processes of CH4 production, consumption, and transport, while the simplified models use general-
ized empirical equations to simulate net flux without considering individual components of FCH4. More complex 
model structures provide capacity to capture the important temporal patterns of FCH4 but this invariably leads 
to additional parameter uncertainty due to the scarcity of observational constraints. The response function of 
FCH4 dynamics to temperature in each model is another factor that influences the simulated time series of FCH4. 
For example, for high-latitude wetlands, model representations of freeze-thaw cycles influence the performance 
in capturing FCH4 during the early spring thaw and zero-curtain period (Zona et al., 2016). It is worth noting 
that assessing the overall complexity of the wetland models is challenging due to its integrations with multiple 
processes such as freeze/thaw cycle, soil thermal schemes, nutrient cycles, and other components within land 
surface models. While certain wetland methane modules may appear simpler than others in terms of represented 
processes and parameters, it is not straightforward to establish a clear ranking of complexity.

2.3. Evaluation Strategy and Wavelet Analyses

This analysis focused on the comparison of observed and modeled FCH4. All analyses were conducted using 
daily time series. Since the modeled FCH4 fluxes are not directly comparable to the EC measurements due to the 
spatial mismatch between modeled gridded fluxes and site-level observations, we evaluate simulated FCH4 by 
calculating the normalized residual error (NRE, εs,m,t) between normalized model and observation as:

𝜀𝜀𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

(

Model𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 − Model𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝜎𝜎𝑠𝑠𝑠𝑠𝑠

)

−

(

Data𝑠𝑠𝑠𝑠𝑠 − Data𝑠𝑠𝑠𝑠𝑠

𝜎𝜎𝑠𝑠

)

 (1)

Where the subscripts denote site (s), model (m), and time (t) and the overbar denotes the average over the full 
length of the time series. The model and observation results were mean-centered to eliminate biases in the net 
flux, and divided by the standard deviation (σ) across the entire record to normalize the amplitude of variability. 
This NRE metric can be used to compare the synchrony of the model with the observation rather than evaluating 
absolute model biases.

We applied wavelet analysis to decompose the FCH4 time series into an additive series of wave functions that 
have time scales of variability from 2 to 124 days. Wavelet analysis can identify the time scales that dominate 
a signal because wave functions that best match the fluctuations in the data will explain the most variance (i.e., 
power). Specifically, we used the continuous wavelet transform because of its ability to translate a time series into 
the frequency domain and its suitability for visual interpretation. The ability to discern small intervals of scales 
(i.e., spectral resolution) depends on the choice of the mother wavelet function (Cornish et al., 2006). For this, we 
applied the Morlet wavelet, a complex non-orthogonal wavelet that has been widely used for geophysical applica-
tions (Torrence & Compo, 1998) and biometeorological measurements (Meyers et al., 1993). Following a similar 
definition from Knox et al. (2021), time scales of variation were classified into four bands, “multi-day scale” 
(2–5 days), “weekly scale” (5–15 days), “monthly scale” (15–42 days), and the “seasonal scale” (>42 days). It is 
important to note that the “seasonal” time scale defined in our study, with an upper bound of 124 days, is notably 
shorter compared to the “seasonal” time scale defined in Sturtevant et al. (2016) and Knox et al. (2021). Conse-
quently, the seasonal time scale in our study is more in line with a time scale of approximately up to 3 months. The 
four bands were then summarized on both a by-site and by-model basis regarding the relative contribution of each 
band to the overall spectra. The continuous wavelet decomposition was computed using the Morlet wavelet basis 
function (function name: wt) from the R package “biwavelet” (Gouhier et al., 2021). We use the bias-corrected 
wavelet power following Y. Liu et al. (2007) to ensure a consistent definition of power in order to enable compar-
isons across spectral peaks. Wavelet power spectra on very long timescales (>64 days) often exceed the so-called 
cone-of-influence (COI) beyond which edge effects become important due to incomplete time locality across 
frequencies. Therefore, the power spectra outside of COI is not interpreted here.

