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Abstract
Atom probe tomography (APT) is ideally suited to characterize and understand the interplay of segregation and microstructure in modern multi- 
component materials. Yet, the quantitative analysis typically relies on human expertise to define regions of interest. We introduce a 
computationally efficient, multi-stage machine learning strategy to identify compositionally distinct domains in a semi-automated way, and 
subsequently quantify their geometric and compositional characteristics. In our algorithmic pipeline, we first coarse-grain the APT data into 
voxels, collect the composition statistics, and decompose it via clustering in composition space. The composition classification then enables 
the real-space segmentation via a density-based clustering algorithm, thus revealing the microstructure at voxel resolution. Our approach is 
demonstrated for a Sm–(Co,Fe)–Zr–Cu alloy. The alloy exhibits two precipitate phases with a plate-like, but intertwined morphology. The 
primary segmentation is further refined to disentangle these geometrically complex precipitates into individual plate-like parts by an 
unsupervised approach based on principle component analysis, or a U-Net-based semantic segmentation trained on the former. Following the 
composition and geometric analysis, detailed composition distribution and segregation effects relative to the predominant plate-like geometry 
can be readily mapped from the point cloud, without resorting to the voxel compositions.
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Introduction
Atom probe tomography (APT) is a unique technique that pro-
vides the three-dimensional (3D) distribution of atoms in a 
material at sub-nanometer resolution along with their chem-
ical identities (Gault et al., 2012a, 2021; Lefebvre et al., 
2016; Miller & Forbes, 2014). APT provides insights into 
the composition of a variety of microstructural features dis-
cernible through their chemical (composition) fingerprint, in-
cluding grain boundaries, dislocations, and secondary phase 
precipitates (Medrano et al., 2018; Zhou et al., 2021; 
Prithiv et al., 2022). The interplay between these microstruc-
tural features along with their chemistry, on the other hand, 
determines the material’s macroscopic properties. For explor-
ing structure-property relations and, ultimately, for tailoring 
new materials, the individual objects forming the microstruc-
ture must be quantified in abundance, size, composition, geo-
metrical shape, etc.

Obtaining such a comprehensive quantitative description 
from APT datasets in a reliable, controlled, and reproducible 
way remains challenging. The size of the data sets has steadily 

increased with a wider field-of-view (Kelly et al., 2004) and the 
implementation of laser pulsing capabilities (Gault et al., 
2006; Cerezo et al., 2007). APT datasets now routinely con-
tain 10–100 s of millions of ions. This limits the choice of 
the applicable algorithms. Quantifying the microstructural 
features including their composition, volume fraction, size, 
geometry, or spatial distribution of secondary phases, requires 
first some form of segmentation of the APT data (Hellman & 
Seidman, 2003). Indeed, segregation means that atoms of cer-
tain species are on average closer together, i.e., the local dens-
ity of atoms of a specific species can be used to distinguish 
microstructural features (Vaumousse et al., 2003). Certainly, 
the density may be affected by aberrations in reconstruction 
due to the differences in phases’ evaporation or chromatic 
aberrations (Marquis & Vurpillot, 2008). Therefore, one 
should be cautious in interpreting the results.

The most common approach in this direction is the use of iso- 
concentration surfaces, based on a marching cubes algorithm 
(Lorensen & Cline, 1987), that delineate microstructural 
features above a threshold composition compared to their 
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surrounding, facilitating visualization. Iso-concentration sur-
faces, often called isosurfaces, provide quantitative informa-
tion about the composition, and qualitatively define the 
geometry and distribution of the microstructural features. 
The caveat is that, as with most aspects of APT data process-
ing, the information from isosurfaces may be sensitive to user- 
defined parameters. These parameters are often chosen ad hoc, 
e.g., to highlight specific characteristics of the data. This may 
lead to inconsistencies when a single dataset is analyzed by dif-
ferent scientists (Exertier et al., 2018; Barton et al., 2019; 
Dong et al., 2019).

More recently, various clustering algorithms, as a complemen-
tary approach to isosurfaces, have been proposed as a more con-
trolled alternative, for instance, GMM (Gaussian mixture 
model) (Zelenty et al., 2017), DBSCAN (Density-Based Spatial 
Clustering of Applications with Noise) (Stephenson et al., 
2007), HDBSCAN (Hierarchical DBSCAN) (Ghamarian & 
Marquis, 2019), and OPTICS (Wang et al., 2019). Clustering al-
gorithms applied directly to the atomic coordinates of APT data-
sets tend to be computationally expensive due to the huge 
number of atoms. Therefore, the impact of the clustering algo-
rithm’s hyper-parameters (e.g., number of components or clus-
ters in GMM) on the outcome of this process is rarely 
evaluated systematically.

