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Abstract

Summary: Sophisticated approaches for the in-silico prediction of toxicity are required to support the

risk assessment of chemicals. The number of chemicals on the global chemical market and the speed of

chemical innovation stand in massive contrast to the capacity for regularizing chemical use. We recently

proved our ready-to-use application as a suitable approach for this task. Here, we present its extension

deepFPlearn+ incorporating i) a graph neural network to feed our AI with a more sophisticated molecular

structure representation and ii) alternative train-test splitting strategies that involve scaffold structures and

the molecular weights of chemicals. We show that the GNNs outperform the previous model substantially and

that our models can generalize on unseen data even with a more robust and challenging test set. Therefore,

we highly recommend the application of deepFPlearn+ on the chemical inventory to prioritize chemicals for

experimental testing or any chemical subset of interest in monitoring studies.

Availability and Implementation: The software is compatible with python 3.6 or higher, and the source code

can be found on our GitHub repository: https://github.com/yigbt/deepFPlearn. A complete data and

models archive is also available on Zenodo: https://zenodo.org/record/8146252. Detailed installation

guides via Docker, Singularity, and Conda are provided within the repository for operability across all operating

systems.

Contact: jana.schor@ufz.de

Supplementary information: The supplementary material is provided in the submission.
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Data splitting strategies

Here we present the three splitting strategies offered in our

software.

• Random split: Samples are randomly assigned to the training

and test sets, assuming independent and identically distributed

data. This strategy creates train and test sets with similar

distributions, making the learning task easier.

• Scaffold balanced split: Molecules are grouped based on

their core scaffold which is calculated by RDKit. Within each

scaffold group, molecules are randomly assigned to the training

or test set. This ensures that structurally similar molecules

are present in only one of the sets, allowing evaluation of the

model’s generalization to new chemical scaffolds. The balance

ensures that not only the scaffold groups with the fewest

chemicals are assigned to the test set.

• Molecular weight split: The dataset is divided based on the

molecular weight of the compounds. Molecules are separated

into different sets according to their size. This strategy helps

assess the model’s performance on larger molecules since the

chemistry rules govern both the small and the large molecules.

Each splitting strategy serves a specific purpose in evaluating

machine learning models for molecular tasks. Random split

provides a baseline evaluation, scaffold split evaluates generalization

to new scaffolds, and molecular weight split assesses performance

across different molecule sizes. The choice of splitting strategy

depends on the specific goals of the study and the characteristics

of the dataset.

Pretraining with autoencoders

The goal of any autoencoder is to reconstruct its input. In our

case, the autoencoder aims to capture some ‘general chemistry
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knowledge’ from the large unlabeled dataset by compressing

and reconstructing the molecular fingerprints. Usually during the

autoencoder training(pretraining), it is common practice to use

split ratios that favor more the training set to exploit most of

the available data in a random fashion. Randomly splitting the

data usually creates train and test sets with similar distributions

and therefore making the reconstruction an easier task. So,

we explored the use of different data splitting methods at the

autoencoder level. We view data splitting as modifying the task

of the autoencoder. It is again reconstruction but now the mew

split method makes the reconstruction harder. At first, we used

0.8/0.2 as our train/validation ratio and randomly splitting the

distribution of the training and test data is almost overlapping as

assumed, and thus the test loss achieved is low. By using scaffold

split, we start noticing a small drift between the distributions and a

slight increase in the validation loss. The data are so much and the

variety of scaffolds low though that the drift is barely noticeable,

and this is reflected on the proximity of the validation loss to the

one of the random split. By splitting the data based on molecular

weight, the drift is easily observable and hence the validation loss

score is worse as shown in the figure 1.

Downstream tasks

Using data splitting methods, such as scaffold split or molecular

weight split, on downstream tasks in machine learning for

molecular applications is a common practice and provides a

more robust way to evaluate the model’s performance. These

splitting methods ensure that the model is tested on unseen

chemical scaffolds or molecule sizes, respectively, which reflects

its ability to generalize to new and diverse molecular structures.

