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Quantitative three-dimensional imaging of
chemical short-range order via machine
learning enhanced atom probe tomography

Yue Li 1 , Ye Wei 1, Zhangwei Wang 2 , Xiaochun Liu 3,
TimoteoColnaghi 4, LiuliuHan 1, ZiyuanRao 1, XuyangZhou 1, LiamHuber1,
Raynol Dsouza1, Yilun Gong 1, Jörg Neugebauer 1, Andreas Marek 4,
Markus Rampp4, Stefan Bauer 5, Hongxiang Li 6, Ian Baker 7,
Leigh T. Stephenson 1 & Baptiste Gault 1,8

Chemical short-range order (CSRO) refers to atoms of specific elements self-
organising within a disordered crystalline matrix to form particular atomic
neighbourhoods. CSRO is typically characterized indirectly, using volume-
averaged or through projectionmicroscopy techniques that fail to capture the
three-dimensional atomistic architectures. Here, we present a machine-
learning enhanced approach to break the inherent resolution limits of atom
probe tomography enabling three-dimensional imaging of multiple CSROs.
We showcase our approach by addressing a long-standing question encoun-
tered in body-centred-cubic Fe-Al alloys that see anomalous property changes
upon heat treatment. We use it to evidence non-statistical B2-CSRO instead of
the generally-expected D03-CSRO. We introduce quantitative correlations
among annealing temperature, CSRO, and nano-hardness and electrical
resistivity. Our approach is further validated on modified D03-CSRO detected
in Fe-Ga. The proposed strategy can be generally employed to investigate
short/medium/long-rangeorderingphenomena indifferentmaterials andhelp
design future high-performance materials.

Ordering is the preferential occupation of specific sites in crystalline
materials by particular elements. The very early stage of thermally-
activated ordering is referred to as chemical short-range order
(CSRO)1–3, the occurrence of which has been reported to significantly
change the mechanical4–13 and functional14–16 performances of materi-
als. Fe-Al alloys, lightweight materials with excellent strength and
corrosion/wear resistance, are good candidates for theoretical studies
on such ordering transformations16–18. Undeformed Fe-Al alloys with
compositions close to the boundary of the disorder-order transition,

annealed at a relatively low temperature (e.g. 523 K) and then quen-
ched, often exhibit an anomalous increase in electrical resistivity14,19,20.
This unusual behaviour results from the so-called K-state initially
reported in 195114 and generally attributed to D03-CSRO (Fe3Al-like),
seen as the onset of long-range ordering reactions21,22. The K-state was
reported in a vast array of alloy systems, e.g. Ni-X (X=Cr, Co, Al, Fe), Fe-
X (X=Si, Ga, Cr), Cu-X (X=Ni, Mn), Ni-Cu-Zn, Ni-Fe-Cr, Fe-Al-Cr14,19,20,23,24.
However, the underpinnings of the K-state are still unclear and the
quantitative characterization of CSRO remains a formidable challenge.
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As alloys increase in complexity, the knowledge gap linking CSRO to
material properties hinders exploiting it in material design to enhance
material performance12,25,26.

CSRO was conventionally characterized by indirect, volume-
averaged bulk experimental techniques, such as X-ray or neutron
scattering, or Mössbauer spectroscopy14,16,27,28, leaving much room for
interpretation on how CSRO proceeds at the atomic scale. Recently,
transmission electron microscopy (TEM)-based approaches char-
acterized CSRO in compositionally-complex alloys based on enhanced
diffraction contrast or local compositional mapping12,26,29,30. TEM only
provides two-dimensional, through-thickness projections of CSRO,
leading to limitation in the measurement of size/morphology of CSRO
domains, which will be discussed later. With near-atomic spatial reso-
lution and high analytical sensitivity (10–100ppm), atom probe
tomography (APT) offers, in principle, a unique opportunity for
quantifying the size and morphology of CSRO domains in three
dimensions (3D)31,32. However, its spatial resolution prevents it from
precisely imaging atomic ordering processes, particularly domains
below 1 nm in radius3,31,33,34.

Here, to overcome this inherent limitation and unveil CSRO, we
propose a machine learning (ML) enhanced approach based on a
convolutional neural network (CNN) applied to spatial distribution
maps (SDMs) obtained from APT data. SDMs are statistical analyses of
the interatomic distances used to reveal partial crystallographic
information within APT data (Methods)35–37. ML, especially deep
learning, has been used acrossmicroscopy andmicroanalysis to speed
up and improve the repeatability of analyses and reveal elusive
details38,39. In APT, it has been used for crystallographic orientation
identification and improving microstructural feature extraction40–42.
SDMshave been applied to long-range-orderedprecipitates17,37,43–45 but
not to analyse CSRO.