Additionally, the morphology of microstructural regions of 
interest can be geometrically complex, another hurdle for 
human-guided quantification methods. In recent years, machine 
learning algorithms have been used more often in the analysis of 
APT data, with the aim of enhancing automation, reliability, 
and efficiency of the analysis process. Madireddy et al. presented 
a deep learning-based edge detection to identify the interface 
between a matrix and a precipitate phase (Madireddy et al., 
2019). Although this technique offers a scalable (high- 
throughput) alternative to iso-concentration surfaces, it does 
not provide any information about the shape and geometry 
of the precipitate phase. Peng et al. quantified segregation at 
grain boundaries through a clustering algorithm applied on 
spatial coordinates of atoms (Peng et al., 2019), followed by 
calculating composition and thickness fluctuations. Zhou 
et al. introduced a more precise approach to identify junctions 
and straight segments in connected interface networks, not-
ably grain boundaries, via deep neural-network image recog-
nition in 2D projections (Zhou et al., 2022). The approach 
works best for columnar grains projected into their basal 
plane. An extension to interface networks with random orien-
tation, which lack a common projection plane, is unfortunate-
ly not straightforward.

Here, we propose an approach based on unsupervised ma-
chine learning to semi-automatically extract “chemical do-
mains,” i.e., regions with a characteristic composition that 
corresponds to different phases and segregation zones in the 
APT data. Contrary to performing clustering on the spatial co-
ordinates of the atoms, we perform clustering in a space con-
taining local composition information of the APT data, with 
the possibility to also provide the atom clusters in the point 
cloud within a few minutes on a single CPU core even for data-
sets containing 500 million atoms. We showcase this approach 
in the analysis of Fe-doped Sm–Co hard magnets, whose mag-
netic properties depend on their microstructure. The applica-
tion of the developed workflows helps to identify and 
segment different phases into separate precipitates and further 
disentangle their geometry into plate-like structures enabling 
meaningful compositional and morphology quantification.

Materials and Methods
Experimental Data
The production-grade Fe-doped Sm–Co alloy that has been 
analyzed here is prepared by first milling and crushing the 
book mold ingots and subsequently mixing the prepared 
powders to achieve the desired composition (wt%) 
Sm25Zr3Co49Fe19Cu5. This is followed by isostatic pressing 
and sintering of the powders. For further details see Sample 
synthesis in Duerrschnabel et al. (2017).

Specimens for APT were prepared by focused ion beam on a 
Dual-Beam Helios Nanolab 600i System using the approach 
outlined in Thompson et al. (2007). APT measurements 
were performed on a CAMECA local electrode atom probe 
(LEAP 5000 XS) in laser pulsing mode, with 10 ps laser pulses 
at a wavelength of 355 nm (UV), 45 pJ pulse energy at a repe-
tition rate of 200 kHz, in ultra-high vacuum (1 × 10−10 mbar). 
Further, the specimen base temperature was kept at 60 K with 
6–10 ions detected per 100 pulses on average.

Workflow
Figure 1 shows the current overarching workflow to classify 
different chemical domains in any APT data and to reduce 
morphologically-complex precipitates into simpler geom-
etries. The spatial coordinates (x, y, z), mass-to-charge state, 
and ranges defining the elemental or molecular nature of 
each ion are extracted from AP Suite, a proprietary software 
used to reconstruct and analyze APT data (POS and RRNG 
files) Day et al. (2019). Further, different chemical domains 
are extracted from the reconstructed data using clustering in 
composition space, which is discussed in detail in Section 
“Classification of chemical domains: clustering in compos-
ition space.” After a DBSCAN-based post-processing step, 
the morphology of the individual chemical domains is consid-
ered. If the APT reconstruction contains precipitates with a 
complex morphology they are disentangled into plate-like 
simpler structures using a local PCA approach or a U-Net 
model, which are described in Section “Decomposing geomet-
rically complex precipitates.” The plate-like precipitates or 
structures can be further analyzed by calculating the in-plane 
composition and thickness fluctuations. Finally, descriptors 
corresponding to composition, orientation, and thickness for 
each phase’s precipitates are stored systematically using the 
hdf5 file format (The HDF Group, 2022). All codes for read-
ing and analyzing APT data are developed in Python, in a 
Jupyter environment, an open-source web-based tool used 
for code development and data visualization (Kluyver et al., 
2016). ParaView, an open-source scientific visualization 
tool, is used for additional analysis and visualization 
(Ahrens et al., 2005). The code for the demonstrated workflow 
presented in this paper is accessible at https://github.com/ 
Alaukiksaxena/APT_Machine_learning.

