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Partial Stabilization of an Orbiting Satellite Model
with a Flexible Attachment
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Abstract

We consider a mathematical model of an orbiting satellite, comprising a rigid carrier

body and a flexible boom, operating under the influence of gravity gradient torque. This

model is represented by a nonlinear control system, which includes ordinary differential

equations governing the carrier body’s angular velocity and attitude quaternion, coupled

with the Euler-Bernoulli equations that describe the vibration of the flexible component.

We propose an explicit feedback design aimed at guaranteeing the partial stability of the

closed-loop system in an appropriate Hilbert space.

1 Introduction

The stabilization problem for satellites with flexible attachments is a crucial challenge in
aerospace research and engineering, as these attachments (solar panels, booms, tethers, and
antennas) are essential for the satellite’s operation but can introduce complex dynamics. With-
out proper control schemes, these flexible parts can induce vibrations that degrade the satel-
lite’s overall performance and longevity. Effective stabilization ensures accurate orientation
and stability, which are vital for tasks like communication, Earth observation, and scientific
measurements.

The fundamental applications of Lyapunov’s direct method in analyzing the stability of
satellites with elastic components are summarized in [8, 9, 12], while a brief survey of the
latest findings in this field is available in [3]. The recent study presented in [3] explores how
the model fidelity and the uncertainty of parameters influence the effectiveness of a combined
model-based feedback and feedforward control approach for maintaining the orientation of a
satellite equipped with flexible appendages.

The present paper focuses on the analytical control design for a realistic model of a flexible
satellite model within the framework of partial stability theory [14, 18]. A related single-axis
stabilization problem was solved in [19] for rigid satellite models actuated by a pair of thrusters
and reaction wheels. The structure of this paper is arranged in the following manner. In
Section 2, we derive a mathematical model of an orbiting satellite with a boom. It is assumed
that the satellite consists of a rigid carrier body moving along the Earth’s orbit and a boom in
the form of an elastic cantilever beam. We derive the equations describing the vibrations of the
boom by applying Hamilton’s principle with an account of external forces. A feedback control is
proposed in Section 3 with the use of an energy-based Lyapunov functional. The corresponding
closed-loop system is represented by an abstract differential equation in Section 4, and the main
stability result is formulated in Section 5.

2 Equations of motion

Consider a satellite model consisting of a rigid body (carrier) with an attached flexible beam. We
suppose that the satellite moves on a circular orbit around the Earth and associate a Cartesian
frame Oxyz (body coordinate system – BCS) with the carrier body. Another Cartesian frame
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Ox′y′z′ (orbit coordinate system – OCS) is associated with the orbit such that the axis Ox′ is
orthogonal to the orbital plane, Oy′ is tangent to the orbit, and Oz′ is pointing away from the
Earth’s center. Let us denote the unit vectors of frames Oxyz and Ox′y′z′ by (e1, e2, e3) and
(i, j,k), respectively, and introduce the absolute angular velocity vector of the carrier body in
BCS as ω = ω1e1 + ω2e2 + ω3e3.

Kinematics. Let ω0 = const be the orbital rate of the considered satellite, then the absolute
angular velocity of OCS is ωO = −ω0i, and the relative angular velocity of the carrier body
with respect to OCS is ωr = ω + ω0i. The rotation of BCS with respect to OCS is described
by the following quaternion equation [7, Chap. 8.6]:

q̇ =
1

2
q4ωr +

1

2
q × ωr,

q̇4 = −
1

2
〈q,ωr〉 ,

(2.1)

where the dot stands for the time derivative, 〈·, ·〉 denotes the inner product in R
3, q =

(q1, q2, q3)
T is the vector part of the attitude quaternion and q4 is the scalar part constrained

by the condition
q21 + q22 + q23 + q24 = 1.