Results
Conventional APT analysis
We performed APT on body-centred-cubic (BCC) Fe-18Al alloys
annealed at two temperatures for 2 weeks (Methods, Supplementary
Fig. 1). Figure 1a is an example of a reconstructed APT analysis along
the (002) zone axis. Figure 1b is a detector hit map showing the cor-
responding symmetries of low-index sets of atomic planes46, which are
highlighted in Fig. 1c. A 2 × 2 × 2 nm3 voxel was examined through
SDMs along the depth, i.e. z-SDMs (Methods), for all possible pairs of
elements, as plotted in Fig. 1d. The peak-to-peak distance is the same
for all pairs, and the reconstruction was calibrated47,48 to have the
interspacing of 0.144 nm as expected for this composition49.

A dedicated search for CSRO has been applied to a similar Fe-18Al
alloy, but no concrete information was reported16,17. Other conven-
tional analyses of APT data to extract CSRO include isosurfaces42,43, 1st,
2nd, and 3rd nearest neighbours16,50, and frequency distribution
analysis13,31. Results from the latter two are displayed in Fig. 1e–g, but
they do not provide evidence for CSRO, which can be attributed to a
high fraction of reconstructed atoms shifting beyond their 1st nearest
neighbours after field evaporation and data reconstruction34. The lat-
eral resolution of APT is hence too low to detect CSRO with approa-
ches that probe the reconstructed data assuming an isotropic
distribution of atomic species31,35. However, most atoms at low-index
planes do not shift beyond their 1st nearest neighbours along the
depth direction34, leaving an unexplored opportunity to analyseCSRO,
as already achieved for long-range orders utilizing ML42,43. Please refer
to Supplementary Notes for a detailed discussion on the reconstruc-
tion quality of APT data for CSRO analysis.

Workflow of machine learning enhanced APT
Figure 2a summarises the complete framework of our proposed ML-
classifier to distinguish theBCCmatrix anddifferent CSRO structures
using z-SDMs. A synthetic bank of z-SDMs (Methods) was built for the

three crystal structures expected from the Fe-Al binary phase
diagram15,51, namely BCC, D03, and B2 (FeAl) as detailed in Fig. 2b–e.
Each structure exhibits a specific pattern in the z-SDMs (Fig. 2e),
which enables classification between BCC matrix, D03-CSRO and B2-
CSRO. Although the 3D structure of CSRO is not fully the same as the
relevant ordered one, they have a similar 1D z-SDM signature along
specific direction. So, these simulated patterns based on ordered
structures can be applied to train a recognition model aiming at
CSRO. A total of 10,000 representative data samples were generated
with diverse data (Methods, Supplementary Table 1, Supplementary
Notes). Each continuous z-SDM was discretised using 93 data points
into the input layer.

Then, we trained and validated a one-dimensional CNN (Methods,
Supplementary Fig. 2a) with a five-fold cross-validation procedure
using 90% of the synthetic dataset. The remaining 10%was used to test
theCNN (Test I). The uncertainty of themodel was calculated based on
the fivemodels obtained by five-fold cross-validation. For comparison,
we also trained a random forest using the same synthetic data and a
five-fold cross-validation procedure to perform the same classification
task. In parallel, we scanned the reconstructed APT data, and gener-
ated experimental z-SDMs for the Fe-Fe and Al-Al elemental pairs.
Afterwards, the data were pre-processed with a pipeline of transfor-
mations including curve smoothing and background reduction
(Methods). Two examples of the original and optimized experimental
curves are presented in Supplementary Fig. 3.

Both algorithms exhibited almost 100% training, validation, and
test (Test I) accuracies (Supplementary Fig. 2b–d). The two models
were further tested using 148 2 × 2 × 2 nm3 representative experi-
mental z-SDMs after pre-processing with the labels given manually
(Test II). Their classifications were evaluated by the area under the
curve (AUC) of the receiver operating characteristic curve (ROC)
(Methods). The CNN exhibited high AUC values and low uncertainties,
i.e., 0.95 ± 0.01, 0.95 ± 0.01, 0.97 ± 0.01 for BCC, D03-CSRO, B2-CSRO
(Supplementary Fig. 4a), respectively. The false positive and false
negative rates are low for D03-CSROandB2-CSRO, suggesting a limited
influence on the overall analysis. These scores suggest that the CNN is
also able to successfully classify experimental data. In comparison, the
random forest algorithm only led to low AUC and high uncertainties
for each class (Supplementary Fig. 4b). Only CSRO based on CNN will
be discussed in the following.

To understand where the CNN model is focusing, we applied
gradient-weighted class activationmapping42,52. Its output is a heatmap
for a given class label. As shown in Supplementary Fig. 5, the model
mainly looks at the specific peaks of the z-SDMs that can be used to
accurately classify the three classes, i.e., the peaks at the zones close to
the ΔZ with ±0.144 and ±0.432 nm for BCC and D03-CSRO, and those
close to the ΔZ with 0, ±0.288 or ±0.576 nm for the B2-CSRO.