An appropriate null model is important to determine whether the model-observation disagreement is statistically 
significant. We applied a similar approach to that of Dietze et al. (2011) to generate 1,000 sets of “pseudo” time 
series for each site using a Monte Carlo approach. The NRE between the pseudo time series and the original data 
and the wavelet spectra of the NRE were calculated in the same way as the model errors. The 1,000 replicates 
of pseudo time series were generated with the uncertainties estimated by Knox et al. (2019) accounting for both 
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Figure 3. Example of wavelet decomposition and identification of the LPJ-wsl model error with eddy covariance observations at the US-WPT site for 2011–2013. (a) 
Time series of observations (Obs) methane flux (FCH4, red line) with 1 − 𝜎 observational uncertainty (shaded red area) and LPJ-wsl modeled FCH4 (Model, blue line). 
(b) Normalized time series of FCH4 from model and observations; the shaded area in red represents the upper and lower range of the normalized pseudo time series 
from the Monte Carlo simulations. (c) Time series of normalized residual error (NRE) (Z-score of NRE) between wetland model and observations, with shaded area in 
red representing NRE between observations and normalized pseudo time series, that is, NULL model. (d) Wavelet coefficients displayed in the wavelet half-plane for 
the normalized observations, (e) same as (d) but for LPJ-wsl modeled FCH4 (Model), (f) NRE between model and the observations.
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uncertainties in the ANN-based gap-filling algorithm and measurement uncertainty. Systematic errors due to 
representativeness (Chu et al., 2021; Pallandt et al., 2021), lack of nocturnal mixing, sub-mesoscale circulations, 
and other factors are not discussed here (Baldocchi,  2014; Peltola et  al.,  2015). Also note that, because the 
uncertainty from ANN estimation was strongly linked to the sample size, the flux errors tended to be high when 
the measurement availability was limited by local meteorological conditions such as the snow presence and soil 
freeze and thaw cycles.

The wavelet spectra were evaluated in the following ways:

•  Significant spectra regions. The significant region was defined by counting the total number of area in the 
time-frequency distribution where the spectral characteristics of FCH4 and model-observation mismatch were 
statistically significant. It was calculated by re-coding significant power as 1 and non-significant power as 0 
and then stacking all site-years to count the total number.

•  Marginal distribution of power spectrum of the NRE. The disagreements in the marginal power spectra were 
aggregated by the four defined time bands to summarize model performance across different time scales.

•  Scaling exponent ɑ for each model was calculated to quantify the spectral properties of persistence of auto-
correlation structure (i.e., memory effect) in model error. This is particularly relevant because land surface 
models employ numerical discretization methods and numerical approximations (e.g., soil thermal schemes 
that affects FCH4 calculation), which can introduce errors that accumulate and impact subsequent model 
predictions. Scaling exponent ɑ was expressed as the slope of the log-log transformed relationship between 
frequency (i.e., time scale) and power. The scaling exponent ɑ with a range between 1 and 2 was considered as 
intermediate “pink” noise between “white” and “red” noise. White or red noise indicated that if the modeled 
FCH4 had a persistent memory effect (i.e., autocorrelation structure), which can be attributed to model error 
which resulted in larger and long-lived systematic biases at longer time scales.

One-way analysis of variance (ANOVA) was used to diagnose the relationship between model structure and the 
marginal distribution of spectra power for wetland types. The marginal distribution of spectral power of each 
band was compared with different groups of models for each wetland type. The model structures are defined 
in Table S1 in Supporting Information S1 to identify if there were significant differences (p < 0.001) between 
model groups.