Classification of Chemical Domains: Clustering in 
Composition Space
First, to identify the chemical domains present in the given 
APT dataset, we introduce a composition-informed segmenta-
tion algorithm to visualize quickly and statistically understand 
clusters or precipitates and segregation zones in APT data. The 
algorithm is summarized in Figure 2. The APT data set is div-
ided into equally-sized voxels (here: 2 × 2 × 2 nm3), without 
the application of any delocalization scheme (Hellman & 
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Seidman, 2003). For each voxel, the composition, i.e., the 
relative fraction of all chemical species, is calculated as a vec-
tor, cf. Figure 2b. These vectors describe points in a multi- 
dimensional unit simplex which we call composition space 
whose dimensions depend on the number of relevant chemical 
species in the APT dataset. In this showcase, the APT dataset 
consists of five elements (Sm, Co, Fe, Zr, Cu), so the compos-
ition space is five-dimensional. The rationale behind the pro-
posed method is that the voxels that are present inside a 
precipitate or cluster, of a particular phase or segregation 
zone, will have approximately the same composition and 
therefore appear as clusters in composition space. These “clus-
ters in composition space” implies that many voxels exhibit 
similar composition; they must not be confused with spatial 
clusters of atoms or ions that form e.g., in segregation zones. 
The size of voxels is a compromise between spatial resolution 
(smaller voxels can map smaller features) and reducing statis-
tical noise (larger voxels have less scatter in the compositions 
and better distinguish chemical domains of close composi-
tions) (Torres et al., 2011). While we use cubes of side 2 nm 
in our case study, this should be adapted for other datasets, de-
pending on the complexity of the underlying phases and length 
scale of phase separation. For optimization of the voxel size 
for a given APT dataset, it is recommended to follow the 
guidelines given in Mason & London (2020).

The second step is to identify different clusters in the com-
position space. For this, we use the GMM clustering algorithm 
(Hastie et al., 2009), Figure 2c. The rationale behind choosing 
the GMM algorithm is that deviation in composition arises 
from stochastic effects (e.g., due to intrinsic disorder in the ma-
terial or the limited detection efficiency) and in the limit of 
large numbers the underlying distribution becomes normal. 
The GMM algorithm cannot automatically guess the number 
of clusters in a given dataset. This information has to be fed to 
the algorithm as a hyperparameter. The approximate number 
of clusters or chemical domains in the composition space can 

be determined using the Bayesian information criterion (BIC) 
or can be inferred from, e.g., thermodynamic databases. In the 
current work, we have used minimization of the BIC to get the 
number of clusters as shown in Figure 3a, Geron (2019). For 
the given APT datasets, we get a visible kink or elbow 
(Zelenty et al., 2017), i.e., the number of clusters after which 
the decrease in the BIC value is not significant (threshold de-
rivative of BIC = −0.1 × 106), at three clusters, which physic-
ally correspond to the 2:17 phase (matrix), Z-phase (rich in 
Zr) and 1:5 phase (rich in Cu). The number of clusters is 
also in agreement with the known phases of this material 
(Duerrschnabel et al., 2017). The kink or change in slope cor-
responding to the derivative threshold = − 0.1 × 106 can be 
seen in the central difference numerical derivative of the BIC 
as shown in Figure 3b. Figure 4b, shows a 3-D (Cu, Fe, Sm) 
slice of the 5-D composition space where each point corre-
sponds to a voxel in the spatial coordinate system (refer to 
Supplementary Video 1). The three clusters or chemical do-
mains found by the GMM algorithm are marked in 
Figure 4b. Further, normalized frequencies of voxel compos-
ition for each chemical species shown in Figures 4a, 4c, 4d, 
4e, 4f, obtained using kernel density estimate (kernel- 
bandwidth =0.1), highlight that no single element is sufficient 
to assign a voxel to a certain phase, but definitely their com-
bination is required. The voxels pertaining to a particular clus-
ter in composition space are translated back to the spatial 
coordinate system so that voxels present in the matrix, precip-
itates, and segregation zones can be separated, Figure 2d.

After 3D phase segmentation using clustering in compos-
ition space, DBSCAN is applied separately to the centroids 
of the voxels belonging to the same composition space cluster 
(Ester et al., 1996). Here, a voxel centroid is the arithmetic 
mean of the positions of the atoms present in the given voxel. 
In this process, the noisy voxels, which often lie at the bound-
ary of the dataset, are removed and various precipitates per-
taining to each phase are identified as shown in Figures 2d

Fig. 1. The steps to quantify a 3D microstructure obtained from an APT reconstruction are summarized in the flow chart. The tools and libraries employed 
in each step are mentioned in the green boxes at the bottom.
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and 2e (refer to Supplementary Video 2). Since both the atoms 
residing in each voxel and the voxels present in each precipi-
tate are registered, the last step enables us to study each 

precipitate separately. Moving from an atom-by-atom re-
presentation of the data set to voxel centers is particularly ad-
vantageous for DBSCAN since the atomic density is subjected 

Fig. 2. (a) APT reconstruction for a Fe-doped Sm–Co alloy. For clarity, only minority elements (Cu, Zr) are shown. (b) Voxelization and per-voxel 
composition analysis, the gray grid schematically illustrates the voxels. (c) 2D projection of the 5D composition space. Each point corresponds to one 
voxel. Color coding according to 3 composition clusters identified. (d) Phases in real space at voxel resolution according to composition classification. (e) 
DBSCAN is used to cluster voxel centroids belonging to each phase to recognize separate individual precipitates. The circled precipitate has a complex 
morphology.