We then tested our ML-APT recognition model using large-scale
Fe-Al APT artificial data as ground truth (Methods). D03 domains, with
a minimum diameter of 0.7 nm, can be distinguished well from the
BCC matrix with Pearson’s correlation coefficients (PCC) above 0.8
when using 1 × 1 × 1 nm3 voxel (1-nm3 cube) with a 0.5 nm stride (Sup-
plementary Fig. 6). Themorphologies of the identifiedD03domains, as
described by their aspect ratio and oblateness reported in Fig. 2f,
appear close to spheres. Some are slightly stretched or compressed,
likely because of the voxelization. Figure 2g is a histogram of CSRO
domains vs. size, which essentially follows the simulated data with a
PCC of 0.67. The calculated number density of the identified D03

domains is 5:71 × 1025 m�3, which is within 11% of the actual value. Even
in a truly random yet concentrated solid solution, some local envir-
onments similar to CSRO randomly form, with no specific ordering
driving force. We also applied this ML-APT recognition model to a
randomized dataset (Method, Fig. 2g), enabling the identification of
randomly-occurring small CSRO domains. The PCC of 0.39, in this
case, shows that our ML model prediction (PCC 0.67) can identify the
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underlying order and distinguish between CSRO and random struc-
tures. The same test procedure was applied to large-scale Fe-Al artifi-
cial APT data with B2-type domains (Supplementary Fig. 7). Our ML-
APT model distinguishes B2 domains from the BCC matrix in terms of
spatial distributions (PCC >0.9), morphology, and size distributions
(PCC=0.62). Interestingly, only limited, small B2 domains are detected
in the randomized dataset, suggesting that it ismore difficult to detect
statistical B2 domains than D03 ones.

Application to experimental datasets
Our ML-APT recognition model was subsequently applied to experi-
mental datasets scannedwith a 1-nm3 cube and 0.5-nm stride. Here, we
take the data shown in Fig. 1a as an example. In total, 653,944 experi-
mental z-SDMs were generated. The distributions of the predicted
D03-CSRO and B2-CSRO probabilities corresponding to these experi-
mental z-SDMs from 1 × 1 × 1 nm3 voxels and corresponding uncer-
tainties are close to zero (Supplementary Fig. 8b, d). The probability
for a certain CSRO is then estimated from the sum of the predicted
probabilities of the 8 overlapped 1-nm3 cubes since the stride was only
0.5 nm, and hence ranges between 0 and 8. The determined

classification thresholds are 3.75 and 4 for D03-CSRO and B2-CSRO,
respectively (Methods, Supplementary Fig. 9).

Figure 3a shows coloured regions individually identified with a
D03-CSRO in the dataset shown in Fig. 1a, along with two close-ups
viewed from two perpendicular directions. By using a cluster-finding
approach and a best-fit ellipsoid (Methods), the aspect ratio of each
CSRO domain is plotted against oblateness in Fig. 3b, evidencing an
average near-spherical morphology. The statistical size distribution of
D03-CSRO domains is given in Fig. 3c. Most of the D03-CSRO domains
only contain less than 50 APT-counted atoms corresponding to
approximately 1-nm3 cube. Similarly, the obtained B2-CSRO domains
are also visualized (Fig. 3d) and their morphologies are also very close
to spherical (Fig. 3e). Most of the B2-CSRO domains also contain less
than 50 APT-counted atoms (Fig. 3f). Note that most of the previous
studies expected the existence of D03-CSRO rather than B2-CSRO in
this alloy21,22.

We appliedML-APT to data obtained from Fe-18Al annealed for 14
days at either 873K or 523 K (Methods). The results from the
chemically-randomized datasets are compared. The statistical results
are summarized in Fig. 4a and b, which compare the number density

a

b c

BCC

d

5 nm

e f g

Z

X

Y

50 nmFe Al

5 mm

Conventional APT data analysis methods

Fig. 1 | APT data of Fe-18Al alloy annealing at 523K for 14 days. a APT recon-
struction along the [002] zone axis. b two-dimensional detector hit map. Four
crystallographic poles were indexed, corresponding to (002), ð�102Þ, ð�1�12Þ, (1�14),
respectively. c A close-up of a thin slice in a along [002]. d The z-SDMs of Fe-Fe, Fe-
Al, Al-Al pairs in a 2 × 2 × 2 nm3 voxel in a. This signature corresponds to the BCC