The unit vectors (i, j,k) of OCS have the following coordinates in BCS [10]:

i =





q21 − q22 − q23 + q24
2(q1q2 − q3q4)
2(q1q3 + q2q4)



 , j =





2(q1q2 + q3q4)
q24 − q21 + q22 − q23
2(q1q4 + q2q3)



 , k =





2(q1q3 − q2q4)
2(q2q3 + q1q4)

q23 + q24 − q21 − q22



 . (2.2)

Dynamics of the carrier body. It is assumed that the origin of the body coordinate system
coincides with the center of mass of the satellite in the undeformed reference state of the beam
and that Ox, Oy, Oz are principal axes of inertia of the satellite considered as a rigid body with
the “frozen” beam at its reference state. We follow the restricted formulation of the problem
of dynamics (see, e.g., [14]) and assume that the overall motion is decoupled into the orbital
motion of the center and the spherical motion of the satellite around its center of mass. We
also assume that the beam is subjected to small deformations, so that the mass distribution
of the satellite can be described by a constant tensor of inertia, and the rotation of the carrier
body is governed by Euler’s equations (cf. [7]):

Îω̇ + ω × (Îω) = u+ τg, (2.3)

where Î = diag(I1, I2, I3) is the tensor of inertia of the satellite with the “frozen” beam, ω̇ =
ω̇1e1+ ω̇2e2+ ω̇3e3, u is the control torque, τg = 3ω2

0(k× Îk) is the gravity gradient torque [17],
the components of k in BCS can be computed by formulas (2.2).

The three-dimensional control torque u can be implemented, for instance, in a reaction
control system (RCS) with three independent thrusters. An alternative approach for generating
a constrained torque relies on the use of magnetorquers (see, e.g., [13, 16] and references therein).
If µ is the magnetic moment generated by magnetorquers, then the control torque acting on
the satellite is

u = µ×B(t),

where B(t) is the Earth magnetic field vector at the corresponding point of the orbit. The
vector function B(t) is periodic in the general case, and B(t) = βi = const for a satellite in
equatorial orbit. The magnetic moment µ can be regulated by the current applied to a set of
electromagnetic coils, so it is possible to treat µ ∈ R

3 as the control vector for a satellite model
with magnetic actuation. The method of a fully magnetic attitude control was successfully
tested on small satellites having electromagnetic actuation [15], and it is considered to be a
promising technology based on inexhaustible energy source (using solar panels).



Vibration of the boom. We use the Euler–Bernoulli beam model to describe the dynamics
of the flexible part (boom) of the satellite. Let w(ζ, t) = w1(ζ, t)e1 + w2(ζ, t)e2 + (ζ + ℓ0)e3

parameterize the center line of the beam in BCS depending on the Lagrangian coordinate
ζ ∈ [0, ℓ] and time t. We assume that the beam of length ℓ is attached to the carrier at
the point with coordinates (0, 0, ℓ0), so that w1(ζ, t) = w2(ζ, t) = 0 describe the undeformed
reference state of the beam. The kinetic and potential energy of the beam can be written as

K =
1

2

ℓ
∫

0

ρA
(

ẇ2
1 + ẇ2

2

)

dζ

and

U =
1

2

ℓ
∫

0

EI
(

(w′′

1)
2 + (w′′

2)
2
)

dζ,

respectively, where the derivatives with respect to ζ are denoted by a prime, ρ is density of
the beam (mass per unit volume), A is the cross-sectional area of the beam, E is the Young’s
modulus, and I is the cross-sectional moment of inertia of the beam.

Then we construct the Lagrangian L = K−U and apply Hamilton’s principle [2]: if wi(ζ, t),
i = 1, 2 define the motion of the considered mechanical system for t ∈ [t1, t2], then

δ

t2
∫

t1

(K − U)dt +

t2
∫

t1

δAdt = 0 (2.4)

for every admissible variations δwi(ζ, t) such that δwi(ζ, t1) = δwi(ζ, t2) = 0, i = 1, 2, where
t2
∫

t1

δAdt is the work of external forces on δwi. The admissible variations δwi(ζ, t) are of class C
1

with respect to t and of class C2 with respect to ζ . We postulate the boundary conditions for
the cantilever beam:

w1(0, t) = w2(0, t) = 0, w′

1(0, t) = w′

2(0, t) = 0,

w′′

1(ℓ, t) = w′′

2(ℓ, t) = 0, w′′′

1 (ℓ, t) = w′′′

2 (ℓ, t) = 0.