However, combining different splitting methods at different levels,

such as using scaffold split during pretraining and molecular

weight split during fine-tuning, can potentially offer additional

benefits. This combined approach exposes the model to a wider

range of structural variations and size distributions, leading

to a more comprehensive evaluation of its capabilities. By

leveraging multiple splitting strategies, we can gain deeper

insights into the model’s performance and uncover any potential

biases or limitations. This holistic approach helps enhance the

model’s robustness and enables a more accurate assessment of its

performance on downstream tasks. The fig:loss,fig:AUCs support

these assumptions as we can see the diagonal (where the data

splitting is the same on both levels) of the ROC-AUC plots rarely

achieving the best performance.

Graph neural networks

To understand the performance of the graph neural networks we

can observe their training histories in the following plots 4 - 5.

We notice that under 15 epochs the GNN starts to overfit. The

bigger the drift between the training and validation distribution,

the faster the overfitting. We can notice a significant improvement

over the AUC across all data splitting methods compared to the

fingerprint based methods. We can also notice the differences of the

different splitting methods by looking at the confusion matrices

in the figure6 below. In toxicity prediction, we do not want to

misidentify any potentially toxic chemicals and thus we want to

limit the false negatives or the top right box of every matrix to be

the lightest possible and consequently recall the highest.

A final comparison between the best fingerprint based methods

and the GNNs can be highlighted from the barplots 7 below.

Fig. 1: On the first row we can see the autoencoder histories using the three ways of splitting. The blue line represents the training loss

while the red represents the validation loss. The UMAPs are based on the compressed version of the fingerprints after the autoencoder

training. They are produced on samples of 10 000 datapoints from the 800 000 initial dataset. The drift between training and validation

set bacomes noticeable as the splitting strategy changes. While in random split the distributions between the sets are similar, the scaffold

makes them diverging and the molecular weight almost slightly-overlapping.
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Fig. 2: Training histories of all possible combinations of the classification models stratified by split type on

the autoencoder and the FFN level for targets AR, ER, and ED. Dashed lines (–) represent the validation set

while the solid ones (-) mark the training set. Each target is color coded, orange for AR, Purple for ER and

turquoise for ED On the x-axis of the image we notice different split strategies on the autoencoder level and

on the y-axis on the feed forward model.

Fig. 3: AUC plots of all possible combinations of the classification models stratified by split type on the

autoencoder and the FFN level for targets AR, ER, and ED.
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Fig. 4: Training histories of the GNNs stratified by data split type for targets AR, ER, and ED. Dashed lines

(–) represent the validation set while the solid ones (-) mark the training set. Only the random split produces

similar performance on training and validation set.

Fig. 5: AUC plots of all combinations of the GNNs stratified by data split type for targets AR, ER, and ED.

Dashed lines (–) represent the validation set while the solid ones (-) mark the training set. In scaffold and

molecular weight split there is a noticeable difference between the training and validation metrics due to the

distribution shift.
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We can notice that the GNNs outperform the fingerprint based

networks across all metrics when random split is used. Even when

more difficult splitting methods are used the GNNs can offer

competitive results.

Estrogenic risk assessment

Our predictive model has achieved a remarkable feat by accurately

forecasting the estrogenic activity of Hexylresorcinol, Quinoxyfen,

and Clofoctol, despite not being initially trained on these specific

compounds. As such, our model could serve as a valuable tool

for guiding toxicity assessments and, in the foreseeable future,

may even replace traditional methods for a more efficient and

comprehensive evaluation of chemical safety.

Hexylresorcinol

Hexylresorcinol presents a unique case of potential risk due to

its widespread use in everyday products like throat lozenges and

cosmeticsChaudhuri and Chaudhuri, Matthews et al.. While it

may not bioaccumulate in the traditional environmental sense,

the frequent and varied routes of exposure—oral consumption

through lozenges and dermal application through cosmetics—

could lead to a form of ‘lifestyle accumulation’ in humans. Given its

predicted estrogenic activity, this raises significant concerns about

its long-term impact on hormonal balance and reproductive health.