structure. Typical APT analysis methods: e, f K-nearest neighbour (KNN) distance
analysis (k = 1, 2, and 3) of Fe-Fe andAl-Al atoms, respectively, and ExpandRan refer
to the results obtained from experimental and random-labelled datasets, respec-
tively; g Frequency distribution analysis of Fe and Al atoms in comparison to the
theoretical binomial random distribution.
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distributions of the two types of CSROdomains with different sizes for
these annealing conditions. Both states exhibit a high PCC (0.99) for
the detected D03-CSRO compared to random, suggesting no sub-
stantial ordering beyond homogenous, statistically-random CSRO in
this concentrated alloy. For B2-CSRO, there is no obvious deviation
from randomat 873 K (PCC is 0.99), but a distinctdifferenceappears at
523K (PCC is 0.97). The number densities of the smaller (≤50 atoms or
1-nm cube) and larger (>50 atoms) domains increase by8:74× 1023 and
4:18 × 1023 m�3, respectively, as the annealing temperature decreases
from 873 K to 523 K. The total number density of B2-CSRO increases by
1:29× 1024 m�3. This suggests the formation and growth of non-
statistical B2-CSROat 523 K. Due to its small size, thesedomains belong
to CSROs not ordered ones.

We further verified our method in a Fe-19 at.% Ga alloy, in which
previous TEM work53 confirmed the existence of the tetragonally
modifiedD03-CSRO.We collected the relevant APTdata from the same
material (Methods). The same model as for Fe-Al was applied and the

corresponding analyses are summarised in Supplementary Fig. 10,
which confirms the existence of non-statistical modified D03-CSRO
with a PCC of 0.977 not B2-CSRO with a PCC of 0.993. The sizes of
modified D03-CSRO are a little larger than those of B2-CSRO in Fe-Al
and some domains fall within the scale of medium-range order (2 to
3 nm). This proves that theML-APTmethod can recognize B2- andD03-
CSRO and the finding of B2-CSRO is reliable in the Fe-Al alloy.

To validate that the alloys we investigated exhibit CSRO, i.e. the
K-state in these Fe-18Al alloys14,19, we measured the nano-hardness and
resistivity changes, shown in Fig. 4c. When the annealing temperature
is decreased from 873 K to 523 K, the nano-hardness decreases from
3.05 ± 0.15 GPa to 2.81 ± 0.21 GPa at the {002} grain and from
2.75 ± 0.05 GPa to 2.70 ± 0.04GPa at the {011} grain, both of which are
equivalent within standard deviations. Based on the classical
strengthening model (Methods) using the size distribution of CSRO
domains (Fig. 4a, b), we estimated their contributions to be approxi-
mately 17.34MPa and 21.08MPa, at 873 K and 523 K, respectively,

Fig. 2 | Machine-learning-enhanced APT strategy to find CSRO and its appli-
cation in large-scale APT simulation data. a Flowchart of the proposed ML fra-
mework to find CSRO within APT data. Procedure to build three classes of crystal
structures and generate relevant synthetic z-SDMs:bGenerating supercell. cAtoms
shift from theoretical sites in x, y, z directions. d Randomly discarding some of the
atoms. e Examples of simulated z-SDMs of Fe-Fe and Al–Al pairs. Relevant crystal
cells are enclosed. Test of the obtainedML-APT recognitionmodel in large-scale Fe-

Al APT simulation: f Morphology maps of the simulated CSRO domains and
detected ones via the proposed model using 1 × 1 × 1 nm3 scanning cubes. The size
and colour of one circle denote the number of atomswithin one domain.gNumber
densities versus APT-counted atoms corresponding to simulated and recognized
CSRO domains. The result from the chemically-randomized dataset (Methods) is
compared, and the Pearson’s correlation coefficients (PCC) are listed in the
inserted table.
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matching with experimental observations considering the experi-
mental uncertainty. The resistivity rises by 5.3%, and previous reports
attributed this anomalous resistivity change (~4% increase at 553K for
1 day) only to D03-CSRO

16,21,54. Our work proves that this resistivity
change lies in the formation and growth of non-statistical B2-CSRO
(1:29× 1024 m�3) at 523 K in this specimen.

Discussion
The discovered B2-CSRO is reliable considering the change in the
electrical resistivity (Fig. 4c), the large-scale APT simulations with B2-
type domains (Supplementary Fig. 7), and the statistically significant
difference between the observation and random state (PCC =0.97 in
Fig. 4b). In fact, previous X-ray scattering experiments and phase
diagram calculations20,55 indicated the existence of a narrow B2 zone
between BCC and D03, which directly supports our finding. It was
thought that the B2-FeAl structure, having aluminium atoms at second
nearest neighbour distances, is an intermediary between disorder and
the D03-Fe3Al structure, where aluminium atoms are at third nearest-
neighbourdistances20. Onewould expect the formationof the FeAl as a
transient in the formation process of the Fe3Al superlattice, which is
finally supported directly by our experimental evidence. The recog-
nition ability on D03-CSRO of the proposed method is also verified in
chosen Fe-Ga alloy as a ground truth (Supplementary Fig. 10).