3. Results
3.1. Wavelet Decomposition of FCH4 Time Series From LPJ-wsl at an Example Site

Figure 3 shows the time series of FCH4 from the observations and one model (LPJ-wsl) and demonstrates its 
wavelet-based power spectra at one marsh site (US-WPT) in the central U.S. (Chu et al., 2015). We use this 
example to explain the Monte Carlo analysis with pseudo-data and discuss the model-observation disagreement. 
Figure 3a shows that FCH4 simulated by the LPJ-wsl model generally captured the seasonal cycle, but with a 
lower magnitude at the freshwater marsh site. The model also captured a dip in FCH4 after the peak during the 
June-July-August (JJA) months, which is consistent with the observed temporal pattern. Figure 3b suggests that 
the temporal patterns of normalized FCH4 between the model and observations have a good agreement (r = 0.83, 
p < 0.05). The relatively high uncertainty in the observed FCH4 at the beginning of 2011 is mainly due to the 
limited number of observations, which causes higher uncertainty in the gap-filling method. This example shows 
that the discrepancies between the modeled and observed FCH4, and the NRE uncertainty range from the null 
model, tend to be higher during the JJA months when the flux intensity is relatively high and highly variable, or 
when the data availability is limited (Figure 3c).

Both the observation and the model show significant power spectra during the JJA months (Figures 3d and 3e). 
The modeled FCH4 have a longer range of dominant time scale from 2 to 64 days than the observed 2–8 days. The 
modeled FCH4 has weaker spectral powers (colors toward blue) during the winter and spring seasons, indicating 
that the model may have less variability than the observations during the winter and spring seasons (Figures 3d 
and 3e). It is important to note that the power spectra of the NRE are not the difference between the wavelet 
coefficients displayed in Figures 3d and 3e.

The wavelet plot for the NRE suggests the largest discrepancies is mostly from JJA months, reflected as strong 
spectral power in the wavelet NRE (Figure 3f). It is encouraging that there is a degree of correspondence between 
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the model and observations: (a) the mismatch between model and observations is not significant at the monthly 
and seasonal time scale (>32 days) except for 2013 when anomalously high FCH4 is observed in August; (b) 
the wavelet coefficients in NRE have a low magnitude during the December-January-February (DJF) months, 
suggesting a less important role of the winter season fluxes at US-WPT. It is also worth noting that the seasonal 

Figure 4. Wavelet evaluation of FCH4 for the LPJ-wsl model against 3 site-year observations (2011–2013) at US-WPT site. (a) Count of significant power in the 
time-frequency domain for the time series of FCH4 observations. (b) Same as (a) but for LPJ-wsl modeled FCH4. (c) Count of significant power of normalized residual 
errors (NRE) between model and observations. (d) Marginal distribution of power spectra of NRE as compared to the null spectra (99% of confidence interval, solid 
black line) based on measurement uncertainties for each year 2011, 2012, and 2013 (red, blue, and green lines, respectively). (e) The marginal distribution of power 
spectra of NRE divided by the maximum of the null spectra (NULL) on a log scale. Values greater than 0 (dotted line) indicate that the model error has significantly 
more spectral power at those time scales than would be expected based on observation error.
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cycle of observed FCH4 has much higher year-to-year variations than the modeled fluxes, which is partly due to 
the strong influence of local environmental conditions on the measured seasonal cycle that are not captured by 
the model.

3.2. Evaluation of LPJ-wsl at the Example Site

Model-observation discrepancies in LPJ-wsl at the US-WPT site were highest at daily to weekly scales. Figure 4 
show that the measurements identify significant regions at high frequency (i.e., multi-day to weekly scales) 
while LPJ-wsl displays significant regions in the whole range of frequencies with more areas at the mid-to-low 

Figure 5. Significant model-observation disagreement along with time scales for all sites by biomes, represented by the marginal distribution of significant regions of 
normalized residual error. High values of the significant region indicate high tendency of model-observation mismatch and vice versa. The significant region is defined 
as the areas where the wavelet power spectrum is statistically significant (95% confidence interval). The marginal distribution of significant regions is then calculated 
by stacking all site-years to count the significant power in the time-frequency domain.
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frequency (i.e., monthly to seasonal scales). LPJ-wsl tends to underestimate the time span of FCH4 pulses at a 
high frequency, with strong pulse emission only occurring in late July, indicating less variability in the modeled 
FCH4 during the JJA months. Regarding the disagreement between model and observations, most of the signif-
icant regions are in the multi-day to weekly scales, suggesting the model failed to capture the flux variability at 
these time scales. The discrepancy in FCH4 only occurs from May to August while it is negligible during the DJF 
months, when FCH4 are small and uncertainty is proportionally large.

