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Abstract

Summary: Sophisticated approaches for the in-silico prediction of toxicity are required to support the risk

assessment of chemicals. The number of chemicals on the global chemical market and the speed of chemical

innovation stand in massive contrast to the capacity for regularizing chemical use. We recently proved our

ready-to-use application deepFPlearn as a suitable approach for this task. Here, we present its extension

deepFPlearn+ incorporating i) a graph neural network to feed our AI with a more sophisticated molecular

structure representation and ii) alternative train-test splitting strategies that involve scaffold structures and

the molecular weights of chemicals. We show that the GNNs outperform the previous model substantially and

that our models can generalize on unseen data even with a more robust and challenging test set. Therefore,

we highly recommend the application of deepFPlearn+ on the chemical inventory to prioritize chemicals for

experimental testing or any chemical subset of interest in monitoring studies.

Availability and Implementation: The software is compatible with python 3.6 or higher, and the source code

can be found on our GitHub repository: https://github.com/yigbt/deepFPlearn. A complete data and

models archive is also available on Zenodo: https://zenodo.org/record/8146252. Detailed installation

guides via Docker, Singularity, and Conda are provided within the repository for operability across all operating

systems.

Contact: jana.schor@ufz.de

Supplementary information: The supplementary material is provided in the submission.
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Key Messages

• Graph neural networks are superior in providing molecular structure information to downstream tasks.

• Scaffold splitting ensures models generalize better to unseen molecular structures providing more realistic performance estimates.

• deepFPlearn+ enhances the predictive power and feasibility of deep learning in toxicology for smart chemical prioritization and

sustainable design.

Introduction

Recently, we developed the ready-to-use and stand-alone program

deepFPlearn that predicts the association between chemical

structures and effects on the gene/pathway level using a combined

deep learning approach [Schor et al., 2022]. We achieved high

accuracy using a deep autoencoder (AE) to reduce features

and a feed-forward neural network to predict whether the input

chemical interacts with the nuclear receptors involved in endocrine

disruption. Our pre-training strategy allowed for capturing a vast

1© The Author(s) 2023. Published by Oxford University Press. 

This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, 

provided the original work is properly cited. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad713/7451828 by Adm

inistrative H
eadquarters - M

PS user on 30 N
ovem

ber 2023

https://orcid.org/0009-0004-1778-7353
https://orcid.org/0000-0003-0361-9063
https://orcid.org/0000-0003-3763-0797
https://orcid.org/0000-0003-4920-7072
https://orcid.org/0000-0003-1200-6234
email:jana.schor@ufz.de
https://github.com/yigbt/deepFPlearn
https://zenodo.org/record/8146252
email:jana.schor@ufz.de


2 Author Name et al.

Fig. 1: A) DL framework with deepFPlearn+ extensions indicated in blue and existing parts in gray. B) History of AE mean squared

error for random and scaffold split of the train data. C) Uniform Manifold Approximation and Projection (UMAP) embedding of the

scaffold-split with a noticeable distribution-shift between train and test data. D) Comparison of all collected metrics across all model

architectures for the ED (endocrine disruptor) target using the best fold for each model. E) ROC-AUC of random and scaffold split of

GNN for three targets, AR (androgen receptor), ER (estrogen receptor-alpha) and ED (endocrine disruptor).

range of molecular structures. Additionally, deepFPlearn classifies

chemicals quickly and can be customized. Our tool significantly

aids in the systematic in silico study of chemicals, and can handle

the vast, constantly growing chemical universe.

deepFPlearn uses binary topological fingerprints to encode

the molecular structure of chemicals, which show the absence or

presence of certain substructures or atomic configurations by ones

and zeros respectively, in a fixed-size binary vector. deepFPlearn+

now can also use molecular graphs to encode the structure of

chemicals preserving the full connectivity information which is not

fully captured in binary fingerprints, at the expense of lost chirality

information. Graph neural networks can process such graph-based

information.

A graph neural network (GNN) is an artificial neural network

that operates on graph data Scarselli et al. [2009]. A graph

G = (V,E) comprises a set of nodes V and a list of edges E

that encodes the nodes’ relations. In molecular structure graphs,

nodes represent atoms, and covalent chemical bonds form the

edges. More attributes, like the type of atom or direction/type

of the bond, can be stored in V and E. A GNN then forms an

optimizable transformation on all graph attributes that preserve

graph symmetries. One approach for training a GNN is using

message passing (MP), which involves disseminating information

stored in nodes and edges as a cumulative message throughout the

network to arrive at a prediction. In a D-MPNN, the message is

associated with directed edges to avoid unnecessary loops in the

message-passing trajectory. See [Yang et al., 2019] for the detailed

algorithm.

Substructures form functional entities - scaffolds - and

different scaffold combinations result in different properties

and modes of interactions with other molecules. A chemical

scaffold is a structure that is shared among a group of

molecules, which are then likely to have a similar relationship

with targets Katritzky et al. [2000]. The cheminformatic

software package RDKit Landrum [2021] implements algorithms

from [Bemis and Murcko, 1996] that generate chemical scaffolds

from their 2D representation. Typically, machine learning methods

require datasets to be split into train and test sets. While trained

on the first, the model is evaluated on the latter to investigate how

well the trained model can generalize on unseen data. A random

split creates a similar distribution of classes in the train and test

set. This is only sometimes best for chemical structures since both

sets contain similar structures, leading to an overestimation of

the model’s prediction performance. Scaffold splitting separates

structurally different molecules into different subsets, providing a

more significant challenge for learning algorithms than the random

split. Splitting based on molecular weight divides datasets into

training and test sets by considering the size of the molecules.