(2.5)

Performing the integration by parts in (2.4), we obtain

δ

t2
∫

t1

(K − U)dt = −

t2
∫

t1

ℓ
∫

0

ρA (ẅ1δw1 + ẅ2δw2) dζdt−

t2
∫

t1

ℓ
∫

0

EI
(

w
(4)
1 δw1 + w

(4)
2 δw2

)

dζdt. (2.6)

Here and further, w(4) stands for the fourth derivative of w with respect to ζ .
In order to describe the motion in the non-inertial frame BCS, we need to introduce the

corresponding inertial forces. Let F be the inertial force acting on a beam element with the
mass ρAdζ . It is well-known that F is expressed as the sum of the Euler force F1, Coriolis
force F2, and centrifugal force F3 [6], which can be calculated using the following formulas:

1
ρAdζ

F1 = − ω̇ ×w, 1
ρAdζ

F2 = −2ω × ẇ, 1
ρAdζ

F3 = −ω · (ω ·w) +w · ω2. (2.7)

Then the work due to the force F is expressed as follows:

t2
∫

t1

δAdt =

t2
∫

t1

ℓ
∫

0

〈F , δw〉dζdt,



where
1

ρAdζ
〈F , δw〉 =

(

(ω2
2 + ω2

3)w1 + (ω̇3 − ω1ω2)w2 + 2ω3ẇ2 − (ω̇2 + ω1ω3)(ζ + ℓ0)
)

δw1,

(

(ω2
1 + ω2

3)w2 − (ω̇3 − ω1ω2)w1 − 2ω3ẇ1 + (ω̇1 − ω2ω3)(ζ + ℓ0)
)

δw2.
(2.8)

Calculating the projections of
t2
∫

t1

δAdt on the x and y axes and applying the fundamental lemma

of calculus of variations to (2.4), we obtain the following differential equations:

ẅ1 +
EI
ρA

w
(4)
1 = (ω2

2 + ω2
3)w1 + (ω̇3 − ω1ω2)w2 − (ω̇2 + ω1ω3)(ζ + ℓ0) + 2ω3ẇ2,

ẅ2 +
EI
ρA

w
(4)
2 = (ω2

1 + ω2
3)w2 − (ω̇3 + ω1ω2)w1 + (ω̇1 − ω2ω3)(ζ + ℓ0)− 2ω3ẇ1, ζ ∈ [0, ℓ].

(2.9)

Truncated system. For further analysis, we consider the case of small oscillations of the
beam and small angular velocity of the carrier body, so we will truncate the terms of order
higher than 2 with respect to wi, ωj in (2.9). Then the resulting system of partial differential
equations takes the form

ẅ1 +
EI
ρA

w
(4)
1 = ω̇3w2 − (ω̇2 + ω1ω3)(ζ + ℓ0) + 2ω3ẇ2,

ẅ2 +
EI
ρA

w
(4)
2 = −ω̇3w1 + (ω̇1 − ω2ω3)(ζ + ℓ0)− 2ω3ẇ1, ζ ∈ [0, ℓ].

(2.10)

The derivatives ω̇j can be eliminated from the right-hand side of (2.10) by using the component-
wise representation of Euler’s equations (2.3):

ω̇1 =
I2−I3
I1

ω2ω3 +
6ω2

0
(I2−I3)

I1
(q1q4 + q2q3)(2q

2
1 + 2q22 − 1) + u1

I1
,

ω̇2 =
I3−I1
I2

ω1ω3 +
6ω2

0
(I3−I1)

I2
(q1q3 − q2q4)(2q

2
1 + 2q22 − 1) + u2

I2
,

ω̇3 =
I1−I2
I3

ω1ω2 +
6ω2

0
(I1−I2)

I3
(q1q4 + q2q3)(q2q4 − q1q3) +

u3

I3
,

(2.11)

where we apply the normalization condition q24 = 1− q21 − q22 − q23.
Thus, the nonlinear hybrid system described by ordinary differential equations (2.1), (2.11)

and partial differential equations (2.10) with boundary conditions (2.5) is proposed as a math-
ematical model of the considered satellite with flexible boom.