Fig. 3. (a) An elbow, shown with a dotted line, at clusters =3 is observed in the BIC curve. The number of clusters is in agreement with the known phases 
of the given material. (b) The central difference numerical derivative of BIC is invariant from clusters =4.
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to fluctuations due to the APT experiment [e.g., pole forma-
tion (Gault et al., 2012b) or in-homogeneous evaporation 
due to evaporation-field differences (Vurpillot et al., 2000)], 
while the voxel density is uniform. The voxel centers, by con-
struction, are equally spaced and provide a practically con-
stant density of points within each precipitate. Since now the 
number of voxels that are present in each precipitate is known, 
statistical descriptors like mean volume, number density, and 
nearest neighbor distribution of the precipitates can be readily 
obtained. For our analysis, we have used scikit-learn’s implemen-
tation of DBSCAN (parameters eps =9 and min_samples =80 
are used for all the identified phases) (Pedregosa et al., 2011).

Decomposing Geometrically Complex Precipitates
Local principal component analysis(PCA)-based method
In APT datasets, especially while studying nano-grain struc-
tures, we often encounter quasi-planar interfaces or inter-phase 
boundaries that cross each other forming triple or quadruple 
junctions. This geometric complexity makes the quantification 
of such microstructures cumbersome and challenging. In the 
Sm–Co alloy under our investigation, the Cu-rich 1:5 phase 
has precipitates that do not cross the entire field of view, mak-
ing the approach of Zhou et al. (2022) discussed in Section 
“Introduction” impossible to use. To separate complex pre-
cipitates into plate-like substructures visible to the human 
eye, we propose a local PCA-based method (Jolliffe, 2002). 
This method is applied to all identified precipitates to find 
plate-like structures automatically.

This method is demonstrated on a 1:5 phase precipitate, as 
shown in Figure 5a, with an entangled morphology. First, PCA 
is performed on the spatial coordinates of voxel centroids be-
longing to the chosen DBSCAN cluster (or precipitate), and all 
the voxel centroids are transformed to the PCA coordinate 

system (PC1, PC2, PC3), Figure 5b. For visualization a 2D 
projection of the 3D precipitate in the PC3 direction is shown. 
Next, the precipitate is divided into Ncut slices, such that each 
slice is 4nm thick, shown by the dotted lines in the figure, along 
the PC1 direction. Each slice is projected in the PC1 direction, 
i.e., to the PC2-PC3 plane, Figure 5b. The slicing process is re-
peated in the PC2 and PC3 directions to generate 2D projec-
tions in the respective perpendicular planes. The created 2D 
projections are shown in Figure 5c and will be used to identify 
the junctions connecting the ribbon-like features in the projec-
tion plane.

For this, the local PCA approach is applied to each of the 2D 
projections or slices. This method helps in the classification of 
voxel centroids (data points in the 2D projection) to be in 
junction-like or non-junction-like environments, Figures 5d
to 5f. The local PCA algorithm is summarized in Figures 6a
to 6d. As shown in Figure 6a, for each data point in a 2D pro-
jection (e.g., the orange point), we find all neighborhood 
points lying within a radius r (green). Subsequently, from 
the PCA of the distance vectors, the direction of maximum 
variance is identified, PC1center, Figure 6b. The radius r is pro-
vided as a hyperparameter for each precipitate. The PC1center 

direction is then compared to the corresponding one, 
PC1neigh, for all the data points in the neighborhood (green) 
by computing the dot product (PC1center · PC1neighi 

where i is 
a given neighborhood data point). If the selected data point 
(orange) lies in a quasi-plate-like structure then most of the 
PC1neigh directions will point in the same direction as PC1center 

and the average of their dot products will be close to one (thresh-
old for not junction: average dot product >0.8). However, if the 
orange data point lies near the junction then most of the PC1neigh 
directions will not point along PC1center and the average of their 
dot product is lower (threshold for junction: average dot prod-
uct < = 0.8), Figure 6c. In this way, the local PCA approach, 

Fig. 4. Normalized frequencies of voxel composition (at. fraction) of (a) Cu, (c) Fe, (d) Co, (e) Zr, and (f) Sm, respectively, for each phase present in one of 
the Sm–Co alloy APT dataset. (b) 3D projection (Cu-Fe-Sm composition) of the 5D composition space with clusters pertaining to respective phases.
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Fig. 5. Workflow for precipitate disentanglement via junction detection and removal. (a) Voxel centroids corresponding to a 1:5 phase precipitate having 
four plate-like structures meeting at a junction, also shown in Figure 2e. (b) The voxel centroids are transformed to the PCA coordinate system and divided 
into Ncut slices along PC1 (direction of maximum data variance). For visualization a 2D projection of the 3D precipitate in the PC3 direction is shown. (c) 2D 
projections for slices of voxel centroids in the plane perpendicular to the cutting direction. (d,e) Local PCA approach or U-Net model trained on similar data 
is used to detect junctions in the 2D projections. (f) All the voxel centroids that are labeled as plate-like back-projected to 3D space where they are 
clustered using DBSCAN.