Figure 4d provides an example of the model-observation mismatch in the global power spectrum for LPJ-wsl 
and observed FCH4 at US-WPT in each year separately. Figure 4d is the marginal distribution of the full error 
spectrum by site-year in Figure 3f, in comparison to the maximum of the spectra of observation error from the 
Monte Carlo estimates. Here we choose a 99% confidence interval (CI) to define the criteria because, unlike CO2, 
FCH4 is highly spatially heterogeneous and has much higher year-to-year variability. To facilitate the compari-
son, we divided the model-data error spectra by the 99% CI of the observation error spectra for each time scale 

Figure 6. Model performance along time scales with a consideration of uncertainty in observations, reflected by the comparison of model error spectra to the null 
spectra. The power spectra (Power) are divided by the upper confidence interval of the null (NULL) model (99% quantile) based on logged observations, following the 
same calculation as Figure 4e. A model error spectrum greater than 0 (horizontal black line) indicates more significant spectral power at these time scales. The slope of 
the fitted curve represents the scaling component ɑ.
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(Figure 4e). Any time scale that falls above the horizontal line (>0) indicates a model residual error that is higher 
than the uncertainty in the observations. The error of the model is constantly increasing with time-scale, while 
the random uncertainties in FCH4 are declining with time-scale with the highest uncertainties at multi-day scales. 
Here the estimate of the scaling exponent ɑ for the LPJ-wsl model at US-WPT sites ranged from 1.5 to 1.7, 
suggesting a moderate correlation structure (i.e., pink noise).

3.3. Significant Regions of NRE Between the Models and Data

Next, we present the significant regions of model-observation mismatches for all 23 sites and all seven models 
(Figure 5). Our results suggest that the models have diverse performance with the largest mismatch occurring 
at the multi-day times scales. For most of the models, the significant mismatch is lower during monthly or 
seasonal time scales. This pattern confirms the hypothesis that the models generally have better performance 
in simulating  the flux variability at longer time scales than at short-to-intermediate time scales. The increases 
in  significant mismatch at the lowest frequency time scale (>64 days) are likely due to the edge effect, reflecting 
the limited length of the time series (365 days for a site–year) rather than a confirmation of model performance 
at capturing fluxes at the time scale. Across the wetland models there are diverse patterns of significant regions 
in FCH4, most of which are different from the observation-based patterns, suggesting that there are significant 
discrepancies between model structures and observed process controls (Figure S1 in Supporting Information S1). 
The observation-based patterns suggest that most of the significant high power is concentrated within the time 
scale less than 7 days from May to August (wet season for tropical sites), while the models tend to have relatively 
high power at a lower frequency (time scale larger than 14 days) at different time periods of the year depending 
on different model structure.

The comparison of significant regions in model-data mismatch suggests that the models have varying behavior 
on different wetland types (Figure 5). The majority of models show broadly consistent patterns of significant 
mismatch across time-scales for the boreal forest and temperate regions. In contrast, the patterns for tropical 
and subtropical wetland types is diverse among the wetland models. Note that the small sample size of tropical/
subtropical wetlands in our study also has an impact on the representativeness of site-level observations. The 
significant regions for boreal forest and Arctic tundra regions show high power during the JJA seasons (Figure 
S2 in Supporting Information S1), indicating a consistent dominant control (likely temperature) in the models 
for these wetlands as suggested by recent studies (Irvin et al., 2021; Knox et al., 2021). For tropical/subtrop-
ical wetlands, the significant regions in NRE are spread over all time-scales with diverse patterns across the 
models, indicating the causes of mismatch with models differ as daily mean temperature becomes less dominant 
in controlling FCH4 variability and other processes (e.g., water table dynamics and solar irradiance cycle) become 
more important.