Although TEM-based methods have been attempted to character-
ise CSRO, there are several limitationsworth considering. First, the TEM
community has suspected that the observed electron reflections could
originate from other factors, including thin film effects, surface steps,
surface oxides, and planar defects, rather than CSRO56,57. We performed
aberration-corrected scanning transmission electron microscopy
(STEM) experiments (Methods) to confirm the existence of CSRO in Fe-
Al from the [110] zone axis, but the obtained fast Fourier transform
patterns mostly match well with surface polycrystalline oxide films that
inevitably exist on TEM specimens, not D03- or B2- CSRO (Supplemen-
tary Fig. 11). Moreover, the TEM-based method cannot provide the
quantitative distribution of CSRO in metallic materials, which varies
with the specimen thickness57. Hence, quantifyingCSROconfigurations,
sizes, and morphologies requires three-dimensional analytical imaging,
which pushed us to develop the current method to enable quantitative
assessment of CSRO from APT in a statistically-relevant way.

The performance of ML-APT is mainly limited by the APT data
quality, especially its spatial resolutions. ML-APT will hence face lim-
itations in the accurate detection of CSRO domains with fewer than 20
APT-reconstructed atoms. In the future, modelling the atom eva-
poration process58,59 could improve the data quality (including detec-
tion efficiency and spatial resolutions) to maybe allow for more
accurate recognition of CSRO using or extending the proposed ML-

5 nm

D03-CSRO B2-CSRO
a

b

c

d

e

f

2 nm 2 nm

5 nm

Fig. 3 | Two types of CSRO in one Fe-18Al alloy annealing at 523K for 14 days.
a, d Part of D03-CSRO and B2-CSRO tomography from the same dataset, respec-
tively. Different CSRO domains are marked using different colours. For each
tomography, two thin slices of thickness 2 nm are highlighted. b, eDistributions of
morphologies of D03-CSRO and B2-CSRO domains, respectively. The size and

colour of one circle denote the number of atoms within one domain.
c, f Histograms of the size distributions of the identified D03-CSRO and B2-CSRO
domains, respectively. Another formatwith the logarithmic-scale x-axis is provided
in the inserted image.
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APT method, as we could include in the training additional possible
distortions of the features associated to CSRO. Furthermore, the pre-
sent ML-APT approach requires prior knowledge of possible CSRO
structures in the studied systems. Were this method to be applied to
more complex alloy systems, like medium/high entropy alloys, the
limited or absent prior knowledge of CSRO configuration could pre-
clude identification and quantification.

This current finding addresses a long-standing question in Fe-18Al
alloy and attributes the property changes upon heat treatment to the
occurrence of non-statistical B2-CSRO instead of the expected D03-
CSRO, which has not been found by TEM-based methods. With the
breakthrough in imaging CSRO in 3D byML-APT, this approach can be
extended to not only solve K-state phenomena in other alloying sys-
tems as mentioned above but also reveal CSRO in compositionally-
complex alloys. These will help integrate CSRO into the design of
future high-performance materials.

In summary, we managed to overcome the current limitation in
imaging CSRO by APT by using ML. Our ML-APT strategy makes full use
of the highest-quality, near-atomic-resolution of APT, combined with its
high elemental analytical ability, which is unattainable by other techni-
ques. This approach precisely reveals the morphology and size dis-
tributions of multiple types of (non-)statistical CSRO, in 3D and with
near-atomic resolution, thereby enabling us to rationalise their origin
and microstructural influence. We showcase this strategy on the open
question in the context of the K-state Fe-Al system by establishing

relationships between the compositions, processing, CSRO and prop-
erties. In this case, the functional property is more sensitive to the for-
mation of a limited number of non-statistical B2-CSRO as compared to
the mechanical property. However, whether abundant CSRO can affect
the mechanical properties is still controversial, especially in
compositionally-complex alloys12,60 and we are now poised to char-
acterise the CSRO in such complex alloy systems, and exploit short/
medium/long-range ordering phenomena in newly designed advanced
metallic materials.

Methods
Sample preparation
An alloy with a nominal composition of Fe-18Al (at.%) was arc-melted
from pieces of raw metals with high purity (>99.8 wt.%) in a water-
chilled copper crucible under an argon atmosphere. Then, the as-
received sample was cut into pieces and annealed at 873K and 523 K
for 14 days, respectively, under argon atmosphere, followed by water
quenching. The annealed samples were ground and polished for
microstructure analysis as well as mechanical and functional proper-
ties tests. The backscattered electron images confirm that there are no
obvious precipitates at both samples.