This approach aims to ensure that molecules of different sizes

are represented in both sets, reflecting the diversity of molecular

scales.

The idea to reach out beyond random split is that the increased

differences between training and test sets form a more robust test

of the model’s generalizability Wu et al..

Here, we present deepFPlearn+ - an extension of deepFPlearn

incorporating graph neural networks to predict the association of

an entire graph (one chemical) with selected nuclear receptors

involved in endocrine disruption and alternative train-test data

splitting strategies.

deepFPlearn+

We extended our original deepFPlearn deep learning framework

by a D-MPNN graph neural network and two alternative train

test data splitting strategies, based on structural scaffolds and

the molecular weight of the chemicals, see Fig. 1A. We trained

deepFPlearn on the same data as in [Schor et al., 2022]

and compared the model performances for different setups. In

particular, we performed a 5-fold cross-validation for training,
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employed Weights & Biases (www.wandb.com) for hyperparameter

tuning, and used the small but labeled dataset S (extracted from

the supplemental material of Sun et al. [2019]) containing 7248

compounds for classification and the huge unlabeled dataset D

(extracted from the CompTox Chemistry Dashboard [Williams

et al., 2017, accessed on 2020/07/13]) containing 719 996

compounds for pre-training and feature compression. When we

enabled scaffold split for pre-training, the average validation loss of

the autoencoders increased slightly from 0.1386 (random split) to

0.1547 (Fig. 1B), which we expected since the molecular structures

differ substantially in the train and the test data (Fig. 1C).

With enabled molecular weight split for pre-training, the average

validation loss of the autoencoders increased substantially to

0.2266 (Supplementary Fig. 1). See supplementary Fig. 1 for the

training performances and UMAP visualizations of the training

data for all three cases. Further, the validation loss diverges

considerably from the training loss. We expected this even more

since this approach ensures that the differences between molecules

of the train and test datasets are much higher. Consequently, the

potential of over- and underfitting specific molecular weight ranges

grows dramatically, and the model’s generalizability declines. The

GNN (with random split) substantially outperforms the fingerprint

classification models [Schor et al., 2022]. We reached binary

accuracy values of 0.87, 0.84 and 0.81 and ROC-AUC values of

0.87, 0.89 and 0.86 for androgen receptor (AR), estrogen receptor

(ER), and endocrine disruption (ED), respectively. Enabling

scaffold split slightly reduced the model’s performance. And still,

we reached higher values with the GNN than we did when

using the molecular fingerprint as input and the traditional

feed-forward neural network. See figure 1D and E. See the

supplementary material for detailed performance comparisons

showing all combinations of split strategies, model architectures,

and classification targets.

We used the trained GNN model for ER to predict the

association between all substances from the D dataset, which

have no association with ER in our training data. Exemplary,

we found Hexylresorcinol, Quinoxyfen, and Clofoctol among the

top positive predictions, with a probability higher than 80%. The

CompTox dashboard provides bioassay information for all three

substances, indicating an association with ER. Hexylresorcinol is

a substituted dihydroxybenzene with antiseptic, anthelmintic, and

local anesthetic properties, contained in topical applications for

minor skin infections and oral solutions or throat lozenges for pain

relief and first-aid antiseptic Chaudhuri and Chaudhuri, Matthews

et al.. Quinoxyfen is a fungicide used mainly to control Erysiphe

graminis - powdery mildew in cereals. The EFSA regulated the

maximum amount of this substance based on bioactivity and

toxicity studies in December 2020 EFS. Clofoctol is a bacteriostatic

antibiotic for treating upper and lower respiratory tract infections.

The CompTox Chemistry Dashboard reports bioactivity with ER

in the ToxCast summary reports.

Conclusion

In the deepFPlearn architecture, FFNNs had established a

sophisticated baseline for performance, whereas autoencoders

facilitated a pre-trained model attuned to a vast array of

chemical structures from unlabeled datasets. Although these

methods performed good enough, we substantially improved

the performance of deepFPlearn by tuning the input data

representation and, subsequently, the model’s architecture towards

a graph neural network. To address the generalizibility assessment

of GNNs that lack pretraining, we introduced more challenging

train-test splitting strategies of scaffold and molecular weight split

and compared the model performances to the original random

split approach. Scaffold split was most feasible since it provides

a more realistic test set regarding the application domain of

deepFPlearn+. It tests the model’s generalizability by separating

structurally different molecules into separate subsets.

With deepFPlearn+ we increased the predictive power and

the feasibility of the overall beneficial deep-learning approach

in predictive toxicology. We could confirm our predictions with

current toxicity knowledge from the latest ToxCast release,

suggesting that there are more exciting chemicals among them that

should be considered in subsequent wet lab and in silico analyses.

In ongoing data analyses, we dive deeper into the biological

backgrounds of our predictions and integrate explainable AI into

our framework to better understand and explain our models’

decisions. We promote deepFPlearn+ś application on the chemical

inventory and custom subsets of substances to prioritize chemicals

for experimental testing, assist in the smart selection of chemicals

for monitoring and contribute to the sustainable design of future

chemicals.
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