3.4. Global Model Spectra

We explored the model error patterns by calculating the scaling factor ɑ for each model. When considering the 
observation error in the flux data (the null model is calculated the same way as in Figure 4e), the spectral analysis 
of the NRE suggests the model errors approximate pink noise patterns for all the wetland models, with the mean 
scaling exponent ɑ of the model estimates ranging from 1.1 to 1.6 for different wetland types (Figure 6). The 
mean scaling exponent for the boreal forest and Arctic tundra regions (1.1–1.3) was generally lower than that for 
temperate and tropical regions (1.5–1.6), suggesting the wetland model performance for the temperate and tropi-
cal/subtropical regions generally has a longer memory effect (i.e., high tendency for greater persistence of model 
error) than wetlands in high latitudes. All the models show an increase in error at the monthly and seasonal time 
scales and the greatest variability across models at multi-day time scales. There was a tendency for the spectral 
error of some models to exhibit greater persistence than other models. For example, even though the LPJ-wsl 
model shows relatively low error compared to the other models for boreal and temperate wetlands, the scaling 
exponents ɑ of LPJ-wsl (1.8 and 1.6 respectively) are higher than most of the other models, suggesting that 
LPJ-wsl model error tends to have a larger memory effect. For the temperate and tropical wetlands, all the models 
show similar scaling exponents ɑ regardless of model structure, indicating the similarity of model behaviors in 
environmental controls for these wetlands.
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4. Discussion and Conclusions
Our initial hypothesis was that models would perform well at monthly and seasonal time scales because the 
biogeochemical processes at these time scales are largely driven by solar radiation cycles and corresponding 
changes in soil temperature. Our results support this hypothesis for Arctic tundra and boreal wetland types where 
the variations of temperature are the dominant control of FCH4 (Knox et al., 2021). However, in contrast to our 
expectations, the models have difficulty capturing variability at monthly and seasonal time scales for temperate 
and tropical wetlands, where other environmental controls emerge. Considering that the precipitation-driven 
variables such as water table depth are significantly correlated with the seasonal cycle of FCH4 at the site level 
for temperate and tropical sites (Knox et al., 2021), the lower agreements between model and data may be partly 
caused by discrepancies in precipitation between gridded climate data sets and site-level meteorological condi-
tions. The models also lack representation of hydrological processes at a scale fine enough to reflect the lateral 
flow from uplands to lowlands and its influence on the water dynamics. The distribution of model wavelet spectra 
(Figure S1 in Supporting Information S1) on visual inspection appears very different from the site-level measure-
ments, indicating that the models' structures need to better capture variability at multi-day and weekly time scales.

Our analysis further reveals important characteristics in the time series of model errors, which indicates that 
the errors at short time scales have a memory effect on biases at long time scales. These results suggest that 
further model development should focus first on correctly replicating flux variability and magnitude at multi-day 
time scales. Investigations into modeled FCH4 spectra (Figure S1 in Supporting Information S1) suggest that, 
in general, models tend to exhibit higher variabilities over monthly time scales from May to August whereas 
measurements suggest higher variabilities at multi-day time scales. One reason is likely that other environmental 
variables (e.g., vapor pressure deficit, atmospheric pressure) that regulate FCH4 variability at short time scales 
(Stoy et al., 2005) are not included in the model inputs. Additionally, many of the models predict a strong pulse in 
spectra power across different time scales during a short time period, especially for the JJA months, which causes 
significant errors at monthly and seasonal time scales (Figures S1 and S2 in Supporting Information S1). This 
pattern has not been observed by the EC measurements, indicating shared model errors due to the meteorological 
forcing among models and/or due to missing processes arising from limited understanding of wetland ecosystem 
dynamics (Neumann et al., 2019; Zona et al., 2016).