Fig. 6. Junction detection. (a) A 2D projection of the voxel centroids in a slice extracted from a 3D precipitate. The orange and the black box highlight a 
plate-like and junction region, respectively. The neighborhood (green) within a radius r around a chosen point (orange) is selected within the orange box. (b) 
Magnified region away from the junction. The direction of maximum variance, PC1center and PC1neigh corresponding to the neighborhood of the orange and 
red points within radius r, respectively. The red point is chosen from the neighborhood of the orange point. (c) Magnified region near the junction. (d) 
Average dot product mapped on the 2D projection delineating the junction region. (e–h) A U-Net model trained on local PCA approach labeled images is 
applied on a previously unseen input image to predict the junction region or mask. The actual or true mask is also shown.
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which is applied to all the data points in a 2-D slice, is able to 
classify the data points that lie at the junction of the precipitates, 
Figure 6d. All the junction data points from each 2-D slice are 
stored in a list and tracked back to the original points (or voxel 
centroids) in the 3-D spatial coordinate system. Finally, the junc-
tion centroids in 3D space are removed from the set of all the 
voxel centroids pertaining to a particular precipitate, separating 
the quasi-plate-like structures. These structures can now be iden-
tified as separate clusters by applying DBSCAN since the con-
necting junction between them has been removed, Figure 5f.

U-Net based approach
In the local PCA-based approach, the accuracy of the classifi-
cation of data points as junction depends on the hyperpara-
meter r, which has to be fed for each precipitate, shown in 
Figure 6a. For example, if the radius r is larger than the pre-
cipitate the local PCA approach will not be able to find the 
data points at the junction. To circumvent this problem, we 
have developed a more robust approach based on supervised 
machine learning (U-Net) and image augmentation. A U-Net 
is a convolutional neural network (CNN) based architecture, 
which is used in computer vision problems, especially biomed-
ical image data, for semantic segmentation (Ronneberger 
et al., 2015). Semantic segmentation means that the deep 
learning algorithm predicts the class for each pixel in a given 
image.

First, the local PCA approach is applied to 1:5 phase precip-
itates extracted from a given APT dataset. This process created 
500 2D projections or slices. The data points in the projections 
are already labeled as junction or not junction using the local 
PCA approach. All the projections are converted to gray-scale 
images of shape 512 × 512 × 1 and based on the label informa-
tion a mask depicting the junction in each image is also 

extracted with shape 512 × 512 × 2, where the last 2 channels 
correspond to the classes: junction and not junction.

To increase the diversity of the training data, image aug-
mentation steps like rotation, translation, flipping and resizing 
are applied to the original images to create a pool of 3000 
training images and their corresponding masks. These training 
images (512 × 512 × 1) and the masks (512 × 512 × 2) are 
used to train a U-Net. The trained model, as shown in 
Figures 6e to 6g, takes an image corresponding to a projection 
as input (512 × 512 × 1) and predicts a mask of shape 
512 × 512 × 2, where the last channel contains the probability 
of a pixel to be a junction. Based on the predicted mask, the 
data points in the original projection/slices are classified as 
junction or not.

The U-Net based model is more robust and is directly ap-
plied to the other samples of the same material without the 
need to tune the parameter r for each precipitate. The local 
PCA-based approach is semi-automatic and can be tuned ac-
cording to the precipitate size. However, the U-Net-based ap-
proach is fully automatic irrespective of the precipitate size. 
Nevertheless, retraining of the U-Net model might be required 
when applying the same model to other material datasets, in 
which the geometry of precipitates is different. Further details 
of the U-Net architecture used in this study are given in 
Supplementary Figure 14.

Results and Discussion
Visual Validation with Isosurface Results
The proposed approach of clustering in composition space has 
been applied to all the given Fe-doped Sm–Co alloy APT data-
sets. Figure 7 provides a visual comparison between the isosur-
faces obtained using AP suite and the results of our new 

Fig. 7. (a) 6 at% Zr (green: Z-phase) and 12 at% Cu (blue: 1:5 phase) isosurfaces in a Fe-doped Sm–Co alloy APT dataset extracted using AP suite. (b) The 
voxel centroids lying in the Z-phase (green) and 1:5 phase (blue) precipitates extracted using clustering in composition space. The 1:5 phase precipitates 
with complex morphology are highlighted. (c) Segmented 1:5 precipitates. Complex morphology precipitates are separated into plate-like structures. (d) 
Segmented precipitates of the Z-phase.
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algorithm. Figure 7a, shows the 6 at% Zr (Z-phase) and 12 at 
% Cu (1:5 phase) isosurfaces, and Figure 7b shows the voxel 
centroids that lie in Z-phase and 1:5 phase. These phases have 
been identified by the composition space clustering, while the 
final assignment of the voxels as part of a spatial cluster add-
itionally relies on the DBSCAN algorithm on the voxel cent-
roids of each phase to eliminate noise. The phases obtained 
in Figure 7b are visually identical to the isosurfaces for the re-
spective phases shown in Figure 7a.

For clearer visualization of the precipitates, we separated 
them in subfigures (c) and (d): Figure 7c depicts only the 1:5 
phase precipitates, and Figure 7d the ones for the Z-phase. 
The precipitates of 1:5 phase with complex morphologies con-
taining bi and quad junctions are highlighted in Figure 7b. The 
junction voxel centroids have been identified using the U-Net 
approach and removed (Section “Decomposing geometrically 
complex precipitates”). The remaining voxel centroids are 
clustered by employing DBSCAN to obtain plate-like precipi-
tates as shown in Figure 7c (refer to Supplementary Videos 2 
and 3). A quantitative comparison between isosurfaces from 
Paraprobe (Kühbach et al., 2022) and the developed compos-
ition space approach is discussed in the Supplementary Section 
“Quantitative comparison with isosurfaces”.