APT experiments
For the Fe-Al, electron backscatter diffraction was first applied to
determine the desired grain site along the [002] zone axis. Then, the

ba

c

Size
Heat 
treatment

≤50 
atoms

>50 
atoms

Random 1.61E24 1.83E23

873K 2.06E24 2.61E23

523K 2.93E24 6.79E23

Difference 8.74E23 4.18E23

Data 873K vs 
Random

523K vs 
Random

PCC 0.99 0.99

Data 873K vs 
Random

523K vs 
Random

PCC 0.99 0.97

Fig. 4 | Quantitative CSRO evolutions and property changes of Fe-18Al alloys
with different heat treatments. a, b Number density distributions of different
sizes of D03-CSRO and B2-CSRO, respectively, for two annealing temperatures for
14days. The results from the chemically-randomizeddataset are comparedwith the
PCC values. The detailed changes in number densities of smaller and larger B2-

CSRO are listed in the inserted table. The value of 50, ideally corresponding to
1-nm3 cube, is set as the dividing point. c Changes of nano-hardness and electrical
resistivity at different annealing temperatures for 14 days. The values of nano-
hardness at the {002} and {011} grains are given. All error bars (standarddeviations)
were obtained by at least three measurements.
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needle-like specimens for APT along [002] were prepared using a FEI
Helios focused ion beam (FIB) with a Xenon plasma ion source. Note
that using a FIB with the more commonly-utilized Gallium source was
excluded because of the potential Gallium pollution in the Fe-Al alloy.
The APT measurements were performed on a CAMECA Inc. LEAP
5000XR with a 52% detection efficiency. The APT experiments were
carried out in voltage pulsing mode at 40–60K, a detection rate of
0.2%, a pulsing fractionof 20%, and apulsing rate of 200 kHz.Note that
a temperature range from 80K to 30K was tried to increase the
electricfield to increaseprobability of the occurrence of Al2+ andAl3+ to
avoid the peak overlap between 54Fe2+ and Al+ at 27 Da according to the
bulk composition analysis (Supplementary Table 2)16,17. For each state,
three APT datasets were collected for statistical analysis. AP suite 6.1
was used to make initial reconstruction and visualization. Two
important reconstruction parameters, i.e., the field factor and image
compression factor, were calibrated using the method suggested by
Gault et al.47,48. The effect of H, C, and O in Supplementary Table 2 on
the recognition of CSRO can be ignored.

For the Fe-Ga, the needle-like APT specimens were obtained from
the single-crystal sample53 along [002] using the same plasma FIB. The
APT measurements were performed on a CAMECA Inc. LEAP 5000XS
with a 80% detection efficiency in laser pulsing mode at 1.0% detection
rate, 30pJ laser energy, and 200kHzpulse rate. Three APTdatasets were
collected for statistical analysis.Otherdata analysis are sameas theFe-Al.

Spatial distribution maps
SDMs are produced by establishing the vectors between each atom
and its surrounding neighbours in 3D space35–37. These vectors are then
accumulated into two-dimensional (2D) histograms (projected onto a
plane, commonly the xy, or xz plane), or one-dimensional (1D) histo-
grams (along the z-axis). Here, the 1D z-SDMs (see Fig. 1d) were
employed to focus on the depth-direction structural information.

Synthetic z-SDMs bank
Various possible configurations were simulated, around BCC, D03, and
B2 (Fig. 2b–e) using the following approach. First, a supercell with
3 × 3 × 3nm3 was generated (the lattice constant was set as 0.287 nm49).
Second, the atoms were shifted in x, y, z reconstruction directions
according to Gaussian distributions to simulate the anisotropic spatial
resolutions (depth resolution is better than the lateral direction). Third,
a certain fraction of atoms was randomly discarded to simulate the
imperfect detection efficiencymet in APT data. Finally, 5000 z-SDMs of
three structures were generated. The differences in the peak-to-peak
distances of the Fe-Fe and Al-Al pairs allow one to make classification
(Fig. 2e). The peak positions of the experimental z-SDMs were not
always at their theoretical sites. Thus, we augmented the dataset by
adding additional 5000 synthetic samples in which the peak-to-peak
distance was randomly modified by ±0.06nm. All parameters for gen-
erating simulated z-SDMs are listed in Supplementary Table 1.

Experimental data pre-processing
The data pre-processing procedure includes using the Savitzky-Golay
filter61 to smooth the original z-SDM curve and make a background
reduction. For the Savitzky-Golay filter, the length of the filter window
and the order of the polynomial are set as 15 and 8, respectively,
obtained by a tuning procedure in which different values are set and
their performances on real data are evaluated. The background curve
was calculated using36

yp ið Þ= min yp�1 ið Þ,
yp�1 i+ 1ð Þ+ yp�1 i� 1ð Þ

2

� �
ð1Þ

where yp =0 is the smoothed z-SDM curve, and yp ið Þ is the value of the
ith discrete point of the z-SDM at the pth iteration. The iteration is
stopped when the first local minimum value of the smoothed z-SDM

(after x-axis is above 0) is lower than the maximum of yp ið Þ within the
shade zone (Supplementary Fig. 3). The background as defined above
was subtracted from the smoothed z-SDM curve to obtain the
optimized z-SDM.