Wetland type Time scale Wetland PFT Component of CH4 flux CH4 production proxy Incorporation of nitrogen cycles Fire Spatial resolution

Boreal forest Multiday <0.001 <0.001 <0.001 <0.001 0.043 ns

Weekly <0.001 <0.001 <0.001 <0.001 <0.001 ns

Monthly <0.001 <0.001 <0.001 <0.001 <0.001 ns

Seasonal <0.001 <0.001 ns ns <0.001 ns

Arctic tundra Multiday <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Weekly <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Monthly <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Seasonal <0.001 <0.001 <0.001 ns 0.002 0.08

Temperate Multiday <0.001 <0.001 ns <0.001 <0.001 <0.001

Weekly <0.001 <0.001 ns ns 0.004 0.003

Monthly <0.001 0.002 ns 0.018 0.003 0.002

Seasonal ns ns 0.001 0.007 <0.001 <0.001

Tropical/
subtropical

Multiday <0.001 <0.001 <0.001 ns ns 0.055

Weekly <0.001 ns ns ns ns 0.061

Monthly <0.001 ns ns ns <0.001 0.019

Seasonal <0.001 ns ns ns <0.001 0.002

Note. ns: non significant.

Table 3 
The p Values of Analysis of Variance Analysis for the Impact of Model Structure on the Spectral Power for Different Wetland Types Within Each of the Four-Time 
Scales
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The spectral properties of the model errors along with time scales (Figure 6) indicates that the model structure 
has an impact on FCH4 variability, and different groups of models that share similar structure tend to have lower 
errors propagated from short time scales to high time scales. The ANOVA analysis (Table 3) suggests that the 
explicit representation of wetland PFTs, CH4 component fluxes, and wetland production proxies are significantly 
associated with variance for boreal and Arctic tundra wetland FCH4 prediction, with a modest and inconsistent 
effect for temperate and tropical wetlands. The effects of including the nitrogen cycle, fire, and spatial resolution 
of grid cells were non-significant for most of the time scales. In addition, CH4 transport through aerenchyma and 
stomata, which is linked to photosynthesis, and other processes such as ventilation in aerenchymatous vegeta-
tion with influence from latent heat flux are critical for models to capture the variability at the diel scale (Knox 
et al., 2021). Unfortunately, we did not have sub-daily FCH4 model predictions nor were they driven by site-level 
meteorological forcings, so we could not evaluate whether representation of processes at the diel scale has an 
impact on model performance at intermediate scales.

Figure 7. Heat map showing model-observation disagreement by time scales for different wetland types. All of the 
model-observation disagreement per time scale are normalized to 1–100 with the value of highest model-observation 
disagreement equal to 100 and lowest to 1. Light yellow and red represent the lowest and highest errors, respectively. The 
time scales are defined as “Multiday” (2–5 days), “Weekly” (5–15 days), “Monthly” (15–42 days), and “Seasonal scale” 
(>42 days).
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The ranking of model performance across different time scales suggests that no model outperforms others at all 
time scales and across all wetland types (Figure 7). However, specific models demonstrate better alignment with 
observed variability across distinct wetland types and time scales, thereby enabling their targeted application to 
particular regions. Moreover, this quantitative evaluation of model performance offers possibility to improve 
wetland model ensemble estimations in future studies (Poulter et  al.,  2017). Given different biogeochemical 
structures and parameterizations, the analysis suggests inclusion of representation of some key processes in 
wetland models and proper parameterizations are the basis for improving model performance. However, complex 
model structure does not guarantee superior model performance, which highlights the importance of properly 
parameterizing processes at a certain time scale. For instance, models with explicit CH4 components and multiple 
wetland PFTs could perform worse than simple models at certain time scales, which is likely due to increased 
uncertainty from parameterization due to poor observational constraints. A further diagnosis of what environ-
mental and biotic parameters impact the agreement with EC measurements is needed for a better choice of param-
eter values in representing the realistic temporal variability of FCH4.