Calculation of Volume Fraction and Composition of 
Each Phase
The segmentation of each phase or chemical domain allows 
for the calculation of the approximate volume fraction, as 
the number of voxels included in a phase is known. The vol-
ume fraction of each phase in one of the APT datasets is sum-
marized in Table 1. The average composition of a phase is the 
mean of the compositions of the precipitates or domains it 
comprises. Average compositions and standard error (confi-
denceinterval =95%) for each phase in the APT sample are 
summarized in, Table 1. They are calculated by averaging 
over the subsets, encompassing 15,000 adjacent voxels each. 
The dependence of the standard error on subset size is shown 
in Supplementary Figure 18.

Composition fluctuations in precipitates
The comparison between the voxel composition distribution 
of each chemical species in a particular precipitate and the cor-
responding random distribution are plotted to understand if 
any clusters or segregation zones are present inside the chosen 
precipitate. Such a comparison for randomly selected precipi-
tates of the 1:5 and Z-phase and a cell of 2:17 matrix phase for 
Cu, Fe, and Zr is shown in Figure 8. As seen in the figure, the 
experimental distribution deviates from the random distribu-
tion for the Z and 1:5 phases as compared to the 2:17 phase. 
This behavior is seen across all APT data sets of the current 
material. In order to understand and quantify these deviations, 
all the precipitates are reduced to simpler plate-like structures 
enabling us to study in-plane composition fluctuations. The 

computation of volume fraction, the composition of each 
phase, and composition fluctuations in precipitates can be exe-
cuted in just a few seconds using a single CPU core for the giv-
en APT dataset.

In-plane Composition and Thickness Fluctuations
We modified the algorithm of Peng et al. to find the in-plane 
composition and thickness fluctuations in the plate-like pre-
cipitates (Peng et al., 2019). The first step is to apply a PCA 
transformation on the voxel centroids of a given quasi-planar 
precipitate. Next, a regular 2-D triangular grid of size 4 nm is 
superimposed on the precipitate in the plane formed by the 
two maximum variance PCA directions. The grid triangles 
not containing voxel centroids are removed. This is followed 
by moving each node of the trimmed grid to the center of 
mass of the voxel centroids located in the cuboidal region 
overlayed at that node, shown in Supplementary Figure 15a. 
We use voxel centroids of the precipitates for analysis while 
the original algorithm directly uses atoms at the interface to 
be analyzed. Since some of the precipitates in our case studies 
have a million atoms or more, the choice of voxel centroids 
makes it faster. As a result of moving the nodes, the trimmed 
grid takes the shape of the precipitate, Supplementary 
Figures 15b and 15c. The geometry of the precipitate is still 
preserved if we use voxel centroids for our analysis.

After obtaining the grid that conforms with the shape of the 
precipitate, the local surface orientation (normal vector) at 
each node is defined from the average of the adjacent triangles. 
This is followed by selecting atoms in a cylindrical region of 
interest (ROI) at each node with the axis of the cylinder along 
the node’s normal. To speed up the atom search, we exploit 
the space partitioning provided by the voxels. First, relevant 
precipitate voxels are identified, whose centroids fall inside a 
cylindrical ROI with a radius, rout( = 4 nm), and length 
Lout( = 34 nm). From the selected voxels, the atoms within a 
cylindrical ROI of dimensions, rin( = 2 nm), and length 
Lin( = 30 nm), are chosen for the calculation of in-plane thick-
ness and composition fluctuations.

Each cylindrical ROI is divided into bins along the cylinder 
axis and the composition of each bin is calculated. We arbi-
trarily selected a bin width of Lbin( = 0.6 nm) as it provided 
a good compromise of limited statistical fluctuation and de-
tails of the feature of interest. The 1D composition profile 
for all the elements, obtained at a certain node in a precipitate 
of the Z-phase along the normal shown in Figure 9a, is plotted 
in Figure 9b. To analyze the clustering or segregation of the 
chemical species across the quasi-planar precipitates, we study 
the 1D composition profiles in more detail. To exemplify our 
approach, Figure 9c presents a 1D composition profile of Cu 
across the aforementioned node in the Z-phase precipitate. 
A six-degree polynomial is fitted on the 1D composition pro-
file. Subsequently, the number and location of local maxima in 
the fitted polynomial are obtained using find_peaks, a tool 

Table 1. Volume Fraction, Average Thickness and Average Composition of 2:17, Z, 1:5 Phase in One of the Given APT Datasets.