CSRO recognition model based on 1D CNN and random forest
algorithms
As detailed in Supplementary Fig. 2a, the 1D CNN62,63 consists of a
convolutional layer with filter number, kernel size and stride of 64, 10
and 1, respectively, followedby a dropout layerwith the rate of 0.5 used
to avoid overfitting. Then, a max-pooling layer62 with a pool size of 2 is
added to highlight themost important features. A fully-connected layer
with 256 neurons is employed to generate an output corresponding to
the three crystal structures. All layers used the activation function of
ReLu, except the output layer which used softmax for classification
purposes. The categorical cross-entropy was chosen as the loss func-
tion, which is commonly used to train amulti-classifier.Weused a batch
size of 32 and an optimized learning rate of 0.001 during training, and
the Adam optimizer was used to minimize the loss function. Note that
the reported hyperparameters’ values in the 1D CNN are the result of a
thorough tuning procedure based on the training, validation, and test
results on synthetic and real datasets (like the tested convolutional layer
number: 1 ~ 5; filter number: 8 ~ 64; kernel size: 3–20, neurons of full
layer: 64 ~ 1000; learning rate: 0.001 ~ 0.1). For the random forest
classifier64, the number of trees in the forestwas set to 200basedon the
training, validation, and test results on synthetic and real datasets (the
tested number of trees: 100 ~ 300). The CNN was implemented using
Keras 2.2.4 with the TensorFlow 1.13.1 backend on Python 3.7. The
random forest was performed using scikit-learn 0.23.2 using the default
parameters except for the number of trees.

Evaluation of classification ability based on ROC analysis
The ROC analysis65,66 was applied to evaluate the performance of the
multi-label classifier. In Supplementary Fig. 4, one curve is plotted
based on two critical evaluation parameters: true positive rate and
false positive rate. The top left corner of this curve is an ideal point, i.e.,
the true positive rate and false positive rate are 1 and 0, respectively.
For each label, we plot its ROC curve regarding each element of the
label indicatormatrix as a binary prediction. Fivemodels fromfive-fold
cross-validation provide five ROC curves for each class, and the mean
value and standard deviation are plotted. The mean AUC and its
standarddeviation of eachclass are alsoprovided.Note that theROC is
insensitive to the distributionof data,making it suitable for thiswork67.

Large-scale Fe-Al APT simulation
Webuilt a perfect BCC supercell (10 × 10 × 50nm3)withD03-type or B2-
type domains (the diameters vary from0.7 to 2.0 nm). Then, the atoms
were shifted in lateral and depth reconstruction directions according
to Gaussian distributions. According to the previous APT evaporation
simulation in alloys and concentrated solid solutions34, the maximum
atoms shift in the lateral and depth directions were set as 5th and 1st
nearest neighbour distances, respectively. The detection efficiency
was set to 52%. Finally, the simulatedD03-type andB2-typedomains are
shown in Supplementary Figs. 6a and 7a, respectively. The ML-APT
recognition model obtained was applied to the simulated APT data
using different scanning strategies (Supplementary Figs. 6b, c and 7b).
The 3D recognition results were compared via the 2D distribution of
the number of atoms along Z and Y directions (Supplementary
Figs. 6d, e and 7c, d), morphology and size distributions (Fig. 2f, g and
Supplementary Fig. 7e, f).

To figure out the impact of the randomly-formed CSRO from the
truly random solid solution, we randomly swapped the elemental
identities of data points while retaining the original x, y, and z coor-
dinates. Then, the sameML-APT recognitionmodel was applied to the
randomdataset to obtain the randomly-formed CSRO domains. This is
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compared with the results above using Pearson’s correlation coeffi-
cient (PCC). PCC is a statistic that evaluates the linear correlation
between variables X and Y, given by68:

PCC=
PN

i= 1ðxi � exÞðyi � eyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i = 1ðxi � exÞ2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i = 1ðyi � eyÞ2q ð2Þ

where N is the data size. xi, yi are the individual data points. ex, ey are the
mean values. PCC varies from −1 to 1, suggesting the linear correlation
extent of the two variables. 1 represents a complete positive linear cor-
relation, 0 is no linear correlation, and −1 is a complete negative linear
correlation. Note that the comparison using a chemically-randomized
dataset is also applied for the experimental dataset, as shown in Fig. 4.