There are a few limitations in the observations affecting our model evaluation. First, the length of observed time 
series is limited across sites with few sites having more than 5-year records. Unlike CO2, measurements of FCH4 
are only beginning to cover multiple-year records and thus the EC tower records are not long enough to assess the 
model's performance in capturing annual and interannual variability. For spectral methods, the short records are 
particularly problematic for longer sub-annual time scales (e.g., seasonal) due to edge effects on the amount of 
useable data. Consequently, the magnitude of model-observation disagreement at annual time scales beyond the 
scope of this study remains uncertain. Given that the wetland model results at annual and interannual time scales 
are particularly of interest to the global CH4 budget, having decadal records of measurements is important for an 
evaluation of model performance at these time scales. Second, the model-site comparisons are statistically chal-
lenging as the model-site-year combinations are not randomly distributed but rather depend on the performance 
at a few sites given the reality of unevenly distributed EC wetland sites. Both undoubtedly have the potential to 
introduce biases in statistical interpretation and thus influence model score. For instance, the evaluation of model 
performance for temperate wetlands is strongly affected by model simulations at one marsh site US-TW1 in the 
United States, which is a restored wetland that contributes ∼28% (n = 7 site-years) of the total site-years for 
temperate wetlands. US-TW1 has a water table height managed at ∼25 cm above the soil (Oikawa et al., 2017), 
which influences the temporal pattern of FCH4 via hydrological control and thus model evaluations. Lastly, 
it's worth noting that the scarcity of tropical sites (only 2 sites spanning 5 site-years) has the potential to intro-
duce biases when assessing disagreements between the model and observations. All of the limitations indicate 
a critical need for more detailed evaluation of model performance at site-level and long-term measurements for 
underrepresented regions.

One of the important aspects of this analysis is that it is possible that the model performance was underestimated 
due to the limitation in estimating observation uncertainty and due to potential spatial mismatch between models 
and EC observations. Although we calculated the spectral uncertainty with the inclusion of observational errors 
in the evaluation across time scales, the interpretation of whether model-observation disagreements falls outside 
the acceptable range is strongly influenced by the uncertainty of FCH4 observations. The default gap-filling 
methods such as ANN-based estimates for observational uncertainty appear to be overly tight across all sites 
as suggested by a recent study (Irvin et al., 2021), indicating that actual observation error may be higher than 
the estimates in our study. In addition, on top of the uncertainty of all the measurements, there is uncertainty 
originating from a mismatch between the footprints of the individual towers that are usually <1 km 2 and the size 
of gridded pixels that are often 0.5° or larger (Chu et al., 2021). This footprint mismatch introduces additional 
noise which is not considered here.

Our study evaluated seven global-scale wetland models from the GCP Methane Assessment against EC FCH4 
measurements from the FLUXNET-CH4 data set in the time-frequency domain. This analysis helped to identify 
model-observation disagreements in variability across different time scales and provided guidelines for further 
wetland model developments. Further detailed intercomparison of model structure and parameterizations is 
needed to diagnose model structural and parameterization errors. In particular, a more advanced intercomparison 
protocol would help distinguish structural and parameterization limitations by (a) testing multiple parameteriza-
tion schemes for major wetland processes (e.g., CH4 production rate and transport); (b) running the models with 
inputs from FLUXNET-CH4 local meteorological condition and local site information such as slope, drainage, 
and vegetation characteristics; and (c) including longer-term records and spatially representative observations 
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with full uncertainty characterization from EC tower measurements. In addition, incorporating wavelet analysis 
into a more comprehensive framework that includes evaluation of other key variables and machine learning-based 
estimates (Bansal et al., 2023; McNicol et al., 2023) may help identify the factors influencing its performance 
at specific time scales more effectively. Modeling global-scale wetland CH4 emissions is essential for accurately 
quantifying the contribution of wetland-CH4 feedback to ongoing climate change within the contemporary global 
CH4 budget, given their increasing role as potential contributors to the rise in atmospheric CH4 concentration in 
recent years (Peng et al., 2022; Zhang et al., 2023). Future intercomparison of wetland CH4 models will improve 
understanding of how wetland emissions contribute to variations of atmospheric CH4 concentration during the 
past decades and future projections.

Data Availability Statement
The observational data that support the findings of this study are available in the FLUXNET-CH4 Community 
Product, available at https://fluxnet.org/data/fluxnet-ch4-community-product/. The modeled results are available 
at https://doi.org/10.5281/zenodo.7246403.
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