Phase Volume Fraction Thickness (nm)

Composition at% (mean ± 1.96 standard error)

Sm Co Fe Cu Zr

2:17 0.8 10.9 ± 0.4 59.4 ± 1.0 27.2 ± 0.8 2.0 ± 0.8 0.5 ± 0.2
1:5 0.06 17.6 ± 4.0 14.4 ± 1.6 48.0 ± 5.3 16.1 ± 5.1 21.1 ± 8.8 0.4 ± 0.2
Z 0.14 10.9 ± 1.4 9.7 ± 1.4 63.4 ± 2.5 14.5 ± 1.4 3.8 ± 1.4 8.5 ± 1.74
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implemented in open-source scipy library (Virtanen et al., 2020). 
Figure 9a shows the fluctuations in the number of modes (or 
peaks) in 1D Cu composition profiles of the Z-phase precipi-
tates in one of the APT data sets. The precipitates exhibit 1, 
2, or 3 modes in their composition profiles, suggesting that 
Cu is either uniformly distributed, segregated at the edges, 
or additionally segregated at the middle of the precipitates, 
respectively.

Based on the 1D composition profiles at each node, it is pos-
sible to reveal possible in-plane composition fluctuations, as 
shown in Figure 10 for Zr (A and B) and Cu (C and D) for pre-
cipitates of Z (A and C) and 1:5 phase(B and D). Since the 
composition of Co is significantly higher than any other elem-
ent in both Z and 1:5 phases (refer Table 1) and also its com-
position is higher in the Z-phase and lower in the 1:5 phase 
compared to the matrix (2:17 phase), it is the best choice to 
mark the start and end of a precipitate. The in-plane fluctua-
tions are calculated by taking the average of an element’s com-
position over the length of the ROI where Co composition is 
not zero. As shown in Figure 9b, the average is calculated 
over the bins lying between Distmax(Co) and Distmin(Co). 
This line of reasoning is also used to calculate the thickness 

of each precipitate at every node of the grid. Thickness, 
T = Distmax(Co) − Distmin(Co), of the Z precipitate at the 
node, is shown in Figure 9b. Thickness fluctuations for precip-
itates of Z and 1:5 phase are summarized in Supplementary 
Figures 16b and 16c. The computation of in-plane compos-
ition and thickness fluctuations in the precipitates can take 
up to 30 minutes on a single CPU core, for a fine grid size 
(4nm), for the given APT dataset.

Quantification of the Microstructure
To quantify the Sm–Co alloy microstructure, in addition to the 
thickness, orientation, and spacing between the extracted pre-
cipitates have to be calculated. The parameters like the dis-
tance between parallel precipitates and the angle between 
the intersecting ones are used to define a 2D model microstruc-
ture of a Sm–Co alloy (Katter et al., 1996). Similarly, we have 
extended this concept to quantify 3D microstructures. To de-
fine the orientation of each plate-like precipitate, PCA is car-
ried out for the spatial coordinates of voxel centroids 
present in the given precipitate. The direction of minimum 
variance in the spatial coordinates is then taken as an 

Fig. 8. Voxel composition distributions of Cu, Fe and Zr present in (a) a 2:17 matrix cell as well as in 2 precipitates chosen for (b) 1:5 phase and (c) Z-phase. 
The experimental composition distribution (black) deviates significantly from the random distribution (red) for 1:5 and Z precipitates.
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approximate orientation normal to the precipitate plane. 
Figure 11a shows voxel centroids corresponding to Z and 
1:5 phase in one of the Sm–Co alloy APT datasets. The 1:5 
phase precipitates with complex morphology in the given 
microstructure have been reduced to plate-like structures. 
The angle between each pair of planar precipitates is calcu-
lated and a set of parallel precipitates (the angle between the 
normal vectors is in range 0◦ to 5◦) forming the magnetic do-
main walls is shown in Figure 11b. Similarly, a set of parallel 

Z-phase precipitates in the same APT sample is shown in 
Figure 11c. The distance between a pair of parallel precipitates 
is the distance of the centroid of one of the precipitates from 
the plane of the other precipitate. The distances between the 
consecutive Z-phase plates, and a set of parallel 1:5 phase pre-
cipitates are summarized in Figures 11b and 11c (refer to 
Supplementary Video 4). This computational analysis can be 
executed in just a few seconds using a single CPU core for 
the given APT dataset.

Fig. 9. (a) The nodes in a triangular grid superimposed on the Z-phase precipitates. The color of each node pertains to the number of modes or peaks in the 
1D composition profile of Cu at that particular node. (b) 1D composition profile of Co, Cu, Fe, Sm, and Zr along a cylindrical ROI around the black arrow 
(normal at a node), crossing through the precipitate shown in panel (a). Here, only the atoms within the precipitate are considered to plot the 1D 
composition profiles. Also, the composition profiles while considering all atoms in the vicinity of the precipitate as well are shown in Supplementary 
Figure 17. The thickness (T) of the precipitate along the ROI is estimated by calculating the maximum distance between the bins that have non-zero Co 
composition. (c) 1D composition (at. fraction) profile of Cu along the same ROI. A six-degree polynomial is fitted on the 1D composition profile. Local 
maxima or peaks are estimated in the fitted polynomial to approximate the local segregation zones of Cu across the precipitate.