Classification thresholds
Supplementary Fig. 9a, b presents the frequency distributions of two
kinds of CSRO structure probabilities of the 0.5-nm3 voxels (named
P0.5). The data from three zones (1, 2, 3) in Supplementary Fig. 9a were
analysed and the corresponding z-SDMs are shown in Supplementary
Fig. 9c. For the z-SDMs of Fe-Fe pairs, the peaks are unclear, which also
occurs in the large-scale APT simulation data. This is attributed to the
imperfect lateral and depth resolutions. For the z-SDMs of Al-Al pairs,
there is an obvious trend to be close to the signature of D03-CSRO
except zone 1. Thus, the separating line between zones 1 and 2 was
regarded as the threshold between D03 and others, i.e., 3.75. Similarly,
zones 1–3 in Supplementary Fig. 9b were also analysed and the cor-
responding z-SDMs are plotted at Supplementary Fig. 9d. The B2 sig-
nature becomes clear after zone 1, and, thus, 4 was seen as the
threshold. Finally, the z-SDMs of each kind of CSRO based on the
chosen threshold exhibits a clear signature (zone 4), suggesting the
excellent CSRO classification ability.

Quantification of CSRO domains
We made a quantitative analysis of the identified CSRO domains
based on the cluster analysis algorithm included in AP suite 6.1.
The approach consists of choosing a maximum separation dis-
tance between the clustered elements (dmax) and a minimum
number of ions in the cluster (Nmin)

50,69. After getting the opti-
mized parameters in the simulated APT dataset (Fig. 2f, g) these
values were further fine-tuned in the real APT dataset by visual
observation. The determined values of dmax and Nmin are 0.4 nm
and 3 ions, respectively, which was applied to all real APT data-
sets. Then, the obtained count of CSRO domains was divided by
the total volume to calculate the number density of CSRO, Nv.

To describe the shape of each CSRO domain, we first define its
centre of mass in a best-fit coordinate system, rcom, by

rcom xcom, ycom, zcom
� �

=

PNc
i = 1 miriðxi, yi, ziÞPNc

i= 1 mi

ð3Þ

where mi and ri denote the mass and coordinates (in the best-fit
coordinate system) of each atom in the domain and Nc is the total
number of atoms in the domain. Then, the three radii of gyration in the
best-fit ellipsoid system, (Rg1 > Rg2 > Rg3),were calculated. The shapeof
the domain is expressed by the plot of the oblateness vs aspect ratio,
defined by

Oblateness=
Rg3

Rg2
ð4Þ

Aspect ratio =
Rg2

Rg1
ð5Þ

Nano-hardness and electrical resistivity measurements
The Nano-hardness tests were performed using the G200 nanoindenter
at a strain rateof0.1 s−1 andan indentationdepthof 1000nm.Thegrains
close to {002} and {011} were selected and the hardness values from 50
measurementswithin the specific grainsweremeasured to calculate the
statistical results for each sample. The electrical resistivity corre-
sponding to each annealing temperature was measured on a Quantum
Design Physical Property Measurement System with a temperature of
300K and zero Tesla magnetic field. The resistivity values from 4 sam-
ples were obtained to calculate the statistical results for each state.

Strength model
The main strength contribution can be divided into the intrinsic
strength from the BCC matrix, solid solution strengthening, and pre-
cipitation strengthening from CSRO. The two formers are almost
identical for the studied states. The precipitation strengthening from
CSRO, σp, is estimated by the previously-developed precipitation
strength model in terms of spherical precipitates70–73:

σp =0:9Mμb
ffiffiffiffiffiffiffiffiffiffiffiffi
2�rNV

p
�f
3
2 1� 1

6
�f
5

� �
ð6Þ

�f =
1
r2kc

Zrc
0

r2k + 1φrdr +
Z1
rc

rφrdr

0
@

1
A 1

�rNv
ð7Þ

whereM is the Taylor factor. μ is the shearmodulus of D03 or B2, and b
is the Burgers vector. NV is the total number density of CSRO. �r is the
mean particle radius and rc is the critical radius that the precipitates
transform from shearable to non-shearable. k is an empirical model
parameter. φr is the statistical distribution of the number of particles
per volume as a function of the particle radius, r. Here, M=3, μ=69.8
(D03) or 113.4 (B2) GPa

74, b=0.25 nm, k=1, and rc = 5 nm were used75.

STEM experiments
Electron backscatter diffraction was first applied to determine the
desired grain with the aimed orientation. Then, the STEM specimen
was prepared using a Thermofisher Scios 2 FIB with a Gallium source.
The parameters used for the final milling were 2 kV and 27pA to
minimize the possible contamination and damage to the specimen.
The thickness of each TEM specimen was directly measured under the
FIB window after the final polishing. The atomic resolution STEM
imaging was performed on a FEI Themis Z (60–300 kV) scanning
transmission electron microscopy with double aberration correctors.
STEM images were captured at 300 kV with a convergence semi-angle
of 23.6 mrad and a screen current of 50 pA.

Data availability
All data that support the findings are involved in this paper. An
annealed Fe-Al APT demo data is provided in https://doi.org/10.6084/
m9.figshare.23989050.

Code availability
The major codes are available at GitHub address https://github.com/
a35661760576.
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