3 Stabilizing control design

Our goal is to stabilize the undeformed state of the beam w1(ζ, t) = w1(ζ, t) = 0 by applying a
suitable state feedback control. For this purpose, we consider a Lyapunov functional candidate
in the form

V = 1
2

ℓ
∫

0

(

ẇ2
1 + ẇ2

2 +
EI

ρA

(

(w′′

1)
2 + (w′′

2)
2
)

)

dζ. (3.1)

By computing the time derivative of V along the trajectories of system (2.10), (2.5), we get:

V̇ = (ω̇1 − ω2ω3) · γ1(ẇ2) + (ω̇2 + ω1ω3) · γ2(ẇ1) + ω̇3 · γ3(w1, w2, ẇ1, ẇ2), (3.2)

where the functionals γi are

γ1(ẇ2) =

ℓ
∫

0

(ζ+ ℓ0)ẇ2dζ, γ2(ẇ1) = −

ℓ
∫

0

(ζ+ ℓ0)ẇ1dζ, γ3(w1, w2, ẇ1, ẇ2) =

ℓ
∫

0

(w2ẇ1−w1ẇ2)dζ.

(3.3)



We will define a feedback control to ensure that the time-derivative V̇ along the trajectories
of the closed-loop system is negative semidefinite:

V̇ = −ν1γ
2
1 − ν2γ

2
2 − ν3γ

2
3 ≤ 0, (3.4)

where νi > 0 are arbitrary constant gain parameters, i = 1, 3.
By exploiting the structure of equations (2.11), we conclude that formula (3.4) holds with

the control components

u1 = −ν1I1γ1 + (I1 − I2 + I3)ω2ω3 + 6ω2
0(I3 − I2)(q1q4 + q2q3)(2q

2
1 + 2q22 − 1),

u2 = −ν2I2γ2 + (I1 − I2 − I3)ω1ω3 + 6ω2
0(I1 − I3)(q1q3 − q2q4)(2q

2
1 + 2q22 − 1),

u3 = −ν3I3γ3 + (I2 − I1)ω1ω2 + 6ω2
0(I2 − I1)(q1q4 + q2q3)(q2q4 − q1q3).

(3.5)

4 Abstract representation of the closed-loop system

To treat the stability problem formally, we will rewrite the obtained closed-loop system in the
state space form. For this purpose, we introduce the real Hilbert space

X =
{

ξ = (w1, v1, w2, v2,ω, q, q4)
T |w1, w2 ∈ H2(0, ℓ), v1, v2 ∈ L2(0, ℓ), ω, q ∈ R

3, q4 ∈ R,

w1(0) = w2(0) = 0, w′

1(0) = w′

2(0) = 0
}

,

where the inner product of tuples ξ = (w1, v1, w2, v2,ω, q, q4)
T and ξ̄ = (w̄1, v̄1, w̄2, v̄2, ω̄, q̄, q̄4)

T

is defined by

〈

ξ, ξ̄
〉

X
=

∫ ℓ

0

(

ρA(v1(ζ)v̄1(ζ) + v2(ζ)v̄2(ζ)) + EI(w′′

1(ζ)w̄
′′

1(ζ) + w′′

2(ζ)w̄
′′

2(ζ))
)

dζ

+ I1ω1ω̄1 + I2ω2ω̄2 + I3ω3ω̄3 + κ(q1q̄1 + q2q̄2 + q3q̄3 + q4q̄4),

κ is a positive constant, and H2(0, ℓ) is the Sobolev space of square integrable functions with
square integrable first and second derivatives on [0, ℓ].

Let w1(x, t), w2(x, t), ω(t), q(t), q4(t) satisfy the differential equations (2.1), (2.10), (2.11)
with boundary conditions (2.5) and the feedback control (3.5) for t ∈ I = [0, tω), tω 6 +∞.
Then a straightforward computation shows that ξ(t) = (w1(·, t), ẇ1(·, t), w2(·, t), ẇ2(·, t),ω(t),
q(t), q4(t))

T ∈ X satisfies the following abstract differential equation:

ξ̇(t) = Fξ(t), t ∈ I, (4.1)

where the nonlinear operator F : D(F ) → X is defined by the rule

F : ξ =





































w1

v1
w2

v2
ω1

ω2

ω3

q1
q2
q3
q4





































7→ Fξ =







































v1

−EI
ρA

w
(4)
1 + 2ω3v2 + ν2(ζ + ℓ0)γ2(v1)− ν3w2γ3(w1, w2, v1, v2)

v2

−EI
ρA

w
(4)
2 − 2ω3v1 − ν1(ζ + ℓ0)γ1(v2) + ν3w1γ3(w1, w2, v1, v2)

ω2ω3 − ν1γ1(v2)
−ω1ω3 − ν2γ2(v1)

−ν3γ3(w1, w2, v1, v2)
1
2

(

ω3q2 − ω2q3 + (ω1 + ω0)q4
)

1
2

(

(ω1 − ω0)q3 − ω3q1 + ω2q4
)

1
2

(

ω2q1 − (ω1 − ω0)q2 + ω3q4
)

−1
2

(

q1(ω1 + ω0) + q2ω2 + q3ω3

)







































,



and its domain is

D(F ) =



















ξ ∈ X :

wj ∈ H4(0, ℓ), wj(0) = w′

j(0) = 0, w′′

j (ℓ) = w′′′

j (ℓ) = 0,

vj ∈ H2(0, ℓ), vj(0) = v′j(0) = 0, j = 1, 2,

ωi, qj ∈ R, i = 1, 3, j = 1, 4



















⊂ X.

In the sequel, equation (4.1) will be treated as the abstract formulation of the closed-loop
system (2.1), (2.5), (2.10), (2.11), (3.5).

5 Partial stability conditions

It is easy to see that system (4.1) has an equilibrium

ξ̂ = (0, 0, 0, 0, −ω0, 0, 0, 0, 0, 0, 1)
T ∈ X, (5.1)

which corresponds to the circular motion of the satellite as an absolutely rigid body around the
Earth. In this case, the frames Oxyz and Ox′y′z′ coincide, the absolute angular velocity of the
satellite is ωO = −ω0i, and the beam is in its undeformed state.

Let us consider a nonnegative functional y : X → R
+ such that

y(ξ) = ‖w1‖H2(0,ℓ) + ‖w2‖H2(0,ℓ) + ‖v1‖L2(0,ℓ) + ‖v2‖L2(0,ℓ). (5.2)

For the stability analysis, we will make the following assumption.
Assumption A1. The abstract Cauchy problem (4.1) with ξ(0) = ξ0 ∈ X is well-posed on

I = [0,+∞).
According to the definition of partial stability (cf. [11, 14, 20]), we call the equilibrium (5.1)

stable with respect to the functional y(ξ), if:

(i) for any ε > 0, there exists a δ(ε) > 0 such that each solution of (4.1) satisfying the initial
condition ‖ξ(0)− ξ̂‖X < δ(ε) has the property y(ξ(t)) < ε for all t ≥ 0.

We summarize the main result of this paper in the following theorem.
Theorem 1. Let Assumption A1 be satisfied for system (4.1) with some positive constants

ν1, ν2, ν3. Then the equilibrium ξ = ξ̂ of (4.1) is stable with respect to the functional y(ξ)
given by (5.2).

Proof. Inequality (3.4) implies that the functional

V(ξ) = 1
2

ℓ
∫

0

(

v21(ζ) + v21(ζ) +
EI

ρA

(

(w′′

1(ζ))
2 + (w′′

2(ζ))
2
)

)

dζ.

is nonincreasing along the solutions ξ(t) of (4.1). Moreover, by exploiting Wirtinger’s inequal-
ity [4], we conclude that

α1y
2(ξ) ≤ V(ξ) ≤ α2‖ξ − ξ̂‖2X for all ξ ∈ X,

with some positive constants α1 and α2. Therefore, the assertion of Theorem 1 follows from
the proof of property (i) in [20, Theorem 2.1] and [11, Theorem 5.2]. �

6 Conclusion

The feedback control law introduced in (3.5) offers a constructive solution to the considered
problem of partial stabilization in the infinite-dimensional state space X . In order to analyze
the well-posedness of the Cauchy problem for system (4.1), the theory of C0-semigroups of
operators can be applied [1, 5]. In this paper, we do not address the issue of well-posedness,
deferring its examination to future research endeavors.
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