Fig. 10. In-plane composition fluctuations: The nodes associated with 2D grids fitted on plate-like precipitates in one of the APT samples. The color coding 
corresponds to the average composition (at. fraction) of Zr (a,b) and Cu (c,d) at each node in Z phase (a,c) and 1:5 phase (b,d). Further, in panel (a), Zr is 
depleted in a circular region in two precipitates, marked with a rectangular box. This can be a pole in the dataset, which is an APT artifact.
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Such quantification of the microstructure from APT 
datasets is directly dependent on the way APT data is recon-
structed. In the present study, the APT data has been recon-
structed in AP Suite Software 6.1 using voltage 
reconstruction. The image compression factor (ICF) was set 
to 1.65 and the radius was adjusted such that the Z-phase pre-
cipitates have the form of straight platelets and that these pla-
telets are aligned parallel to each other in the reconstruction as 
observed in transmission electron microscope (TEM) meas-
urements. The distances between the platelets observed in 
APT are compatible with those in TEM measurements on 
the same sample (Giron et al., 2023).

Our quantitative analysis of composition and geometric as-
pects of the chemical domains identified by the 3D segmenta-
tion algorithm illustrates opportunities that come with 
automatic identifications of microstructural features. It is 
very easy to apply new APT data analysis methods as shown 
in this section, or adapt already existing ones like the construc-
tion of 1D composition profiles or composition fluctuation 
maps. Thanks to the controlled workflow, this can be done 
not only for selected regions of interest but automatically for 
all features identified. This allows for a more comprehensive 
description of the APT data than what was possible so far.

Summary and Conclusion
In this paper, we developed a python based ML workflow to 
compositionally and geometrically quantify the 3D micro-
structure from APT data. The first part of the workflow ex-
tracts existing chemical domains or segregation zones. The 
key steps are (1) voxelisation of the APT data set, (2) calculat-
ing the composition of each voxel, (3) clustering in the com-
position space to obtain the chemical domains in the dataset 
and (4) separation of voxels of the extended regions of each 
chemical domain by DBSCAN clustering algorithm. The rele-
vant data of all steps is stored in hdf5 files to aid subsequent 

postprocessing. This enables a robust and systematic analysis 
of the microstructure from its chemical fingerprint, yielding 
for instance the average volume fraction, domain size distri-
bution, and average composition of the identified chemical 
domains (which could be stable phases from the thermo-
chemical phase diagram, or segregation zones with a unique 
composition near grain boundaries or other crystallographic 
defects).

Geometrically quantifying the microstructure requires to re-
duce morphologically entangled phases to individual struc-
tures. This was achieved here for a particular type, namely 
agglomerates exhibiting plate-like substructures. Our novel 
local PCA and/or U-Net approaches allow us to distinguish 
junction voxels from those lying in the planar regions, fol-
lowed by a DBSCAN clustering to get the separated planar 
structures. This procedure can efficiently and rigorously seg-
ment out predominantly flat subdomains with arbitrary orien-
tations in 3D. Indeed, planar or plate-like morphologies are 
common microstructural features, for example, segregation 
at the interface (grain boundary) and inter-phase boundaries 
or phases formed in some Al (Khushaim et al., 2015; 
Zandbergen et al., 2015) and Ni alloys (Vogel et al., 2015). 
Then descriptors such as PCA vectors, their explained vari-
ance, average composition, centroid, or the angle of the inclin-
ation with the axis of the APT tip, are calculated for each 
planar substructure. Using the geometrical information, the 
compositional analysis can be further refined to yield in-plane 
composition and thickness fluctuations. A method to map the 
segregation of solute atoms across interfaces is also developed.

Using the developed workflow, we identified three phases, 
matrix (2:17 phase), Z-phase and 1:5 phase, for Fe-doped 
Sm–Co alloy APT datasets. Notably, this computational ana-
lysis can be executed in just a few minutes using a single CPU 
core, even for APT datasets with 500 million atoms. We used 
the workflow to disentangle each precipitate, allowing a fast 
and robust analysis. We were able to identify the deviation 

Fig. 11. (a) Voxel centroids of Z and 1:5 phase, green and blue respectively, present in one of the APT samples with complex microstructure. (b,c) Sets of 
parallel 1:5 and Z-phase precipitates, respectively, with distances between them.
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of the experimental distribution of Zr, Fe and Cu in precipi-
tates of Z and 1:5 phase from their corresponding random dis-
tributions. The across-plane composition fluctuation of Cu 
was very distinct with enrichment at the edges or also at the 
center of the Z-phase precipitates. Such compositional fluctu-
ations together with geometrical quantification of the micro-
structure are very relevant for the magnetic performance of 
this and other alloys.

The developed workflow can readily be applied to a wide 
variety of microstructures analyzed by APT. This enables a 
consistent quantification of compositional and structural fea-
tures in an APT dataset.

Code Availability
The workflow is available at https://github.com/ 
Alaukiksaxena/APT_Machine_learning.

Supplementary Material
To view supplementary material for this article, please visit 
https://doi.org/10.1093/micmic/ozad086.
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