The compound’s ubiquity in consumer products necessitates an

immediate and thorough regulatory review to assess its safety from

an endocrine-disrupting perspective.

Quinoxyfen

Primarily used as a pesticide-biocide in agricultural settings,

Quinoxyfen aims to control fungal diseases like powdery mildew

in crops. The predicted values for its environmental fate

corroborate this concernArena et al., qui. Its high potential for

bioaccumulation and bioconcentration in aquatic organisms could

lead to biomagnification of the food chain, affecting humans

who consume contaminated water or fish. While it may degrade

relatively quickly, its persistence in soil and water bodies could

have far-reaching implications for both environmental and human

health. Given its predicted estrogenic activity and its complex risk

profile, Quinoxyfen warrants re-evaluation and possible regulatory

action to mitigate its potential risks.

Clofoctol

Clofoctol, a bacteriostatic antibiotic marketed in France and

Italy since 2005Bailly and Vergoten [2021], exemplifies the

regulatory gaps in assessing the endocrine-disrupting potential

of pharmaceuticals. It was also discovered to be an antiviral

against SARS-CoV-2 or even a potential prostate cancer

inhibitorBelouzard et al., Wang et al.. Despite its long-standing

use for treating bacterial infections, its estrogenic activity has

not been studied, owing to the lack of regulatory mandates

for such testing. This oversight calls for an immediate overhaul

in pharmaceutical regulations to include mandatory endocrine-

disrupting activity assessments for all drugs, especially those that

have been on the market for an extended period.

In summary, Hexylresorcinol, Quinoxyfen, and Clofoctol each

present unique challenges that highlight the urgent need for more

comprehensive regulatory frameworks. These frameworks should

not only focus on the primary intended effects of these compounds

but also consider their potential as endocrine disruptors, thereby

safeguarding both environmental and human health.
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C. Robil, L. Belloy, C. Moreau, C. Piveteau, A. Biela,

A. Vandeputte, S. Heumel, L. Deruyter, J. Dumont, F. Leroux,

I. Engelmann, E. K. Alidjinou, D. Hober, P. Brodin, T. Beghyn,

F. Trottein, B. Deprez, and J. Dubuisson. Clofoctol inhibits

sars-cov-2 replication and reduces lung pathology in mice. PLOS

Pathogens, 18:e1010498, 5 . ISSN 1553-7374. doi: 10.1371/

JOURNAL.PPAT.1010498.

R. Chaudhuri and R. K. Chaudhuri. Hexylresorcinol: Providing skin

benefits by modulating multiple molecular targets photostability

view project skin hydration and barrier building view project

hexylresorcinol: Providing skin benefits by modulating multiple

molecular targets.

D. Matthews, O. Adegoke, and A. Shephard. Bactericidal activity of

hexylresorcinol lozenges against oropharyngeal organisms associated

with acute sore throat. BMC Research Notes, 13:1–4, 2 . ISSN

17560500. doi: 10.1186/S13104-020-04954-1/FIGURES/1.

M. Wang, J. S. Shim, R.-J. Li, Y. Dang, Q. He, M. Das, and J. O.

Liu. Identification of an old antibiotic clofoctol as a novel activator

of unfolded protein response pathways and an inhibitor of prostate

cancer correspondence. Journal of Pharmacology, 171:4478–4489.

doi: 10.1111/bph.12800.



6 Author Name et al.

Fig. 6: GNN confusion matrices stratified by target and splitting method. In the top left corner we can see the true positives and on the

bottom left the true negatives. The darker the shade the higher the absolute values. In these two quarters, the darker means better. In

the top right corner and bottom left, the reverse is true.
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Fig. 7: Metrics barplot comparison between GNNs and fingerprint based methods, stratified by target. The random splitted models using

the fingerprints in compressed and uncompressed versions were chosen to be plotted and are shown in greyish colors. All the versions of

the GNN model are color coded, red for random split, orange for scaffold aand green for molecular weight. The metrics that take into

account the imbalance are almost always better in the case of GNN models.
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